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Abstract

Histology review is often used as the ‘gold standard’ for
disease diagnosis. Computer aided diagnosis tools can po-
tentially help improve current pathology workflows by re-
ducing examination time and interobserver variability. Pre-
vious work in cancer grading has focused mainly on clas-
sifying pre-defined regions of interest (ROIs), or relied on
large amounts of fine-grained labels. In this paper, we pro-
pose a two-stage attention-based multiple instance learning
model for slide-level cancer grading and weakly-supervised
ROI detection and demonstrate its use in prostate cancer.
Compared with existing Gleason classification models, our
model goes a step further by utilizing visualized saliency
maps to select informative tiles for fine-grained grade clas-
sification. The model was primarily developed on a large-
scale whole slide dataset consisting of 3,521 prostate biopsy
slides with only slide-level labels from 718 patients. The
model achieved state-of-the-art performance for prostate
cancer grading with an accuracy of 85.11% for classify-
ing benign, low-grade (Gleason grade 3+3 or 3+4), and
high-grade (Gleason grade 4+3 or higher) slides on an in-
dependent test set. 1

1. Introduction
Prostate cancer is the most common and second deadliest

cancer in men in the U.S, accounting for nearly 1 in 5 new
cancer diagnoses [38]. Gleason grading of biopsied tissue

1This paper appears at CVPR 2019 Towards Causal, Explainable and
Universal Medical Visual Diagnosis (MVD) Workshop.

is a key component in patient management and treatment
selection [6, 41]. The Gleason score (GS) is determined
by the two most prevalent Gleason patterns in the tissue
section. Gleason patterns range from 1 (G1), representing
tissue that is close to normal glands, to 5 (G5), indicating
more aggressive cancer. Patients with high risk cancer (i.e.
GS > 7 or G4 + G3) are usually treated with radiation, hor-
monal therapy, or radical prostatectomy, while those with
low- to intermediate-risk prostate cancer (i.e. GS < 6 or G3
+ G4) are candidates for active surveillance.

Currently, pathologists need to scan through a histology
slide, searching for relevant regions on which to ascertain
Gleason scores. This process can be time-consuming and
prone to observer variability [19, 23, 17]. Therefore, com-
puter aided diagnosis (CAD) tools can benefit clinical prac-
tice by identifying relevant regions and serving as a second
reader. However, there are many unique challenges in de-
veloping CAD tools for whole slide images (WSIs), such
as the very large image size, the heterogeneity of slide con-
tents, the insufficiency of fine-grained labels, and possible
artifacts caused by pen markers and stain variations.

In this paper, we developed an attention-based multi-
ple instance learning (MIL) model that can not only pre-
dict slide-level labels, but also provide visualization of rele-
vant regions using inherent attention maps. Unlike previous
work that relied on labor intensive labels, such as manually
drawn regions of interest (ROIs) around glands, our model
is trained using only slide-level labels, known as weak la-
bels, which can be easily retrieved from pathology reports.
In our proposed two-stage model, suspicious regions are de-
tected at a lower resolution (e.g. 5x), and further analyzed
at a higher resolution (e.g. 10x), which is similar to patholo-
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gists’ diagnostic process. To the best of our knowledge, this
is the first work that utilizes weakly-supervised attention
maps and MIL to select ROIs and classify prostate biopsy
slides. Our model was trained and validated on a dataset of
2,661 biopsy slides from 491 patients. The model achieved
state-of-the-art performance, with a classification accuraccy
of 85.11% on a held-out testset consisting of 860 slides from
227 patients.

2. Related Work
ROI-level classification. Early work on WSI analysis
mainly focused on classifying small ROIs, which usually
were selected by pathologists from the large tissue slide
[12, 14, 31]. However, this does not accurately reflect the
true clinical task as to ensure completeness, pathologists
must grade the entire tissue section rather than sub-selected
representative ROIs. This makes models based on ROIs un-
suitable for automated Gleason grading [11].
Slide-level classification. Instead of relying on ROIs, more
recent research has focused on slide-level classification.
Nagpal et al. [30] developed a two-stage Gleason classifi-
cation model. In the first-stage, a tile-level classifier was
trained with over 112 million annotated tiles from prostate-
ctomy slides. In the second stage, predictions from the first
stage were summarized to a K-nearest neighbor classifier
for Gleason scoring. They achieved an average accuracy of
70% in four-class Gleason group classification (1, 2, 3, or
4-5). However, these methods [11, 30, 44] required a well-
trained tile-level classifier, which can only be developed on
a dataset with manually drawn ROIs or slides with homo-
geneous tissue contents. Moreover, they did not incorporate
information embedded in slide-level labels.

