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Testing against Coronavirus
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enables:


• better epidemiological models 


• managing lockdowns


• a “safer” opening after a 
lockdown

‣ Has to be large-scale 



We need good testing
• Reliable


- Very high sensitivity and specificity rates to enable targeted 
interventions


• Large-scale


- Test large populations like neighborhoods or cities, etc. 


• Continual


- Several thousands or millions of tested people per country per day
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Group (or pooled) testing
Key idea:


• Pool multiple samples together


• Test them all with one test


- If test is positive, then at least one individual is infected


- If test is negative, then no individuals are infected
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Group testing
• Applicable to almost any type of test


• Achieves high throughput (especially in low prevalence)


- few tests to test a large population


- large-scale, continual testing becomes possible

• Improves reliability of noisy testing


- without sacrificing tests for repetition

9



Group testing is being rediscovered…
Academia has investigated this for decades.


But now, on the news!
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Observation

All known group-testing schemes assume independent infections,


but…infections are correlated.
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Can we further improve group-testing efficiency,  
in terms of #tests and/or reliability,  
if we consider correlated infections  

based on a known community structure?
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Observation



Community-Aware Group Testing Literature

2020

• P. Nikolopoulos,  et al. Group testing for connected communities

• J. Zhu, K. Rivera, and D. Baron, “Noisy pooled PCR for virus testing


2021

• Ahn et al., "Adaptive Group Testing on Networks with Community Structure,"  
• Arasli et al. “Group testing with a graph infection spread model,
• S. Sihag, A. Tajer and U. Mitra, "Adaptive Graph-Constrained Group Testing
• P. Nikolopoulos et al. "Group testing for overlapping communities,
• S. R. Srinivasavaradhan et al. ”An entropy reduction approach to continual testing
• Gabyrs et al. AC-DC: Amplification Curve Diagnostics for Covid-19 Group Testing, 
• …

2022 (many more, eg 13 papers at ISIT 2022) 




Community and infection model
• Combinatorial:


-  infected families

-  infected members/ infected 
family  

• Probabilistic:


- each family  is infected w.p. 


- each family member of an 
infected family is infected w.p. 

kf

kj
m

j

j q

pj
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Traditional group testing (adaptive)
• “views” only a single set of 

members


• performs adaptive or  
nonadaptive testing 


• identifies infected individuals 
(with or without errors)

15

Family Y Family Z

Family X Family W



Known performance bounds

Counting bound:                       (which is )


**  = population size,   = #of infected people

T ≥ log2(n
k) ≪ n

n k
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• Adaptive group testing 


- achieves the bound


- no detection errors

• Nonadaptive group testing


- may achieve the bound in 
cases


- asymptotically vanishing errors



But…is this the best we can do? 
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Family Y Family Z

Family X Family W

• Group testing needs ≥13 tests  
(or ≥20, if k is unknown)


• An algorithm that takes structure 
into account would need  
only 7 tests (~50% improvement)  



New lower bounds

• Combinatorial


 

• Probabilistic (asymptotically equivalent)


T ≥ log2(#families
kf ) + kf log2( familySize

km )

T ≥ #families ⋅ h2(q) + q ⋅ n ⋅ h2(p)

18

 times  
better than  

the counting 
bound

km



Adaptive Algorithm

19
• P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, S. N. Diggavi, "Group testing for connected communities",   In Proceedings of The 

24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2341-2349, 2021 (ArXiv version June 2020).



Idea 1: First identify infected families

20

Family Y Family Z

Family X Family W

For each family:


• Select R representatives 


• Pool together their samples 


• Group test the pooled samples


‣ Identify infected families  
e.g. blue family Group testing



Group  
Testing

Individual  
Testing

Idea 2: Test infected families based on their regime
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If pooled sample is positive 
(heavily infected families):


• Test all members individually


If pooled samples is negative  
(not/lightly infected families):


• Group test all members together

Family Y Family Z

Family X Family W



Properties

22

• Completely adaptive in 2 stages, without errors


• Lower bound is asymptotically achieved when: 
 (or   )


•   (= performance of classic binary splitting)

pj → 1 kj
m → familySize

𝔼[T ] ≪ klog2n



Nonadaptive algorithm

23
• P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, S. N. Diggavi, "Group testing for connected communities",   In Proceedings of The 

24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2341-2349, 2021 (ArXiv version June 2020).



