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A B S T R A C T   

Large numbers of histopathological images have been digitized into high resolution whole slide images, opening 
opportunities in developing computational image analysis tools to reduce pathologists’ workload and potentially 
improve inter- and intra-observer agreement. Most previous work on whole slide image analysis has focused on 
classification or segmentation of small pre-selected regions-of-interest, which requires fine-grained annotation 
and is non-trivial to extend for large-scale whole slide analysis. In this paper, we proposed a multi-resolution 
multiple instance learning model that leverages saliency maps to detect suspicious regions for fine-grained 
grade prediction. Instead of relying on expensive region- or pixel-level annotations, our model can be trained 
end-to-end with only slide-level labels. The model is developed on a large-scale prostate biopsy dataset con
taining 20,229 slides from 830 patients. The model achieved 92.7% accuracy, 81.8% Cohen’s Kappa for benign, 
low grade (i.e. Grade group 1) and high grade (i.e. Grade group ≥ 2) prediction, an area under the receiver 
operating characteristic curve (AUROC) of 98.2% and an average precision (AP) of 97.4% for differentiating 
malignant and benign slides. The model obtained an AUROC of 99.4% and an AP of 99.8% for cancer detection 
on an external dataset.   

1. Introduction 

Prostate cancer accounts for nearly 20% of new cancer diagnosed in 
men, and is the most prevalent and second deadliest cancer in men in the 
United States [49]. Active surveillance (AS) is an important manage
ment option for patients with clinically localized low-to inter
mediate-risk prostate cancer [57]. Prostate biopsy, which plays an 
essential role in treatment planning, is performed repeatedly during the 
course of the AS. Each biopsy can result in several tissue slides that are 
examined and, if cancer is present, assigned Gleason scores (GS) by 
pathologists based on the Gleason grading system. The GS is determined 
by two most predominant Gleason patterns that range from 1 (G1), 
closely resembling normal glands and carrying the lowest risk for 
dissemination, to 5 (G5), representing undifferentiated carcinoma and 
exhibiting the highest risk for dissemination. A recent study proposed to 
revise the Gleason grading system with 5 Gleason Grade groups (GGs) to 
reduce the over-treatment of low-grade prostate cancer [17]: GG 1 (GS ≤

6), GG 2 (G3 + G4), GG 3 (G4 + G3), GG 4 (GS = 8) and GG 5 (GS ≥ 9). 
Patients with intermediate-to high-risk localized prostate cancer (GG ≥
2) may be intervened with radiotherapy and radical prostatectomy, with 
or without hormonal therapy. 

Currently, the diagnosis of prostate cancer relies on pathologists to 
examine multiple levels of biopsy cores at the scanning magnification, 
and identify suspicious regions for high power examination and 
immunohistochemistry if necessary. This process can be tedious and 
time-consuming. More importantly, some patterns, e.g. ill-defined G4 
versus tangentially sectioned G3, are prone to inter- and intra-observer 
variability. Therefore, the current clinical practice can be improved by 
computer aided diagnosis tools (CAD) that can function as primary 
screening, to localize suspicious regions, and be utilized as a second 
reader for Gleason grading. Deep learning-based CAD models have been 
developed and demonstrated promising performance in many medical 
imaging fields [8,9,13,48,54]. However, the enormous size of whole 
slide images (WSI), the variability in tissue appearances, and the 
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artifacts incurred during staining and scanning impose many unique 
challenges in developing such CAD tools. 

1.1. Related work 

Classification of small homogeneous regions of interest (ROIs) pre- 
selected by pathologists has been the main focus of most early work in 
WSI image analysis [16,19,40]. Though these methods have achieved 
good results, they cannot be easily extended to handle regions with 
heterogeneous tissue types because they require a set of manually 
selected tiles with the same cancer grade, which is non-trivial to obtain. 
Some work has addressed this challenge by developing segmentation 
models that can provide pixel-wise predictions for tiles with various 
tissue contents [20,24,28–30]. However, these models still analyzed 
tiles instead of the entire slide. 

With an increasing number of scanned slides and computing power, 
research in WSI has been shifting to slide-level analysis [38,39,41]. For 
example, in a recent work by Nagpal et-al. [39], they developed a 
two-stage model on a dataset containing 752 biopsy slides and achieved 
71.7% Cohen’s Kappa for predicting benign, GG1, GG2, GG3, and 
GG4-5. However, the model relied on a large amount of expensive 
fine-grained annotations. 

While these papers demonstrated promising performance in slide- 
level predictions [32,38,39], they required a large number of expen
sive pixel or patch-level manual annotations for training. Bulten et-al. 
utilized a semi-automated labeling technique for prostate biopsy slide 
classification [4,5]. Specifically, the authors used a pre-trained tissue 
segmentation network to identify tissue areas, within which cancerous 
regions were localized by a pre-trained tumor detection network. 
Non-epithelial areas were excluded from identified cancerous regions 
with an epithelium detection model. Detected epithelial areas from 
slides with a single Gleason pattern inherited slide-level labels and 
formed their initial training set for a U-Net model. Slide-level pre
dictions were determined by percentage of Gleason patterns obtained 
from the segmentation network. However, this framework was built 
upon three pre-trained preprocessing modules, each of which still 
required pixel-wise annotations. 

