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INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect 1s that the actual
message 1S one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this 1s unknown at the time of design.



Emerging distributed systems

e (lassical information theory lacks ready answers for emerging
distributed systems where delays, feedback and context are important




Emerging distributed systems

® Delay-sensitive

- coding over long blocks of observed data 1s not feasible

® Interactive

- feedback 1s important

® (Context-dependent

- the part of data to be transmitted depends on the goal of
communication, so coding and control/computation algorithms

should be designed jointly



The plan

e Part I: Non-asymptotic rate-distortion theory

- bounds to the non-asymptotic operational limit;
e Part II: coding for control

- causality, feedback and memory of the past are important
e Part III: coding for computation

- causality, feedback and memory of the past are important.



Part I:
Non-asymptotic rate-distortion theory



Lossless data compression

X—»‘ COMPRESSOR |—>‘ DECOMPRESSOR I—» '€

Definition: A lossless data compression code is a pair of mappings:

Compressor: f: X~ {0,1}

Decompressor: g:{0,1}*— X

{0,1}* = {0,0,1,00,01, 10, 11,000,001, ...}

g(f(a)) =a, Vae X



Objective of lossless data compression

e Find the best compressor to minimize E [/( f(X))], sup, median,

Pl(x) > K, ...

One minimizes all!



Idea of lossless data compression

® [onger codewords to less likely symbols

> 00




Optimum lossless source code

Without loss of generality, label the elements of X', in decreasing
probability: Px[1] > Px[2| > ........

1) = 0
f*(2) = 0

f“(3) = 1

f*(4) = 00
f(5) = 01
(6) = 10
f“(7) = 11
f*(8) = 000
f(9) = 001
f*(10) = 010



Length of the optimum lossless source code

((t"(z)) = [logy 2|

Are we done?

No, because it’s hard to get insight into the behavior of £(f*(x)).
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Optimal average length vs. entropy

Theorem (average length)

H(X) —logy(H(X) +1) —logye < E[£(f"(X))] < H(X)

! T

Alon-Orlitsky’94 Wyner’72

Intuition:

H (X)) captures storage requirements for X:

(X)) = H(X) + O (log H(X))
Memoryless sources:

X = An7 X = (X17°"7Xn)7 PXan — P)(?n

S (X1, ..., Xn))] =nH(X) + O (logn)
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Optimal average length vs. entropy

Proof (upper bound) E [/(f*(X))]

A

[ [logy X ]|
:_ng X ]

DN !
52 Py (X).
T = H(X)

\ -

AN

1
PX[a]S— >
a

This is because the elements of

X ={1,2,...} are ordered in decreasing
probability order. Assume the
opposite:

Impossible!




Lossless data compression: research directions

e Refined nonasymptotic upper and lower bounds to

various operational quantities of interest - e.g. quantiles
of /(f*(X)), its moments, etc.

e Refined asymptotic expansions for memoryless sources
using large deviations, moderate deviations and central
limit theorem results from probability theory, e.g.
refining the O (logn) term in E [{(f*(X1,...,X,))] =
nH (X) 4+ O (logn)

e Doing the above for an unknown source distribution
(universal compression)

e Doing the above for separate encoding of multiple
sources (Slepian-Wolf problem), including a large (massive)

number of sources
14



Lossy data compression

— ENCODER

10,1}

distortion measure:

‘4‘|

A

Compressor:

Decompressor:

d: X x X — |0,

d(X, X)

<d

DECODER

o)

f: X~ {0,1}"
g:{0,1}" — X

{0,1}* = {0,0,1, 00,01, 10, 11,000, 001, .. .}



Objective of lossy data compression

~

e Find the best compressor to minimize [E [/(f(X))] subject to

d(X,g(f(X)))) <d a.s.

e Optimal code is unknown because the optimal placement of
quantization points is unknown

