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Abstract

Purpose: Prostate cancer (PCa) is the most common solid organ cancer and second leading
cause of death in men. Multiparametric magnetic resonance imaging (mpMRI) enables detection
of the most aggressive, clinically significant PCa (csPCa) tumors that require further treatment.
A suspicious region of interest (ROI) detected on mpMRI is now assigned a Prostate Imaging-
Reporting and Data System (PIRADS) score to standardize interpretation of mpMRI for PCa
detection. However, there is significant inter-reader variability among radiologists in PIRADS
score assignment and a minimal input semi-automated artificial intelligence (AI) system is pro-
posed to harmonize PIRADS scores with mpMRI data.

Approach: The proposed deep learning model (the seed point model) uses a simulated single-
click seed point as input to annotate the lesion on mpMRI. This approach is in contrast to typical
medical AI-based approaches that require annotation of the complete lesion. The mpMRI data
from 617 patients used in this study were prospectively collected at a major tertiary U.S. medical
center. The model was trained and validated to classify whether an mpMRI image had a lesion
with a PIRADS score greater than or equal to PIRADS 4.

Results: The model yielded an average receiver-operator characteristic (ROC) area under the
curve (ROC-AUC) of 0.704 over a 10-fold cross-validation, which is significantly higher than
the previously published benchmark.

Conclusions: The proposed model could aid in PIRADS scoring of mpMRI, providing second
reads to promote quality as well as offering expertise in environments that lack a radiologist with
training in prostate mpMRI interpretation. The model could help identify tumors with a higher
PIRADS for better clinical management and treatment of PCa patients at an early stage.
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1 Introduction

Prostate cancer (PCa) is the most common solid organ cancer with the second highest cancer
mortality rate among men in the United States.1 PCa screening improves early detection of
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high-risk PCa and involves a digital rectal exam, a prostate-specific antigen test, transrectal ultra-
sound biopsy (TRUS bx), and multiparametric magnetic resonance imaging (mpMRI) scans.2,3

The 4Kscore that involves serum biomarkers and clinical information may help detect aggressive
PCa but does not spatially localize or grade these lesions.4 The TRUS procedure uses sound
waves to create a video image of the prostate gland that is used to guide the biopsy needle.
The TRUS bx cores are graded based on the underlying epithelial histopathology using a
Gleason score (GS)5 and associated Gleason grade group.6,7 However, TRUS bx is performed
in blinded fashion (i.e., may not be able to localize suspected lesions) in the posterior periphery
of the prostate with significant error rates for accurate cancer detection and staging. Multiple
single and multicenter trials have now shown that mpMRI-targeted biopsy improves diagnosis
with increased detection of clinically significant PCa (csPCa).8–10 mpMRI was shown to
significantly improve risk assessment, biopsy planning as in the PROMIS9 and PRECISION
trials,11 have the ability to differentiate PCa from normal tissue,12 and to detect csPCa.13

Specifically, mpMRI parameters [such as apparent diffusion coefficient (ADC)] are shown
to be correlated with more aggressive GS (GS > 7).14 MR-targeted biopsy now enable precise
sampling of the most aggressive Prostate Imaging-Reporting and Data System (PIRADS) region
of interest (ROI) targets with decreased false positives and negative when compared to traditional
systematic biopsy.15,16

The PIRADS system is an attempt to standardize mpMRI interpretation and is a qualitative
Likert-based 1 to 5 scale with higher values indicating higher mpMRI PCa suspicion.7,12,17 The
PIRADS score is assigned based on primarily on diffusion weighted imaging in the peripheral
prostate zone and T2 weighted imaging in the central transitional zone, and prior studies have
shown that lesions with higher PIRADS scores have a higher overall percentage of csPCa.18–20

The PIRADS score is usually reported as part of the radiology report associated with each
mpMRI study. This process of scoring requires knowledge of the latest iteration of the scoring
criteria (PIRADS v2.1),21 by expert radiologists trained in prostate MRI interpretation at tertiary
care centers.22,23 However, many clinical centers worldwide are without access to radiologists
with expertise in interpreting prostate mpMRI scans.24 Expertise in prostate mpMRI interpre-
tation could also affect the consensus between different readers. Studies have shown marginal
inter-reader agreement in assignment of PIRADS v2 scores among expert radiologists25 with
higher consensus at higher PIRADS scores compared to lower scores.26 Smith et al.26 showed
that the overall inter-reader readability was poor to moderate (kappa = 0.24 comparing four
readers) and ratings even varied within the same reader over time (kappa = 0.43 to 0.67).
Chen et al.27 showed that there is moderate PIRADS v2 inter-reader readability but with an
ability to predict csPCa.