To address these challenges, previous work has proposed
using an MIL framework for WSI classification [9], where
the slide was represented as a bag and tiles within the bag
were modeled as instances in the bag [15, 4, 20]. MIL mod-
els can be roughly divided into two types [1, 20]: instance-
based [33, 29, 34] and bag-based [2, 5, 10]. Bag-based
methods project instance features into low-dimensional rep-
resentations and often demonstrate superior performance
for bag-level classification tasks [20, 1]. However, as
bag-level methods lack the ability to predict instance-level
labels, they are less interpretable and thus sub-optimal
for problems where obtaining instance labels is important
[25, 18, 37, 32]. Ilse et al. [20] proposed an attention-based
deep learning model that can achieve comparable perfor-
mances to bag-level models without losing interpretability.
A low-dimensional instance embedding, an attention mech-
anism for aggregating instance-level features, and a final
bag-level classifier were all parameterized with a neural net-
work. They applied the model on two histology datasets
consisting of small tiles extracted from WSIs and demon-
strated promising performance. However, they did not ap-

ply the model on larger and more heterogeneous WSIs.
Also, attention maps were only used for a visualization
method. Campanella et al. [4] applied a instance-level MIL
model for binary prostate biopsy slide classification (i.e.
cancer versus non-cancer). Their model was developed
on a large dataset consisting of 12,160 biopsy slides, and
achieved over 95% area under the curve of the receiver oper-
ating characteristic (AUROC). Yet, they did not address the
more difficult grading problem. Built upon the attention-
based MIL model [20], our model further improves the at-
tention mechanism with instance dropout [40]. Instead of
only using the attention map for visualization, we utilize it
to automatically localize informative areas, which then get
analyzed at higher resolution for cancer grading.

3. Methods
Our model is trained with slide-level annotations in an

MIL framework. Specifically, k N × N tiles xi, i ∈ [1, k]
can be extracted from a given WSI, which usually contains
gigabytes of pixels. Different from supervised computer vi-
sion models, in which the label for each tile is provided,
only the label for the slide (i.e. the set of tiles) is available.
This problem can be modeled with MIL by considering tiles
as instances and the entire slide as a bag. In section 3.1, we
introduce the deep attention-based MIL model [20] and the
instance dropout method [40]. The attention-based infor-
mative tile selection method is discussed in section 3.2. The
overview of our two-stage classification model is described
in 3.3.

3.1. Attention-based multiple instance learning

The attention-based MIL model uses a convolutional
neural network (CNN) as the backbone to extract instance-
level features. An attention module f(·) is added before
the softmax classifier to learn weight distribution α =
α1, α2, ..., αk for k instances, which indicates importance
of k instances for predicting the current bag-level label y.
The f(·) can be modeled by a multilayer perceptron (MLP).
If we denote a set of d dimensional feature vectors from k
instances as V ∈ Rk×d, the attention for the ith instance
can be defined in Eq(1),

αi = Softmax[UT (tanh(Wvv
T
i ))] (1)

where U ∈ Rh×n and W ∈ Rh×d are learnable parame-
ters, n is the number of classes, and h is the dimension of
the hidden layer. Then each tile can have a corresponding
attention value learned from the module. Bag-level embed-
ding can be obtained by multiplying learned attentions with
instance features.