Multiple instance leaning (MIL) [2,15] has been utilized to address 
weakly-supervised learning challenges in tumor detection [35,36,44], 
segmentation [25,61], and classification [21,23,37,53,59,62]. Most MIL 
models fall roughly into two general categories [1,7,12]: instance-base 
and bag-based methods. Bag-based methods usually demonstrate bet
ter performance for tasks where global (i.e., bag-level) predictions are 
more important. Nevertheless, they suffer from a lack of interpretability, 
since instance predictions are often unavailable [23]. Ilse et-al. devel
oped an attention-based MIL model that can visualize the relative 
contribution of instances for final prediction through a trainable atten
tion module without sacrificing bag-level prediction performances [23]. 
The model was utilized to identify epithelial and malignant patches 
within small tiles extracted from WSI for colon cancer and breast cancer 
datasets, respectively. However, they did not address the challenge of 
classifying much larger and more heterogeneous WSIs. Moreover, they 
only utilized attention maps for visualization. 

Few recent works have utilized MIL for whole slide classification [6, 
33,59,60]. Campanella et-al. employed an instance-based approach to 
discriminate between malignant and benign prostate WSIs [6]. They 
considered the top k tiles with the highest probabilities from positive 
slides after applying the CNN model as pseudo positive training samples, 
which were updated in each training epoch. In the second stage, they 
investigated aggregation functions to produce a final slide-level pre
diction. The model achieved promising performance on three different 
types of large-scale clinical datasets. However, the more difficult prob
lem of Gleason grading was not investigated in the paper. 

In this paper, we proposed a multi-resolution MIL-based (MRMIL) 
model for prostate biopsy WSI classification and weakly-supervised 
tumor region detection. Different from most existing studies, which 

rely on highly curated datasets with fine-grained manual annotations at 
pixel- or region-level, our model can be trained with only slide-level 
labels obtained from pathology reports. Similar to how WSIs are typi
cally reviewed by pathologists, the proposed model scans through the 
entire slide to localize suspicious regions at a lower resolution (i.e., at 
5x), and then zooms in on the suspicious regions to make grade pre
dictions (i.e., at 10x). The main contribution of this paper can be sum
marized as the following: 

1) We developed a novel MRMIL model, which can be trained with 
only slide-level labels, for prostate cancer WSI classification and detec
tion. 2) We trained and validated our model on a large dataset, con
taining 13,145 slides from 661 patients, which were retrieved from 
clinical cases without manual curation. To have a better understanding 
of our model’s performance, we also visualized the data representations 
learned by the model. 3) We tested on an independent test set consisting 
of 7114 biopsy slides from 169 patients and an external dataset. The 
model achieved 81.8% Cohen’s Kappa (κ) and 92.7% accuracy (Acc) for 
classifying benign, low grade (i.e., GG = 1), and high grade (i.e., GG ≥ 2) 
slides. Additionally, We extended our best model for Gleason group 
prediction, and it obtained 71.1% κ and 86.8% quadratic κ. 

2. Method 

2.1. Problem definition 

Due to the enormous size of WSIs, slides are usually divided into 
smaller tiles for analysis. However, different from works that utilized 
fine-grained manual annotations, our model is developed on then 
dataset with only slide-level labels (i.e., We don’t have labels for each 
tile, instead, we only have a slide-level label for a set of tiles.). Therefore, 
we formulate the WSI classification problem in the MIL framework. 
Specifically, a slide is considered as one bag. k tiles of size N × N 
extracted from the bag are denoted as instances within the bag, each of 
which may have different instance-level labels yi, i ∈ [1, k]. During 
training, only the label for a set of instances (i.e., bag-level) Y is avail
able. Based on the MIL assumption, a positive bag should contain at least 
one positive instance, while a negative bag contains all negative in
stances [1,2,12,15] in a binary classification scenario. We build our 
system upon a bag-level MIL model with a parameterized attention 
module that aggregates instance features and forms the bag-level rep
resentation, instead of using a pre-defined function, such as maximum or 
mean pooling [23]. Fig. 1 shows the overview of our model. 

2.2. Attention-based MIL with instance dropout 

In the attention-based MIL model, a CNN is utilized to transform each 
instance into a d dimensional feature vector vi ∈ Rd. A permutation 
invariant function f( ⋅) can be applied to aggregate and project k 
instance-level feature vectors into a joint bag-level representation. We 
use a multilayer perceptron-based attention module as f( ⋅) [23], which 
produces a combined bag-level feature vector v′ and a set of attention 
values representing the relative contribution of each instance as defined 
in Eq (1). 

v′

= f (V) =
∑k

i=1
αivi

α = Softmax
[
uT tanh

(
WVT)]

(1)  

where V ∈ Rk×d contains the feature vectors for k tiles, u ∈ Rh×1 and 
W ∈ Rh×d are parameters in the attention module, and h denotes the 
dimension of the hidden layer. The slide-level prediction can be ob
tained by applying a fully connected layer to the bag-level representa
tions v′ . Both the CNN feature extractor and the attention-based 
aggregation function are differentiable and can be trained end-to-end 
using gradient descent. The attention module not only provides a 
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more flexible way to incorporate information from instances, but also 
enables us to localize informative tiles. However, this framework en
counters similar problems as other saliency detection models [22,51, 
63]. In particular, as pointed out in Ref. [23], instead of detecting the all 
informative regions, the learned attention map can be highly sparse with 
very few positive instances having large values. This issue may be caused 
by the underlying MIL assumption that only one positive instance needs 
to be detected for a positive bag. This can affect the performance of our 
classification stage model, which relies on informative tiles selected by 
the learned attention map. To encourage the model to select more 
relevant tiles, we used an instance dropout method similar to Refs. [51, 
52]. Specifically, instances are randomly dropped during the training, 
while all instances are used during model evaluation. To ensure the 
distribution of inputs for each node in the network remains the same 
during training and testing, pixel values of dropped instances are set to 
be the mean RGB value of the dataset [51,52]. This form of instance 
dropout can be considered a regularization method that prevents the 
network from relying on only a few instances for bag-level classification. 