16



d-ball entropy

) 1
G | 1o
< | 52 Py (Ba(X))

where Bg(z) = {:i’ e X:d(z, %) < d}



Optimal average length vs. d-ball entropy

R (X) —logy (R (X) +1) —logye < nin L [0(F(X)] < Ry

f.g:
d(X,g(f(X)))<d

V. Kostina, Y. Polyanskiy and S. Verdu, "Variable-length compression allowing errors", IEEE Transactions on
Information Theory, vol. 61, no. 9, pp. 4316-4330, Aug. 2015
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http://arxiv.org/pdf/1402.0608.pdf

d-ball entropy vs. rate-distortion function

Ry(X) = min I[(X;X) rate-distortion function

PX|X: X—X:

Eld(X,X)|<d

<
RT(X) = infE _logQ : | d-ball entropy
Px L 7 Pg(Ba(X))_

VAN

Rqy(X)+ O (logy R4(X)) under regularity conditions

V. Kostina, Y. Polyanskiy and S. Verdu, "Variable-length compression allowing errors", IEEE Transactions on
Information Theory, vol. 61, no. 9, pp. 4316-4330, Aug. 2015 19


http://arxiv.org/pdf/1402.0608.pdf

Optimal average length vs. rate-distortion function

gngi?l L A(f(X))] = Ra(X) 4+ O (log Ry(X))
d(X,g(f(X)))<d

V. Kostina, Y. Polyanskiy and S. Verdu, "Variable-length compression allowing errors", IEEE Transactions on
Information Theory, vol. 61, no. 9, pp. 4316-4330, Aug. 2015 20


http://arxiv.org/pdf/1402.0608.pdf

Lossy data compression: research directions

Perceptually meaningful distortion measures

empirical mapping techniques because eye/ear not well understood

7
S

Rate-distortion theory for data inference tasks

O

(&~ female?

The output 1s a belief COMPRESSOR
l Female with prob. 0.9

The mput 1s a query l s

Jerry D. Gibson, Jing Hu. Rate-Distortion Bounds for Voice and Video, Foundations and Trends in Communications and Information
Theory, Vol. 10, No. 4, Feb. 2014.

T. A. Courtade, T. Weissman, 2014, “Multiterminal source coding under logarithmic loss,” IEEE Transactions on Information Theory,

vol. 60, no. 1, pp. 740-761, Jan. 2014”

21



Part 1: Takeaways

Information theory provides tools to tightly sandwich nonasymptotic
operational limits

Probability theory provides tools to approximate those operational
limits, even if blocklength 1s finite

This fundamental area of research still has many open problems

This fundamental area of research can inform practical code designs

22



Part 11:
Coding for control

23



Scalar stochastic linear control

system gain

|

Xit1 =aX; +U; +V;

A A A

system state random disturbance (mean 0)

control action

24



Fully observed vs. partially observed

In a fully observed system, the controller observes the system state
directly.

In a partially observed system, the controller has only partial information
about the system state.

25



Control objective

find a control strategy to achieve stability:

him E [
71— OO

XZ‘Z} < X0

In a fully observed system,
solution: U, = —aX,; achieves K [\Xi+1|2} = Var |V}]

26



Simple question

Xit1 =aX; +U; +V;

Ui

CONTROLLER

SYSTEM

/-

X

ENCODER

If a € [1,2), can we achieve lim;_,

t[

T

X;|?] < oo with 1 bit ()

27



Bounded disturbances: converse

Xit1 =aX; +U;

e a > 1: unstable
| Xo
i—1 WK
xi (o)
j=0 ——+—
|
0, <
|  Xo]
for X; < Xo, should be < a™ *Xg
e (Quantization bin size = ﬁ%'. So, M > a

e (actually, M > a if V; # 0).

28



Bounded disturbances: achievable scheme

Xit1 =aX; +U; +V,

C
e a > 1: unstable M
>
o [V;|<B I T R B
| | | | | |
A simple time-invariant scheme: ) C
o U, = —aXi, where XZ is a quantized version of X;.

o If ‘Xz‘ < (;, then ‘Xi_|_1‘ < Ci_|_1 = a,]\%z- - B.

o Actually, C; | 1_aB v and diverges if M < a.

e So, M* = |a+ 1] is the minimum possible.

