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Group Testing for Community Infections

Abstract

Croup tasting |5 the technigu2 of peoling together diagnostic samples in order 1o increase the efficlency
of medical testing. Traditionally, works in group testing assume that the infections are i..d. However,

correlated. This survey presents an ovarview of recentresearch progress that leverages the community
structure to further improve the effidency of group testing. We show that taking into account the side
information provided by the community structure may lead to significant savings—up tc 60% fewer
tests compared te tradit onal test designs. We review lower bounds and new approacnes to encocirg
and deceding algorithms that take Into account the community structura and integrate group testing
into epidermiological madeling. Finally, we also diseuss a 'ew important open guastions in this space
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We need good testing

e Reliable

- Very high sensitivity and specificity rates to enable targeted
Interventions

* Large-scale

- Test large populations like neighborhoods or cities, etc.

e Continual

- Several thousands or millions of tested people per country per day



Group (or pooled) testing
Key idea:
* Pool multiple samples together

e TJest them all with one test
- If test is positive, then at least one individual is infected

- If test is negative, then no individuals are infected



Group testing

* Applicable to almost any type of test

* Achieves high throughput (especially in low prevalence)
- few tests to test a large population

- large-scale, continual testing becomes possible

* |Improves reliability of noisy testing

- without sacrificing tests for repetition



Group testing is being rediscovered...

Academia has investigated this for decades.

But now, on the news!
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Observation

All known group-testing schemes assume independent infections,

but...infections are correlated.
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Observation

Can we further improve group-testing efficiency,
in terms of #tests and/or reliability,
If we consider correlated infections
based on a known community structure”

12



Community-Aware Group Testing Literature

2020
e P. Nikolopoulos, et al. Group testing for connected communities
e J. Zhu, K. Rivera, and D. Baron, “Noisy pooled PCR for virus testing

2021

e Ahn et al., "Adaptive Group Testing on Networks with Community Structure,"
 Arasli et al. “Group testing with a graph infection spread model,

* S. Sihag, A. Tajer and U. Mitra, "Adaptive Graph-Constrained Group Testing

 P. Nikolopoulos et al. "Group testing for overlapping communities,

e S. R. Srinivasavaradhan et al. ”An entropy reduction approach to continual testing

e Gabyrs et al. AC-DC: Amplification Curve Diagnostics for Covid-19 Group Testing,

2022 (many more, eg 13 papers at ISIT 2022)



Community and infection model

e Combinatorial:

_ k.infected families iy Family W
' Ry R
- kﬁ,l infected members/ infected
family j
Family Y Family Z
* Probabilistic: py %

- each family j is infected w.p. g

- each family member of an
infected family is infected w.p.

P;

14



Traditional group testing (adaptive)

* “views” only a single set of
members

e performs adaptive or
nonadaptive testing

* |dentifies infected individuals
(with or without errors)

15



Known performance bounds

n
Counting bound: T > log2<k> (which is <K n)

** n = population size, k = #of infected people
« Adaptive group testing * Nonadaptive group testing

- may achieve the bound in
cases

- achieves the bound

- Nno detection errors . L
- asymptotically vanishing errors

16



But...is this the best we can do?

* (Group testing needs =13 tests
(or =20, if k is unknown)

* An algorithm that takes structure
Into account would need
only 7 tests (~50% improvement)

17



New lower bounds

e Combinatorial

k,, times
#families familySize L Dbetter than
I'> logz( I > T kf10g2< L > the counting
/ g bound

* Probabilistic (asymptotically equivalent)

T > #families - h,(q) + q - n - h,(p)

18



Adaptive Algorithm

e P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, S. N. Diggavi, "Group testing for connected communities", In Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2341-2349, 2021 (ArXiv version June 2020).



ldea 1: First identify infected families

For each family:
e Select R representatives

» Pool together their samples

He -
N

e (Group test the pooled samples

» |dentify infected families
e.g. blue family =

Group testing

20



ldea 2: Test infected families based on their regime

If pooled sample is positive
(heavily infected families):

e Test all members individually

It pooled samples is negative
(not/lightly infected families):

» Group test all members together ;

Individual Group
Testing Testing

21



Properties
 Completely adaptive in 2 stages, without errors

* Lower bound is asymptotically achieved when:
p; — 1 (or k,, — familySize )

