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Disclaimer: this is not an exhaustive coverage of the topic. The goal is to provide an introduction and hopefully convince 
you that there are many open problems that are interesting to potentially work on.
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Idea of pooling together multiple diagnostic samples to make medical testing more efficient

• To find the infected individual, we need:  

6 individual tests or 4 pooled tests

• A pooled test is positive, if at least one 

participating individual is infected 

Test 1

Test 2

Test 3

Test 4

Outcome

R. Dorfman, "The Detection of Defective Members of Large Populations," The Annals of Mathematical Statistics, 1943
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Test 1

Test 2

Test 3

Test 4

Outcome

1 1 1

111

1 1 1

111 0 0

0 0

0

0

000

0

0

0

1

1

0

0

• Population of  individuals

• , infection vector  if 

individual  is infected, and 0 otherwise

• , the vector of test outcomes

• Test matrix  where  if individual  is in test 

𝑁
𝑈 = (𝑈1, 𝑈2, …, 𝑈𝑁) 𝑈𝑖 = 1

𝑖
𝑌 = (𝑌1, 𝑌2, …, 𝑌𝑇 )

𝐺  𝐺𝑡𝑖 = 1 𝑖 𝑡

Test matrix 𝐺

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

Matrix multiplication in Boolean algebra

𝑌  = 𝐺𝑈

𝑈   =    [0        0        1       0        0         0] 

𝑌

Group testing: notation

• Infections: combinatorial (k out of N), or probabilistic 

Ui = {1 w . p . pi

0 w . p . 1 − pi
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Group testing: needs fewer tests and scales better than individual testing

Adaptive Group Testing Non-Adaptive Group Testing
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Adaptive Group Testing Decide what tests to perform next depending 
on the current test outcome. 
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Adaptive Group Testing Decide what tests to perform next depending 
on the current test outcome. 
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• Goal:  

1) Design test matrix  and 2) an inference 

(decoding) algorithm such that the probability 

of error is minimized. 

𝐺

Test 1

Test 2

Test 3

Test 4

Outcome

𝐺 𝑌

Nonadaptive Group Testing

P(error) =
1

(N
K) ∑

Y

Pr(𝒦̂ ≠ 𝒦)

Average probability of error: 

: set of K infected people


: estimated set of K infected people

𝒦
𝒦̂
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Lower Bound on Number of Tests Needed

Assume K out of N people are infected uniformly at random. If we want zero error probability, then we need to use 

a number of tests T such that .T ≥ log2 (N
K)

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

2Tvalues ≥ (N
K)

H(U) =
N

∑
i=1

H(Ui) =
N

∑
i=1

H(p =
K
N

) = K log2(
N
K

) + O(K )
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Adaptive Group Testing: Dorfman’s procedure

Divide into M subsets 

and group test each subset

If positive individually test 

each person in the subset

T(M) = M + K
N
M

For M = KN,  we have that T(M) = 2 KN < < N
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Adaptive Group Testing: Binary splitting
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Adaptive Group Testing: Binary splitting
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Group testing: needs fewer tests and scales better than individual testing

Adaptive Group Testing Non-Adaptive Group Testing

order optimal for 
k = O(Na), a ∈ [0,1)

order optimal for 
k = O(Na), a ∈ [0,0.4)
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NonAdaptive Group Testing: Decoding

Assume we are given a test design matrix G and the test outcomes: how do we 
infer which  individuals are positive?

• M. Aldridge, O. Johnson and J. Scarlett Group testing: An Information Theory Perspective, monograph, Now Founrdations and Trends, 2019.
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Satisfying Set

Satisfying Set



20

COMP (or DND) Algorithm

DND

1 2 3  4  5  6  7  8
PD

𝒦̂ = {3,4,5,6,7,8}
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Definite Defective (DD) Algorithm

DND

1 2 3  4  5  6  7  8
PD

𝒦̂ = {3,5}

DDDD

0        0       0        1        0        1       1         1   | 1
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SCOMP Algorithm

DND

1 2
DDDD

0        0       0        1        0        1       1         1   | 1 Unexplained

𝒦̂ = {3,5,7}
3  4  5  6  7  8
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Smallest Satisfying Set = Set Cover Problem

3  4  5  6  7  8
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Smallest Satisfying Set = Set Cover Problem