An automated or semi-automated PIRADS scoring system could be beneficial to the PCa
screening process because it would reduce the reliance on specifically trained radiologists and
could improve the consistency of scoring. There is only one study to our knowledge that has
automated the PIRADS v2 scoring system directly from mpMRI data.28 Sanford et al.28 utilized a
pre-trained convolutional neural network (CNN) to classify mpMRI data between two PIRADS
classes, i.e., PIRADS 2,3 versus PIRADS 4,5. Their cohort included 196 patients with PIRADS
2 or higher. Bounding boxes derived from manually annotated lesion contours were fed into
CNN with a ResNet backbone. The input images are three channels: T2, ADC, and B-value
diffusion weighted (BVAL) images. The authors report achieving an accuracy of 60% at the
patient level using the slice with largest diameter of each lesion.

In addition to automating the PIRADS scoring process, other studies have attempted to pre-
dict the biopsy results using only screening imaging. These studies include a deep learning-based
model to classify csPCa,29 a model to classify prostate lesions as with or without GS 4,30 and a
model to jointly detect and classify PCa.31 These studies aimed to predict the severity in patients
whose PIRADS scores indicated the need for a biopsy, so they serve as the next step in the
clinical pipeline after PIRADS scoring. While pathologic grading is critical, PIRADS scoring
remains a key step in a patient’s diagnostic workup, signaling both the presence of a suspicious
ROI as well as its aggressivity.

In this study, we demonstrate a model that predicts the PIRADS score using mpMRI data.
The model would help distinguish between mpMRI lesions with a PIRADS score greater than or
equal to 4. This criterion to classify lesions with a PIRADS score greater than or equal to 4 is
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based on prior literature, where studies have shown, higher PIRADS scores are associated with a
higher percentage of csPCa.18–20 This deep learning model could be deployed clinically to assist
a radiologist in the assessment and scoring of mpMRI data as part of PCa detection by aug-
menting the existing screening pipeline.

2 Problem Definition

With the increasing rate of incidence of PCa in men in the U.S, there has been more attention
over the last decade focused on streamlining the clinical diagnostic and decision-making path-
way. The PIRADS v2 and 2.1 scores were developed by the American College of Radiology
PIRADS committee to standardize interpretation of mpMRI data for PCa detection. PIRADS v2
scoring is an additional step in the radiologist’s clinical workflow and naturally requires effort,
time, and experience. The deep learning models proposed here are designed to assist the radi-
ologist in PIRADS v2 scoring of a patient’s lesion. This model could augment the existing clini-
cal workflow for PCa diagnosis. Our model could assist in identifying lesions with higher
mpMRI lesion suspicion scores (PIRADS) and help in clinically deciding the course of action
for PCa patients. These models, if validated, could reduce the radiologist’s reading time and
workload as well as limiting the variability in scoring. The proposed model could make PIRADS
scoring accessible to patients where abdominal radiology expertise is not available locally. In this
paper, we show that our model is annotation-efficient in terms of the input to the model as well a
sensitivity analysis for the input seed point.

3 Data

The initial study cohort included 1371 prospectively acquired 3-Tesla mpMRI studies from 1179
patients performed according to a standardized protocol at a U.S. tertiary referral center from
June 2011 to May 2018 prior to MRI-targeted biopsy. All data were used for this work under the
approval of the University of California, Los Angeles (UCLA) institutional review board (UCLA
IRB#16-001361).