Baillieul’99, Wong-Brockett’99



Bounded disturbances - simple answer

Xiy1 =aX; +U; +V;

Ui

CONTROLLER

SYSTEM

/-

X

ENCODER

If a € [1,2), can we achieve lim;_,

T

X;|?] < oo with 1 bit ()

t[

Yes, by keeping track of the state uncertainty at the controller and using
the sign of the X, to select one of the two quantization bins

30



Unbounded disturbances

large noise realization
eventually, w.p. 1

—~ +

pdt of X, given the past

31



Unbounded disturbances

Proposition (Nair-Evans’04)

For unstable linear systems with unbounded disturbances, any time-invariant
quantizer with finitely many levels cannot achieve bounded lim;_, . E UX i|” ] :
for any 5 > 0.

So, the only option 1s a zooming adaptive quantizer
(introduced by Brockett-Liberzon’00)

32



Variable-length quantization is easier!

Longer bit strings are transmitted to encode rarer (larger) noise realizations

| ; | | ' |
10 00 0 1 01 11

Kostina-Hassib1’16
Silva-Derpich-Ostergaard-Encina’ 16

33



Fundamental limit

Definition

M} = min {M: 3 M-bin causal quantizer-controller s.t. limsup E UX@\B} < oo}

1

An M-bin causal quantizer-controller for Xi, Xs,... is a sequence
{fr, 80}, where

o f,: R"— {1,2,..., M} is the encoding (quantizing) function, and

e g,:1{1,2,...,M}" — R is the decoding (controlling) function.
At time ¢, the controller outputs

Up = gn(f1(X1),f2(X7?),...,f(X™)).

34



A “data rate theorem”

Theorem

Let V; be independent, with bounded a-moments, and V;, Xy have a
density. Then for any 0 < 8 < «, the minimum number of quantization
points to achieve S-moment stability is

Mp; = la+1].

e a <1 (stable system) — M3 = 1.
e a€[1,2) > M} =2.
e a € (2,3) - M} =3.

V. Kostina, Y. Peres, G. Ranade, and M. Sellke, "Exact minimum number of bits to stabilize a
linear system ," IEEE Transactions on Automatic Control, Nov. 2021. 15


https://arxiv.org/pdf/1807.07686.pdf
https://arxiv.org/pdf/1807.07686.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9609599

Data rate theorems in literature

Bounded disturbances: Baillieul’99, Wong-Brockett’99, Tatikonda-Mitter'04.

Linear systems: Brockett-Liberzon’00, Nair-Evans’04, Yiksel 10,
Johnston-Yiuksel’'l4, You-Xie’ll.

Nonlinear systems: Yuksel-Meyn’13, Yiksel-Basar’13, Yiksel'16.

Converse: Nair-Evans’04, Martins-Dahlia-Elia’06, Matveev’08,
Matveev-Savkin’08, Colonius-Kawan’08, Minero-Franceschetti-Dey-Nair’09,
Colonius-Kawan-Nair’13, Yiksel-Basar’13, Yiksel’16.

36



Z.ooming adaptive quantizers: prior work

< —< >-<

overload regestoad gegnobar d¥gibead regeolvad region

Z.oom out 1f in overload region

Nair-Evans’04, Yiiksel’10

37



Unbounded disturbances - achievable scheme

Xit1 =aX; +U; +V;

SYSTEM
Ui X

CONTROLLER ENCODER

/-

Let a € [1,2). @

How to stabilize with 1 bit O




Achievable scheme

e Proceed in rounds of at least k + 1 moves:

< >4t > <
k 1 7 (random)
normal (zoom-1n) mode probe emergency (zoom-out) mode
— -
} >
0 Xn

(a) Sign test

(b) Magnitude test

39



Achievable scheme

e Proceed in rounds of at least k + 1 moves:

< >4t > <
k 1 7 (random)
normal (zoom-1n) mode probe emergency (zoom-out) mode

In normal, or zoom-in, mode, pretend that |V;| < B:

e Recall: in the bounded case,
if |Xz S Ci, then |Xi—|—1‘ S agi - B.