Idea 1: Testing matrix in 2 parts

•  identifies not infected families,  
 identifies infected members of infected families

•  - encoding: use one pooled samples from each family 
(R=familySize)

•  - decoding: COMP

G = [G1

G2]
G1
G2

G1

G1
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• Encoding: a family shares tests with only few other families


• Decoding: 


- members from not-infected families are identified from   
and are eliminated from the decoding of 


- all other members are identified using COMP decoding

G1
G2

Idea 2: Specific design for G2

25



• No zero-error decoding


- would require 


• No false negatives


- due to COMP decoding


• False positives are minimized, if block rows have the same #families 

T2 > n

Properties
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Community and infection model — overlapping
• Combinatorial:


-  infected families


-  infected members/ infected family , some of which are 
shared 


• Probabilistic:


- each family  is infected w.p. 


- if infected, its infection prob. is 


- member  is infected w.p. that increases with the number of the 

infected families  it belongs to: 


kf

kj
m j

j q
pj > 0

i
ℐ

pi = 1 − ∏
j ∈ ℐ

(1 − pj)
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Contributions
• New information-theoretic lower bounds for #of tests


• Community-aware test design (encoding)


- adaptive and non-adaptive


• Community-aware decoding


- loopy belief propagation

28

In our simulations:
 

30-65% fewer tests 
than traditional GT 

may achieve the 
lower bounds

In realistic setups: 
 

scale linearly with 
#of infected families



Community-aware encoding  
(adaptive test design)
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Key ideas

30

• Infer how heavily/lightly infected families are 


- heavily: infection rate >= θ


- lightly: infection rate < θ      


- e.g. θ = 38%


• Test based on the infection regime


- heavily infected —> individual testing


- lightly infected —> traditional GT (e.g. binary splitting)



Idea 1: Infer infection regime with 1 test/family
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Family Y

Family Z

Family X Family W

For each family:


• Select R representatives from each 
“outer” set


• Pool together their samples 


• Group test the pooled samples


‣ Identify infected ones 

Group testing

outer set 

inner set 



Group  
Testing

Individual  
Testing

Idea 2: Test based on the infection regime
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If pooled sample is positive  
(heavy infection):


• Test all members individually


If pooled sample is negative  
(light infection):


• Group test all members together

Family Z

Family Y

Family X Family W



Properties
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• Fully adaptive, without errors


• Asymptotically achieves the lower bound when:


-  


- shared members are few (“low overlap”)

pj →
1
2



Community-aware encoding  
(nonadaptive test design)
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Properties (nonadaptive)
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• Tests are split in 2 parts (similarly to adaptive)


• All tests are pre-determined


• Errors, but members are grouped into tests s.t.: FN = 0 



Other things considered
• 2-stage algorithm: 


-  much lower error rates than nonadaptive


- ≤3% in numerical experiments


• Noisy tests


- noise model = z-channel


- comparison of 2-stage algorithm with noisy tests against repetition 
testing


- examples with simple decoders yield exponentially smaller error rates  

36



Community-aware decoding  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Decoding using community structure side-information

• The loopy belief propagation (LBP) can easily be 
configured to account for the side-information 
provided by the community structure and 
estimate the infection statuses.


• First, we construct the factor graph, which 
represents the joint distribution as a factorization 
(product) of marginals. Each left node 
corresponds to a variable and each right node to 
a factor in this factorization.

𝑋1

𝑋2

𝑈1

𝑈2

𝑈3

𝑈4

𝑌1

𝑌2

𝑌3

Pr(𝑋1)
Pr(𝑋2)

Pr(𝑈1 |𝑋1)
Pr(𝑈2 |𝑋1)
Pr(𝑈3 |𝑋2)
Pr(𝑈4 |𝑋2)

Pr(𝑌1 |𝑈1𝑈3)
Pr(𝑌2 |𝑈1𝑈2)
Pr(𝑌3 |𝑈3𝑈4)

Example factor graph with 2 
families, 4 individuals and 3 tests.



Evaluation
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Experimental setup non-overlaping families
• 2 different use cases for the community structure:


- neighborhood: 200 families, 5 members each


- university: 20 classes, 50 students each 


• 2 different infection regimes:


- sparse: (expected) 32 infected people out of 1000


- linear: (expected) 100 infected people out of 1000 

40



Results - #tests

41

Linear regime Sparse regime

‣ Improvement: 50% to 85%.



Results - error rate
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Experimental setup for overlapping families
•  different communities, where:


-  members belong to ~  overlapping families of various sizes


- each family is infected w.p. 