3.1 Inclusion and Exclusion Criteria

The inclusion criteria for the data included: availability of the mpMRI sequences T2, ADC, and
BVAL, availability of the ROI masks annotated by expert radiologists at UCLA, and a valid
PIRADS score assigned. Studies were excluded due to various irregularities such as corrupt
image file (1), missing mpMRI sequence (70), missing ROI (2), multiple ROIs (356), no valid
PIRADS score (270), ROI annotation irregularities (28), and T2 image dimension mismatch with
the ROI mask (1). Follow-up studies of patients (26) were also removed from the dataset to
ensure there is no information leak between the training, validation, and testing phases of the
models as well as to remove any potential bias toward patients with more images. After satisfy-
ing the inclusion/exclusion criteria, the final cohort consisted of 617 patients.

3.2 Image Pre-Processing

The spatial resolution of the mpMRI sequences was 256 × 256 × 60. The MRI data were
resampled to an isotropic resolution, where the voxel spacing for each of the mpMRI sequences
is 0.664 mm in the x, y, and z directions. N4 bias field correction was applied as an MRI pre-
processing step.32 The pixel intensity of the mpMRI sequences which are in different scales are
rescaled to values in the range of 0 to 255.

3.3 Input Data Specification

Figure 1 shows sample mpMRI sequences T2, ADC, and BVAL. Although T2 has the highest
anatomical resolution, the other sequences capture lesion attributes that assist the PIRADS scor-
ing algorithm.17 The different mpMRI sequences of a given patient at a given time are typically
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expected to be in close alignment, so no registration was performed. Further, empirically we did
not see any added benefit of including registration in our processing pipeline. This decision is
addressed in more detail in Sec. 6. The data fed into the 2D models (described in Sec. 3.4) have
three channels, one slice selected from T2, ADC, and BVAL. The slice was chosen from each
volume as the slice with the largest ROI area.

3.4 Data Preparation

All studies used in this work had a PIRADS v2 score or a UCLA score assigned clinically by an
expert genitourinary radiologist. The UCLA score, developed at the University of California,
Los Angeles is quantitative scoring system from 1 to 5 predating the initial PIRADS v1 score
and had similar performance to the qualitative PIRADS v2 score in terms of detection, grading
csPCa.33 Each study was assigned a class label based on its clinical score: class 1 with scores 2 or
3 and class 2 with scores 4 or 5. Approximately 66% (407/617) of studies were assigned to class
1 and the rest to class 2. The previous study by Sanford et al.28 used as an external benchmark
used this similar PIRADS-based dichotomization for their study. A 10-fold cross-validation is
used to train, validate, and test the two proposed models.

4 Methods

4.1 Model Definition

The two different types of models developed and evaluated in this paper are described here.

4.1.1 ROI model

The first model requires as input, the mpMRI data and its associated ROI mask annotated by an
expert radiologist.

4.1.2 Seed point model

The second model requires the mpMRI data and a single seed point to approximate the location
of the ROI’s center.

The ROI model is also included in this paper to compare the effect of minimal input (as in the
case of the seed point model) on model performance. Sample input data used for both models are
seen in Fig. 2. The figure on the left shows a cropped T2 slice with the radiologist’s ROI anno-
tation as a yellow contour superimposed, which is the input to the ROI model. The figure on the
right shows the input data for the seed point model. The blue plus denotes the single seed point
required as input. The centroid of the lesion in the MRI slice where the ROI is largest was
selected to simulate the single-click seed point. In practice, this seed point will be chosen
by the radiologist as the approximate center for a suspicious region. The model then generates
a patch of size 30 × 30 pixels based on this seed point. The patch size was selected empirically.

Fig. 1 Sample data with the different mpMRI sequences: (a) T2, (b) ADC, and (c) BVAL.
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We also performed data augmentation on the input to both models with translation in x and y
directions of 5 pixels each, horizontal and vertical flips, and random zooming in the range of
[0.7, 1.3], to increase the robustness of the model. The three-channel images are centered to the
mean that the pre-trained ImageNet34 model was trained with.