The attention distribution provides a way to localize in-
formative tiles for the current model prediction. How-
ever, the attention-based MIL method suffers from the same
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Figure 1. The overview of our two-stage attention-based whole slide image classification model. The first stage is trained with tiles at 5x
for cancer versus non-cancer classification. Informative tiles identified using instance features and attention maps from the first stage are
selected to be analyzed in the second stage at a higher resolution for cancer grading.

problem as many saliency detection models [43, 40, 16, 27].
Specifically, the model may only focus on the most discrim-
inative input instead of all relevant regions. This problem
may not have a large effect on the bag-level classification.
Nevertheless, it could affect the integrity of the attention
map and therefore affect the performance of our second
stage model. To address this challenge, we utilize a similar
method to [40]. During training, we randomly drop differ-
ent instances in the bag by setting their pixel values to the
mean RGB value of the training dataset [40]; in testing all
instances will be used. This method forces the network to
discover more relevant instances instead of only relying on
the most discriminative ones.

3.2. Attention-based region selection

In section 3.1, we describe the attention-based MIL
model and how to improve the learned attention map using
instance dropout. One intuitive way to select informative
tiles with attention maps is to rank them by attention val-
ues and select the top k percentile. However, this method
is highly reliant upon the quality of the learned attention
maps, which may not be perfect, especially when there is
no explicit supervision.

To address this problem, we incorporate information
from instance feature vectors V. Specifically, instances are
clustered into n clusters based on instance features. Princi-
ple component analysis (PCA) is applied to reduce the di-
mension of features before clustering. Thus, instances that
share similar semantic features will be grouped together.
The average attention value for cluster i with m tiles can
be computed ᾱi = 1

m

∑n
i=1 αi and normalized so that ᾱ

sums to 1. The intuition is that clusters with higher aver-

age attention are more likely to contain relevant information
for slide classification (e.g. given a cancerous slide, clusters
containing stroma or benign glands should have lower at-
tention values compared with those containing cancerous
regions). Based on this, the number of tiles to be selected
from each cluster can be determined by the total number of
tiles and the average attention of the cluster.

3.3. Two-stage whole slide image classification
model

In this section, we discuss how to incorporate the afore-
mentioned methods into a two-stage WSI classification
model. WSIs often contain several gigabytes of pixels,
which practically impossible to fit into GPU memory. How-
ever, most regions on the WSIs are stroma or benign glands,
which do not contribute to the final diagnosis. In clinical
practice, pathologists usually scan through an entire slide
at low magnification (e.g. 5x), identify areas that may con-
tain cancer, and closely examine these regions at a higher
magnification (e.g. 10x or 20x).

Inspired by the workflow of pathologists, we developed a
two-stage classification model. In the first screening stage,
128×128 tiles are extracted from each slide at 5x magnifica-
tion and fed into a binary MIL model for cancer versus non-
cancer classification. Informative tiles are identified by us-
ing attention maps and instance features from the 5x model
as described in 3.2. Then, the second grading stage model
uses selected tiles at 10x to classify the slide into benign,
low-grade, or high-grade prostate cancer. Selected tiles are
at the same location, but at a higher resolution as those in
the first screening stage. Figure 1 shows the overview of our
two-stage WSI classification model.
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4. Experiment
In section 4.1, we introduce the dataset and the prepro-

cessing pipeline used. Details about model implementation
and training are discussed in section 4.2.

4.1. Dataset

Cedars Sinai dataset. CNN feature extractors for both
stages were pre-trained with a relatively small dataset with
manually drawn ROIs from the Department of Pathology
at Cedars-Sinai Medical Center (IRB approval numbers:
Pro00029960 and Pro00048462) [13, 21, 26, 28]. The
dataset contains two parts. 1) 513 tiles of size 1200× 1200
extracted from prostatectomies of 40 patients, which con-
tain low-grade pattern (Gleason grade 3), high-grade pat-
tern (Gleason grade 4 and 5), benign (BN), and stromal
areas. These tiles were annotated by pathologists at the
pixel-level. 2) 30 WSIs from prostatectomies of 30 pa-
tients. These slides were annotated by a pathologist who
circled and graded the major foci of tumor as either low-
grade, high-grade, or BN areas.