2.3. Attention-based tile selection 

An intuitive approach to localize suspicious regions with learned 
attention maps is to use the top q percent of tiles with the highest 
attention weights. However, the percentage of cancerous regions can 
vary across different cases. Therefore, using a fixed q may cause over 
selection for slides with small suspicious regions and under selection for 
those with large suspicious regions. Moreover, this method relies on an 
attention map, which in this context is learned without explicit super
vision at the pixel- or region-level. To address these challenges, we 
incorporate information embedded in instance-level representations by 
selecting informative tiles from clusters. Specifically, instance repre
sentations obtained from the MIL model are projected to a compact 
latent embedding space using principle component analysis (PCA). We 
then perform K-means clustering to group instances with similar se
mantic features based on their PCA transformed instance-level 

representations. The relevance of each cluster αs can be determined by 
the average attention weights of tiles within it as defined by αs =
1
m
∑m

j=1αj. The intuition is that clusters that contain more relevant in
formation for slide classification should have higher average attention 
weights. For example, in a cancer-positive slide, clusters consisting of 
cancerous glands should have higher attention weights compared to 
those with benign glands and stromal regions. Finally, we can determine 
the number of tiles to extract from each cluster based on the αs and the 
total number of tiles. 

2.4. Multi-resolution WSI classification 

Different from most medical imaging modalities, WSIs typically 
contain billions of pixels, which make them practically impossible to 
feed into GPU memory directly at full resolution. Though the size of 
WSIs is enormous, most regions typically do not contain relevant in
formation for slide classification, such as stroma and benign glands. 
Pathologists tend to analyze the entire slide at a relatively low resolu
tion, usually at 5x, to find suspicious regions and then switch to higher 
magnification in these areas to render a final diagnosis. Our proposed 
MRMIL model mimics this process, containing two stages as shown in 
Fig. 1. The detection stage model, which consists of an attention-based 
MIL with instance dropout, is trained with all tiles extracted at a 
lower magnification (i.e., at 5x) to differentiate benign and malignant 
slides and generate attention maps. The attention-based clustering 
method is applied to select relevant tiles for the classification stage 
model. Selected tiles are extracted at the same location, but at a higher 
magnification (i.e. at 10x) and fed into the MIL network for cancer grade 
prediction. 

Fig. 1. Overview of the proposed whole slide image detection and classification model. The model consists of two stages: a cancer detection stage at a low 
magnification and a cancer classification stage at a higher magnification for suspicious regions. Both stages contains a CNN feature extractor, which is trained in the 
MIL framework with slide-level labels. Specifically, the detection stage model is trained with all tiles extracted from slides at 5x to differentiate between benign and 
malignant slides. The attention module in the detection stage model produces a saliency map, which represents relative importance of each tile for predicting slide- 
level labels. Then we use the K-means clustering method to group tiles into clusters based on tile-level features. The number of tiles selected from each cluster is 
determined by the mean of cluster attention values. Discriminative tiles identified by the detection stage model are then extracted at 10x and fed into the classi
fication stage model for cancer grade classification. 
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3. Experiment 

3.1. Dataset and data preprocessing 

3.1.1. Dataset 
Our dataset contains 20,229 slides from prostate needle biopsies 

from 830 patients pre- or post-diagnosis (IRB16-001361). Slides’ labels 
extracted from their corresponding pathology reports. There are no 
additional fine-grained annotations at the pixel- or region-level for this 
dataset. Additionally, we did not rely on any pre-trained tissue, 
epithelium, or cancer segmentation networks, and did not perform 
extensive manual curation to exclude slides with artifacts such as air 
bubbles, pen markers, dust, etc. We randomly divided the dataset into 
70% for training, 10% for validation, and 20% for testing, stratifying by 
patient-level GG determined by the highest GG in each patient’s set of 
biopsy cores. This process produced a test set with 7114 slides from 169 
patients and a validation set containing 3477 slides from 86 patients. 
From the rest of the dataset, we balanced sampled benign (BN), low 
grade (LG), and high grade (HG) slides. Table 1 shows more details on 
the breakdown of slides. 

3.1.2. External dataset 
We evaluated our models on a public prostate dataset, SICAPV1, 

collected by the Hospital Clínico Universitario de Valencia, which con
tains 512 × 512 tiles at 10x extracted from 79 slides of prostate needle 
biopsies with 50% overlapping [18]. 19 of these slides are benign, and 
the rest are malignant. 

