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Background

ECE Department, NYU Tandon School of Engineering.

Member of NYU WIRELESS.
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Research Group

Theoretical foundations of networks.

Wireless networks.
Social networks.
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Wireless Networks

Power efficiency in next generation wireless networks
Theory taking into account practical constraints: Low
resolution DAC/ADC, device nonlinearity
Capacity, out-of-band emissions, adjacent carrier interference

Beam alignment for mmWave and THz
A source coding perspective: Delay, error, multiple paths
Bounds and algorithms using information theory and theory of
group testing
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Wireless Networks

Uncoordinated massive access for IoT

Bounds and schemes based on group testing

Machine learning/inference at the wireless edge

Compression for hypothesis testing/classification
Performance and privacy aspects
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Social Networks

Foundations of digital privacy

Fingerprinting
Database matching
Graph matching
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Social Network Privacy

Social network graph representing user connectivity.

http://blog.alex-hanna.com/2012/04/

visualizing-the-polarized-discourse-of-why-do-they-hate-us/

Data made available for commercial and research purposes.

User identities are removed: Anonymization.

Are anonymized data truly private?
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Social Network Privacy

Social network graph representing user connectivity.

Data made available for advertisement and research purposes.

User identities are removed: Anonymization.

Are anonymized data truly private?
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Wireless Location Privacy

Wireless location data can be combined with publicly available
information to find user identities.
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Microdata as a Commodity

App developers and data brokers collect and sell sensitive data.
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Weaponization of Private Data

Data can be used in targeted attacks.
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Social Network De-anonymization

How do researchers think about de-anonymization?

Basic set-up: Two (or more) anonymized social networks.

Objective: Match the users in the two networks.

Example: Twitter, Flickr and LiveJournal successfully
de-anonymized.
[Narayanan and Shmatikov, ’09]
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Algorithm for De-anonymization

“Seeding” and “propagation” algorithm.
[Backstrom et al., ’07; Narayanan and Shmatikov, ’09]

First determine seed nodes in both graphs.
Identify and match k-cliques in both graphs.

Iteratively propagate seed mapping to new nodes.
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Social Network Modeling

Social networks and call logs can be modeled using graphs.

Network graph represents user connectivity.

Vertices: Members of the network.

Edges: Friendship relations.

Labels (Colors): Identity of the member.
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Edge Attributes

?

?

? ?

??

g1 g2
Edges may have attributes (non-binary edges).

Example:
1 Social networks: Close friends, acquaintances, followers, etc..

2 Call log networks: Frequent calls, call times, call lengths, etc..

Attributes modeled by assigning colors (numbers) to edges.
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Network De-anonymization Attacks

?

?

? ?

??

g1 g2

We are given pair of social networks.

The first network is de-anonymized (public identities).

The second network is anonymized (private identities).

Objective: De-anonymize second network.

Graph matching.
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Graph Matching

!" !#

Two identical graphs g1 and g2.

g1 has vertex labels, g2 doesn’t.

How to restore the labels for g2?

What if the graphs are not the same, but correlated?

What if we have seeds, vertices in g2 whose labels are known?

What if the edges are multi-valued?
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Other Applications of Graph Matching

Biology: Match protein interaction networks of species.

Image classification: Match image segmentation graphs.
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Database Matching Attacks

A simpler class of matching attacks: Databases.

Databases containing micro-information shared and published
routinely.

Examples: Movie preferences, financial transactions data,
location data, health records.

Basic privacy methods: i) anonymization, ii) obfuscation.

Pulp 
Fiction Godfather Fight Club Forrest 

Gump

4.5 4.5 5  4.0

4.5 4.5 4.5 4

4.0 4.5 4 4.5

3.5 3.5 4.0 4

4.5 5 2.5 4.5

4.5 4.5 2.5 5

Netflix
Pulp 

Fiction Godfather Fight Club

40 60 98

88 80 66

92  90 91

90 85 65

87 83 79 

64   86 70

Rotten Tomatoes
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Matching Movie Databases

Netflix Prize database: Users’ movie ratings to develop better
recommender systems.

Late 2000’s, 1 M Prize.

User identities anonymized to address privacy concerns.

Simply anonymizing users is not sufficient.

De-anonymization using IMDB data
[Narayanan and Shmatikov 2008], 2019 “Test of Time” Award from the
IEEE Symposium on Security and Privacy.
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De-anonymizing Medical Databases

Database 1: Person-specific, field-collected medical records
given to the Group Insurance Commission.