. E[T] K klogzn (= performance of classic binary splitting)

22



Nonadaptive algorithm

e P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, S. N. Diggavi, "Group testing for connected communities", In Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2341-2349, 2021 (ArXiv version June 2020).



ldea 1: Testing matrix in 2 parts
G
Gy

G =

(G, identifies not infected families,
G, identifies infected members of infected families

+ G, - encoding: use one pooled samples from each family
(R=familySize)

« G, - decoding: COMP

24



Idea 2: Specific design for G,

e Encoding: a family shares tests with only few other families

—

I Omsm Omxn Iv Omxnm Omxm
Go=| Owxmw  In Omxn Omsxm In Omxwm
COmxy Omsxyv Iy Omxm Ouxm 1w

* Decoding:

- members from not-infected families are identified from G,
and are eliminated from the decoding of G,

- all other members are identified using COMP decoding

25



Properties

* No zero-error decoding

- would require T, > n

* No false negatives

- due to COMP decoding

e False positives are minimized, if block rows have the same #families

@ Orgs v Onrxar @ Ovxnr Oarsem
Oarx m @ Ongxnr Omrxm @
Omxym Umrxwm @ Omxm Omxm @

26
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Community and infection model — overlapping

* Combinatorial:

) kfinfected families
- k‘,{n infected members/ infected family], some of which are p% “
shared
» Probabilistic:
_ each family_] is infected w.p. q Family Y
_ ifinfected, its infection prob. ispj > O

_ member L is infected w.p. that increases with the number of the
Family A ‘ Family B ‘ Family C

infected families j it belongs to:

pi=1- H <1—Pj)

jEe S

27



Contributions

e New information-theoretic lower bounds for #of tests

e Community-aware test design (encoding)

- adaptive and non-adaptive

e Community-aware decoding

- loopy belief propagation

28

4

In realistic setups:

scale linearly with
#of infected families

In our simulations:

30-65% fewer tests
than traditional GT

may achieve the
lower bounds



Community-aware encoding
(adaptive test design)

29



Key ideas

* Infer how heavily/lightly infected families are
- heavily: infection rate >= 6

- lightly: infection rate < 6

- e.g.0=238%

e Test based on the infection regime
- heavily infected —> individual testing

- lightly infected —> traditional GT (e.g. binary splitting)

30



Ildea 1: Infer infection regime with 1 test/family

outer set

For each family:

. ?electﬂR representatives from each inner set
outer” set
« Pool together their samples ’
B
« Group test the pooled samples
v v
£

» |dentify infected ones

Group testing

31



ldea 2: Test based on the infection regime

If pooled sample is positive
(heavy infection):

e Test all members individually

If pooled sample is negative
(light infection):

e Group test all members together

32

v

v

Individual
Testing

Group
Testing




Properties

e Fully adaptive, without errors

 Asymptotically achieves the lower bound when:

1

_ Pj_>5

- shared members are few (“low overlap”)

33



Community-aware encoding
(nonadaptive test design)

34



Properties (nonadaptive)

e Tests are split in 2 parts (similarly to adaptive)
e All tests are pre-determined

e Errors, but members are grouped into tests s.t.: FN =0

35



Other things considered

e 2-stage algorithm:
- much lower error rates than nonadaptive

- <3% Iin numerical experiments

* Noisy tests
- noise model = z-channel

- comparison of 2-stage algorithm with noisy tests against repetition
testing

- examples with simple decoders yield exponentially smaller error rates

36



Community-aware decoding

37



Decoding using community structure side-information

X a Pr(X))

« The loopy belief propagation (LBP) can easily be X, \ - Pr(X,)
configured to account for the side-information Ui \\\. Pr(U, | X)
provided by the community structure and U, \\\\ Pr(U,| X,)
estimate the infection statuses. Us \\\\\. Pr(U;| X,)

U, \\\. Pr(U,| X,)

« First, we construct the factor graph, which Y, :\\ Pr(Y,|U,U;)

represents the joint distribution as a factorization Y, o T~ \. Pr

(product) of marginals. Each left node Y, o \. Pr
corresponds to a variable and each right node to

a factor in this factorization.

Example factor graph with 2
families, 4 individuals and 3 tests.



