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Synthesizing MR Image Contrast Enhancement
Using 3D High-resolution ConvNets

Chao Chen, Catalina Raymond, William Speier, Xinyu Jin, Timothy F. Cloughesy, Dieter Enzmann,
Benjamin M. Ellingson, Corey W. Arnold

Abstract— Objective: Gadolinium-based contrast agents
(GBCAs) have been widely used to better visualize dis-
ease in brain magnetic resonance imaging (MRI). However,
gadolinium deposition within the brain and body has raised
safety concerns about the use of GBCAs. Therefore, the de-
velopment of novel approaches that can decrease or even
eliminate GBCA exposure while providing similar contrast
information would be of significant use clinically. Methods:
In this work, we present a deep learning based approach for
contrast-enhanced T1 synthesis on brain tumor patients. A
3D high-resolution fully convolutional network (FCN), which
maintains high resolution information through processing
and aggregates multi-scale information in parallel, is de-
signed to map pre-contrast MRI sequences to contrast-
enhanced MRI sequences. Specifically, three pre-contrast
MRI sequences, T1, T2 and apparent diffusion coefficient
map (ADC), are utilized as inputs and the post-contrast T1
sequences are utilized as target output. To alleviate the
data imbalance problem between normal tissues and the
tumor regions, we introduce a local loss to improve the
contribution of the tumor regions, which leads to better
enhancement results on tumors. Results: Extensive quan-
titative and visual assessments are performed, with our
proposed model achieving a PSNR of 28.24dB in the brain
and 21.2dB in tumor regions. Conclusion and Significance:
Our results suggest the potential of substituting GBCAs
with synthetic contrast images generated via deep learning.
Code is available at https://github.com/chenchao666/
Contrast-enhanced-MRI-Synthesis

Index Terms— Medical Image Synthesis, GBCAs, Brain
MRI, Contrast Enhancement, Fully Convolutional Networks.
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Fig. 1: Contrast and non-contrast MRI sequences used for
brain tumor diagnosis and clinical monitoring. Three non-
contrast scans, T1, T2, and the ADC were used to estimate
the contrast-enhanced T1-weighted image (CE-T1) using a 3D
FCN generator.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is one of the most
important techniques to distinguish different tissue properties
and lesions in brain. To better visualize different kinds of
disease, gadolinium-based contrast agents (GBCAs) have been
widely used for brain MRI image enhancement [1]. Initially,
the use of GBCAs was felt to carry minimal risk, with GBCAs
administered in up to 35% of all MRI examinations [2]. How-
ever, some recent studies have demonstrated the deposition
of gadolinium contrast agents in body tissues, including the
brain [3], [4], which has raised broad safety concerns about
the use of GBCAs in medical imaging. Previous studies have
also suggested that GBCA dose should be as low as required,
since advanced renal disease and the development of nephro-
genic systemic fibrosis (NFS) are linked to high exposure to
GBCAs [2], [5]. Even though deposition can be minimized by
reducing the dose of gadolinium used, using low-dose contrast-
enhanced MRI images may ignore some important information
provided by contrast [6]. It is of importance to minimize or
even eliminate the use of GBCAs, while preserving high-
contrast information.

Recent development of deep learning methods have demon-
strated success for medical image analysis [7], especially in
the fields of segmentation [8]–[11], detection [12], [13], recon-
struction, [14]–[16] and synthesis [6], [17]–[20]. In this study,
we focus on developing a deep learning based approach to
synthesize contrast-enhanced brain MRI sequences from non-
contrast brain MRI sequences. Specifically, synthetic contrast-
enhanced MRI images would especially useful for certain
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patients, such as: (1) pediatric patients, (2) patients with benign
or low grade (slow growing) brain tumors who are undergoing
routine clinical exams over time to look at tumor growth, and
(3) patients with impaired renal function or who can otherwise
not get GBCAs.

Most recently, Gong et al. proposed to learn the reconstruc-
tion of full-dose T1 scans from pre-contrast T1 scans and 10%
low-dose T1 scans [6]. In order to completely eliminate the
dependence on GBCAs, Kleesiek et al. proposed to predict
contrast enhancement sequences directly from non-contrast
brain MRI sequences [21]. To introduce additional information
from other modalities, they utilized 10 multi-parametric scans
as inputs. There are several limitations of existing studies.
First, datasets used for training and evaluation are small,
containing no more than 100 subjects. Second, off-the-shelf
network architectures and loss functions are used, which likely
limits performance. Finally, existing work has insufficient
performance on tumors and small vessels. For these reasons, in
this work, we introduce a larger scale dataset containing more
than 400 MRI sequences, and design a 3D high resolution fully
convolutional network (FCN) to synthesize contrast-enhanced
T1 (CE-T1) images. Fig. 1 illustrates the four MRI modalities
used in this work. Specifically, T1, T2 and ADC, are used as
inputs to synthesize the post-contrast T1 with the proposed 3D
FCN model. The main contributions of this paper are:

• A dataset of over 400 MRI sequences are analyzed, the
largest explored thus far for the task of MRI virtual
contrast enhancement.

• A 3D high-resolution FCN model is designed to generate
the CE-T1 from the precontrast MRI scans. The presented
model outperforms existing virtual contrast enhancement
methods in two ways: (1) it maintains high-resolution
information throughout processing, and (2) it repeats
multi-scale fusion and aggregates multi-scale information
in parallel.

• Since the voxels that compose tumor regions are limited
relative to the entire MRI volume, deep learning methods
with global loss functions struggle to accurately synthe-
size contrast in these regions. Therefore, a local loss is
introduced to re-balance the contribution of the tumor
regions, which leads to improved performance on tumors.