User identities anonymized to address privacy concerns.

Database 2: Vote registration data (includes names and
addresses).

Database can be purchased for less than $100.

Matching the two databases leads to de-anonymization.
[Sweeney 2002]
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Database Matching as Graph Matching

Database matching equivalent to matching rows of multiple
matrices.

Also: Bi-partite graphs with multi-valued edges.

Left nodes: Row indices.
Right nodes: Column indices.

Row labels for g2 missing.
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Database Matching

Two databases D(1) and D(2) (matrices) with equal number
of users (rows).
D(1) has row labels, D(2) doesn’t due to anonymization.
How to restore the labels for D(2)?

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

D(1) D(2)
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Database Matching

What if the databases are not the same, but correlated due to
noise and obfuscation?

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Jay St. Flatbush 
Ave. Fulton St. Atlantic 

Ave.
Flatbush 

Ave.

Jay St. Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

DeKalb 
Ave.

Other Jay St. Adams 
St.

DeKalb 
Ave. Other

Other Fulton St. Other Flatbush 
Ave.

Atlantic 
Ave.

Fulton St. DeKalb 
Ave.

Adams 
St. Fulton St. Other

D(1) D(2)
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Database Matching

What if some attributes (columns) are deleted or repeated due
to synchronization errors?

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Column 
Deletion

Column 
Replication

D(1) D(2)
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Database Matching

What if some attributes (columns) are deleted or repeated due
to synchronization errors?

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Atlantic 
Ave.

Flatbush 
Ave. Fulton St. Fulton St.

Jay St. Flatbush 
Ave.

DeKalb 
Ave.

DeKalb 
Ave.

Other Adams 
St.

Atlantic 
Ave.

Atlantic 
Ave.

Jay St. Other Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Other Other

D(1) D(2)
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Database Matching

What if we have seeds, rows in D(2) whose labels are known?

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Atlantic 
Ave.

Flatbush 
Ave. Fulton St. Fulton St.

Jay St. Flatbush 
Ave.

DeKalb 
Ave.

DeKalb 
Ave.

Other Adams 
St.

Atlantic 
Ave.

Atlantic 
Ave.

Jay St. Other Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Other Other

D(1) D(2)

Seeds
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Database Matching

D(1)

X1,1 X1,2 X1,3 X1,4 X1,5

X5,1 X5,2 X5,3 X5,4 X5,5

X4,1 X4,2 X4,3 X4,4 X4,5

X3,1 X3,2 X3,3 X3,4 X3,5

X2,1 X2,2 X2,3 X2,4 X2,5

D(2)

Y3,1 Y3,3 Y3,5(1) Y3,5(2)

Y4,1 Y4,3 Y4,5(1) Y4,5(2)

Y1,1 Y1,3 Y1,5(1) Y1,5(2)

Y2,1 Y2,3 Y2,5(1) Y2,5(2)

Y5,1 Y5,3 Y5,5(1) Y5,5(2)
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Other Applications of Database Matching

Computer vision [Galstyan et al., 2021]

:$

X1 X2 X3 X4 X5 X6 X7

X]
1 X]

2 X]
3 X]

4 X]
5 X]

6 X]
7 X]

8 X]
9

Biological applications

DNA Sequencing [B lażewicz et al., 2002]
Single-cell data alignment [Chen et al., 2022]
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So Far...

Popular press on compromising social network privacy.

Literature on social network and database de-anonymization
attacks.

Lacks bounds and guarantees.

Abstraction: Graph and database matching.

Applications beyond privacy.
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Prelude

Different notions of privacy.
Privacy-preserving data analytics.

Differential privacy.

Privacy-preserving microdata publishing.

Overview of typicality and asymptotic equipartition property
(AEP).
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Privacy-Preserving Data Analysis

1 Non-Interactive

Perform statistical task centrally over the dataset and publish
the statistics

2 Interactive
Adaptive queries applied to database
Query results may be noisy
Noise amount is often configurable
Differential privacy (DP) and its variants
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Differential Privacy

Data +

Data +

Query Response 
Algorithm

Query Response 
Algorithm

Outcome 1

Outcome 2

The two outcomes should be close.
Image: Courtesy of A. Sarwate.
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Differential Privacy

Goal: Any small change individual data causes a small change
in the output distribution of algorithm A.