3.1.3. Data preprocessing 
The majority of regions on WSIs are background. Thus, we converted 

slides downsampled at their lowest available magnification compressed 
in the .svs file into HSV color space and thresholded on the hue channel 
to produce tissue masks. Morphological operations such as dilation and 
erosion were used to fill in small gaps, remove isolated points, and 
further refine tissue masks. We then extracted tiles of size 256× 256 at 
10x from the grid with 12.5% overlap. Tiles that contained less than 
60% tissue were discarded from analysis. The number of tiles per slide 
ranges from 1 to 1,273, with an average of 275. To account for stain 
variability, we used a color transfer method [45] to normalize tiles 
extracted from the slide. The scanning objective was set at 20x (0.5 μm 
per pixel). We downsampled tiles to 5x for the detection stage model 
development. We divided the 512 × 512 tiles at 10x (as provided by the 
external dataset [18]) into 4 non-overlapping 256 × 256 sub-tiles, in 
order to match the input size of our models. The same stain normali
zation [45] was applied. Tiles with less than 60% tissue were also 
removed. 

3.2. Implementation details 

We used VGG11 with batch normalization (VGG11bn) [50] as the 
backbone for the feature extractor in the MRMIL model for both 
detection stage and classification stage. Sizes of input tiles for cancer 
detection and classification stages are 128 × 128 and 256× 256, 
respectively. Thus, sizes of feature maps from the last convolutional of 
VGG11bn are 512 × 4 × 4 and 512× 8× 8, respectively. A 1× 1 

convolutional layer was added after the last convolutional layer of 
VGG11bn to reduce dimensionality and generate instance-level feature 
maps for k tiles. Feature maps were flattened and fed into a fully con
nected layer with 256 nodes, followed by ReLU and dropout layers. This 
produced a k × 256 instance embedding matrix, which was forwarded 
into the attention module. The attention part, which generated a k × n 
attention matrix for n prediction classes, consisted of two fully con
nected layers with dropout, tanh non-linear activations, and a softmax 
layer. Instance embeddings k × 256 were multiplied with attention 
weights k× n, resulting in a n × 256 bag-level representation, which was 
flattened and input into the final classifier consisting of a fully connected 
layer. The probability of instance dropout was set to 0.5 for both model 
stages. Detailed model architectures were shown in Table 3 and 4 in the 
Appendix A. 

The CNN feature extractor was initialized with weights learned from 
the ImageNet dataset [14]. After training the attention module and the 
classifier with the feature extractor frozen for three epochs, we trained 
the last three VGG blocks together with the attention module and clas
sifier for 97 epochs. The initial learning rates for the feature extractor 
were set at 1 × 10− 5 and 5 × 10− 5 for the attention module and the 
classifier, respectively. The learning rate was decreased by a factor of 10 
if the validation loss did not improve for the last 10 epochs. We used the 
Adam optimizer [26] and a batch size of one. Detection stage and 
classification stage models were trained separately using the same 
training hyperparameter (e.g., learning rate, batch size and etc). Random 
flipping and rotation were utilized for data augmentation. 

For clustering-based region selection, we projected k × 256 instance 
embedding matrix to k × 32 with PCA, and utilized K-Means clustering 
to group tiles. The number of clusters was set to be 3 to encourage tiles to 
be grouped into LG, HG and BN clusters. As shown in Appendix C, tile 
selection with k-Means is robust to different random initialization. 

Hyperparameters were tuned on the validation set. We further 
extended our MRMIL model for GG prediction. The cross entropy loss 
weighted by reversed class frequency was utilized to address the class 
imbalance problem. Hyperparameters were selected using the validation 
set. Models were implemented in PyTorch 0.4.1 [42], and trained on an 
NVIDIA DGX-1. 

3.3. Evaluation metrics 

As our test dataset contained over 75% benign slides, accuracy (Acc) 
alone is biased metric for model evaluation. In addition, we used the 
AUROC and AP computed from ROC and precision and recall (PR) 
curves, respectively. For cancer grade classification, we measured the 
Cohen’s Kappa (κ), κ =

po − pe
1− pe

. po is the agreement between observers and 
pe is the probability of agreement by chance. All metrics were computed 
using the scikit-learn 0.20.0 package [43]. 

3.4. Model visualization 

In addition to quantitative evaluation metrics, interpretability is 
important in developing explainable machine learning tools, especially 
for medical applications. In order to have a better understanding of our 
model predictions, we performed t-Distributed Stochastic Neighbor 
Embedding (t-SNE) [34] of learned bag-level representations for both 
stage models. Specifically, for each slide we utilized the flattened n ×

256 feature vector before being forwarded to the final classification 
layer. The learning rate of t-SNE was set at 1.5× 102, and the perplexity 
was set at 30. 

The saliency map produced by the attention module in the MRMIL 
model only demonstrated the relative importance of each tile. To further 
localize discriminative regions within tiles, we utilized Gradient- 
weighted Class Activation Mapping (Grad-CAM) [47]. Concretely, 
given a trained MRMIL model and a target class c, we retrieved the top k 
tiles with the highest attention weights, which were fed to the model to 

Table 1 
Number of slides for each Grade group.   

Train Validation Test Total 

No. BN slides 3225 2579 5355 11,159 
No. GG 1 slides 3224 412 807 4443 
No. GG 2 slides 1966 307 587 2860 
No. GG 3 slides 648 95 148 891 
No. GG 4 slides 306 17 129 452 
No. GG 5 slides 269 67 88 424 
No. Patients 575 86 169 830  
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compute gradients and activations. 

