

Human I/O: Towards a Unified Approach to Detecting Situational Impairments

Xingyu Bruce Liu, Jiahao Nick Li, David Kim, Xiang 'Anthony' Chen, Ruofei Du

xingyuliu@ucla.edu liubruce.me

Situational Impairments (SIIDs)

@abbott567

Situational Impairments in Daily Lives

Prior Research: Task-specific SIIDs

SwitchBack (CHI '15)

WalkType (CHI '12)

Driving Mode (Android Auto, Apple Carplay)

However, SIIDs are **Dynamic** and **Pervasive**

Can't see things when getting up at night

Can't smell when having a cold

Can't respond to home assistants when brushing teeth

Can't use touchscreens when hands are wet

Can't use Face ID when wearing a mask

SIIDs as Human I/O Channel Availability

Human Input	Example use cases	Human Output			
∀ision	Read text message, watch video, etc.	Eyes / Gaze Face ID, gaze-based interaction, etc.			
(Mearing	Hear notification, phone call, etc.	Vocal System Conversation, voice assistants, etc.			
Tactile	Haptic feedback, feel temperature, etc.	Hands / Fingers Touch screen, gesture control, etc.			
Taste	Drink, eat, etc.	⟨⟨ Limbs / Movement Walk, reach, etc.			
	Smell, etc.	Head / Face Nodding, facial expression, etc.			

SIIDs as Human I/O Channel Availability

Hands / Fingers: hands are wet

(D) Hearing: noisy hairdryer

Human I/O Channel Availability

Formative Study

Remote whiteboard session

10 participants

Formative Study

Human I/O System

Human I/O: Data Capture

Human I/O: Data Capture

Human I/O: Processing

Human I/O: Processing

Activity Environment

User is preparing food in a kitchen

User is in a kitchen

Direct Sensing

Hands: Holding a bowl I Volume: 65 dB

Brightness: 0.52 Audio Class: Sillence

Human I/O: Processing

Human I/O: Reasoning

Human I/O: Reasoning

Model Input (Chain-of-thought Prompting)

<Instruction>

<Few-shot Examples with CoT>

Q: C is washing dishes in a kitchen sink. C is in a kitchen. C's hand is washing dishes. The environmental volume is around 65 dB ...

A: Let's think step by step.

Hand Reasoning:

As C's hand is currently engaged in washing dishes, it is not available for other tasks.

Hand: Not Available;

Eye/vision Reasoning: ...

...

<Current Context>

Q: C is showering a dog in a bathtub. C is in bathroom.
C's hand is showering a dog ...

A: Let's think step by step.

Model Output

Hand Reasoning:

C's hand is actively being used to wash the dog. This means their hand is occupied and ...

Hand: Not Available;

Human I/O: Reasoning

Activity Environment

User is preparing food in a kitchen

User is in a kitchen

Direct Sensing

Hands: Holding a bowl

Volume: 65 dB

Brightness: 0.52

Audio Class: Sillence

Vision / Eye: Slightly Affected

Hearing: Available

Vocal System: Available

Hands / Fingers: Affected

Technical Evaluation

300 egocentric video clips (32 scenarios) from Ego4D [1]

Technical Evaluation

MAE = 0.22

96% of the predictions have a discrepancy of 1 or less

	Human I/O			Human I/O Lite		
Channels	MAE	ACC	VAR	MAE	ACC	VAR
Vision/Eyes	0.25	0.76	0.17	0.45	0.62	0.16
Hearing	0.23	0.87	0.05	0.37	0.63	0.11
Vocal System	0.08	0.92	0.01	0.23	0.87	0.20
Hands/Fingers	0.33	0.73	0.18	0.70	0.47	0.30
Total	0.22	0.82	0.10	0.44	0.65	0.19

User Study

10 participants

User Study

Human I/O: Towards a Unified Approach to Detecting Situational Impairments

Xingyu Bruce Liu, Jiahao Nick Li, David Kim, Xiang 'Anthony' Chen, Ruofei Du

xingyuliu@ucla.edu liubruce.me

