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Introduction and Preliminaries

Social networks are omnipresent because they model interactions on social platforms

Social network analysis is key to several applications (community detection, user connectivity)
Widely agreed that social network links are formed from homophily or social influence
Homophily: utilizes the intuition that associated nodes in a social network imply feature
similarity, and an edge is usually generated between similar nodes (form cycles)

Social Influence: the idea that popular nodes have direct influence in forming links e.g., users
tend to follow celebrities (form hierarchies)
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Social Network Embedding Models

Category Description
GraRep [Cao er al., 2015]. shallow embedding
integrating global structural information

Slrgc:j:;r.al RolX [Henderson et al., 2012, unsupervised learning
r;\]/lc(;dclleng approach using structural role based similarity
) GraphWave [Donnat er al., 2018], shallow embedding
- model using spectral graph wavelet diffusion patterns
servations. del using spectral graph let diffusion p
. GraphSAGE [Hamilton et al., 2017/, inductive
° Shal |OW embedd|ng mOde|S framework using node features and neighbor aggregation
(StrUCtU ral embedd|ng) do not GNN&S:]ZTSdmg GCN [Kipf and Welling, 20171, semi-supervised learning
effectivel Iearn ra h Structure (Euclidean ':ip'lCC) model via graph convolution on local neighborhoods
y grap GAT [Veli¢kovic et al., 2018]. graph attention model
using mask self-attention layers on local neighborhoods
e Models do not Captu re all social HOE?}%TJ{J}:E:SM GELTOR [Hamedani et al., 2023], embedding method
. . Models © using learning-to-rank with AdaSim®* similarity metric
network faCtOFS e'g" SOCIal InﬂuenCe NRP [Yang er al., 2020], embedding model using

pairwise personalized PageRank on the global graph

GNN Embedding

HGCN [Chami et al., 2019], hyperbolic GCN model
[ 1
A” network StrU CtU res are mOdeled (non-ljul\fl?jg-llz space) utilizing Riemannian geometry and hyperboloid model
in the same space e.g., flat #-GCN [Bachmann et al., 20201, GCN model using
EUCI idean Space product space e.g., product of constant curvature spaces

RaRE [Gu et al., 2018]. Bayesian probabilistic model
for node proximity/popularity via posterior estimation
Mixture Models
(homophily and
social influence)

NMM, our non-Euclidean mixture model (see Eqn. 9),
without use of GraphVAE framework

NMM-GNN . our non-Euclidean mixture model
with non-Euclidean GraphVAE framework

SOTA baseline models
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NMM-GNN Architecture
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NMM-GNN Architecture
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« The encoder maps nodes into z° (homophily) and z” (social influence), which follow non-
Euclidean prior distributions.



NMM-GNN Architecture
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« Embeddings are passed into our mixture model decoder (homophily + social influence).
* Objective: maximize likelihood to observe links, or equivalently minimize link reconstruction loss.



NMM-GNN Architecture
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« We design a space unification component to align the distinct geometric spaces
« Ensuring two embeddings of the same node are corresponding to each other
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Dataset Statistics

Table 1: Dataset statistics for evaluation datasets.

Dataset # Vertices | # Edges Type # Classes
BlogCatalog 10.3K 334.0K undirected 39
LiveJournal 4.8M 69.0M directed 10

Friendster 65.6M 1.8B undirected -
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Evaluation: Classification & Link Prediction

Table 3: Results of social network classification and link prediction for Jaccard Index (%), Hamming Loss (%), F1 Score (%), AUC (%)
using embedding dimension 64. Our NMM and its variants are in gray shading. For each group of models, the best results are bold-faced.
The overall best results on each dataset are underscored. T Ablation study variant models using distinct non-Euclidean geometric spaces for
NMM (homophily/social influence) where [, S, and H denote Euclidean, Spherical, and Hyperbolic spaces.

Datasets BlogCatalog LiveJournal Friendster
Metrics Jaccard Index Hamming Loss F1 Score AUC Jaccard Index Hamming Loss F1 Score AUC Jaccard Index Hamming Loss F1 Score AUC
GraRep 36.0 282 45.6 87.9 40.1 411 352 56.7 53.6 342 10.6 89.8
RolX 37.2 25.4 48.7 90.4 40.9 38.0 35.6 60.1 58.8 33.9 40.9 90.3
GraphWave 39.5 22.8 48.9 92.3 422 37.6 35.9 60.1 59.0 31.5 41.1 90.5
GraphSAGE 454 20.1 493 92.0 455 347 341 59.0 64.1 287 434 90.5
GCN 47.3 19.5 55.1 91.6 46.7 31.2 47.8 62.6 66.5 28.0 47.2 91.9
GAT 47.9 19.3 54.5 91.4 474 28.5 49.0 65.3 66.3 28.0 46.8 92.0
GELTOR 174 19.3 549 92.0 51.0 289 186 653 66.7 27.9 475 91.7
NRP 61.6 20.4 65.2 95.5 69.7 24.5 64.0 78.7 72.2 22.6 52.8 92.2
HGCN 56.7 19.2 60.9 92.7 588 27.1 57.7 685 69.9 243 199 933
x-GCN 61.6 20.7 65.4 95.3 63.6 27.3 57.2 69.1 69.4 24.1 50.3 93.1
RaRE 614 20.6 65.6 95.1 742 2338 65.1 79.9 75.7 225 55.0 94.4
NMM (H? /s T 56.6 19.8 62.3 95.1 74.0 28.4 55.5 68.8 74.6 26.9 50.6 93.0
NMM(s9 /s4)T 57.1 19.6 65.9 94.0 74.7 27.6 57.1 69.0 75.3 26.2 525 93.4
NMM (E4 /E4)T 57.9 19.5 66.3 95.4 75.1 25.0 58.4 71.2 77.0 24.7 528 945
NMM(s? /ED) T 59.2 19.2 67.1 95.5 75.3 244 59.3 745 775 233 54.3 94.5
NMM (H? /HE) T 58.4 19.0 66.7 95.3 75.6 24.6 61.9 76.0 78.8 233 55.0 94.7
NMM(E® /H) T 60.3 19.1 67.8 95.7 76.2 23.2 64.4 79.2 79.1 22.6 55.4 94.5
NMM (ours) 62.7 19.0 70.9 95.8 76.5 22.7 67.3 84.2 79.8 221 56.3 94.8
NMM-GNN (ours) 62.6 17.3 78.8 96.9 78.6 20.4 67.3 86.8 83.3 21.8 57.7 94.9
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Ablation Study #1