3  4  5  6  7  8

3
4
5

1

8
7
6

1
0
1

1

1
PD Test Outcomes
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Smallest Satisfying Set = Set Cover Problem

3  4  5  6  7  8

3
4
5

1

8
7
6

1
0
1

1

1
PD Test Outcomes
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Smallest Satisfying Set = Set Cover Problem

3  4  5  6  7  8

3
4
5

1

8
7
6

1
0
1

1

1
PD Test Outcomes
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Integer Programming Decoding
• Population of  individuals

• , infection vector  if 

individual  is infected, and 0 otherwise

• , the vector of test outcomes

• Test matrix  where  if individual  is in test 

𝑁
𝑈 = (𝑈1, 𝑈2, …, 𝑈𝑁) 𝑈𝑖 = 1

𝑖
𝑌 = (𝑌1, 𝑌2, …, 𝑌𝑇 )

𝐺  𝐺𝑡𝑖 = 1 𝑖 𝑡

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

min
z

N

∑
i=1

zi

subject to
N

∑
i=1

Gtizi ≥ 1 when Yt = 1

N

∑
i=1

Gtizi = 0 when Yt = 0

zi ∈ {0,1}
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Linear Programming Relaxation
• Population of  individuals

• , infection vector  if 

individual  is infected, and 0 otherwise

• , the vector of test outcomes

• Test matrix  where  if individual  is in test 

𝑁
𝑈 = (𝑈1, 𝑈2, …, 𝑈𝑁) 𝑈𝑖 = 1

𝑖
𝑌 = (𝑌1, 𝑌2, …, 𝑌𝑇 )

𝐺  𝐺𝑡𝑖 = 1 𝑖 𝑡

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

min
z

N

∑
i=1

zi

subject to
N

∑
i=1

Gtizi ≥ 1 when Yt = 1

N

∑
i=1

Gtizi = 0 when Yt = 0

0 ≤ zi ≤ 1
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NonAdaptive Group Testing: Encoder Designs

Zero Error Deterministic Matrix Designs

A matrix G is called K-separable if, each subset L of K columns, has a distinct support union (for all  possible such subsets)

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁
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NonAdaptive Group Testing: Encoder Designs

Zero Error Deterministic Matrix Designs

A matrix G is called K-disjunct if, each subset L of K columns, and for any column i that does not belong in L, 

the support of column i is not a subset of the support of the set of columns L.

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁
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NonAdaptive Group Testing: Encoder Designs

Zero Error Deterministic Matrix Designs

A matrix G is called K-separable if, each subset L of K columns, has a distinct support union (for all  possible such subsets)

Construction of  such matrices that lead to zero error non-adaptive designs need to use  testsmin{Ω(K2), N}

A matrix G is called K-disjunct if, each subset L of K columns, and for any column i that does not belong in L, 

the support of column i is not a subset of the support of the set of columns L.
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NonAdaptive Group Testing: Encoder Designs

Probability(test is negative)=(1 −
ν
K

)K ≈ e−ν

Every person participates in   tests and every test contains on average  peopleT
ν
K

N
ν
K

Gij = {
1 w . p . ν

K

0 w . p . otherwise
 where ν is a constant to select and K number of infected people

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

For  we get e−ν =
1
2

ν = ln 2

T x N matrix
Bernoulli Matrix Designs
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NonAdaptive Group Testing: Encoder Designs

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

T x N matrixConstant Column Weight (CCW) 
Matrix Designs

Each person is included in a fixed number of L tests  (typical choice: )L = Θ(
T
K

)
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NonAdaptive Group Testing: Encoder Designs

• E. Price and J. Scarlett, A Fast Binary Splitting Approach to Non-Adaptive Group Testing, arXiv:2006.10268v1, 2020.


Mimic Adaptive Test Designs

In this example: K=3 out of N people infected 

Every level splits the groups  in previous levels in half


At each level m we have  groups of size  each2m N
2m
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NonAdaptive Group Testing: Encoder Designs

• E. Price and J. Scarlett, A Fast Binary Splitting Approach to Non-Adaptive Group Testing, arXiv:2006.10268v1, 2020.


Mimic Adaptive Test Designs

In this example: K=3 out of N people infected 

Every level splits the groups  in previous levels in half


At each level m we have  groups of size  each2m N
2m

Create a matrix where, for each level m, we have CK tests 

(C: constant to be decided). 