- infection rates 


-  of members are infected on average—examined other rates, too


• Compare w.r.t. #tests and error rates

100
3000 200

q = 0.05

pj ∈ [0.3,0.9]

5 %
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Results - avg #tests for adaptive algorithms
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• Binary splitting 


• ~15.2x the lower bound  


• Our algorithm 


• ~ 5.5x the lower bound, improvement: 63% 


• always below the counting bound 



Results - avg error rate for nonadaptive algorithms
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‣ If 0 FN-rate required and tests are few —> community-aware encoding


‣ If more tests available —> community-aware LBP



Other models

46



Stochastic Block Model

47
• S. Ahn, W. -N. Chen and A. Özgür, "Adaptive Group Testing on Networks with Community Structure," 2021 IEEE International Symposium on 

Information Theory (ISIT), 2021, pp. 1242-1247, doi: 10.1109/ISIT45174.2021.9517888.

Family Y Family Z

Family X Family W

• n vertices divided into  m families


-  members in each family

• Seed selection: initially infect each 
vertex with prob. p


• Each seed:


- infects members of the same 
family  w.p. 


- infects members of other 
families w.p. 

k

p1

p2



Adaptive Algorithm 
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Family Y Family Z

Family X Family W
• Pool together all the members of 

each family and use binary splitting 
to identify which families have at 
least one infected member.


• Perform binary splitting within each 
infected family to identify infected 
members.



Cluster formation tree model

49

- Create a random connection 
graph - any two vertices 
connected with probability 


- if there is a path between two 
vertices, their status is equal 
(both infected or not)


- patient ``zero” selected to be 
infected.


- work analyzes algorithms for 
cluster formation trees (a 
specific way to form clusters).

p .

• B. Arasli and S. Ulukus, “Group testing with a graph infection spread model,” 2021, arXiv:2101.05792.



Semiquantitative group testing (SGT)  

50

- The result of the test is a nonbinary value that depends on the number of 
defectives through a fixed set of thresholds.

AC-DC: Amplification Curve Diagnostics for Covid-19 Group Testing, Ryan Gabrys, Srilakshmi Pattabiraman, Vishal Rana, João Ribeiro, Mahdi Cheraghchi, 
Venkatesan Guruswami, Olgica Milenkovic, ArXiv 2021

https://arxiv.org/search/q-bio?searchtype=author&query=Gabrys%2C+R
https://arxiv.org/search/q-bio?searchtype=author&query=Pattabiraman%2C+S
https://arxiv.org/search/q-bio?searchtype=author&query=Rana%2C+V
https://arxiv.org/search/q-bio?searchtype=author&query=Ribeiro%2C+J
https://arxiv.org/search/q-bio?searchtype=author&query=Cheraghchi%2C+M
https://arxiv.org/search/q-bio?searchtype=author&query=Guruswami%2C+V
https://arxiv.org/search/q-bio?searchtype=author&query=Milenkovic%2C+O


Tropical group testing   

51

- PCR operates in cycles where at each cycle the concentration of DNA in each 
“tube” doubles.


- Idea: leverage SGT and delay by adding specimens into each tube at different 
cycles. 

Tropical Group Testing Hsin-Po Wang, Ryan Gabrys, Alexander Vardy ISIT 2022

https://arxiv.org/search/q-bio?searchtype=author&query=Wang%2C+H
https://arxiv.org/search/q-bio?searchtype=author&query=Gabrys%2C+R
https://arxiv.org/search/q-bio?searchtype=author&query=Vardy%2C+A


Graph Constrained Group Testing

S. Sihag, A. Tajer and U. Mitra, "Adaptive Graph-Constrained Group Testing," in IEEE Transactions on Signal Processing, vol. 70, pp. 381-396, 2022, doi: 
10.1109/TSP.2021.3137026.

M. Cheraghchi, A. Karbasi, S. Mohajer and V. Saligrama, "Graph-constrained group testing," 2010 IEEE International Symposium on Information Theory, 
2010

Each  pool test must conform to the constraints imposed by a graph
eg: can only pool together vertices on the same path



We can significantly improve group-testing efficiency,  
in terms of #tests and reliability 

if we take into account the community structure  
in test designs or decoding.


• Simplified first examples but approach extends broadly


• Many aspects are still open, but first results are promising 
 

Take-away messages
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Dynamic Case
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Group testing can help, but…

Traditional group-testing assumes  
a static setting 


while…infections are dynamic.
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Can we identify all new infections every day  
using fewer tests than complete individual testing? 