Evaluation
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Experimental setup non-overlaping families

« 2 different use cases for the community structure:
- neighborhood: 200 families, 5 members each

- university: 20 classes, 50 students each

e 2 different infection regimes:
- sparse: (expected) 32 infected people out of 1000

- linear: (expected) 100 infected people out of 1000

40



Results - #tests

Linear regime
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esults - error rate
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Experimental setup for overlapping families

« 100 different communities, where:
~ 3000 members belong to ~200 overlapping families of various sizes
- each family is infected w.p. g = 0.05

- infection rates p; € [0.3,0.9]

- 5% of members are infected on average—examined other rates, too

 Compare w.r.t. #tests and error rates

43



Results - avg #tests for adaptive algorithms
e Binary splitting
¢ ~15.2x the lower bound
e Qur algorithm
e ~ 5.5x the lower bound, improvement: 63%

e always below the counting bound

44



Results - avg error rate for nonadaptive algorithms

1.0 —— C-LBP with CCW test 0.40173 —— C-LBP with CCW test
" —w— NC-LBP with CCW test . : —— NC-LBP with CCW test
© 0.8 ~8— COMP with G1G; test 5 0% —e— COMP with GG, test
g ] == COMP with CCW test @ g COMP with CCW test
206! 2024
© ] et
(@)] | wn
2 0.4 S 0.16
3 4
© 0-2_ © 0.08

LA . S, S S AT, SE, S 0.00-

300 600 900 1200 1500 1800 2100 300 600 900 1200 1500 1800 2100

Number of tests Number of tests

» If O FN-rate required and tests are few —> community-aware encoding

» |f more tests available —> community-aware LBP

45



Other models
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Stochastic Block Model

* nvertices divided into m families

-k members in each family

« Seed selection: initially infect each
vertex with prob. p

 Each seed:

- Infects members of the same
family w.p. py

- infects members of other
families w.p. p,

 S.Ahn, W. -N. Chen and A. Ozgiir, "Adaptive Group Testing on Networks with Community Structure," 2021 IEEE International Symposium on
Information Theory (ISIT), 2021, pp. 1242-1247, doi: 10.1109/ISI'T45174.2021.9517888.



Adaptive Algorithm

» Pool together all the members of
each family and use binary splitting
to identify which families have at
least one infected member.

* Perform binary splitting within each
infected family to identify infected
members.

48



Cluster formation tree model

- Create a random connection

graph - any two vertices
connected with probability p .
T I\

- If there is a path between two
vertices, their status is equal @
(both infected or not) S a

- patient “zero” selected to be
infected.

- work analyzes algorithms for
cluster formation trees (a
specific way to form clusters).

e B. Arasli and S. Ulukus, “Group testing with a graph infection spread model,” 2021, arXiv:2101.05792.



Semiquantitative group testing (SGT)

- The result of the test is a nonbinary value that depends on the number of
defectives throuah a fixed set of thresholds.

1 1 2 d
(a) 1 (b)
FLW \ (lw'lle flw
Oo—O0—0—0 O0—O o0—aO0—00—0 oO—O
0,1,2, d 0,1,2, d
0 1 2 m-1 m
(<) | ] | |
[ Y \ ( Y \
(o) Qe D e e ey O O O < O O e e e O O QO
0,1,2,3,4,5,6,7,8 d-8,d-7,d-6,d-5,d-4,d-3,d-2,d-1,d

AC-DC: Amplification Curve Diagnostics for Covid-19 Group Testing, Ryan Gabrys, Srilakshmi Pattabiraman, Vishal Rana, Jodo Ribeiro, Mahdi Cheraghchi,

Venkatesan Guruswami, Olgica Milenkovic, ArXiv 2021
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Tropical group testing

- PCR operates in cycles where at each cycle the concentration of DNA in each
“tube” doubles.

- |ldea: leverage SGT and delay by adding specimens into each tube at different
cycles.

££ld

- -

£ - , .