Random 
Query Responses

A(Data +            )

A(Data +            )
Similar 

Distributions
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ϵ-Differential Privacy

[Dwork et al., 2006]

Goal: Any small change in individual data causes a small
change in the output distribution of algorithm A.

ϵ-Differential Privacy

An algorithm A achieves ϵ-DP if for any user u in any dataset D
and any subset S ⊆ Range(A), we have

Pr(A(D) ∈ S) ≤ eϵ Pr(A(D \ u) ∈ S)
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ϵ-Differential Privacy

A property of a randomized query-response algorithm A at
the aggregator/server side.

A centralized notion.

ϵ-DP is a worst case property. It holds for

any user u in any database D.
any outcome of A no matter how unlikely it might be.

In practice: Some unlikely outcomes break ϵ-DP.

A common relaxation is (ϵ, δ)-DP.
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(ϵ, δ)-Differential Privacy

[Dwork et al., 2006]

Goal: A small change in individual data causes a small
change in the output distribution of algorithm A with high
probability.

(ϵ, δ)-Differential Privacy

Algorithm A achieves (ϵ, δ)-DP if for any user u in any dataset D
and any S ⊆ Range(A), we have

Pr(A(D) ∈ S) ≤ eϵ Pr(A(D \ u) ∈ S) + δ
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ϵ-Local Differential Privacy (LDP)

[Kasiviswanathan et al., 2008]

ϵ-DP assumes a trustworthy curator/aggregator.

May not hold in practice.

A well-established extension is ϵ-Local DP (LDP).

Algorithm A is run locally at the user side.

ϵ-Local Differential Privacy

Algorithm A achieves ϵ-LDP if for any input pair (x , x ′), and any
outcome y ∈ Range(A), we have

Pr(A(x) = y)

Pr(A(x ′) = y)
≤ exp(ϵ)

Implemented and used by Google and Apple.
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ϵ-Local Differential Privacy

Image: Courtesy of A. Sarwate.
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Prelude

Different notions of privacy.
Privacy-preserving data analysis.

Differential privacy.

Privacy-preserving microdata publishing.

Overview of typicality and asymptotic equipartition property
(AEP).
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Privacy-Preserving Microdata Publishing

In many settings, microdata, raw data at personal level, is
available.

In addition, users have limited control over the data shared.

Publicly-available government data

Voter databases, census data.

Data mining or algorithm development contests

Netflix Prize.

Data collected by apps, traded across companies.
Data shared for scientific research.
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Data Attribute Types

Explicit identifiers (EIDs)

Name, date of birth, SSN, etc.
Compromise user privacy.

Quasi identifiers (QIDs)

ZIP code, age, race, ethnicity, religion, sex etc.
Can also leak information.
Assumed to be available publicly.

Sensitive attributes (SAs)

Disease, medical tests, salaries etc.
Ideally not made public.

For privacy, data is usually published/sold after

Anonymization/sanitization.
Generalization/resolution reduction.
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Anonymization/Sanitization

Removal of EIDs from data.

Age 
(Public)

Registered Voter?
(Public)

Borough 
(Public)

Disease 
(Private)

27 No Manhattan Diabetes

30 Yes Queens Cancer

23 No Manhattan COVID-19

24 Yes Brooklyn Viral Infection

28 Yes Queens Tuberculosis

24 Yes Brooklyn Heart Disease

19 No Brooklyn COVID-19

29 No Manhattan Heart Disease

17 No Brooklyn Diabetes

19 No Brooklyn Viral Infection

User 
ID
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Generalization/Resolution Reduction

Some QIDs may be unique to users.

Generalization: Place attributes in broader categories such
that the dataset

is harder to de-anonymize,
still retains its utility.
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Generalization/Resolution Reduction

Age 
(Public)

Registered Voter?
(Public)

Borough 
(Public)

Disease 
(Private)
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User 
ID
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Generalization/Resolution Reduction

Age 
(Public)

Registered Voter?
(Public)

Borough 
(Public)

Disease 
(Private)

No Manhattan Diabetes

Yes Queens Cancer

No Manhattan COVID-19

Yes Brooklyn Viral Infection

Yes Queens Tuberculosis

Yes Brooklyn Heart Disease

No Brooklyn COVID-19

No Manhattan Heart Disease

No Brooklyn Diabetes

No Brooklyn Viral Infection

User 
ID

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

Age ≤ 20

Age ≤ 20

Age ≤ 20
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k-Anonymity

k-Anonymity

An anonymized dataset possesses k-anonymity if the QIDs of any
user u is non-separable from at least k − 1 other users.