Can we reuse existing GT algorithms  
or we need to develop new ones? 

We need to focus on dynamic infections

56• S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli and S. Diggavi, "An entropy reduction approach to continual testing," 2021 IEEE 
International Symposium on Information Theory (ISIT), 2021, pp. 611-616, doi: 10.1109/ISIT45174.2021.9518188.



• Infected nodes can transmit the infection to a 

susceptible neighbor.


• Infected nodes can get recovered, and stay 

recovered forever.


• The time for an infection to be transmitted over an 

edge and time for an infected person to recover 

are exponentially distributed. We call the mean of 

these distributions as the “rate” of infection and 

recovery.
Susceptible

Infected

Recovered

Transmits the disease to 
each neighbor at rate , 
also recovers at rate  

𝛽
𝛾

SIR stochastic network model



 New infections 
and recoveries 

occur

State estimation on SIR network model (no intervention)

Day 𝑡

Administer non-
adaptive tests

Obtain results 
of day  

tests
𝑡 − 1

Repeats each day

Update our 
beliefs about 
today’s states

Design testing 
strategy for the 

day

This work: SIR 
stochastic model 

over a clique



Dynamic testing on SIR network model

Here: SIR 
stochastic model 

over a clique

• Clique is representative of a well-mixed and closely-knit community.


• Simplest network one needs to understand before delving into sophisticated ones.


• Our results naturally extend to networks represented by multiple, non-overlapping cliques.


• E.g. Schools, universities, office spaces.


• In our simulations, we further enrich our model with an exogenous input that can infect 

individuals i.i.d with some small probability.

• S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli and S. Diggavi, "An entropy reduction approach to continual testing," 2021 IEEE 
International Symposium on Information Theory (ISIT), 2021, pp. 611-616, doi: 10.1109/ISIT45174.2021.9518188.



• Simulation of SIR stochastic model over 
a clique of 50 individuals. 


• Testing results available after 24 hours.

• The total number of tests used over 50 

days is fixed for all algorithms (except 
complete testing and no testing).


• Each day the states (S,I,R) of the 
individuals are decoded and we plot the 
number of misidentified individuals.

Static group testing 
algorithms

Algorithms proposed 
in this work

Benchmark (test 
everyone, everyday)

Illustrative experimental results (no intervention)

Theoretical lower bound



Entropy lower bound

• As a first question, we ask how many tests are required to achieve same performance as testing 

every individual everyday?


• Denote by , the random variable which tracks if an individual is in the 

infected state at a given time.


• Theorem: Suppose you test at times , where , then the expected 

number of tests needed to identify all infected individuals at time 

	 	  

      where  is the size of the population.


• Contribution: exactly calculate the entropy term in (1) for the SIR clique model. 


• Observation: the number of tests to use each day must depend on the uncertainty in the state 

of the system.

𝑈𝑡
𝑖   ≔  𝟙{𝑋𝑡

𝑖 = 1}

{𝑡1, 𝑡2, 𝑡3, …} 𝑡𝑙 > 𝑡𝑙−1 ∀ 𝑙

𝑡𝑙:

         𝔼[𝑇 𝑡𝑙] ≥ 𝐻(𝑈𝑡𝑙
1 , 𝑈𝑡𝑙

2 , …, 𝑈𝑡𝑙
𝑛    𝑋𝑡𝑙−1

1 , 𝑋𝑡𝑙−1
2 , …, 𝑋𝑡𝑙−1

𝑛 ),                          (1)

𝑛



Main algorithmic idea – entropy reduction

• Known idea, time and again employed in adaptive group testing.


• Each test must give maximal information.


• E.g. Laminar algorithm from [Li2014] and binary search to find exactly one infected 

individual in a population.


• The number of tests to use each day must depend on the uncertainty in the system 

– more uncertain we are about the states, more the tests we require.

[Li2014] Li, Tongxin, et al. "Group testing with prior statistics." 2014 IEEE International Symposium on 
Information Theory. IEEE, 2014.



Entropy reduction – individual testing

• Each day, update the marginal distribution of states , where  

is the state of the individual  at time  and . 


• Given  tests, find the  individuals whose marginal probability of being 

infected  is closest to 0.5 and test them individually.


• Each day we choose a number of tests proportional to the uncertainty in the 

system .