X“ .‘,"""'- '._,-".':‘::. -'\__' - '.-" / ] 4 :
-y Y, double iy double

double

add

Tropical Group Testing Hsin-Po Wang, Ryan Gabrys, Alexander Vardy ISIT 2622


https://arxiv.org/search/q-bio?searchtype=author&query=Wang%2C+H
https://arxiv.org/search/q-bio?searchtype=author&query=Gabrys%2C+R
https://arxiv.org/search/q-bio?searchtype=author&query=Vardy%2C+A

Graph Constrained Group Testing

Each pool test must conform to the constraints imposed by a graph
eg: can only pool together vertices on the same path

[0 Defective item

M. Cheraghchi, A. Karbasi, S. Mohajer and V. Saligrama, "Graph-constrained group testing," 2010 IEEE International Symposium on Information Theory,

2010
S. Sihag, A. Tajer and U. Mitra, "Adaptive Graph-Constrained Group Testing," in IEEE Transactions on Signal Processing, vol. 70, pp. 381-396, 2022, doi:

10.1109/TSP.2021.3137026.



Take-away messages

We can significantly improve group-testing efficiency,
INn terms of #tests and reliability
if we take into account the community structure
IN test designs or decoding.

o Simplified first examples but approach extends broadly

 Many aspects are still open, but first results are promising
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Dynamic Case



Group testing can help, but...

Traditional group-testing assumes
a static setting

while...infections are dynamic.
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We need to focus on dynamic infections

Can we identify all new infections every day
using fewer tests than complete individual testing?

Can we reuse existing GT algorithms
or we need to develop new ones”?

S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli and S. Diggavi, "An entropy reduction approach to continual testing," 2021 IEEE
International Svmposium on Information Theorv (ISIT). 2021.pop.611-616.doi: 10.1109/ISIT45174.2021.9518188.



SIR stochastic network model

Infected nodes can transmit the infection to a
susceptible neighbor.

Infected nodes can get recovered, and stay
recovered forever.

The time for an infection to be transmitted over an
edge and time for an infected person to recover
are exponentially distributed. We call the mean of
these distributions as the “rate” of infection and

recovery.

O

Susceptible

Infected

Recovered

Transmits the disease to
each neighbor at rate f,
also recovers at rate y

N




State estimation on SIR network model (no intervention)

Repeats each day

I___________________________________________________________________';
| Day ¢ :
| |
: |
|

: Obtain results — New infections |
' fdavt— 1 | Administer non- » and recoveries |
i orday ! — | adaptive tests ] |
! tests T occur ‘ |
i This work: SIR :
| stochastic model :
: s over a clique :
| Update our Design testing |
: » beliefs about »| strategy for the : .
: today’s states day !
: |
: |

____________________________________________________________________




Dynamic testing on SIR network model

Here: SIR
stochastic model
over a clique

Clique is representative of a well-mixed and closely-knit community.

« Simplest network one needs to understand before delving into sophisticated ones.

o Our results naturally extend to networks represented by multiple, non-overlapping cliques.
« E.g.Schools, universities, office spaces.

o In our simulations, we further enrich our model with an exogenous input that can infect

individuals i.i.d with some small probability.

e S.R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli and S. Diggavi, "An entropy reduction approach to continual testing," 2021 IEEE
International Symposium on Information Theory (ISIT), 2021, pp. 611-616, doi: 10.1109/ISI'T45174.2021.9518188.



Illustrative experimental results (no intervention)

Simulation of SIR stochastic model over
a clique of 50 individuals.

Testing results available after 24 hours.
The total number of tests used over 50
days is fixed for all algorithms (except
complete testing and no testing).

Each day the states (S,I,R) of the
individuals are decoded and we plot the
number of misidentified individuals.

Algorithms proposed
in this work

# of errors

30

Static group testing
algorithms

—— No testing
—— Complete

- Entropy ind.
—— Entropy pool

- - - Random ind.
=== Random group
- - - Lower bound

Benchmark (test
everyone, everyday)

i/

| |
\ 30 10 a0
Day

Theoretical lower bound



Entropy lower bound

As a first question, we ask how many tests are required to achieve same performance as testing

every individual everyday?
Denote by U] := T{X] = 1}, the random variable which tracks if an individual is in the

infected state at a given time.

Theorem: Suppose you test at times {f,,,,%3, ...}, where ¢, > 1,_; V [, then the expected

number of tests needed to identify all infected individuals at time ¢;:
E[r"] > H(U{f, U, .U | X, XL X, (1)

where n is the size of the population.
Contribution: exactly calculate the entropy term in (1) for the SIR clique model.
Observation: the number of tests to use each day must depend on the uncertainty in the state

of the system.



Main algorithmic idea — entropy reduction

Known idea, time and again employed in adaptive group testing.