For  place all the members of the group  in 

exactly one of the CK tests uniformly at random

j = 1,…,2m Gm
j
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NonAdaptive Group Testing: Encoder Designs

• E. Price and J. Scarlett, A Fast Binary Splitting Approach to Non-Adaptive Group Testing, arXiv:2006.10268v1, 2020.


Mimic Adaptive Test Designs

In this example: K=3 out of N people infected 

Every level splits the groups 

in previous levels in half
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NonAdaptive Group Testing: Non-identical priors

What if people have a different a-priori probability to be infected?  

• Assumption: 

Independent but non-identical infections
Ui = {1 w . p . pi

0 w . p . 1 − pi

Lower bound:   


Let   then if error probability  then H(U ) =
N

∑
i=1

H(Ui) =
N

∑
i=1

H(pi) Pe T ≥ (1 − Pe)H(U )

• T. Li, C. L. Chan, W. Huang, T. Kaced, and S. Jaggi. Group testing with prior statistics. In IEEE International Symposium on Information Theory 
(ISIT), pages 2346–2350, 2014. doi: 10.1109/ISIT.2014.6875253. 

•



39• T. Li, C. L. Chan, W. Huang, T. Kaced, and S. Jaggi. Group testing with prior statistics. In IEEE International Symposium on Information Theory 
(ISIT), pages 2346–2350, 2014. doi: 10.1109/ISIT.2014.6875253. 

•
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NonAdaptive Group Testing: CCA algorithm

The i-th row of the matrix G is obtained by sampling  the probability vector  

where  and  for g times with replacement, where g is a constant we 

optimize.


Analysis: algorithm can be viewed as “collecting all the non-defective items in negative tests” 
(coupon collector)

̂p = ( ̂p1, ̂p2, …, ̂pN)

̂pi =
1 − pi

N − μ
μ =

N

∑
i=1

pi ≪ N

• C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive group testing: Explicit bounds and novel algorithms,” in Information 
Theory Proceedings (ISIT), 2012 IEEE International Symposium on. IEEE, 2012, pp. 1837–1841. 

Testing procedure requires  tests with high probabilityO(μ ln(N ))
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NonAdaptive Group Testing: CCA applied in blocks (achieves bound)

• C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive group testing: Explicit bounds and novel algorithms,” in Information 
Theory Proceedings (ISIT), 2012 IEEE International Symposium on. IEEE, 2012, pp. 1837–1841. 
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Test 1

Test 2

Test 3

Test 4

Outcome

1 1 1

111

1 1 1

111 0 0

0 0

0

0

000

0

0

0

1

1

0

0

• Population of  individuals

• , infection vector  if 

individual  is infected, and 0 otherwise

• , the vector of test outcomes

• Test matrix  where  if individual  is in test 

𝑁
𝑈 = (𝑈1, 𝑈2, …, 𝑈𝑁) 𝑈𝑖 = 1

𝑖
𝑌 = (𝑌1, 𝑌2, …, 𝑌𝑇 )

𝐺  𝐺𝑡𝑖 = 1 𝑖 𝑡

Test matrix 𝐺

𝑌1
⋮

𝑌𝑇

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑇1 ⋯ 𝐺𝑇𝑁

𝑈1
⋮

𝑈𝑁

Matrix multiplication in Boolean algebra

𝑌  = 𝐺𝑈

𝑈   =    [0        0        1       0        0         0] 

𝑌

Nonadaptive Group Testing as an Optimization Problem
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• Assumption: 

Independent but non-identical infections 

• Goal:  

Design test matrix  s.t. under the DND 

decoder, the expected number of 

misclassifications (false positives) is minimized

𝐺

Test 1

Test 2

Test 3

Test 4

Outcome

𝐺 𝑌

Optimal test matrix problem

Ui = {1 w . p . pi

0 w . p . 1 − pi
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Expected number of false positives under DND decoder:

 if test  is positive given that individual  is healthy

 set of individuals who participate in test 

𝐸𝑟𝑟(𝐺) =
𝑁

∑
𝑖=1

(1 − 𝑝𝑖)𝔼 ∏
𝑡  : 𝑖∈𝛿𝑡

𝛾𝑡,𝑖 

𝛾𝑡,𝑖 = 1 𝑡 𝑖

𝛿𝑡 = {𝑗:𝐺𝑡𝑗 = 1}: 𝑡

arg min       𝐸𝑟𝑟(𝐺)
𝐺 ∈ {0,1}𝑇 ×𝑁

• Prior works: Study how many tests  needed to recover  w.h.p., decoders

• We optimize the test matrix under the constraint of available tests

𝑇 𝑈

Optimal test matrix: optimization formulation



45

argmin  𝑓(𝑥) 