• Extensive experiments, visual assessments, and ablation
studies are conducted. As a result, we achieved a peak-
signal-to-noise ratio (PSNR) of 28.24dB in brain regions
and 21.2dB in tumor regions. Numerical and visual
assessments demonstrate that the presented method sig-
nificantly outperforms existing work.

II. RELATED WORK

In this section, we review the deep network architectures
and loss functions that are widely used for image-to-image
translation. We then discuss recent applications in medical
image synthesis that are related to our study.

A. Image-to-Image Translation
Image-to-image (I2I) translation has been explored in recent

years with the aim of translating an input image in a source

domain to an image in a target domain. The basic idea of
I2I methods is to learn a non-linear feature mapping given
the input and output image pairs as training data. A large
number of network architectures has been proposed to act
as the non-linear mapping. For example, Long et al. [22]
proposed to utilize a FCN model for image-to-segmentation.
In Ronneberger et al. [8], a U-Net architecture was proposed
for biomedical image segmentation, which is currently widely
used in medical image translation tasks. In Chen et al. [23],
the authors introduced the dilated convolution to enlarge the
receptive field of neural networks. In Zhao et al. [24], a
pyramid pooling module was proposed to fuse features under
four different pyramid scales, which enable the model to
utilize local and global context information for pixel-wise
prediction. In Newell et al. [25], the stacked hourglass module
was proposed to capture and consolidate information across all
scales of the image for human pose estimation. Different from
the traditional high-to-low and low-to-high FCN architectures,
Sun et al. [26] proposed a high-resolution net, which maintains
high-resolution feature maps throughout processing.

A large number of training objectives have been introduced
to measure the difference between the generated image and
the ground truth image in I2I translation tasks. The typical
choices are `1 and `2 loss. In [27], a differentiable variant of `1
loss, named the Charbonnier penalty function, was proposed to
handle outliers. Compared with `1 or `2 loss, which may lead
to blurry images [28], adversarial loss [18], [20], [28], [29]
has become a popular choice for I2I tasks. This process trains
a discriminator to distinguish generated images from ground
truth images. Additionally, perceptual loss, which measures
the difference in feature space, has also been widely used in
I2I translation [30], [31].

B. Medical Image Synthesis

Recently, an increasing number of machine learning and
deep learning methods have shown potential in medical image
synthesis, which estimates a desired imaging modality from
other modalities or scans. For example, Li et al. applied the
3D-CNN model to predict missing PET patterns from MRI
data [32]. To improve the quality of 3T MR images, Bahrami
et al. collected a dataset with paired 3T and 7T images
scanned from the same subjects, and proposed to reconstruct
7T-like images from 3T images [17], [33]. In Xiang et. al
[34], the authors proposed to estimate standard-dose positron
emission tomography (PET) images from low-dose PET and
MRI images. In Huang et al. [35], the authors proposed
a weakly-supervised convolutional sparse coding method to
simultaneously solve the problems of super-resolution and
cross-modality image synthesis. In Dar et al. [20], the authors
proposed a new approach for multi-contrast MRI synthesis
based on conditional generative adversarial networks, employ-
ing adversarial loss to preserve intermediate-to-high frequency
details. In Han et al. [29], a GAN model is employed to
synthesize rich and diverse brain MR images from existing
MR images. In Nie et al. [18], [36], a 3D FCN model was
trained to transform MRI to CT images using an adversarial
strategy to train the FCN, which enforces the generated images

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3192309

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UCLA Library. Downloaded on August 06,2022 at 15:00:46 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

Output

feature 
maps

FCN 
module

UpsamplingDownsampling

C
o
n
v3
D

B
N

R
el
u

C
o
n
v3
D

B
N

R
el
u

ResBlock

FCN module

R
e
s
B

lo
c
k

Inputs Stage 3Stage 2Stage 1 Stage 4 Stage 5

1x

2x

4x R
e
s
B

lo
c
k

R
e
s
B

lo
c
k

R
e
s
B

lo
c
k

Channel
Concat

ResBlock

𝑭𝟏𝟏 𝑭𝟐𝟏 𝑭𝟑𝟏 𝑭𝟒𝟏

𝑭𝟏𝟐 𝑭𝟐𝟐 𝑭𝟑𝟐 𝑭𝟒𝟐

𝑭𝟐𝟑
𝑭𝟑𝟑

𝑭𝟒𝟑

𝑭𝟓

Fig. 2: Overview of our proposed model. A high-resolution FCN model was trained as a generator to synthesize contrast-
enhanced T1 images. Three non-contrast scans, including T1, T2, and ADC, were utilized as input images.

to be more realistic. Finally, additional works have investigated
methods for MRI to CT image synthesis [37]–[39], multimodal
MRI synthesis [40], [41], and high-quality PET synthesis [42].

The studies that most relevant to ours can be seen in [6],
[21], [43]. Specifically, in [6], the author utilized a U-Net-
like model to synthesize full-dose CE-MRI from zero-dose
pre-contrast MRI and the 10% low-dose postcontrast MRI. In
[21], a 3D U-Net model was developed to generate CE-MRI,
which utilizes 10 multiparametric MRI sequences acquired
prior to GBCA application as inputs. As a result, their model
demonstrates a peak signal to noise ratio (PSNR) of 22.967dB
and a structural similarity index (SSIM) of 0.872 dB for the
whole brain region. In [43], the author utilized the residual
attention U-Net architecture to estimate CE-MRI from non-
contrast T2 MRI for cerebral blood volume (CBV) mapping
in mice brain.