C;
e S50, update rule for C;:  Ciaq = a2 - B. C;
2

e Recall: C; | 1_5/2. |

40



Achievable scheme

e Proceed in rounds of at least k + 1 moves:

< >4t > <
k 1 7 (random)
normal (zoom-1n) mode probe emergency (zoom-out) mode

The probe: test whether the X, is staying within desired bounds:

e The quantizer applies the magnitude test to check whether | X, 1 1| <
Crnik- The controller is silent (U1 = 0).

o If | X, 11| < )ik, we return to normal mode.

e Otherwise, we enter the emergency, or zoom-out, mode.

41



Achievable scheme

e Proceed in rounds of at least k + 1 moves:

< >t <

k 1 7 (random)

normal (zoom-1n) mode probe emergency (zoom-out) mode

Emergency, or zoom-out, mode:
e Repeatedly perform more magnitude tests via Cyp 4545 = P Crogt+j—1-

e Return to normal mode the first time the test is passed.

42



After a round is completed,
to the start of a round.

Analysis

t[

X;|P ] tends to decrease compared

43



Remark

e In the achievability, we do not need the assumption that X, has a
density.

e However, for the converse the assumption is not superficial.

e For example, consider V; = 0 and X uniformly distributed on the
Cantor set, and a = 2.9. This system can be stabilized with 1 bit,

by telling the controller at each step the undeleted third of the
interval the state is at.

44



Control with fixed rate: research directions

Control over noisy channels

only special cases (packet drop channel with feedback, scalar
Gaussian channel) are solved; achievability bounds for the BSC

This 1s a joint source-channel coding problem

A refined control objective: achieving a specific bound on some
moment of the system state instead of only requiring 1ts boundedness

wide open!

45



Coding for control
Xi+1 =AX; +BU; +V;

CONTROLLER SYSTEM
- Ui
G;
CHANNEL
i
X;
ENCODER SENSOR |«
Y, = CX,;, + W,
We would like to choose
e the encoding sequence Fi,..., F},
e the control sequence Uy, ..., U;.
to minimize
Linear quadratic regulator
" t—1
t rrt—1\ & 17 T T
LQR(X", U ") £E |» (X[ QX;+U/RU;)
Li=1

XS, X,

46



Goal: information-theoretic tradeoffs

channel,
quality

minimum
channel

quality for
stability A

cost

minimum cost
for perfect
channel



Separation between control and communication

Assuming past controls U, are available at the encoder,
control-communication separation holds:

total LQR cost = {control cost assuming controller observes X}
+ {distortion between X; and X; = E [Xi]Yi, Ui_l}}

4 {distortion between X; and its estimate at the controller!

Since the controls are additive and the distortion is shift-invariant,
encoding-decoding policy does not affect the first two terms!

Thus, the problem reduces to tracking the source X; under
distortion (a causal rate-distortion problem)

V. Kostina, B. Hassibi. Rate-cost tradeoffs in control. IEEE Transactions on Automatic Control, 2019 43



Gauss-Markov source: a simple source with memory

Xit1 =aX; +V;

X1, {Vi};21 ~ N (0,0%) iid.

e |a| < 1: asymptotically stationary source
e |a| > 1: nonstationary source

e |a| = 1: the Wiener process

49



Noiseless variable-rate channel

The channel is noiseless and satisfies the average rate constraint:

%Z “3[@2] SR

1=1 A

length of data packet transmitted at time ¢

50



Zero delay causal tracking

Goal: design (encoder, decoder) to minimize the MSE cost

s [ 5

1=1

X, is the real-time estimate of X, given everything the
decoder knows up to time 1

Encoder(s) and decoder have memory of the past.



The classical rate-distortion function

X

>| ENCODER

F

10, 1}”

Recall from Part I:

min
f.g:
d(X,g(f(X)))<d

| DECODER

A
5
>

L [0(F(X))] = Ra(X) + O (log Rg(X))



Apply rate-distortion theorem at each step?

>| ENCODER

10, 1}”

Xi—l

| DECODER

Does not quite work because of memory of the past:
X* ! is the result of coding at previous steps and needs to be optimized over

53



Instead, a large time horizon

(
n< X4
\
l

X2

|

111...10

-—_-————

What is the total average minimum number of bits compatible with

1 ~—t
t Zi:l

J [(Xz — X@)Q} < d?