𝑥 ∈ {0,1}𝑛

Optimal point

000

001

010

100

011

111

110

101

Detour: combinatorial optimization perspective

arg min       𝐸𝑟𝑟(𝐺)

𝐺 ∈ {0,1}𝑇 ×𝑁
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argmin  𝑓(𝑥) 

𝑥 ∈ {0,1}𝑛

argmin  𝑔(𝑞) 

𝑞 ∈ [0,1]𝑛

Detour: combinatorial optimization relaxation

Optimal 
pointOptimal 

point

000

001

010

100

011

111
110

101
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argmin  𝑓(𝑥) 

𝑥 ∈ {0,1}𝑛

argmin  𝑔(𝑞) 

𝑞 ∈ [0,1]𝑛

1.   forall  :  is at least as large as the minimum 

value of 

2.   forall :  is equal to  on the vertices of the 

hypercube

3. Given a minimizer  of  if one can find  such that 

: this implies   is a minimizer of 

𝑔(𝑞) ≥ 𝑓∗  𝑞 ∈ [0,1]𝑛 𝑔

𝑓
𝑔(𝑥) = 𝑓(𝑥) 𝑥 ∈ {0,1}𝑛 𝑔 𝑓

𝑞∗ 𝑔, 𝑥′￼∈ {0,1}𝑛 
𝑓(𝑥′￼) = 𝑔(𝑞∗) 𝑥′￼ 𝑓

𝑔∗ = 𝑓∗

Desirable properties of 𝑔

Detour: combinatorial optimization relaxation
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argmin  𝑓(𝑥) 

𝑥 ∈ {0,1}𝑛

argmin  𝑔(𝑞) 

𝑞 ∈ [0,1]𝑛

What  has these desirable properties? One choice is to construct  as follows:

• Given , say  

• Sample  such that : we say that 

•

𝑔 𝑔

𝑞 ∈ [0,1]𝑛 𝑞 = (𝑞1, 𝑞2, …, 𝑞𝑛)

𝑍 = (𝑍1, 𝑍2, …, 𝑍𝑛) 𝑍𝑖~𝐵𝑒𝑟(𝑞𝑖) 𝑍~𝑞

𝑔(𝑞) ≝ 𝔼𝑍~𝑞 𝑓(𝑍)

Detour: combinatorial optimization relaxation
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Optimal 
pointOptimal 

point

000

001

010

100

011

111
110

101

𝑔((𝑞1, 𝑞2, 𝑞3)) = 𝑞1𝑞2𝑞3𝑓(111) + 𝑞1𝑞2(1 − 𝑞3)𝑓(110) + 𝑞1(1 − 𝑞2)𝑞3𝑓(101) + 𝑞1(1 − 𝑞2)(1 − 𝑞3)𝑓(100)

             + (1 − 𝑞1)𝑞2𝑞3𝑓(011) + (1 − 𝑞1)𝑞2(1 − 𝑞3)𝑓(010) + (1 − 𝑞1)(1 − 𝑞2)𝑞3𝑓(001) + (1 − 𝑞1)(1 − 𝑞2)(1 − 𝑞3)𝑓(000)

Example

argmin  𝑓(𝑥) 

𝑥 ∈ {0,1}𝑛

argmin  𝑔(𝑞) 

𝑞 ∈ [0,1]𝑛
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argmin  𝑓(𝑥) 

𝑥 ∈ {0,1}𝑛

argmin  𝑔(𝑞) 

𝑞 ∈ [0,1]𝑛

Theorem: Sufficient to solve P2 to obtain a solution of P1.