4.2 Network Architecture

VGG-1635 is utilized as the backbone architecture for our proposed deep learning models. The
network is loaded with pre-trained weights36 from the ImageNet dataset.34 The fully connected
layers at the end of the model are removed, and a new dense layer is attached to the top of the
network with a sigmoid activation function. Another dense layer serves as the binary classifier
between the PIRADS scores 2, 3 and 4, 5. Binary cross-entropy was utilized here as the loss
function and is seen below:37

EQ-TARGET;temp:intralink-;e001;116;330L ¼ −
1

m

Xm

i¼1

½yi logðpiÞ þ ð1 − yiÞ logð1 − piÞ�; (1)

wherem defines the number of images in the entire training set, yi is class label for study i, and pi

is the predicted probability of a sample belonging to class 1.
Figure 3 shows the pipeline of the proposed deep learning models. The Keras framework37,38

with Tensorflow39,40 as the backend was primarily used to implement, train, and test these mod-
els. The Scikit-learn library was used to implement the different performance metrics.41

Fig. 3 The proposed deep learning pipeline for the ROI model and the seed point model. The
models utilize the VGG-16 architecture for feature extraction. The input data are the 3-channel
mpMRI data cropped based on the ROI mask or the single seed point. The output of the model
is binary—class 1 (PIRADS 2, 3) or class 2 (PIRADS 4, 5).

Fig. 2 Sample inputs into the models. (a) Corresponding radiologist annotated ROI mask (contour
in yellow) on the T2 slice for the ROI model. (b) T2 slice with the single seed point marked by a blue
plus and the red bounding box indicates the 30 × 30 patch selected based on that center for seed
point model. Images shown are cropped to improve visualization.
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4.3 Model Training

The model is trained in two stages on the prostate data. The first stage involves freezing all the
layers of the CNN and training the dense layers. The second stage involves fine-tuning only the
last two convolutional blocks of the CNN as well as the recently trained dense layers. The accu-
racy measure was used to monitor performance during training and validation over each epoch.

4.4 Hyperparameter Optimization

The hyperparameters of the deep network were optimized by minimizing the training and val-
idation loss based on a grid search of key model hyperparameters. The performance curves were
monitored during training and validation. Key model hyperparameters that were tuned include
the optimizer (Adam, SGD, RMSprop), learning rate (2e-3 to 1e-5).

For the ROI model, the optimized hyperparameters were an Adam optimizer42 with a learning
rate of 0.001 in stage 1 and with a learning rate of 0.00002 in the fine-tuning stage of the model.
For the seed point model, the optimized hyperparameters used were an Adam optimizer with
learning rate 0.0002 in stage 1 and 0.00002 in the fine-tuning stage of the model.

Some other hyperparameters that were tuned include dropout level,43 batch size, training, and
fine-tuning epochs. Experiments were done with and without dropout and regularization. We use
L2 regularization with dropout of 0.1 for the ROI model and L2 regularization with no dropout
for the seed point model. A batch size of 8 for training and validation for the ROI model and 32
for the seed point model are utilized.

4.5 Implementation

The first stage of training for ROI model is carried out for 25 epochs and the last two convolu-
tional blocks are fine-tuned for another 15 epochs. The seed point model is trained for 60 epochs
and then similarly fine-tuned for 30 epochs. Early stopping was used to train the models. The
model hyperparameters mentioned earlier were tuned based on training and validation perfor-
mance. The models where the performance converged with minimal overfitting and higher train/
validation accuracy were taken as optimal. The overfitting was monitored based on how well the
trained models generalized to the validation data.

4.6 Model Testing

4.6.1 Performance metrics

We evaluate the model by means of the calculated area under the curve based on the receiver-
operator characteristic (ROC-AUC) and the precision-recall (PR-AUC) curves via 10-fold cross-
validation. Other metrics presented are accuracy, precision, recall, and F1 metrics. These metrics
are computed with the threshold obtained by optimizing Youden’s index from the ROC curve.44

The performance was averaged and is presented along with their standard deviations.