III. MATERIALS AND METHODS

A. Data
Our dataset was acquired at UCLA on Siemens 3 Tesla MRI

systems as part of standard-of-care for brain tumor patients.
The protocol used was consistent with the International Stan-
dard Brain Tumor Protocol [44] and includes 3D MPRAGE
T1-weighted pre- and post-contrast imaging, axial 2D T2-
weighted imaging, and axial 2D diffusion-weighted imaging
used in the calculation of the ADC map. A total of 426 scans
from 300 brain tumor patients were included in this study.
The data includes two parts, A and B. Set A consisted of 411
scans. It was used for training purposes and therefore further
subdivided in 369 scans for training, and 42 scans randomly
selected for validation. Set B contained 15 test samples with
precise tumor masks and were used to evaluate the quantitative
performance on tumor regions. Note that scans in Set B are
patients from the UCLA brain tumor trial (IRB# 14-001261),
and were selected randomly from the available data making
sure both enhancing and non-enhancing tumor were part of
the cohort. The experts with more than 10 years of experience
created the tumor ROIs as part of the clinical trial reads.

Pre-contrast T1, T2 and ADC map, were utilized as input
images and the contrast-enhanced T1 is utilized as the target
image. Note that apparent diffusion coefficient (ADC) maps
was chosen to augment T1 and T2 because it is independent of
these image contrasts and may provide additional information
for CE-T1 image synthesis. ADC maps were derived from
standard, isotropic diffusion weighted images (DWIs) with
and without diffusion weighting according to the standardized
brain tumor imaging protocol (BTIP) [45]. Simply, ADC was
calculated from b=0, 500, and 1000 s/mm2 by fitting the
equation ADC=-1/b*ln(S(b)/S0), where b = 500 and 1,000
s/mm2, ln is the natural log, S(b) is the signal intensity for an
MR image at the given b-value, and S0 is the signal intensity
of the MR image without any diffusion weighting (b=0).

All the sequences of the MRI data were co-registered to
match the targeted 3D contrast-enhanced T1. Bilinear in-
terpolation was utilized to resize all the MRI data to the
volume size of 192×256×192 voxels. To remove the skull,
brain masks were created for the 3D contrast-enhanced T1
sequences utilizing FSL’s brain extraction tool [46]. Besides, in
order to remove the side effects of the background slices, in the
training and evaluation stage, we only selected the foreground
slices and remove the top and bottom background slices which
are less informative. Finally, all MRI scans were pre-processed
by image equalization and the intensity values of the voxels
within the brain region were normalized to [0,1].

B. Model Architecture

Let X = [XT1;XT2;XADC ] ∈ Rh×w×d×3 denote the MRI
sequences with three MRI scans, and Y ∈ Rh×w×d×1 denote
the contrast-enhanced T1 sequence. To synthesize the CE-
T1 sequences from the non-enhanced MRI scans, a 3D FCN
model is designed to work as a non-linear mapping function
fθ, such that fθ : X → Y, where θ is the model parameter
to be learned. As shown in Fig. 2, the introduced 3D FCN
generator is composed of stacked 3D convolutional layers,
batch normalization layers, and non-linear activation layers.
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Fig. 3: Illustration of eight representative CE-T1 images and corresponding binary masks. The generated masks are able to
identify the tumors, vessels and other high frequency details, which are enhanced by GBCAs.

The first stage is a stem network [26] which is composed of
three individual FCN branches that used to handle different
input modalities. The resulting feature maps corresponding to
different modalities are then fused by concatenation. Following
the stem net are repeated multi-resolution subnetworks with
generation multi-scale fusion stages. We start from a high-
resolution subnetwork in the second stage and add high-to-low
resolution subnetworks one-by-one gradually. Specifically, in
the second stage, a 3×3×3 convolution with stride 2 is used
to obtain the 2× downsampling feature maps. In the third
stage, 4× downsampling feature maps are obtained from the
higher resolution feature maps. As a result, we have three
different resolution feature maps for different subnetworks,
which corresponds to multiple-scale information. To fuse
the multi-resolution information comprehensively, multi-scale
fusion stages are introduced, which ensure multi-resolution
information exchange across different parallel subnetworks.
Specifically, in the 3rd and 4th stages, different subnetworks
aggregate the feature maps from the other parallel subnet-
works. During the multi-scale fusion stages, upsample and
downsample operators are utilized to match the size of the
feature maps in different subnetworks. In the last stage, feature
maps from different branches are fused by concatenation, and
a ResBlock is utilized to obtain the final CE-T1.

As illustrated in Fig. 2, Let Fmn denotes the feature maps
generated by the m-th stage and the n-th subnetwork, then
the feature maps can be calculated as: F11 = φ(T1) ⊕
φ(T2) ⊕ φ(ADC), F12 = D2(F11), F21 = φ(F11), F22 =
φ(F12), F23 = D2(F22), F31 = φ(F21 ⊕ U2(F22)), F32 =
φ(F22⊕D2(F21)), F33 = φ(F23⊕D4(F21)), F41 = φ(F31⊕
U2(F32) ⊕ U4(F33)), F42 = φ(D2(F31) ⊕ F32 ⊕ U2(F33)),
F43 = φ(D4(F31) ⊕ D2(F32) ⊕ F33) and F5 = F41 ⊕
U2(F42) ⊕ U4(F43). Here, φ(x) denotes the feature mapping
function determined by the FCN module parameters, ⊕ de-
notes feature map concatenation along channel dimension, D2

denotes 2x downsampling, D4 denotes 4x downsampling, U2

denotes 2x upsampling and U4 denotes 4x upsampling. The
FCN module consists of four ResBlocks and each ResBlock
is composed of two ”Conv-BN-Relu” layers. The widths

(number of feature maps) of the three parallel subnetworks
are 64, 128, and 256. Detailed information regarding the
model architecture can be seen in our source code, which
is available at https://github.com/chenchao666/
Contrast-enhanced-MRI-Synthesis.