P1 P2

where 𝑔(𝑞) ≝ 𝔼𝑍~𝑞 𝑓(𝑍)

Proof. Satisfies the desirable properties

1.   forall  :  is at least as large as the minimum value of  

Expectation of a r.v. is at least as large as its minimum over the support 

2.   forall :  is equal to  on the vertices of the hypercube  

At a vertex ,  with probability . Thus, 

3. Given a minimizer  of  sample any  is a minimizer of 

𝑔(𝑞) ≥ 𝑓∗  𝑞 ∈ [0,1]𝑛 𝑔 𝑓

𝑔(𝑥) = 𝑓(𝑥) 𝑥 ∈ {0,1}𝑛 𝑔 𝑓
𝑥 𝑍 = 𝑥 1 𝑔(𝑥) = 𝑓(𝑥)

𝑞∗ 𝑔, 𝑍~𝑞∗ ⇒ 𝑍 𝑓

Detour: combinatorial optimization relaxation
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Projected gradient descent heuristic

• Start with an initialization for 

• Perform gradient descent until convergence

• In case you go out of the hypercube, project back 

onto the hypercube and continue

• Finally sample  from resulting  and estimate that 

to be a minimizer of 

𝑞

𝑍 𝑞
𝑓

argmin  𝑔(𝑞) 

𝑞 ∈ [0,1]𝑛

Optimal 
point

Cons: 

•  and/or its gradient may not be easy to compute

• No guarantee of converging to the global minimum

𝑔(𝑞)

Relaxed optimization problem
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arg min       𝐸𝑟𝑟(𝐺)

𝐺 ∈ {0,1}𝑇 ×𝑁

𝐸𝑟𝑟(𝐺) =
𝑁

∑
𝑖=1

(1 − 𝑝𝑖)𝔼 ∏
𝑡  : 𝑖∈𝛿𝑡

𝛾𝑡,𝑖 

𝐸𝑟𝑟(𝐺) =
𝑁

∑
𝑖=1

(1 − 𝑝𝑖)𝔼
𝑇

∏
𝑡=1

(1 − 𝐺𝑡𝑖

𝑁

∏
𝑗 = 1:
𝑗 ≠ 𝑖

(1 − 𝐺𝑡𝑗𝑈𝑗))

arg min      𝔼𝑍~𝑄  𝐸𝑟𝑟(𝑍 )

𝑄 ∈ [0,1]𝑇 ×𝑁

arg min      𝔼𝑍~𝑄  
𝑁

∑
𝑖=1

(1 − 𝑝𝑖)𝔼𝑈 ∏
𝑡  : 𝑖∈𝛿𝑡

𝛾𝑡,𝑖 

𝑄 ∈ [0,1]𝑇 ×𝑁

Not clear if this is easy to compute

Optimal test matrix: relaxed optimization formulation
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arg min      𝔼𝑍~𝑄  𝐸𝑟𝑟(𝑍 )

𝑄 ∈ [0,1]𝑇 ×𝑁

arg min      𝔼𝑍~𝑄  
𝑁

∑
𝑖=1

(1 − 𝑝𝑖)𝔼𝑈 ∏
𝑡  : 𝑖∈𝛿𝑡

𝛾𝑡,𝑖 

𝑄 ∈ [0,1]𝑇 ×𝑁

Mean-field 
approximation

≥ ∏
𝑡  : 𝑖∈𝛿𝑡

𝔼𝑈 𝛾𝑡,𝑖 

• We show that such an approximation is a lower bound 

using Fortuin–Kasteleyn–Ginibre (FKG) inequality

• Empirically seen to be a very good approximation

Optimal test matrix: lower bound
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•  and its gradient can be computed in   —>  GD can be used

• Initialization method:

- use state-of-the-art test designs to initialize  

- refine existing designs

• Alternative: 

- use gradient descent with stochastic reinitialization

𝑔𝐿𝐵(𝑄) 𝑂(𝑁2)

𝑄

arg min          𝑔(𝑄)

𝑄 ∈ [0,1]𝑇 ×𝑁

arg min          𝑔𝐿𝐵(𝑄)

𝑄 ∈ [0,1]𝑇 ×𝑁

Optimal test matrix: approximate formulation
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Setup

• Priors sampled from an exponential 

distribution with mean 0.05, N = 1000

• Metric: average FP rate over 10 instances 

Results

• Significant benefits when the number of 

tests is limited

• Bonus: similar results with DD decoder

Prior test designs

GD based 
algorithms

Numerical results
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Setup

• Priors sampled from an exponential 

distribution with mean 0.05, N = 1000

• Metric: average FP rate over 10 instances 

Results

• Significant benefits when the number of 

tests is limited

• Bonus: similar results with DD decoder

Prior test designs

GD based 
algorithms
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Group Testing Basics
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Encoder (Test) Designs Decoder (Inference) Designs

Community Aware Group Testing

Dynamic Group Testing

Part 1

Part 2