Each test must give maximal information.

E.g. Laminar algorithm from [Li2014] and binary search to find exactly one infected
individual in a population.

The number of tests to use each day must depend on the uncertainty in the system

— more uncertain we are about the states, more the tests we require.

[Li2014] Li, Tongxin, et al. "Group testing with prior statistics." 2014 IEEE International Symposium on
Information Theory. |IEEE, 2014.



Entropy reduction — individual testing

Each day, update the marginal distribution of states Pr(Xl.(t) = x ), where Xl.(t)

is the state of the individual i at timefand x € {.5, I, R}.

Given T tests, find the T individuals whose marginal probability of being
infected Pr(Xl.(t) = I ) is closest to 0.5 and test them individually.

Each day we choose a number of tests proportional to the uncertainty in the

Lot I Ly yl- I
systemH(Ul,Uz,...,Un X', X0 LX),



Entropy reduction — pooled testing

Similar strategy when the pooled tests are constrained to have non-overlapping pools.

Each day, update the marginal distribution of states Pr(Xl.(t) = x ), where Xl.(t) is the state of

the individual i attime t and x € {.S, I, R}.

Given T tests, find T non-overlapping subsets (pools) of individuals such that the marginal
probability of each pool being infected is as close to 0.5 as possible. This problem is related to
the subset-sum problem and is not easy.

We propose a heuristic where we first pick out the T individuals whose probability of infection
is closest to 0.5 and add individuals to move the probability of infection closer to 0.5.

Each day we choose a number of tests proportional to the uncertainty in the system

Lorrh l Lo yl-1 l1
H(Ul,Uz,...,Un X', X, LX),



This example:

We demonstrated that the knowledge of the dynamics of disease spread increases the
efficiency and performance of testing.

On the other hand, we also derived lower bounds on the performance of any testing
strategy.

It remains to see how the idea of entropy reduction can be applied to group testing where
each individual participates in multiple tests.

Analysis of testing and interventions challenging on continuous model.



A discrete-time SIR network model

 inherits basic SIR properties

1,000 - | — = 0.02. 4y = 0001
- infections go from infected to susceptible S G0sie, — 0 000a
- Sl | - o= 0008, gz = 0.0004
. . . . 3 g — 0008, gz — U.UUU1
- infections and recoveries are stochastic =~ 2 3 = 0095,z = 0.UWU]
2 600
- common disease progression patterns z £00
e but, it is discrete-time: ® 200
- no individual can get infected and U | | | |

recovered in the same day

- more amenable to analysis under testing
delays and quarantines

e S.R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli and S. Diggavi, "Dynamic group testing to control and monitor disease progression in a
population," arXiv e-prints,arXiv:2106.10765. June 2021. 66



Dynamic testing and intervention strategy

Identify all individuals who
were infected in the
community at the
beginning of day t — 1.

Isolate all individuals
who were infected in

Perform non-adaptive tests

the community at the

beginning of day ¢ — 1.

T

For every non-isolated individual i,
: _1) :

compute pf‘

v

L J

to identify individuals who
are currently infected

New
infections

-..'

N
-

many tests are
needed?

, the prior

probability of new infections after
the isolation.

67

Our problem: How



Community and infection model (discrete-time SIR)

« N individuals partitioned into
communities of same size C 9>
e Initial infections —> i.i.d. w.p. p;,.;; (. R

e Every-day infections follow a :
stochastic block model : q2 .= " 42

- Each infected individual infects a d h
susceptible of the same community w.p. g

- Each infected individual infects a 1
susceptible of a different community w.p. g,

- Each infected recovers independently w.p. r

68



An every-day testing problem

e Assumptions:

o Strategy:

e Questions:

testing delay = 1 day (as with PCR)
only individuals tested positive isolate

isolated ones return after recovery

test every day, isolate the next day, re-test

how many non-adaptive group tests are
needed to identify all infections each day?

optimal designs?