The advantages of the presented model are four fold.
First, we utilize three MRI scans as inputs and employ three
individual stem nets for different modalities, which is able
to preserve the modality-specific information. Second, the
presented model maintains a high resolution representation
throughout the processing pipeline, and contains three parallel
subnetworks that can generate and process multi-scale infor-
mation in parallel. Third, the repeated multi-scale fusion stages
ensure better feature fusion across different scale. Fourth, 3D
convolution was utilized to exploit additional information from
neighboring slices.

C. Loss Function
Let X denote the input non-enhanced MRI sequences and

Y denote the contrast-enhanced T1. Our goal is to learn a
mapping function f which can generate the CE-T1 sequences
Ŷ = fθ(X), such that the synthetic CE-T1 is close to
the ground truth Y. The loss function utilized to train the
model consists of three terms: pixel-wise MAE loss LMAE ,
Structural Similarity loss (SSIM) LSSIM and a local loss
Llocal to focus performance on tumor regions.
• Pixel-wise Loss: The MAE loss and MSE loss are

the most widely used pixel-wise losses for image synthesis.
We found that using MSE loss resulted in blurrier images
compared to MAE loss in this task. Therefore, the pixel-wise
MAE loss was utilized in our model, which is given as

LMAE = ‖fθ(X)−Y‖1
• SSIM Loss: Using pixel-wise loss alone may ignore

image structures. Therefore, we also utilize SSIM loss [47],
which is perceptually motivated and leads to more realistic
images. The SSIM loss is defined as

LSSIM =
1

n

n∑
i=1

‖1− SSIM(fθ(X)i,Yi)‖1
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where n denotes the number of slices of the output 3D MRI
sequences, and Yi denotes the i-th slice of the ground truth
CE-T1. SSIM(x,y) outputs a scalar between 0 and 1, which
indicates the structural similarity between images x and y.
The definition of the SSIM metric can be seen in IV-A.
• Local Loss: Tumor regions are of particular interest, but

account for a very small proportion of voxels in the entire
MRI seqeuences. This data imbalance problem leads to under-
fitting and poor performance for the tumor regions. Therefore,
we introduce a local loss to increase the contribution of the
tumor regions. The local loss is defined as

Llocal = ‖(fθ(X)−Y)�M‖1
where M is a binary mask of the tumor regions, and �
denotes voxel-wise multiplication. Since it is very expensive
to assign voxel-level labels for each slice, we do not have
precise tumor masks for the training samples. Fortunately,
compared to the non-enhanced T1 images, the tumors and
vessels are significantly enhanced in the CE-T1 images due
to the utilization of GBCAs. Therefore, we can calculate a
rough tumor mask by thresholding the difference of the T1
and CE-T1 images as follows,

M =

{
1 Y −XT1 > δ

0 else

where δ is the threshold to control the size of the mask,
XT1 is the non-enhanced T1w image, and Y is the contrast-
enhanced T1 image. Fig. 3 shows several examples of the
generated binary masks. The generated masks are able to
identify regions that are highly enhanced, such as tumors and
vessels. These regions are used with our local loss to correct
for data imbalance.
• Overall Loss: The overall loss function is defined as the

weighted sum of all the three terms,

Llocal = λ1LMAE + λ2LSSIM + λ3Llocal (1)

where λ1, λ2 and λ3 are trade-off parameters to balance the
contribution of each loss term.

D. Implementation Details
The proposed network was implemented in Python with the

Keras library and trained on an NVIDIA DGX system with
eight NVIDIA V100 CPUs and 512G memory. The Adam
optimizer was utilized for training. Since feeding the whole 3D
MRI sequences into the model leads to out-of-memory (OOM)
problem, we follow [18], [39] to adopt a patch-based strategy
for training, and set the batch size to three. In each iteration
step, three-slices of MRI sequence with size 3 × 256 × 192
are randomly sampled from each sequence volume. Therefore,
we have three input channels with size 3× 3× 256× 192 and
one output with the size 3 × 256 × 192. Model training is
divided into two stages. In the first stage, we set λ1 = 1.0,
λ2 = 1.0, and λ3 = 1.0, and train the model for the first 40
epochs with a learning rate lr = 0.0001. In the second stage,
we alter the trade-off parameter of the local loss by setting
λ1 = 0.1, λ2 = 0.1, λ3 = 10 and fine-tune the model for
another 10 epochs with the learning rate lr = 0.00001. We

empirically the threshold utilized to obtain the brain mask to
δ = 0.1 throughout the experiments.

IV. EXPERIMENTS

In this section, we first introduce the baseline models
and evaluation metrics that we utilized in the experiments.
Then, the qualitative and quantitative performance of different
models are presented. Finally, we provide ablation experiments
that show the impact of different input MRI scans and the
impact of the introduced local loss.

A. Baseline Model and Evaluation Metric
• Baseline Model: To evaluate the effectiveness of our

proposed model, we implemented a 2D U-Net, a 3D U-Net,
as well as the 2D version of our proposed network. All the
baseline models are evaluated on the same training and test
sets. For the 2D U-Net, we expanded the model depth to 2x of
the original U-Net network. For the 3D U-Net, we expanded
the model depth to 1.5x of the original model depth.
• Evaluation Metric: The quantitative performance of our

model and the baseline models was measured using mean
absolute error (MAE), peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM). Given two images y ∈ Y
and ŷ ∈ Ŷ, where y is the ground truth image and ŷ is the
predicted image. Then,

• MAE(Y, Ŷ) = 1
ΩY
‖Y − Ŷ‖1

• MSE(Y, Ŷ) = 1
ΩY
‖Y − Ŷ‖22

• PSNR(Y, Ŷ) = 10 log10(
MAX2

I

MSE )

• SSIM(Y, Ŷ) = 1
ΦY

∑
y,ŷ

(2µyµŷ+C1)(2σyŷ+C2)

(µ2
y+µ2

ŷ+C1)(σ2
y+σ2

ŷ+C2)

where ΩY is the number of voxels in Y, ΦY is the number
of slices in Y, µy and σy are the mean and variance value of
image y, and σyŷ is the covariance between the ground truth
image y and the predicted image ŷ. MAXI is the maximum
value of the image y. Theoretically, lower MAE values and
higher PSNR and SSIM values indicate better image genera-
tion quality. The statistical significance of experimental results
was evaluated using paired t-tests.