54



Causal conditioning (Kramer’98) and Bayes’ rule

Any joint distribution Px:y+ can be written in two ways:

O PXtht|Xt The tWO
factorizations are

the same 1iff there
< » X > Y is no feedback

~D—

® PXt”yt—l Pyt | Xt

t
YA
Py xt 2 HPY”Y?;_l,Xi
1=1

4
A
thHyt—l — HPXi|Yi_1,Xi_1
1=1

55



Directed information (Massey, 1990)

Given a joint Px+y+, we can remove feedback and create another
joint Pxt Py« x+ while preserving the marginals Px: and Py+. The
mutual information between X* and Y*? according to the second
joint is the directed information:

" Pyexe (Y| XY
I(Xt S VH 2R |
( ) 8 b (V)

(X =)
X > Y
~D—
I(Y — DX)

56



(Informational) causal rate-distortion function

Definition The causal rate-distortion function 1s defined by

1 .
R (b) = — inf [(X" — X1
L Pt xt:

1E[(X;—X4)?]<d

R(b) = lim sup R, (b)

{— 00

We will see that this function has an operational meaning.

57



Causal rate-distortion function: Markov sources

Theorem For the source X;.1 = aX; +V;, where V; ~ Py, are i.i.d.
(not necessarily Gaussian),

R(b) > %log (a : N(dv>>

N((V) = QLMG%(V) entropy power

h(V) & — ] fv(v)log fiy(v)der  differential entropy

: . [Gorbunov, Pinsker *74]
For Gaussian V: N(V)) = Var [V]. [ Tatikonda, Sahai, Mitter *04]

V. Kostina, B. Hassibi. Rate-cost tradeoffs in control. IEEE Transactions on Automatic Control, 2019 5g



A matching upper bound

Theorem There exists a variable-length quantizer achieving MSE
error d with output entropy:

H(d) < %log (a : NS”)

+01+0; (da2).

space-filling loss

(L 0asn T o)

high definition
(L 0asdl]0)

V. Kostina, B. Hassibi. Rate-cost tradeoffs in control. IEEE Transactions on Automatic Control, 2019 59



Achievable scheme: DPCM

e Encoder’s state estimate before transmission: X; = aX;_1.

e Encoder sends quantized value of innovation, q(X; — )A(Z)

e Decoder’s state estimate after transmission:

X@’—I—l = X@ + q(X; — X@)

60



4.5

N 0
(@)} w (@)}

Quantizer Entropy, nats

N

1.5

0.5

uniform innovations quantizer

S —
— —
— —

log a converse
| | | | | | |
4 4.5 5 5.5 6 6.5 7 7.5 8



Rate-limited control: research directions

Learning for control

Suppose that the system gain 1s fixed but unknown, how should we
code for such a system?

This 1s a universal rate-distortion problem

For the Gauss-Markov source and quadratic distortion, the
informational causal rate-distortion function can be found exactly. Are
there other examples of sources/distortion measures for which we can
compute 1t?

Without causality constraints, the informational rate-distortion
function 1s known 1n closed form for the Bernoulli source with
Hamming distortion, any discrete source with logloss.

Control with multiple observers

Causal coding counterparts of tractable multiuser IT problems

62



Part 11: Takeaways

Coding for control presents a set of challenges not found 1n traditional
block coding

- even rare error events are catastrophic 1f not taken care of
- causality constraints render existing block codes not applicable
- due to the delay constraint, source-channel separation does not hold

Information theory provides tools to tackle these nonasymptotic
problems

This rich area of research on the intersection of information theory and
control has a lot to gain from information theorists

Industry interest 1n ultra-reliable real-time codes for streaming

63



Part 111:
Coding for computation

64



Federated learning

Edge devices each have access to local
data

The goal is to train a machine learning
model

The server coordinates informational
exchanges

The communication bottleneck slows
down the convergence process

65



Unquantized gradient descent (GD)

Solve x* = arg minycrn f(x)

e with GD:
Xi+1 < Xj — an(Xi)

® n > 0 is a constant stepsize.