3.5. Model comparison 

Handcrafted features. We converted input tiles at 10x into HSV 
color space and thresholded on the H channel to get tissue masks. Then 
we utilized the PyRadiomics package [58] to extract 90 features for each 
tile, including 16 first-order statistics, 23 Gy level co-occurrence 
matrix-based, 16 Gy level run length matrix-based, 16 Gy level size 
zone matrix-based, 5 neighbouring gray tone difference matrix-based, 
and 14 Gy level dependence matrix-based features. The maximum 
pooling was applied to aggregate tile-level features, which were fed into 
the final slide-level classifier. We experimented with Xgboost [11] and 
random forest (RF) [31] classifiers. Grid search with 3-fold cross vali
dation was used to select hyperparameters for classifiers. 

MIL model by Campanella et-al. [6]. We compared our model with 
the related recent work [6], which also trained slide classification 
models with only slide-level labels in the MIL framework. Different from 
our model, they utilized an instance-level MIL approach to train 
CNN-based feature extractors and aggregated tile-level information with 
an RNN. Specifically, a VGG11bn model pretrained on the ImageNet 
dataset was applied on tiles at 10x for cancer versus non-cancer classi
fication. The top k tiles with highest probability within each slide were 
assumed to have the same label as the slide-level label. The k was set at 
1. These tiles were then utilized to further optimize the model. This 
process was iterated until convergence. Then the RNN model was uti
lized to aggregate features from the top s tiles for final classification. The 
s was set at 10. We used the implementation provided by Ref. [6] and 
hyperparameters reported in the paper to re-train the model on our 
dataset. 

MIL model by Tomczak et-al. [55] Tomczak et-al. investigated 
several instance-level MIL models, which utilized different 
permutation-invariant operators to combine patch-level predictions for 
histopathological image classification, with a Noisy-Or operator 
achieving the most promising results [55]. The model was developed to 
distinguish benign and malignant patches extracted from biopsy slides 
of breast cancer patients. In this experiment, we extended it for WSI 
classification. Since the Noisy-Or was mostly designed for binary clas
sification, we mainly utilized it to classify benign and malignant slides. 

Different aggregation methods. Instead of using the attention 
module to aggregate tile-level features to slide-level representations, we 
experimented with two aggregation methods to combine tile-level fea
tures for slide-level representations: maximum pooling and mean pool
ing aggregation. These models were trained using all tiles at 10x. 

Single stage. To evaluate the effectiveness of the multi-resolution 
model in cancer grade prediction, we compared our model with a 
model trained with all extracted tiles at 5x only, referred as Single stage. 

Blue ratio selection. Blue ratio (Br) image conversion, as defined in 
Eq (2), can accentuate the blue channel of a RGB image and thus 
highlight proliferate nuclei regions [10]. 

Br=
100 × B

1 + R + G
×

256
1 + R + G + B

(2)  

where R, G, B are the red, green and blue channels in the original RGB 
image. Br conversion is one of the most commonly used approaches in 
previous studies to detect nuclei [10,46] and select informative regions 
from large-scale WSIs [3,27,56]. To evaluate the attention-based ROI 
detection, we replaced the first stage cancer detection model with the Br 
conversion to select the top q = 25% tiles with highest average Br 
values, referred to as br selection [3,27,56]. We performed the Br con
version using slides at 5x (the same magnification as our cancer detec
tion stage model). Examples of Br selected tiles are shown in Fig. 7 in 
Appendix B. 

Without instance dropout [23]. In this experiment, denoted as w/o 
instance dropout, we utilized the vanilla attention MIL model as 

developed in Ref. [23] and investigated whether instance dropout could 
improve the integrity of learned attention map and lead to better 
performance. 

Attention-only selection. Instead of selecting informative clusters, 
we only utilized the attention map by choosing the top q = 25% tiles 
with the highest attention values as the input for the second stage model 
in the att selection experiment. 

For fair comparison, we utilized VGG11bn as the feature extractor for 
all comparison experiments. Results of ablation experiments using other 
CNN architectures as feature extractors are shown in Table 5 in Ap
pendix D. 

4. Results 

Fig. 2 shows both ROC and PR curves for the detection stage cancer 
models trained at 5x. The detection stage model in the MRMIL obtained 
an AUROC of 97.7% and an AP of 96.7% on our internal test set. On the 
external dataset, it achieved an AUROC of 99.4% and an AP of 99.8%. 
The model trained without using the instance dropout method yielded a 
slightly lower AUROC and AP on both internal and external datasets. 

Since our dataset does not have fine-grained annotations, we visu
alized generated attention maps and compared them with pen markers 
annotated by pathologists during diagnosis. We masked out markers as 
mentioned in Section 3.1, thus they were not utilized for model training. 
Fig. 4 presents the comparison between attention maps learned from 
models with and without using instance dropout during training. 

To further localize suspicious regions within a tile and better inter
pret model predictions, we applied Grad-CAM on the first detection 
stage MIL model as shown in Fig. 5. We generated Grad-CAM maps for 
not only true positives (TP), but also false positives (FP) to understand 
which parts of the tile led to false predictions. We selected two tiles with 
highest attention weights from each slide for visualization. 