B. Experimental Results
Qualitative and Visual Assessment The results of rep-

resentative test samples are shown in Fig. 4. The first two
rows demonstrate a normal subject without any tumor and
the remaining six rows demonstrate subjects with tumors. We
compared the visual performance between our model (both
2D and 3D model) and the 2D/3D U-Net, which are widely
used techniques for medical image synthesis tasks [6], [21]. As
can be seen, the results reveal several interesting observations.
First, both U-Net models and our proposed model generate
promising visual performance for the normal patients. The
vessels and high-frequency details in the generated images are
very close to the ground truth images. Second, since the tumor
voxels are limited relative to the entire MRI volume, models
are more likely to over-fit to normal regions. As a result, the
performance of the tumor regions is much worse than the
performance on the normal regions. Third, compared with the
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T1 T2 ADC Ground Truth U-Net (2D) U-Net (3D) Ours (2D) Ours (3D) Subtraction

Fig. 4: Qualitative evaluation of our proposal and baseline models. From left to right, input T1, input T2, input ADC, ground
truth image CE-T1, synthetic image of a 2D U-Net, synthetic image of a 3D U-Net, synthetic image of the proposed 2D FCN
model, synthetic image of the proposed 3D FCN model, and the absolute difference between the results of our 3D FCN and
the ground truth. The first two rows are from normal patients and the other rows are from patients with tumors. Different rows
are from different subjects in the test set.
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Fig. 5: Visual assessment of our proposed method in two representative test samples in set B. From top to bottom, the ground
truth slices of test patient A, the synthetic CE-T1 for test patient A, the ground truth slices of test patient B, the synthetic
CE-T1 for test patient B. The synthetic CE-T1 images are generated by the proposed 3D FCN model. The images in the same
row represent different slices of the same subject.

TABLE I: Quantitative comparison between our model and
baseline models. The models are evaluated on test set A, and
the performance on the whole brain region is presented.

Model MAE PSNR SSIM
Ref [21] N/A 22.97±1.16 0.872±0.031

U-Net (2D) 0.033±0.005 26.86±1.05 0.905±0.038
U-Net (3D) 0.032±0.004 27.21±1.18 0.908±0.038
Ours (2D) 0.030±0.005 27.87±1.30 0.915±0.039
Ours (3D) 0.029±0.005 28.24±1.26 0.923±0.041

U-Net model, which misses or under-estimates most of the
tumors for the abnormal samples, our model often yields better
visual performance for the tumor regions. Fourth, compared
with the 2D model, the 3D model achieves better performance,
especially for tumor regions. We believe this is because the 3D
model takes advantage of the information from the neighboring
slices. Fifth, while achieving promising visual performance for
the whole brain MRI, our model sometimes misses or under-
estimates some tumors, especially for those that are not distinct
enough in the non-contrast images. Finally, Fig. 5 shows two
representative MRI sequences in test set B. As observed, our
model synthesized satisfactory contrast enhanced T1 images
for different slices of the given 3D volume.

Quantitative Evaluation As shown in Table I, we show
the quantitative performance of our proposal and compar-
ison methods in test set A. All metrics are computed
based on the brain region. Our model significantly outper-
forms the U-Net model in PSNR and SSIM metrics and
the 3D FCN model outperforms its 2D counterpart, which
is consistent with our visual assessment. Specifically, U-
Net(3D) outperforms U-Net(2D) by 0.35 points in PSRN (p-
value=0.021), and Ours(3D) outperforms Our(2D) by 0.37
points (p-value=0.018), which demonstrates the effectiveness

of utilizing 3D spatial information. Besides, the proposed
Ours(3D) significantly outperforms the U-Net(3D) by more
than one point (P-value=0.00037), we believe this is because
our proposed model maintains a high resolution representation
throughout the processing pipeline and contains three parallel
subnetworks with multi-scale fusion stages. Compared with an
existing method [21] that performs virtual contrast enhance-
ment with deep learning, our proposal has more than five
points improvement in PSNR, and has five points improvement
in SSIM. Note that in [21], the author utilized 10-channel
multiparametric MRI data as input while we only utilize three,
which is a subset of their data. Our model outperforms [21] by
a large margin even with less input data, which demonstrates
the superiority of our proposed framework.

In order to evaluate the quantitative performance on the
tumor region, we also collected 15 test patients with precise
tumor masks in set B. The test performance in set B is
shown in Table II, with performance on both brain region
and tumor region presented. The overall performance on the
brain region is similar to the results on set A. Our proposed
method significantly outperforms the U-Net and existing work
[21]. For results on tumors, the proposed model outperforms
the U-Net(3D) model by a large margin (p=0.0036), and the
best performance on tumors is 21.2 in PSNR. Note that the
quantitative performance on tumors is far from perfect and
much worse than the performance on the whole brain region,
this is because the tumor pixels are out-of-distribution and
the model therefore tends to underestimate on tumor regions.
It is worth noting that [21] utilizes a U-Net shape model to
segment the tumor masks, which they utilize to evaluate the
performance on tumors. These masks were not reviewed by
a radiologist and therefore their quantitative performance on
tumors may be inaccurate due to segmentation errors.
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TABLE II: Quantitative performance evaluated on test set B.
The performance on the brain region and tumor region are
presented.