The scanning objective for all slides and tiles was set at
20x (0.5 µm per pixel). To use this dataset for tile classifi-
cation, we randomly sampled 11,595 tiles of size 256×256
at 10x from annotated regions. We will refer this dataset as
the tile-level dataset in the following sections.
UCLA dataset. The MIL model is further trained with a
large-scale dataset with only slide-level annotations. The
dataset contains prostate biopsy slides from the Department
of Pathology and Laboratory Medicine at the University of
California, Los Angeles (UCLA). We randomly sampled
a balanced number of low-grade, high-grade, and benign
cases, resulting in 3,521 slides from 718 patients. We ran-
domly divided the dataset based on patients for model train-
ing, validation, and testing to ensure the same patient would
not be included in both training and testing. Labels for these
slides were retrieved from pathology reports. For simplic-
ity, we will refer this dataset as the slide-level dataset in the
following sections.
Data preprocessing. Since WSIs may contain a lot of back-
ground regions and pen marker artifacts, we converted the
slide at the lowest available magnification into HSV color
space and thresholded on the hue channel to generate a
mask for tissue areas. Morphological operations such as
dilation and erosion were applied to fill in small holes and
remove isolated points from tissue masks. Then, a set of in-
stances (i.e. tiles) for one bag (i.e. slide) of size 256×256 at
10x was extracted from the grid with 12.5% overlap. Tiles
that contained less that 80% tissue regions were removed
from analysis. The number of tiles in the majority of slides
ranged from 100 to 300. The same color normalization al-
gorithm [35] was performed on tiles from both UCLA and
Cedars Sinai datasets. Tiles at 10x were downsampled to 5x
for the first stage of model training.

4.2. Implementation Details

Blue ratio selection. Most previous work on WSI classifi-
cation utilizes the blue ratio image to select relevant regions
[7, 3, 24]. The blue ratio image as defined in Eq(2) reflects
the concentration of the blue color, so it can detect regions
with the most nuclei.

BR =
100×B

1 +R+G
× 256

1 +R+G+B
(2)

where R, G, B are the red, green and blue channels in the
RGB image. The top k percentile of tiles with highest blue
ratio are selected. We used this method, br-two-stage, as the
baseline for ROI detection.
CNN feature extractor. As suggested by the previous
study [4], we adopted the Vgg11 model with batch normal-
ization (Vgg11bn) as the backbone for the feature extractor
in both 5x and 10x models [39]. The Vgg11bn was initial-
ized with weights pretrained on ImageNet [8]. The feature
extractor was first trained on the tile-level dataset for tile
classification. After that, the fully connected layers were
replaced by a 1×1 convolutional layer to reduce the feature
map dimension, outputs of which were flattened and used
as instance feature vectors V in the MIL model for slide
classification. The batch size of the tile-level model was set
to 50, the initial learning rate was set to 1e−5. Adam [22]
was used for model optimization.
Two-stage classification model. The first stage model was
developed for cancer versus non-cancer classification. We
transferred the knowledge from the tile-level dataset by ini-
tializing the feature extractor with learned weights. The fea-
ture extractor was initially fixed, while the attention module
and classification layer were trained with a learning rate at
1e−4 for 10 epochs. Then we fine-tuned the last two convo-
lutional blocks for the Vgg11bn model with a learning rate
of 1e−5 for the feature extractor, and a learning rate of 1e−4

for the classifier for 90 epochs. Learning rates were reduced
by 0.1 if the validation loss did not decrease for the last 10
epochs. The instance dropout rate was set to 0.5. Feature
maps of size 512× 4× 4 were reduced to 64× 4× 4 after
the 1× 1 convolution, and then flattened to form a 1024× 1
vector. A fully connected layer embedded it into a 1024×1
instance feature vector. The size of the hidden layer in the
attention module hwas set to 512. The model with the high-
est accuracy on the validation set was utilized to generate at-
tention maps. PCA was used to reduce the dimension of the
instance feature vector to 32. K-means clustering was then
performed to group similar tiles. The number of clusters
was set to 4. Hyper-parameters were tuned on the valida-
tion set. Selected tiles at 10x were fed into the second-stage
grading model. Similarly, we initialized the feature extrac-
tor with weights learned from the tile-level classification.
The model was trained for five epochs with the feature ex-
tractor fixed. Other hyperparameters were the same as the
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Table 1. Model performances on whole slide image classification for prostate cancer

Models Accuracy (%) Dataset Classification task

Zhou et al. [44] 75.00 368 slides G3 + G4 and G4 + G3 slides
Xu et al. [42] 79.00 312 slides GS 6, GS 7, and GS 8 slides
Nagpal et al. [30] 70.00 112 million patches and 1490 slides 4 Gleason groups

Ours 85.11 3521 slides benign, low-grade, high-grade slides

first-stage model. Both tile- and slide-classification models
were implemented in PyTorch 0.4, and trained using one
NVIDIA Titan X GPU.