The MRMIL model projects input tiles to embedding vectors, which 
are aggregated and form slide-level representations. The t-SNE method 
enables high dimensional slide-level features to be visualized at a two 
dimensional space as demonstrated in Fig. 6. Fig. 6 (A) is the t-SNE plot 
for the detection stage model and (B) presents bag-level features pro
duced by the classification stage model with selected high resolution 
tiles as inputs. 

Table 2 shows model performances on BN, LG, HG classification. The 
proposed MRMIL outperformed all baseline models and achieved the 
highest Acc of 92.7% and κ of 81.8% as shown in the last row. Models 
with handcrafted features only obtained about 57% κ as demonstrated in 
row 3 and 4 in Table 2. As shown in row 5, the model by Campanella et- 
al. [6] got 4% lower κ compared with our MRMIL model. Models with 
simple mean and maximum pooling aggregation methods also achieved 
lower performance than the MRMIL model as reported in row 7 and 8. 
Row 9 to 12 demonstrated results on ablation study of the MRMIL 
model. The single stage attention MIL model trained at 5x achieved 
76.3% κ. The br selection that relied on the Br image for tile selection 
only obtained an Acc of 90.8% and a κ of 76.0%. The w/o instance 
dropout model, got roughly 4% lower κ and 2% lower Acc compared 
with the MRMIL model. In addition, we combined LG and HG pre
dictions from the classification model and computed the AUROC and AP 
for detecting cancerous slides. For instance, by zooming in on suspicious 
regions identified by the detection stage model, the MRMIL achieved an 
AUROC of 98.2% and an AP of 97.4%, both of which are higher than the 
detection stage only model. We present the confusion matrix for the 
MRMIL model on GG prediction in Fig. 3. The MRMIL model obtained an 
accuracy of 87.9%, a quadratic κ of 86.8%, and a κ of 71.1% for GG 
prediction. 

5. Discussion 

In this paper, we developed an MRMIL model, which addressed three 
challenges in predicting slide-level Gleason grades: 1) how to select 

J. Li et al.                                                                                                                                                                                                                                         



Computers in Biology and Medicine 131 (2021) 104253

6

regions of interest; 2) how to train a model with large-scale whole slide 
images, which are usually very large, contain heterogeneous contents 
and only labeled at the slide-level; and 3) how to effective combine tile- 
level information for slide-level classification. 

Our detection stage model achieved promising results on both an 
internal test set and an external dataset, which demonstrates the 
generalizability of the model. One potential explanation for slightly 
better performances on external dataset is that our independent test set 
is relatively large (i.e. 7114 slides from 830 patients.) and is collected 
from clinical database without any data curation. 

Handcrafted features-based models performed relatively well on 
differentiating benign and malignant slide with an AUC of 93.3%, 
however, they obtained much lower κ on the hard task of classifying LG, 
HG and BN slides. The model proposed by Campanella et-al. [6] first 
used an instance-based MIL approach, which considered tiles with 
highest probabilities as having the same label as the corresponding slide, 
and then utilized the RNN model to aggregate representations from top 
tiles for slide classification. In contrast, our model used a more flexible 
attention aggregation method that can detect discriminative tiles and 
combine tile-level features in the same time. The model [6] achieved 
comparable performance on detecting cancerous slides with 98.3% AUC 
and 97.3% AP. Yet, it showed inferior results on predicting LG, HG, and 
BN classes compared with the MRMIL model. Nagpal et-al. developed a 
two-stage model for Gleason grade prediction of prostate cancer biopsy 
slides [39]. Their first stage model, which was trained to provide 
tile-level Gleason pattern classification, was developed using 114 
million labeled tiles from over 1000 slides of prostatectomies and 

Fig. 2. ROC and PR curves for detection stage models on our test set and external dataset. In the detection stage, models were trained to distinguish malignant and 
benign slides with all tiles extracted from slides at 5x. 

Fig. 3. Confusion matrix for Gleason grade group prediction.  

Fig. 4. WSIs overlaid with attention maps generated from the first stage cancer detection model. Pen marks as mentioned in Section 3.1 indicate cancerous regions. 
The first row shows attention maps from the model with instance dropout, while the second row is from the model without using instance dropout. Figures are best 
viewed in color. 
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biopsies. The model obtained a κ of 71.7% on GG1, GG2, GG3 and 
GG4/5 prediction. Our model, which does not rely on fine-grained an
notations and can be trained with only slide-level labels, achieved a 
comparable performance (κ = 71.1%). 

The quality of attention maps from the detection stage model is 
essential for selecting discriminative regions for the classification stage 
model. As shown in Fig. 4, attention maps learned with only weak (i.e. 
slide-level) labels are consistent with cancerous regions identified by 

pathologists during diagnosis. This demonstrates that our detection 
stage model not only achieves strong performance in classifying malig
nant versus benign slides, but also identifies suspicious regions for 
classification stage models. In addition, the generated attention maps 
can be integrated into a WSI viewer to potentially help pathologists 
more quickly localize relevant areas and reduce diagnostic time. Fig. 4 
also shows that the original attention-based MIL model [23] (i.e. w/o 
instance dropout) only focuses on a few most discriminative tiles instead 

Fig. 5. Visualization of discriminative regions within tiles for TP and FP predictions. For each slide (A)–(F), we selected the top two tiles with the highest attention 
weights from the model, which were then forwarded to the model to generate activations and gradients for Grad-CAM. 