4.6.2 Sensitivity analysis

The impact of the seed point selected on the prostate MRI is evaluated based on a sensitivity
analysis experiment. The seed point for this analysis is generated based on randomly choosing
values from a normal distribution by means of standard deviations from 1 through 10. The per-
formance for this sensitivity analysis was based on the ROC-AUC score.

4.6.3 Statistical significance tests

Statistical tests were carried out to compare both of our models to each other as well as each with
the external benchmark. The Delong test,45 a paired non-parametric test was used to compare our
models. The Z-test for one proportion,46 an unpaired parametric test, was used to compare each
of our models with the benchmark.
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5 Results

The ROI model and seed point model are the two models proposed in this study. The results
obtained are also contrasted with the external benchmark model.

5.1 Model Evaluation

The validation curves of the ROI model and the seed point model for one of the folds from the
10-fold cross-validation are shown in Figs. 4 and 5.

The loss curves show a gradual decrease during stage 1 of training and the trend continues
with fine-tuning. Likewise, the accuracy curves for both models are seen to be increasing with
higher epochs.

The ROC curves of the two models are seen in Fig. 6. The average ROC-AUC values
achieved are 0.744 and 0.704 over the 10-fold cross-validation runs for the ROI model and seed
point model, respectively. The PR curves are shown in Fig. 7. The average PR-AUC values are
0.858 and 0.830 for the two models, respectively.

The performance of the two deep learning models proposed are compared with different
metrics as shown in Table 1. The standard deviations over the different runs are documented
in the table in parenthesis. The seed point model achieves average accuracy, precision, and recall
values of 0.654, 0.888, and 0.558, respectively. The ROI model achieves average accuracy, pre-
cision, and recall values of 0.686, 0.880, and 0.619, respectively. A threshold determined by
Youden’s index was used to measure the performance metrics for both models.

5.2 Sensitivity Analysis

The sensitivity analysis experiment involves choosing random seed points at different standard
deviations as seen in Table 2. The experiments are run using a 10-fold cross-validation to

Fig. 4 Performance curves for the ROI model: (a) accuracy curves and (b) loss curves. Training
(orange) and validation (blue) curve. Green line indicates start of fine-tuning.
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statistically show the robustness of the model. The effect of the variations in the seed point on the
performance of the seed point model is measured in terms of the average ROC-AUC and the
related standard deviations.

These results from the tables are visualized in Fig. 8, where the standard deviations are visu-
alized as error bars at each value. The seed point model is seen to be relatively stable initially and
the performance decreases for increasing values of standard deviation.

5.3 Model Comparison

The Delong paired statistical test shows that there is no statistical significance between our two
models (p ¼ 0.274). The Z-test shows both of our proposed models significantly outperform the

Fig. 5 Performance curves for seed point model: (a) accuracy curves and (b) loss curves. Training
(orange) and validation (blue) curves. Green line indicates start of fine-tuning.

Fig. 6 ROC curves of the deep learning models: (a) with ROI model and (b) seed point model.

Dhinagar et al.: Semi-automated PIRADS scoring via mpMRI analysis

Journal of Medical Imaging 064501-8 Nov∕Dec 2020 • Vol. 7(6)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 16 Feb 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 2 Sensitivity analysis shows seed point model is resilient to variations in the seed point with
standard deviation.

Standard deviation
(in x and y
each (pixels)

Standard deviation
(in x and y each (mm)

Average ROC-AUC for
seed point model (SD)

0 0 0.704 (0.06)

1 0.664 0.694 (0.05)

2 1.328 0.696 (0.05)

3 1.992 0.671 (0.08)

4 2.656 0.652 (0.07)

5 3.32 0.671 (0.06)

6 3.984 0.647 (0.08)

7 4.648 0.623 (0.06)

8 5.312 0.612 (0.06)

9 5.976 0.622 (0.06)

10 6.64 0.618 (0.07)

Fig. 7 PR curves of the deep learning models: (a) with ROI model and (b) seed point model.

Table 1 Performance metrics for the two deep learning models (ROI model and seed point
model) with a 10-fold cross-validation.