Model PSNR SSIM
Brain Tumor Brain

Ref [21] 22.97±1.16 20.15±4.70 0.872±0.031
UNet (2D) 26.44±1.40 18.45±2.22 0.896±0.022
UNet (3D) 26.79±1.26 18.89±2.38 0.899±0.022
Ours (2D) 27.22±1.21 19.64±2.59 0.903±0.023
Ours (3D) 27.62±1.34 21.2±2.36 0.909±0.023

TABLE III: Comparison experiments by using different modal-
ities as inputs.

Input T1 T1+T2 T1+T2+ADC

A-Brain PSNR 27.4±1.28 27.9±1.24 28.24±1.26
SSIM 0.914±0.040 0.920±0.040 0.923±0.041

B-Brain PSNR 26.7±1.23 27.3±1.27 27.62±1.34
SSIM 0.898±0.022 0.905±0.023 0.909±0.023

B-Tumor PSNR 19.8±2.32 20.8±2.30 21.2±2.36

（a）Ground Truth (c) T1+T2（b）T1 (d) T1+T2+ADC

Fig. 6: Visual performance of training the model by different
input modalities. (a) Ground truth images, (b) results by
training the model with T1 as input, (c) results by training the
model with T1 and T2 as inputs, and (d) results by training
the model with T1, T2 and ADC as inputs.

Comparison with State-of-the-Arts In addition to the U-
Net structure that are used for MRI virtual contrast enhance-
ment [6], [21], we also compare our proposal with several
state-of-the-art medical image synthesis methods, including
Pix2Pix [28], DECNN [37], LA-GANs [42] and MedGAN
[48]. Quantitative comparison between our proposal and other
state-of-the-art methods is presented in Table IV. Pipx2Pix
produces the worst result, while DECNN and LA-GANs
achieve similar performance and both outperform Pix2Pix. The
MedGAN outperforms the previous methods by a large mar-
gin, we believe this is because MedGAN utilizes a cascade U-
Blocks as generator which is deeper and better designed than
the generator in [28], [37]. Compared with the MedGAN, our
proposal shows impressive improvement (p-value=0.0064) on
brain region, and also significantly outperforms the MedGAN
on tumor region by more than 1.3 points (p-value<1e-4),
which demonstrate the superiority of the introduced frame-

(1.0,1.0) (1.0,10.0) (1.0,30.0) (0.1,10) (0.01,10)
Trade-off Parameter (λ1, λ3)

0

5

10

15

20

25

30

PS
NR

Brain
Tumor

Fig. 7: Quantitative evaluation of the impact of local loss. The
blue bar indicates the PSNR performance on the Brain region
of Set A and the orange bar indicates the PSNR performance
of the Tumor region of Set B. Note that λ2 is set to the same
value as λ1 throughout the experiments.

TABLE IV: Quantitative comparison between our proposal and
state-of-the-art medical image synthesis methods on test set B

Model PSNR SSIM
Brain Tumor Brain

Pix2Pix [28] 25.90±1.52 18.20±2.64 0.887±0.025
DECNN [37] 26.48±1.38 18.74±2.31 0.898±0.023

LA-GANs [42] 26.23±1.30 18.69±2.47 0.894±0.024
MedGAN [48] 27.04±1.26 19.88±2.42 0.901±0.023

Ours (3D) 27.62±1.34 21.2±2.36 0.909±0.023

work. Note that the performance improvement on the tumor
region is much significant than the improvement on the whole
brain region, this is because the comparison methods does
not take into the performance on tumor regions, while we
introduce a local loss to improve the performance on tumors.
The significant improvement on tumors also demonstrate the
effectiveness of the local loss.

C. Ablation Study
Impact of the Model Architecture To demonstrate the

effectiveness of the proposed framework, we compare the
performance of the final model with four degraded model
architectures, which are: (1) Model-A: utilize one FCN module
to handle different input modalities, i.e., the three modalities
(T1, T2 and ADC) are fused in the input layer; (2) Model-
B: remove the 2x downsampling subnetwork and the 4x
downsampling subnetwork, only utilizing the high-resolution
branch as the FCN generator; (3) Model-C: remove the 1x
high resolution subnetwork; (4) Model-D: remove the repeated
multi-scale fusion in stage 3 and stage 4. Table V shows the
qualitative comparison between different model architectures.
As can be seen, our proposed model yields notable improve-
ment over the comparison degraded model architectures. In
particular, the final model outperforms the Model-A by more
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TABLE V: Qualitative comparison between the final model
and four degraded model architectures.

Model A-Brain B-Brain B-Tumor
Model-A 27.68±1.31 27.26±1.28 20.63±2.46
Model-B 26.42±1.12 26.32±1.20 19.54±2.38
Model-C 27.20±1.22 27.04±1.19 20.39±2.44
Model-D 27.36±1.20 27.08±1.18 20.68±2.32

Final-Model 28.24±1.26 27.62±1.34 21.20±2.36

than 0.5 points in PSNR, which demonstrates that employ
three individual FCN modules for different input modalities is
able to preserve the modality-specific information and lead to
better performance. The final model outperforms the Model-B
by more than 1 point, this is because it is difficult for the model
to capture the global information only using the high resolution
branch. Besides, The final model also outperforms the Model-
C by more than 0.8 points on average, which indicates the
effectiveness of maintaining the high resolution representation.
Furthermore, the final model also outperforms the degraded
Model-D, which proves the effectiveness of using repeated
multi-scale fusion stages.