Fig. 6. t-SNE visualization of slide-level features. Black dots denote benign, purple dots indicate LG, and orange dots represent HG slides. (A) is the slide-level 
representations from the detection stage model. There is distinct separation between benign and cancerous slides. (B) shows the slide-level features from the 
classification stage model. We can see a better separation between LG and HG slides. 
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of entire suspicious regions. As reflected in Table 2, the w/o instance 
dropout model obtained a κ of 77.3%, which is about 4% lower than the 
one trained with instance dropout. Moreover, the performance of the 
model that relied on the Br image is inferior to the models that utilized 
attention maps. This demonstrates that areas with the most blue color 
may not be diagnostic relevant regions and that our attention module is 
able to extract high-level predictive representations rather than purely 
color features. 

Grad-CAM visualization facilitates understanding of predictions 
from ‘black-box’ deep learning models, as shown in Fig. 5. For TP pre
dictions in Fig. 5(A)–(C), our model captured the most relevant parts in 
the tile, though some cancerous regions were missed. For example, the 
first tile in (B) contains densely clustered cancerous glands, but the 
corresponding Grad-CAM only highlighted the most central area, and 
cancerous glands closer to the boundary were not detected. FP pre
dictions are usually also hard cases for pathologists, with features that 
resemble prostate cancer. For example, regions highlighted by Grad- 
CAM in (E) contain benign glands with increased number of basal 
cells due to tangential tissue sectioning. (F) in Fig. 5 shows the seminal 
vesicle/ejaculatory duct tissue that form small outpouching glands with 
amphophilic cytoplasm, which mimic malignant glands. Our model was 
only trained to detect and grade acinar adenocarcinoma for prostate 
biopsies. Interestingly, as shown in (D), the model was able to identify 
intraductal carcinoma of the prostate gland (IDC-P), which is usually 
associated with high-stage invasive cancer and adverse prognosis. 

From Fig. 6 (A), we can see that benign slide representations are 
clustered together on the right and malignant slides form a small cluster 
on the left. There is no distinct separation between features from LG and 
HG slides, since the objective of the detection stage model is to classify 
cancerous versus benign slides. Fig. 6 (B) shows that features of LG and 
HG slides generated from the classification stage model form their own 
distinct clusters, and representations from LG slides lie closer to benign 
slides in the embedding space. 

To quantitatively evaluate our model performance, we performed 
experiments to understand the contribution of different model compo
nents, as summarized in Table 2. Using attention maps to select higher 
resolution tiles improved the κ of the one with br selection by 1%. 
Instance dropout further boosted the κ by over 3%. The final model 
MRMIL with all components achieved the highest κ for BN, LG, and HG 
classification, 98.2% AUROC for detecting malignant slides, and a 
quadratic κ of 86.8% for GG prediction, which is comparable to state-of- 

the-art models that require pre-trained segmentation networks [5]. 

6. Limitations and future work 

In this section, we discuss limitations of this work and some potential 
directions for future research. In this work, we developed a two-stage 
model to first detect suspicious regions and then classify cancer grade 
with selected tiles at a higher magnification. The tile selection is 
determined by the detection stage model, and there is no mechanism to 
adaptively update selected tiles according to the loss from the classifi
cation stage model. In future work, a recurrent network or reinforce
ment learning can be incorporated to dynamically resample suspicious 
regions during training. 

We only developed the model for acinar adenocarcinoma detection 
and classification for prostate biopsies. Other prognostically relevant 
histopathological types, such as ductal adenocarcinoma and IDC-P, need 
to be investigated in future studies. 

In this study, we merely qualitatively evaluated our attention maps 
by visually inspecting learned maps for slides with pen markers. Though 
our model was able to identify similar regions as indicated by pen 
markers, quantitative evaluation with manual region-level annotations 
could provide a better metric for the attention module. 

Additionally, besides achieving promising κ and Acc, a successful 
CAD tool should be able to facilitate clinical diagnosis. In future work, 
we will investigate different approaches to evaluate the effectiveness of 
our model as a CAD tool. 

7. Conclusion 

In this paper, we developed a novel MRMIL model that consists of a 
detection stage and a grade classification stage. The model can be 
trained with weak supervision from slide-level labels and localize 
cancerous regions. We provided visualization of saliency maps at both 
the slide- and tile-level, and learned representations to enhance model 
interpretability. The model was developed and evaluated on a dataset 
with over 20k prostate slides from 830 patients and an external dataset 
[18], and achieved promising performance. We believe that these types 
of models could have multiple applications in the clinic, including 
allowing pathologists to increase their efficiency, empowering more 
general pathologists to perform at the level of experts, and performing 
“second reads” of biopsy slides for quality assurance. 

Table 2 
Model performance on BN, LG, and HG slides classification.    