Pr(𝑋(𝑡)
𝑖 = 𝑥 ) 𝑋(𝑡)

𝑖

𝑖 𝑡 𝑥 ∈ {𝑆, 𝐼, 𝑅}

𝑇 𝑇

Pr(𝑋(𝑡)
𝑖 = 𝐼 )

𝐻(𝑈𝑡𝑙
1 , 𝑈𝑡𝑙

2 , …, 𝑈𝑡𝑙
𝑛    𝑋𝑡𝑙−1

1 , 𝑋𝑡𝑙−1
2 , …, 𝑋𝑡𝑙−1

𝑛 )



Entropy reduction – pooled testing

• Similar strategy when the pooled tests are constrained to have non-overlapping pools.


• Each day, update the marginal distribution of states , where  is the state of 

the individual  at time  and . 


• Given  tests, find  non-overlapping subsets (pools) of individuals such that the marginal 

probability of each pool being infected is as close to 0.5 as possible. This problem is related to 

the subset-sum problem and is not easy.


• We propose a heuristic where we first pick out the  individuals whose probability of infection 

is closest to 0.5 and add individuals to move the probability of infection closer to 0.5.


• Each day we choose a number of tests proportional to the uncertainty in the system 

.


Pr(𝑋(𝑡)
𝑖 = 𝑥 ) 𝑋(𝑡)

𝑖

𝑖 𝑡 𝑥 ∈ {𝑆, 𝐼, 𝑅}

𝑇 𝑇

𝑇

𝐻(𝑈𝑡𝑙
1 , 𝑈𝑡𝑙

2 , …, 𝑈𝑡𝑙
𝑛    𝑋𝑡𝑙−1

1 , 𝑋𝑡𝑙−1
2 , …, 𝑋𝑡𝑙−1

𝑛 )



This example:

• We demonstrated that the knowledge of the dynamics of disease spread increases the 

efficiency and performance of testing.


• On the other hand, we also derived lower bounds on the performance of any testing 

strategy.


• It remains to see how the idea of entropy reduction can be applied to group testing where 

each individual participates in multiple tests.


• Analysis of testing and interventions challenging on continuous model.




A discrete-time SIR network model
• inherits basic SIR properties


- infections go from infected to susceptible


- infections and recoveries are stochastic


- common disease progression patterns


• but, it is discrete-time: 


- no individual can get infected and 
recovered in the same day


- more amenable to analysis under testing 
delays and quarantines

66
• S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli and S. Diggavi,  "Dynamic group testing to control and monitor disease progression in a 

population,"  arXiv e-prints,arXiv:2106.10765. June 2021.



Dynamic testing and intervention strategy

67



Community X

Community Y

Community W

Community Z

Community and infection model (discrete-time SIR)
•  individuals partitioned into  

communities of same size 


• Initial infections —> i.i.d. w.p. 


• Every-day infections follow a  
stochastic block model

- Each infected individual infects a 
susceptible of the same community w.p. 


- Each infected individual infects a 
susceptible of  a different community w.p. 


- Each infected recovers independently w.p. 

N
C

pinit

q1

q2

r

68

q1

q1

q1

q1

q2 q2

q2

q2

q2

q2



An every-day testing problem
• Assumptions:


- testing delay = 1 day (as with PCR)


- only individuals tested positive isolate 


- isolated ones return after recovery


• Strategy:


- test every day, isolate the next day, re-test


• Questions:


- how many non-adaptive group tests are 
needed to identify all infections each day? 


- optimal designs?

69

Community X

Community Y

Community W

Community Z

q1

q1

q1

q1

q2 q2

q2

q2

q2

q2



Reduction to the static case with prior statistics

• Let  be the number of infected individuals 
inside community , on day 


• Infection probability for each susceptible 
individual in , on day : 


I(t)
j

j t

j t

p(t)
j = 1 − (1 − q1)I (t)

j (1 − q2)
∑j′￼≠j I (t)

j′￼

70

Community X

Community Y

Community W

Community Z

q1

q1

q1

q1

q2 q2

q2

q2

q2

q2

‣ If all  are known,  
susceptible individuals are infected independently w.p. 