5. Results
We have summarized the performance of most state-of-

the-art models for prostate WSIs classification in Table 1.
The confusion matrix for our best model is shown in Figure
2. As shown in Table 1, the task of Zhou et al.’s work [44]
is the closet to the presented study, with the main difference
being that we included a benign class. The work by Xu et al.
can be considered relatively easy compared with our task,
since differentiating G3 + G4 versus G3 + G4 is non-trivial
[30, 44] and often has the largest inter-observer variability.
The model developed by Nagpal et al. [30] achieved a lower
accuracy compared with our model. However, their model
predicted more classes, but relied on tile-level labels, which
may not be directly comparable.

Figure 2. Confusion matrix for Gleason grade classification on the
test set

We performed several experiments to evaluate the effects
of different components on model performance. Specifi-
cally, in experiment att-two-stage, we selected informative
tiles based only on attention maps generated from the first
stage model, while in the att-cluster-two-stage model, both
instance features and attention maps were used as discussed
in section 3.2. Since blue ratio-based tile selection is the
most commonly used method, we implemented the br-two-
stage model to evaluate the effectiveness of the attention-
based ROI detection. To investigate the instance dropout,

we trained another model without instance dropout, att-no-
dropout. To evaluate the contribution of knowledge trans-
ferred from the Cedars dataset, we trained a model with-
out transfer learning. For simplicity, we denoted this model
as no-transfer. The one-stage model was trained with tiles
only from 5x.

Table 2. Test performances for different multiple instance learning
models for whole slide image classification

Models Accuracy (%)

one-stage 77.80
br-two-stage 80.11

att-two-stage 81.86
att-no-dropout 79.65

no-transfer 84.30
att-cluster-two-stage 85.11

From Table 2, we can see that the model with clustering-
based attention achieved the best performance with the av-
erage accuracy over 7% higher than the one-stage model,
over 5% higher than the vanilla attention model (i.e. att-
no-dropout). All two-stage models outperformed the one-
stage, which utilized all tiles at 5x to predict cancer grad-
ing. This is likely due to the fact that important visual fea-
tures, such as those from nuclei, may only be available at
higher resolution. As discussed in section 3.1, attention
maps learned in the weakly-supervised model are likely to
be only focused on the most discriminative regions instead
of the whole part, which could potentially harm model per-
formance.

As shown in Figure 3, clustering with instance features
reduced false positive tiles. Pen markers, which may indi-
cate potential suspicious areas, were drawn by pathologists
during the diagnosis. We did not use this information for
model training, since it was not always available. In Figure
4, we demonstrated the effect of instance dropout. The at-
tention map trained without instance dropout failed to iden-
tify the entire region of interest.
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Figure 3. Visualization of selected tiles based on different methods. Each blue box indicates one selected tile.

Figure 4. Visualization of the model trained with or without instance dropout.

6. Discussion and Future Work

In this paper, we developed an attention-based two-stage
model for WSI classification on a large dataset with thou-
sands of slides from hundreds of patients. Our model
was trained to classify low-grade, high-grade, and benign
slides. The model achieved an average accuracy of 85.11%,
which is over 5% higher compared with the vanilla atten-
tion mechanism in [20], and we believe is state-of-the-art
performance in prostate biopsy slide classification. In addi-
tion, the inherent attention mechanism enhances the inter-
pretability of the classification results.

There are some limitations of this work. Attention maps
were only implicitly evaluated using the performance from
the second stage model. Annotations or assessment from
pathologists are needed for a better evaluation. Moreoever,
we only included two resolutions (i.e. 5x and 10x), which
may not be sufficient to capture nucleoli-related features. In
future work, higher resolutions will be used. As shown in
the results, using transfer learning only slightly improved
model performance. The reason could be that we only ini-
tialized the feature extractor with learned weights. How-
ever, more powerful transfer learning techniques such as
[36] will be investigated in the future work.
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