Popular notion of privacy introduced in [Samarati & Sweeney,
1998].

Non-separable users form a cluster.

k-anonymity is achieved through generalization.
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k-Anonymity: Example

A 2-anonymous database with Disease as a Sensitive Attribute.

Age 
(Public)

Registered Voter?
(Public)

Borough 
(Public)

Disease 
(Private)

No Manhattan Diabetes

Yes Queens Cancer

No Manhattan COVID-19

Yes Brooklyn Viral Infection

Yes Queens Tuberculosis

Yes Brooklyn Heart Disease

No Brooklyn COVID-19

No Manhattan Heart Disease

No Brooklyn Diabetes

No Brooklyn Viral Infection

User 
ID

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

20 < Age ≤ 30

Age ≤ 20

Age ≤ 20

Age ≤ 20
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k-Anonymity: Drawbacks

k-anonymity depends on a well-defined QID-SA separation.

Not very practical.
Different adversaries have access to different attributes.

Potential Solution: Treat all attributes as QIDs.

Using other public information, data may still be
de-anonymized up to a cluster of size k .

Even with k-anonymity, it is important to understand
fundamentals of database matching.
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Prelude

Different notions of privacy.
Privacy-preserving data analytics.

Differential privacy.

Privacy-preserving microdata publishing.

Overview of typicality and asymptotic equipartition property
(AEP).
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Weak Law of Large Numbers

Typicality directly follows from law of large numbers.

Weak Law of Large Numbers (WLNN):

WLLN

Let X1,X2, · · · be a sequence of iid random variables with
distribution PX and mean E(X ). Then,

P(|X̄n − E(X )| ≥ ϵ) → 0, as n → ∞,∀ϵ > 0,

where X̄n = 1
n

∑n
i=1 Xi .
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Weak Law of Large Numbers

WLLN: empirical average is arbitrarily close to the statistical
average for large sequences.

Ex.: Average fraction of heads when flipping a fair coin ≈ 1
2 .

Let X n = (X1,X2, · · · ,Xn) be the outcomes of n consecutive
coin flips.

X n is typical if number of heads ≈ n
2 .

X n is atypical otherwise.
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Weak Law of Large Numbers

Ex.: Let X n = (X1,X2, · · · ,Xn) be a sequence of iid ternary
variables (X = {1, 2, 3}).

Let PX (1) = PX (2) = 1
4 ,PX (3) = 1

2 .

Define N̄n
i , i ∈ {1, 2, 3} as the average number of i outcomes:

N̄n
i =

1

n
|{j |Xj = i}|.

From WLLN:

P

(
|N̄n

1 − 1

4
| > ϵ or |N̄n

2 − 1

4
| > ϵ or |N̄n

3 − 1

2
| > ϵ

)
→ 0, n → ∞.
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Strong Typicality

The set of n-length, ϵ-typical sequences with respect to PX is
defined as:

An
ϵ (X ) = {xn : |N̄n

a − PX (a)| ≤ ϵ, ∀a ∈ X}.

Ex.:
Ternary alphabet X = {1, 2, 3},
PX (1) = PX (2) = 1

4 ,PX (3) = 1
2 ,

n = 10, ϵ = 0.1:
Typical: 3312311233 → N̄n

1 = 0.3, N̄n
2 = 0.2, N̄n

3 = 0.5.
Atypical: 1111111111 → N̄n

1 = 1, N̄n
2 = 0, N̄n

3 = 0.
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Joint Typicality

Consider the pair (X ,Y ) with joint distribution PX ,Y .

The set of n-length, ϵ-typical sequences with respect to PX ,Y

is defined as:

An
ϵ (X ,Y ) = {(xn, yn) : |N̄n

a,b − PX ,Y (a, b)| ≤ ϵ, ∀(a, b) ∈ X × Y}.