N NMM_hom
mEm NMM_rank
BN NMM

BC LI F

* Quality of using mixture model architecture: NMM_hom (homophily deconstructed component),
NMM _rank (social influence deconstructed component), and NMM (combined mixture model)



Ablation Study #2

Table 3: Results of social network classification and link prediction for Jaccard Index (%), Hamming Loss (% ). F1 Score (%), AUC (%)
using embedding dimension 64. Our NMM and its variants are in gray shading. For each group of models, the best results are bold-faced.
The overall best results on each dataset are underscored. Ablation study variant models using distinct non-Euclidean geometric spaces for
NMM (homophily/social influence) where E, S, and H denote Euclidean, Spherical, and Hyperbolic spaces.

Datasets BlogCatalog LiveJournal Friendster

Metrics Jaccard Index Hamming Loss F1 Score AUC Jaccard Index Hamming Loss F1 Score AUC Jaccard Index Hamming Loss F1 Score AUC
GraRep 36.0 28.2 45.6 87.9 40.1 41.1 35.2 56.7 53.6 34.2 40.6 89.8
RolX 37.2 254 48.7 90.4 40.9 38.0 35.6 60.1 58.8 339 40.9 90.3
GraphWave 39.5 22.8 48.9 92.3 42.2 37.6 35.9 60.1 59.0 31.5 41.1 90.5
GraphSAGE 454 20.1 493 92.0 455 34.7 34.1 59.0 64.1 28.7 434 90.5
GCN 47.3 19.5 55.1 91.6 46.7 31.2 47.8 62.6 66.5 28.0 47.2 91.9
GAT 47.9 19.3 54.5 91.4 47.4 28.5 49.0 65.3 66.3 28.0 46.8 92.0
GELTOR 474 19.3 54.9 92.0 51.0 28.9 48.6 65.3 66.7 27.9 475 91.7
NRP 61.6 20.4 65.2 95.5 69.7 24.5 64.0 78.7 72.2 22.6 52.8 92.2
HGCN 56.7 19.2 60.9 92.7 58.8 27.1 57.7 68.5 69.9 243 499 93.3
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Quality of using distinct non-Euclidean geometric spaces: We study combinations of geometric
spaces to model NMM (homophily/social influence) to observe the effect it has on learning
topological structure, denoted with NMM(-)T 16
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NMM-GNN Contributions

(1) We propose Graph-based Non-Euclidean Mixture Model (NMM) to explain social network

(2)

generation. NMM represents nodes via joint influence by homophily (spherical space) and social
influence (hyperbolic space), while seamlessly unifying embeddings via space unification loss.

To our knowledge, we are also the first to couple NMM with a graph-based VAE learning
framework, NMM-GNN. Specifically, we introduce a novel non-Euclidean VAE framework where
node embeddings are learned with a powerful encoder of GNNs using spherical and hyperbolic
spaces, non-Euclidean Gaussian priors, and unified non-Euclidean optimization.

Extensive experiments on several real-world datasets demonstrate effectiveness of NMM-GNN
in social network generation and classification, which outperforms state-of-the-art network
embedding models.
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Motivation

(1) We aim to understand how the social network is generated e.g., which factors affect
node connectivity and what topological patterns emerge in the network as a resuilt.

(2) Using our learning from (1), we aim to design a more realistic deep learning model
to explain how the network is generated (inferring new connections).
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Ablation Study #3
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« Link prediction on unseen nodes (inductive task): NMM-GNN outperforms RaRE on all settings of
training nodes. Further, as less training nodes are observed, NMM-GNN outperforms RaRE by larger

margins (e.g., 10\%~vs.~70\% training nodes), showing better generalization to unseen graphs.
21



Training: Parameter Optimization

For homophily regulated nodes, parameter optimization is performed using
Riemannian stochastic gradient descent (RSGD) for the spherical space.

For social influence regulated nodes, parameter optimization is performed using
RSGD for the hyperbolic space.

Parameter optimization for y in the decoder is performed using SGD.

22



	Non-Euclidean Mixture Model for Social Network Embedding
	Outline
	Introduction and Preliminaries
	Outline
	Social Network Embedding Models
	Outline
	NMM-GNN Architecture
	NMM-GNN Architecture
	NMM-GNN Architecture
	NMM-GNN Architecture
	Outline
	Dataset Statistics
	Evaluation: Classification & Link Prediction
	Outline
	Ablation Study #1
	Ablation Study #2
	Outline
	NMM-GNN Contributions
	Extra
	Motivation
	Ablation Study #3
	Training: Parameter Optimization