69



Reduction to the static case with prior statistics

. Let Ij(t) be the number of infected individuals
inside community 7, on day ¢ 1

* [nfection probability for each susceptible
individual in J, on day t:

9 : ! )
1 IO : o '
pP=1-(-g)h(1- ) %4’

, If all Ij(’), Vj are known,

susceptible individuals are infected independently w.p. pj(t)

70



Overview of results
* Lower bound on the number of tests for non-identical priors

- alternative of the information theoretic lower bound
» Under constraints about priors, existing GT algorithms are order-optimal

 These constraints about priors are satisfied for specific p;,.., g1, g2, N, C

» Existing GT algorithms are order-optimal in specific dynamic settings

71



Result 1: Lower bound

Theorem (non-adaptive static case with non-identical priors):
If p; £ 0.5, to achieve a probability of error — 0 as N — oo, we need:

T(p) = Q (min{Np,,;,, logN,N}),  where

A .
Pmin = mlnpi :
IE[N]

Theorem 2.1 from [W.H.Bay, E.Price, and J.Scarlett, “Optimal Non-Adaptive Probabilistic Group
lesting in General Sparsity Regimes,” 2020].

Consider the i.i.d. group testing setting. If p < 0.5, any group testing strategy having probability
of error — 0 as N — oo must use:

T =Q (min{Np log N,N}) tests.
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Result 1: Lower bound

Theorem (non-adaptive static case with non-identical priors):

If p; < 0.5, to achieve a probability of error — 0 as N — o0, we need:

T=Q (min{Npmm log N, N}), where p,. = min p; .
i€[N]

Proof outline:

- Consider P = (pl,pz, .. -,PN) and Pmin = (pmin’pmin’ . "’pmin)

- Under the optimal decoder, any test design that achieves the minimum error probability for p,
achieves an even smaller error probability for prin => 7 (Pmin) < 7(P)

- Apply the theorem from the i.i.d. case and conclude
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Result 1: Lower bound

Theorem (non-adaptive static case with non-identical priors):

If p; < 0.5, to achieve a probability of error — 0 as N — o0, we need:

T(p) = Q (min{Np,,;,,logN,N}),  where
Pmin é mln Pi -
IE[N]

A useful corollary:

Lety € [1,00) be a fixed constant w.r.t. IV, and , then

T(p) = Q (min{Np,,,,, log N,N}) = Q (min{Np,,, logN,N})
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Result 2: Known GT algorithms can be order-optimal

« Coupon collector algorithm (CCA) achieves error probability 2N~ with
T <4e(l +96)Np,,,,,log N

- ItNp,,..,Jog N < N, CCAis order-optimal

- else individual testing is order-optimal

« Randomized designs for iid priors w.p. p" achieve vanishing error probability with
T'= O(Np'logN)

- If Np,,,.log N < N, randomized designs for p’ = p, ... are order-optimal

- else individual testing is order-optimal
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Result 3: Bridging the gap with the dynamic case

« N individuals partitioned into
communities of same size C 9>
o Initial infections —> i.i.d. w.p. p;.... )

« Every-day infections follow a 9 !
stochastic block model :

- Each infected individual infects a '
susceptible of the same community w.p. [ et .
qi 4>

- Each infected individual infects a
susceptible of a different community w.p.

q>
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Result 3: Bridging the gap with the dynamic case

Theorem (dynamic case):

1 —1/4/2
—

1-1h/2
N

o P <05, g < 9> , then pj(’) < 0.5, 0nany day ¢
max; p;
. it IL < 1, then — i P <1, onanydayt
7p) min; p;

 CCA and randomized designs are order-optimal in such scenarios
* Result holds not just for the specific model
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Experimental results

Setup

. CCA vs Randomized (with p,.,.. or p,. )

* Metric: average min #tests over 200
trajectories

Results
« Randomized (with p,...,) is the best
» All GT strategies need ~80% fewer tests

than complete testing
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In this work:

e Considered a dynamic community and infection model (inspired by SIR)

e Showed that this reduces to a static case if all infections are known each day
* Provided a lower bound on the number of tests each day

« Provided conditions for which existing GT algorithms are order-optimal

* Numerically verified the performance of CCA and randomized designs over 200
random dynamic settings
—> reduced #tests by 80% compared to individual testing
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Some Open Questions

Benefits from community structure? What if limited knowledge”

What are trade-offs we can achieve given a small number of tests? (eg number of
tests is limited below what is needed for independence?)

What if we have additional information (non binary test outputs?) and constraints
(graph constraints? different types of tests?)

What are good epidemiology models to use?

Can data-based techniques help to optimize the designs?
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Thank you!