Impact of Different Input Modalities To investigate the
influence of different input modalities, we train the model with
different sequences. Specifically, in addition to using all three
modalities (T1, T2 and ADC) as inputs, we also train the
model: (1) using only T1 as input, and (2) using both T1 and
T2 modalities as inputs. Experimental results are presented in
Table III. We can conclude from the results that: (1) using
T1 alone as input obtains a satisfactory performance; (2) the
incorporated T2 and ADC modalities introduced additional
information, which further improves performance; and (3)
compared to ADC, T2 is more informative and improves
performance significantly. Besides, we also present the visual
performance of training the model with different input modal-
ities in Fig. 6.

D. Parameter Sensitivity Analysis
Sensitivity of the Local Loss In order to investigate

the influence of the introduced local loss, we used five
groups of representative trade-off parameters to train
the model. The parameters (λ1, λ3) were selected from
{(1.0, 1.0), (1.0, 10), (1.0, 30), (0.1, 10), (0.01, 10)}. Note
that we can not only increase the λ3 to improve the influence
of the tumor regions as it will cause the gradient to be
too large and the network will not converge. Therefore, we
promote the influence of the local loss by increasing a ratio
r = λ3

λ1
. λ2 is set to the same value as λ1 throughout the

experiments. Results are presented in Fig. 7 and indicate that
by increasing the ratio r = λ3

λ1
, the PSNR performance of

the brain region decreased and the PSNR performance of
the tumor region increased. We present two representative
samples in Fig. 8 to demonstrate the influence of local loss
visually. By increasing the ratio λ3

λ1
, tumor enhancement

becomes more salient while the overall image becomes more
blurry, which is consistent with our quantitative results. The
experimental results show that one suitable ratio can be set
to r = λ3

λ1
= 100, which leads to better enhancement results

for tumors and satisfactory performance for the whole brain.

Ground Truth （1.0，1.0） （1.0，10） （1.0，30） （0.1，10） （0.1，100）

Fig. 8: Visual performance of training the model by us-
ing different trade-off parameters (λ1, λ3). From left to
right, the trade-off parameters are set to (λ1, λ3) =
{(1.0, 1.0), (1.0, 10), (1.0, 30), (0.1, 10), (0.01, 10)}.
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Fig. 9: PSNR performance on brain region tumor
region when threshold is changed from δ ∈
{0.001, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3}.

Sensitivity of the threshold δ To demonstrate the ro-
bustness of the thresholded mask, we also perform a pa-
rameter sensitivity analysis experiment on the thresholds δ.
Fig. 9 shows the variation of PSNR performance on brain
and tumor regions when the threshold is changed from δ ∈
{0.001, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3}. As can be seen,
the PSNR performance on the brain region increases as the
threshold increases and gradually stabilize when δ > 0.1.
Besides, the PSNR performance on the tumor region increases
first and then decrease as δ increases, and shows a bell-shaped
curve. We believe this is because when the threshold is set
to δ < 0.03, the generated mask M will include more non-
tumor areas, and when δ > 0.15, the generated mask M
will underestimate the tumor regions. Therefore, based on the
performance on brain and tumor region, the best threshold can
be set to δ ∈ [0.03, 0.15].

E. Inference with Missing Modalities

The proposed model works well when all three input modal-
ities are available. However, rather than having complete three
modalities, it is common to have missing modalities in clinical
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(a) GT (e) T2=0,  ADC=0(c) T2=0 (d) ADC=0(b) T1=0 (g) Full Input(f) syn-T2, syn-ADC

Fig. 10: Illustration of (a) Group Truth (GT) and model performance when: (b) T1 is unavailable; (c) T2 is unavailable; (d)
ADC is unavailable; (e) T2 and ADC are unavailable; (f) utilize T1, synthetic T2 and synthetic ADC as input; (g) utilize full
three inputs. Note that we utilize a zero matrix to represent the unavailable input modality during inference.

scenarios. To understand how the model performs when only
a subset of modalities are available, we visualize the inference
performance when: (b) T1 is unavailable; (c) T2 is unavailable;
(d) ADC is unavailable; (e) both T2 and ADC are unavailable
in Fig. 10. Note that we utilize a zero matrix to represent the
unavailable input modality during inference. The results shows
that the model performance will be severely degraded when
one or two modalities are not available. Besides, compared
with the model performance when T2 or ADC is unavailable,
the model performs much worse when T1 is unavailable. To
ensure that the model is able to produce satisfactory results
when only a subset of inputs are available, we also train a
T1→T2 and a T1→ADC synthesis model utilizing a similar
framework. In this way, when T2 or ADC is unavailable,
we can first generate the T2 and ADC and then utilize
the generated data to synthesize the contrast-enhanced T1
image. Fig. 11 shows the visual performance of our trained
T1→T2 and T1→ADC synthesis model, which demonstrates
that our proposed framework also generates promising results
for cross-modal image synthesis task. Fig. 10(f) illustrates the
model prediction of using T1, synthetic T2 and synthetic ADC
as input, which shows that using the synthetic input data, our
model can generate similar results as using full three inputs.

V. DISCUSSION

Several studies have presented methods to generate synthetic
contrast. Briefly, Gong et al. [6] proposed a 2D U-Net-like
model to synthesize the full-dose postcontrast images from
precontrast and low dose images. In Kleesiek at al. [21], a
3D Bayesian U-Net was utilized to predict contrast enhanced
images from 10 multiparametric zero-dose MRI sequences,
and Sun et al. [43] proposed a 2D residual attention U-Net
to produce contrast in mice brain MR images directly from
noncontrast structural images. Compared to these previous
studies, our model has the following advantages:

• In [6], [43] only one MRI sequence was used for gen-
erating full-dose MRI compared to 10 multiparametric

(b) T2 (d) T1 → T2(a) T1 (e) T1 → ADC(c) ADC

Fig. 11: The visual performance of the T1→T2 and T1→ADC
synthesis model. (a) T1; (b) T2; (c) ADC; (d) generated T2
by T1→T2 synthesis model; (e) generated ADC by T1→ADC
synthesis model.