I(t)
j , ∀j

p(t)
j



Overview of results
• Lower bound on the number of tests for non-identical priors


- alternative of the information theoretic lower bound


• Under constraints about priors, existing GT algorithms are order-optimal


• These constraints about priors are satisfied for specific pinit, q1, q2, N, C

71

‣ Existing GT algorithms are order-optimal in specific dynamic settings



Result 1: Lower bound

72

Theorem 2.1 from [W.H.Bay, E.Price, and J.Scarlett, “Optimal Non-Adaptive Probabilistic Group 
Testing in General Sparsity Regimes,” 2020]: 


Consider the i.i.d. group testing setting. If , any group testing strategy having probability 
of error  as  must use: 


 tests.

p ≤ 0.5
→ 0 N → ∞

T = Ω (min{Np log N, N})

Theorem (non-adaptive static case with non-identical priors): 


If , to achieve a probability of error  as , we need: 


 ,         where 
 .

pi ≤ 0.5 → 0 N → ∞

T(p) = Ω (min{Npmin log N, N})
pmin ≜ min

i∈[N]
pi



Result 1: Lower bound

73

Proof outline:


- Consider  and 


- Under the optimal decoder, any test design that achieves the minimum error probability for ,  
achieves an even smaller error probability for   =>  


- Apply the theorem from the i.i.d. case and conclude

p = (p1, p2, …, pN) pmin = (pmin, pmin, …, pmin)

p
pmin T(pmin) ≤ T(p)

Theorem (non-adaptive static case with non-identical priors): 


If , to achieve a probability of error  as , we need: 


 ,         where  .

pi ≤ 0.5 → 0 N → ∞

T = Ω (min{Npmin log N, N}) pmin ≜ min
i∈[N]

pi



Result 1: Lower bound

74

A useful corollary:


Let  be a fixed constant w.r.t. , and , then
η ∈ [1,∞) N
maxi pi

mini pi
≤ η

T(p) = Ω (min{Npmean log N, N}) = Ω (min{Npmax log N, N})

Theorem (non-adaptive static case with non-identical priors): 


If , to achieve a probability of error  as , we need: 


 ,         where 
 .

pi ≤ 0.5 → 0 N → ∞

T(p) = Ω (min{Npmin log N, N})
pmin ≜ min

i∈[N]
pi



Result 2: Known GT algorithms can be order-optimal

75

• Coupon collector algorithm (CCA) achieves error probability  with 



- If , CCA is order-optimal


- else individual testing is order-optimal


• Randomized designs for iid priors w.p.  achieve vanishing error probability with 



- If  , randomized designs for   are order-optimal


- else individual testing is order-optimal

2N−δ

T ≤ 4e(1 + δ)Npmean log N

Npmean log N < N

p′￼

T = O(Np′￼log N )

Npmax log N < N p′￼= pmax



Result 3: Bridging the gap with the dynamic case
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Community X

Community Y

Community W

Community Z

q1

q1

q1

q1

q2 q2

q2

q2

q2

q2

•  individuals partitioned into  
communities of same size 


• Initial infections —> i.i.d. w.p. 


• Every-day infections follow a  
stochastic block model

- Each infected individual infects a 
susceptible of the same community w.p. 




- Each infected individual infects a 
susceptible of  a different community w.p. 

N
C

pinit

q1

q2



Theorem (dynamic case):


• If ,   ,   , then , on any day 


• If , then ,  on any day 

pinit ≤ 0.5 q1 ≤
1 − 1/ 2

C
q2 =

1 − 1/ 2
N

p(t)
j ≤ 0.5 t

q1

q2
≤ η

maxi pi

mini pi
≤ η t
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• CCA and randomized designs are order-optimal in such scenarios


• Result holds not just for the specific model

Result 3: Bridging the gap with the dynamic case



Experimental results
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Setup


• CCA vs Randomized (with  or )


• Metric: average min #tests over 200 
trajectories


Results


• Randomized (with ) is the best


• All GT strategies need ~80% fewer tests 
than complete testing 

pmean pmax

pmean



In this work: 
• Considered a dynamic community and infection model (inspired by SIR)


• Showed that this reduces to a static case if all infections are known each day


• Provided a lower bound on the number of tests each day


• Provided conditions for which existing GT algorithms are order-optimal


•  Numerically verified the performance of CCA and randomized designs over 200 
random dynamic settings  
      —> reduced #tests by 80% compared to individual testing
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Some Open Questions
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• Benefits from community structure? What if limited knowledge?


• What are trade-offs we can achieve given a small number of tests? (eg number of 
tests is limited below what is needed for independence?)


• What if we have additional information (non binary test outputs?) and constraints 
(graph constraints? different types of tests?)


• What are good epidemiology models to use?  


• Can data-based techniques help to optimize the designs? 


• …



Thank you!
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