BN, LG, HG Classification Cancer Detection 

Experiment Name Model Details Cohen’s Kappa (%) Acc (%) AUROC (%) AP (%) 

Handcrafted + RF 90 radiomics features + RF at 10x 57.0 81.5 93.1 83.9 
Handcrafted + Xgboost 90 radiomics features + Xgboost at 10x 55.9 80.9 93.3 83.9 
Campanella et-al. [6] MIL + RNN at 10x 77.2 90.7 98.3 97.3 
Tomczak et-al. [55] Noisy-Or aggregation at 10x n/a n/a 97.4 96.0 
Mean aggregation Mean aggregation at 10x 77.1 90.8 97.9 96.6 
Max aggregation Max aggreagtion at 10x 79.5 91.9 97.4 96.3 
Single stage Single resolution MIL at 5x 76.3 90.5 97.4 95.8 
Br selection [3,27,56] Multi-resolution + Br 76.0 90.8 95.9 94.3 
W/o instance dropout [23] Multi-resolution + Att 77.3 91.0 97.3 96.0 
Att selection Multi-resolution + Att + instance dropout 80.7 92.4 98.4 97.4 
MRMIL Multi-resolution + Att + instance dropout + clusters 81.8 92.7 98.2 97.4  
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A. Detailed Model Architecture 

Table 3 shows the detailed architecture for the first stage cancer detection stage model, and Table 4 shows the architecture for the classification 
stage model. Two stage models were trained separately.  

Table 3 
Cancer detection stage model architecture.  

Module Layers Number of filter Filter size Output size 

Input  – – 3 × 128 × 128  
VGG11bn Conv + BN + ReLU 64 3 × 3  64 × 128 × 128  

Max Pool 64 2 × 2  64 × 64 × 64  
Conv + BN + ReLU 128 3 × 3  128 × 64 × 64  
Max Pool 128 2 × 2  128 × 32 × 32  
Conv + BN + ReLU 256 3 × 3  256 × 32 × 32  
Conv + BN + ReLU 256 3 × 3  256 × 32 × 32  
Max Pool 256 2 × 2  256 × 16 × 16  
Conv + BN + ReLU 512 3 × 3  512 × 16 × 16  
Conv + BN + ReLU 512 3 × 3  512 × 16 × 16  
Max Pool 512 2 × 2  512 × 8 × 8  
Conv + BN + ReLU 512 3 × 3  512 × 8 × 8  
Conv + BN + ReLU 512 3 × 3  512 × 8 × 8  
Max Pool 512 2 × 2  512 × 4 × 4  

Instance feature embedding Conv 256 1 × 1  256 × 4 × 4   
FC + ReLU + Dropout – – 256 

Attention module FC + Tanh + Dropout – – 512  
FC – – 1 

Classifier FC – – 1   

Table 4 
Cancer classification stage model architecture.  

Module Layers Number of filter Filter size Output size 

Input  – – 3 × 256 × 256   
Conv + BN + ReLU 64 3 × 3  64 × 256 × 256   
Max Pool 64 2 × 2  64 × 128 × 128   
Conv + BN + ReLU 128 3 × 3  128 × 128 × 128   
Max Pool 128 2 × 2  128 × 64 × 64   
Conv + BN + ReLU 256 3 × 3  256 × 64 × 64   
Conv + BN + ReLU 256 3 × 3  256 × 64 × 64  

VGG11bn Max Pool 256 2 × 2  256 × 32 × 32   
Conv + BN + ReLU 512 3 × 3  512 × 32 × 32   
Conv + BN + ReLU 512 3 × 3  512 × 32 × 32   
Max Pool 512 2 × 2  512 × 16 × 16   
Conv + BN + ReLU 512 3 × 3  512 × 16 × 16   
Conv + BN + ReLU 512 3 × 3  512 × 16 × 16   
Max Pool 512 2 × 2  512 × 8 × 8  

Instance feature embedding Conv 256 1 × 1  256 × 8 × 8   
FC + ReLU + Dropout – – 256 

Attention module FC + Tanh + Dropout – – 512  
FC – – 3 

Classifier FC – – 3  
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B. Blue Ratio Conversion

Fig. 7. Br conversion. We performed Br conversion for slides at 5x. The first two rows demonstrate tiles from a benign slide and the bottom two show ones from a 
malignant slide. (A) are 3 tiles with the highest average tile-level Br values, and (B) are ones with the lowest Br values. We can see that the br conversion is able to 
highlight regions with most nuclei. 

C. K-Means Clustering 

We used PCA to project n × 256 instance-level embedding vectors of n tiles to n × 32 (i.e., the number of components is set to be 32). For K-means 
clustering, the k was set to be 3 to encourage tiles to be grouped into benign, low-grade and high-grade clusters. Our attention clustering-based 
selection method was robust to different initializations. Specifically, we re-ran the K-means clustering with different random seeds for 10 times, 
and computed mean intersection over union (IoU) for selected tiles. Our method achieved a mean IoU of 97.65%.  

Table 5 
Model performance on BN, LG, and HG slides classification  

MRMIL with different backbones BN, LG, HG classification Cancer detection 

Cohen’s Kappa (%) Acc (%) AUROC (%) AP (%) 

VGG11bn 81.8 92.7 98.2 97.4 
VGG13bn 79.9 92.0 97.8 96.9 
ResNet34 78.7 91.6 96.9 95.3  

D. Different CNN Architectures for the Feature Extractor 

We performed experiments to evaluate our MRMIL model performances with different network backbones. Experiments were performed by 
replacing the feature extract in both model stages with different CNN architectures. As shown in Table 5, the VGG11bn achieved the best performance. 
Our model performances were affected around 2% by using different backbones. For example, VGG13bn obtained a κ of 79.9%, which was 1.9% lower 
than the VGG11bn architecture. We are going to investigate and incorporate other powerful CNN feature extractors into our framework to further 
improve model performances in the future work. 
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