MRI scans in [21]. We believe a single low-dose or
noncontrast MRI may miss important information, while
the utilization of 10 MRI scans requires a long time
to acquire. According to the International Standardized
Brain Tumor Imaging Protocol (BTIP) [44], we utilized
three informative noncontrast MRI scans (T1, T2 and
ADC) for postcontrast MRI synthesis. Our ablation re-
sults suggest that using all three of these sequences
maximizes performance.

• To investigate the feasibility of predicting contrast-
enhanced MRI sequences from non-contrast or low-
contrast MRI sequences, 60 patients are used in [6], 82
patients are used in [43], and [43] test their idea in mice
as a proof of concept. Our study utilized more than 400
patients, allowing us to train a deeper FCN model and
obtain state-of-the-art performance.

• Different from previous methods [6], [21] that utilize the
off-the-shelf model architectures (2D/3D Unet) and loss
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function, we present a 3D high-resolution FCN model
that maintains high-resolution information throughout the
fully convolution stage and aggregates the multi-scale
information in parallel. As a result, our model outper-
forms the 2D/3D U-Net counterparts by more than 1 point
in PSNR, and also outperforms several state-of-the-art
medical synthesis methods. In addition, we introduced a
local loss to improve performance in tumor regions.

• Previous studies [6], [21] obtained imperfect enhance-
ment results in vessels and tumors due to the difficulty
of the problem. For example, in Gong et al. [6], en-
hancement results appear rough in vessels compared to
our model. Furthermore, our method achieves a result
of 28dB in PSNR on the whole brain region, which is
similar to Gong et al. [6] despite the fact that our method
requires no contrast agent compared to the the low-dose
MRI sequences used as input in their work. In terms of
PSNR, our model also outperformed Kleesiek et al [21].
by a large margin even with less input data.

While our model demonstrates promising results, there are
several limitations. First, since the tumor regions account for
a very small proportion of the entire MRI sequences, the
performance on these regions remains sub-optimal. As we do
not have precise tumor masks for training, the introduced local
loss that we used to balance the contribution of the tumors can
be improved. Providing precise tumor masks for the local loss
during training will likely improve performance further and is
in our future work. In addition, some advanced methods in data
imbalance learning or long-tailed distribution learning, such
as BBN [49], can be introduced to balance the performance
of the whole brain region and tumor region. Second, while
our cohort was larger than any previously published cohort
for the task, performance can likely be further improved by
including more training patients, especially a large number
of abnormal patients with high diversity. Beyond increasing
and diversifying the dataset, future work will also investigate
recent advancements in data augmentation.

VI. CONCLUSION

In conclusion, the objective of this investigation was to
formulate and implement a deep learning model to gen-
erate contrast-enhanced MRI sequences from non-contrast
MRI sequences, which was expected to eliminate the risk
of gadolinium deposition during standard-of-care for brain
tumor patients. For this purpose, the largest dataset for the
task of MRI virtual contrast enhancement was explored, and
a novel high resolution 3D FCN model was designed, which
showed superior performance than the counterparts. Besides,
we also introduced a local loss to re-balance the contribution
of the tumor regions, which leaded to improved performance
on tumors. We demonstrate promising visual and numerical
results and obtain state-of-the-art performance. The results
suggest great potential in substituting the GBCAs with deep
learning to obtain the contrast information in brain MRI.
Future work will focus on defective performance on abnormal
regions.
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[9] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3d u-net: learning dense volumetric segmentation from sparse anno-
tation,” in International conference on medical image computing and
computer-assisted intervention. Springer, 2016, pp. 424–432.

[10] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane,
D. K. Menon, D. Rueckert, and B. Glocker, “Efficient multi-scale 3d
cnn with fully connected crf for accurate brain lesion segmentation,”
Medical image analysis, vol. 36, pp. 61–78, 2017.

[11] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor seg-
mentation using convolutional neural networks in mri images,” IEEE
transactions on medical imaging, vol. 35, no. 5, pp. 1240–1251, 2016.

[12] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

[13] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learning,” arXiv
preprint arXiv:1711.05225, 2017.

[14] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson,
T. Pock, and F. Knoll, “Learning a variational network for reconstruction
of accelerated mri data,” Magnetic resonance in medicine, vol. 79, no. 6,
pp. 3055–3071, 2018.

[15] M. Mardani, E. Gong, J. Y. Cheng, S. S. Vasanawala, G. Zaharchuk,
L. Xing, and J. M. Pauly, “Deep generative adversarial neural networks
for compressive sensing mri,” IEEE transactions on medical imaging,
vol. 38, no. 1, pp. 167–179, 2018.

[16] Z. He, Y.-N. Zhu, S. Qiu, T. Wang, C. Zhang, B. Sun, X. Zhang,
and Y. Feng, “Low-rank and framelet based sparsity decomposition
for interventional mri reconstruction,” IEEE Transactions on Biomedical
Engineering, 2022.

[17] K. Bahrami, F. Shi, I. Rekik, and D. Shen, “Convolutional neural net-
work for reconstruction of 7t-like images from 3t mri using appearance
and anatomical features,” in Deep Learning and Data Labeling for
Medical Applications. Springer, 2016, pp. 39–47.

[18] D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean, S. Ruan, Q. Wang, and
D. Shen, “Medical image synthesis with deep convolutional adversarial
networks,” IEEE Transactions on Biomedical Engineering, vol. 65,
no. 12, pp. 2720–2730, 2018.

[19] J. M. Wolterink, A. M. Dinkla, M. H. Savenije, P. R. Seevinck, C. A.
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