ROI model Seed point model

Average ROC-AUC (SD) 0.744 (0.05) 0.704 (0.06)

Average PR-AUC (SD) 0.860 (0.03) 0.830 (0.04)

Average accuracy (SD) 0.686 (0.08) 0.654 (0.07)

Average precision (SD) 0.880 (0.06) 0.888 (0.07)

Average recall (SD) 0.619 (0.17) 0.558 (0.16)

Average F1 (SD) 0.708 (0.10) 0.666 (0.11)
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external benchmark (p ¼ 0.032 and p ¼ 0.00003 for the seed point and ROI models, respec-
tively). It is important to note our ROI and seed point models with accuracies of 0.654 and 0.686,
respectively, outperform the external benchmark accuracy of 0.60.

6 Discussion and Limitations

The model presented in this study both outperformed the existing methods for automating
PIRADS scoring of prostate MRI. In Sec. 5, we presented results from two models to assist
radiologists in PIRADS scoring of mpMRI data. The ROI model with the ROI annotation
as input achieved an average ROC-AUC of 0.744 and seed point model with a single seed point
achieved an average ROC-AUC of 0.704. It is interesting to note that the performance of seed
point model requiring only a single seed point on the prostate MRI data is only 5% lower in terms
of ROC-AUC. The ROI model achieves an average PR-AUC of 0.860 and the seed point model
an average PR-AUC of 0.830. The statistical tests show that the performance of the model is not
affected when the input ROI annotation is reduced from a full pixel-wise mask to just a single-
pixel seed point. This indicates that our model could still be useful with minimal physician input.
The models presented in this paper are based on a cohort of 617 patients. Our external bench-
mark, proposed by Sanford et al.,28 reported an accuracy of 0.60. Both of our models signifi-
cantly outperform the benchmark.

A sensitivity analysis is carried out to demonstrate the effect of the variations in the seed point
selected on the prostate mpMRI volume. The experiments show that for smaller standard devia-
tions the performance of the model is relatively stable. Increasing standard deviation further shows
a drop in the seed point model’s performance (Fig. 8). For higher standard deviations, the resultant
ROIs are unrealistically far from the lesion with many going outside the prostate boundary.

Studies have shown that there is inter-reader variability usually inherent in the PIRADS scor-
ing system, which is a possible limitation. A larger dataset inclusive of data labeled by multiple
radiologists would help minimize this issue. A future direction includes extending this work to a
regression model to predict individual PIRADS scores. Further, we would like to fully automate
the prediction to remove the requirement for even the seed point. It is also known that sometimes
MRI underestimates the lesion contour. We plan to utilize whole mount histopathology data
along with MRI as a way to improve this. We note that the different mpMRI sequences in our
dataset were acquired at the same time for each of our patients, resulting in them being well-
aligned. It is possible that clinical protocols in other institutions may result in alignment issues
that need to be addressed through registration, which could be evaluated in future studies. The
patch size used in this work was determined by means of empirical experiments. This value may
be specific to our dataset, so future work should evaluate how this parameter varies across data-
sets from multiple clinics using different acquisition parameters.

Fig. 8 Visualization of the sensitivity analysis results from Table 2 (y -axis: average AUC over 10
cross-validation folds and the error bars indicate the corresponding standard deviations, x -axis:
standard deviations from 1 through 10).
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7 Conclusions

Our results show that the seed point and ROI models were successful in classifying mpMRI data
based on the clinically assigned PIRADS scores. The performance of our models does not
degrade when using only a simulated single click seed point as input versus the full pixel-wise
ROI annotation. We also show that our model is robust to small variations in the selection of the
single MRI seed point. Our models significantly outperform the known benchmark and are
trained on a dataset larger relative to theirs. In clinical practice, the seed point model could enable
the development of clinical tools that would assist the radiologist in PIRADS scoring. This
would help in reducing the reading time, and the workload of the radiologists by help shifting
focus on more critical cases. The model could assist in identifying prostate mpMRI lesions
PIRADS scores greater than or equal to 4. The models proposed could also help in reducing
variability in the PIRADS scoring by automating the rule-based system with some oversight
from the radiologist.
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