® in distributed training

Xi

¢
Worker N Parameter server

compute Vf(x;) VH(xi) Xi+1 < Xj —nVF(x;)

66



Active research area

Gradient quantization

® Stochastic gradient descent

e , L
Seide et al. 2014 Gradient sparsification

® Wen et al. 2017
® Alistarh et al. 2017 ® Strom et al. 2015
® Bernstein et al. 2018 ® Aji & Heafield 2017
® Wu et al. 2018 :
® Gandikota et al. 2019 # ki et a-'l' 2018
® Ramezani-Kebrya et al. 2019 ® Wangpni et al. 2018
® Mayekar & Tyangi 2019, 2020 ® Wang et al. 2018

e GD ® Stich et al. 2018

® Luo & Tseng 1993
® Friedlander & Schmidt 2012
® Alistarh et al. 2016

Convergence lower bounds are scarse.

We are interested in the necessary and sufficient bit rate to attain a target
convergence rate.

67




Class of functions

Folp,L,r) =2 {f: R" — R | f satisfies the following.}

® fis L-smooth: ||Vf(v) — Vf(w)|| < L|lv— w||
* fis p-strongly convex: (Vf(v) — Vf(w))" (v — w) > p|v — wl|

® The minimizer ||[x*(f)|| < r for some r > 0

68



Unquantized gradient descent

For any L-smooth and p-strongly convex f, unquantized GD satisfies [Polyak, 1987]:
Ix1 = x*()l| < o' [lxo — x*(f)]

o o 2 L=E. contraction factor of GD.
[+

® The bound is tight: 3f s.t. “=" holds.

69



Quantizers for worst-case distortion

A quantizer of dimension n and rate R is a tunction q: D — R",
where D C R" is the domain, such that the image of q satisfies

Im(q)| = 2"".

70



Quantizers for worst-case distortion

For a bounded-domain quantizer q: D — R"™, we refer to
r(q) = max{d: B(d) C D}
as the dynamic range of q, to
d(q) = min{d: Vz € D, ||z —q(z)|| < d}

as its covering radius, and to

N m 1/n @

as its covering efficiency.

71



Quantizers for worst-case distortion

pn:. covering efficiency of the quantizer

® uniform scalar quantizer: p, = /n.
° o, > L.

®* pp, =1+ 0,(1) is achievable with lattice quantizers [Rogers 1963].

72



Naively quantized gradient descent

NQ-GD [Friedlander & Schmidt 2012, Alistarh et al. 2016] directly quantizes the gradient at X;:

<
Worker Parameter server

compute Vf(X;) q; (V(x;)) Xit1 < Xi — nq;

Theorem: NQ-GD

NQ-GD achieves the following contraction factor over F,

ong-cD(m R) < 04 pa 27K

73



Quantized gradient descent: class of algorithms

iterate X;
¢
Worker g Parameter server
access Vf(z;) nR-bit gi(u;) Xit+1 < Xj — 14
construct u;
The worker, based on x; and ep,...,ej_1 (e 2 q) — uy), decides:

® gradient query point z;
® quantizer’'s input u;.
Goals:
® characterize the tradeoff between how fast any QGD algorithm converges and R.

® propose an algorithm that achieves it.

74



Quantized gradient descent: operational tradeotf

For a QGD algorithm A operating at R bits per problem dimension,
worst-case (over f € F,(u, L, r)) contraction factor:

oa(n R) 2 sup limsup |X7(R) — x*(f)|| 7
feF, T—o0

® unquantized GD: ogp(n,o0) =0 = Ty

75



Quantized gradient descent: converse

Theorem: converse

The contraction factor of any QGD algorithm A operating at R bits per problem
dimension satisfies

oa(n, R) > max{a, 2_R}

Proof combines two converses:
® Reduction to unquantized GD: oa(n, R) > o;

® Volume division argument: oa(n, R) > 27F,

C. Lin, V. Kostina, B. Hassibi, "Differentially quantized gradient methods", IEEE Transactions on Information

Theory, Apr. 2022 76


https://arxiv.org/pdf/2002.02508.pdf

Quantized gradient descent: achievability

Algorithm 1: DQ-GD

Initialize e_1 < 0
fori=0to 7T —1do
Worker:

z; < X;i +nej_1

u, < Vf(z,-) — €1
qi = qi(u;)

€ < qi — U

Parameter server:
Xi+1 < Xji —Nq;

end

Differential quantization! directs the quantized trajectory to the unquantized trajectory.

1The idea of error compensation dates back to YA modulation [Gray, 1989].

C. Lin, V. Kostina, B. Hassibi, "Differentially quantized gradient methods", IEEE Transactions on Information

Theory, Apr. 2022 77


https://arxiv.org/pdf/2002.02508.pdf

Quantized gradient descent: achievability

DQ-GD computes the gradient at x; and compensates the previous quantization error:

A

Xi

<
Worker . Parameter server

compute Vf(x;) q; (Vi(xi) —ej_1) Xiy1 < Xi —nq;

Theorem: DQ-GD

DQ-GD achieves the following contraction factor over Fj,

opq-ap(n, R) < maX{U, an_R}

® Since p, — 1 is achievable [Rogers, 1963], DQ-GD attains the converse as n — oo
® R > log, pn/o: achieves the contraction factor o of unquantized GD
® R < log, pn/o: achieved contraction factor is only pn2~ K
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Achievability and converse together

Optimal contraction factor over f € F, and A € QGD

im inf UA(n,R):max{a,Q_R}.
n—oo QGD A

Phase transition
® R >log,1/0: contraction factor o of unquantized GD is achievable

* R < log,1/0: only 27 R is achievable

C. Lin, V. Kostina, B. Hassibi, "Differentially quantized gradient methods", IEEE Transactions on Information

Theory, Apr. 2022 79


https://arxiv.org/pdf/2002.02508.pdf

Least-squares problems: Gaussian ensemble

1¢

0.9~ )
2 i
© Naive QGD
§08 / |
> DQ-GD
207+ / -
-
@) o
O

GD
0.6 / . _ -

2 4 §) 8 10 12 14
Data rate/dimension R

f(x) = |ly — Ax||* /2. A € R1000x100 554 y < R1000 jid standard normal entries. «(A) & 1.8862 on average.
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Coding for computation: research directions

Multiuser rate-convergence tradeoff

Considerably more challenging (no wonder since even classical multi-
compressor rate-distortion problems are challenging)

High rate asymptotics?

Rate-convergence tradeoff for a wider class of 1terative algorithms

Differential quantization extends to accelerated GD algorithms

What about stochastic GD?

Rate-convergence tradeoff for a wider class of functions

Smoothness and strong convexity are strong assumptions. But, tools
exist to study convergence without these assumptions.

Rate-convergence tradeoff over noisy channels
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Part 111: Takeaways

Coding for computation presents a set of challenges similar to that in
control

- communication 1s interactive
- delay-sensitive

- The objective of communication 1s important for system design

Like coding for control, it 1s a source coding problem
Communication 1s a real bottleneck in large-scale optimization

This hot area of research has a lot to gain from information theorists
(many algorithms in existing literature but few converses)
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Open problem A: control over a channel

Xiy1 =aX; +U; +V;

> SYSTEM

Ui

CONTROLLER

X

ENCODER

If a € [1,2), can we achieve lim;_,

CHANNEL @

0 [1X;|2] < oo with 1 bit ()

Binary-input binary-output channel: consider a simple channel (choose
binary erasure, binary symmetric, or a channel that does not introduce
more than pn errors out of n channel uses; assume perfect feedback from

the controller to the encoder).
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Open problem B: optimization over a channel

iterate X;

Worker I< o Parameter server

access Vf(z;) nR-bit gj(u;) Xit1 < Xi —1q;

construct u;

Algorithm 1: DQ-GD

Initialize e_1 < 0
fori=0to 7T —1do
Worker:

Z; — Xj + 1N€i_1

u < Vf(z,-) — €1
qi = qi(u;)

€ < q; — uj

Parameter server:
Xi+1 < Xi —11q;

end

Suppose the nR-bit codeword from the worker to the server can be
corrupted by a noisy channel. Consider a simple channel. Is there an
extension of the D(Q) algorithm to handle this?
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