Example:
Binary alphabet X = Y = {0, 1},
PX ,Y (0, 0) = PX ,Y (1, 1) = 1

3 ,PX ,Y (0, 1) = PX ,Y (1, 0) = 1
6 ,

n = 6, ϵ = 0.1:
Typical:{
X n = (001101)

Y n = (011100).
→ N̄n

0,0 = N̄n
1,1 = 1

3 , N̄
n
0,1 = N̄n

1,0 = 1
6 .
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Asymptotic Equipartition Property (AEP)

Result 1: Let X n be an iid sequence where Xi ∼ PX , then:

P(X n ∈ An
ϵ (X )) → 1, as n → ∞.

Result 2: Let (X n,Y n) be an iid sequence where
(Xi ,Yi ) ∼ PX ,Y , then:

P((X n,Y n) ∈ An
ϵ (X ,Y )) → 1, as n → ∞.

Result 3: Let X n and Y n be two iid sequences where
(Xi ,Yi ) ∼ PXPY , then:

P((X n,Y n) ∈ An
ϵ (X ,Y )) ≤ 2−n(I (X ;Y )−2ϵ).
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Database Matching

Attribute Vector
D(2)

Attribute Vector
D(1)

mn

1

User ID

Xmn,1 Xmn,n

X1,1 X1,n

YΘ−1(mn),1 YΘ−1(mn),n

YΘ−1(1),1 YΘ−1(1),n

Databases D(1) = (Xi ,j),D
(2) = (Yi ,j), i ∈ [mn], j ∈ [n].

Labeling Θ: Permutation of [mn].

Rows with the same ID are called matching.
(i.e. i = Θ−1(p) ⇒ i and p matching.)

Entries are generated stochastically.

Entries with matching IDs correlated: f (x , y)

Entries with different member IDs independent.
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Database Matching Problem

Objective: Given (D(1),D(2)), find Θ̂ s.t.:

P(Θ(I ) = Θ̂(I )) → 1 as n → ∞,

where I ∼ U(1,mn).

Almost all entries must be matched correctly.

In [Cullina, Mittal, Kiyavash, 2018]: All entries must be
matched correctly.

This allows us to use information theoretic tools and work
with arbitrary distributions.
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Analogy with Channel Coding

YΘ−1(i),1 YΘ−1(i),n

Attribute Vector

Attribute Vector
D(1)

mn

1

User ID

Xmn,1 Xmn,n

X1,1 X1,n

Pick a row from D(2).

Goal: Find the matching row in D(1).

Similar to channel decoding.

Channel coding analogy:

Number of members mn → number of messages.
Attribute length n → blocklength.
Conditional density f (y |x) on pairs of matching entries →
channel transition probability.
Database growth rate R = limn→∞

1
n logmn → codebook rate.
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Matchable Databases

Theorem

Databases with growth rate R generated according to f (x , y) can
be successfully matched if

R < I (X ;Y ).

Furthermore, a necessary condition for the existence of a successful
matching scheme is:

R ≤ I (X ;Y ).

Shirani, Garg, Erkip, ISIT 2019.
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Matchable Databases

Proof borrows results from channel coding.

Similarity with channel coding:

Achievability: Typicality matching similar to typicality
decoding.
Converse: A variation of Fano’s inequality.

Differences with channel coding:

Database distribution not a design parameter.
All database entries matched exactly once.
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Database Matching Under Column Deletions/Replicas

Jay St. Fulton St. Other Atlantic 
Ave.

Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Fulton St.

Jay St. Flatbush 
Ave.

Flatbush 
Ave.

Atlantic 
Ave.

DeKalb 
Ave.

Other Other Adams 
St.

DeKalb 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

DeKalb 
Ave.

Atlantic 
Ave. Fulton St. Other

Column Deletion

D(1) D(2)

Column Replication

Atlantic 
Ave.

Flatbush 
Ave. Fulton St. Fulton St.

Jay St. Flatbush 
Ave.

DeKalb 
Ave.

DeKalb 
Ave.

Other Adams 
St.

Atlantic 
Ave.

Atlantic 
Ave.

Jay St. Other Atlantic 
Ave.

Atlantic 
Ave.

Flatbush 
Ave.

Atlantic 
Ave. Other Other

Synchronization errors in time-indexed databases.

Indices of the deleted/replicated columns are not known.

Deletion/replica pattern constant across W rows.

W = 1: Ideas from correlated databases and deletion channel.
W = mn: This talk.

Bakirtas, Erkip, ISIT 2021, ITW 2022, Asilomar 2022.
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Noiseless Column Repetition: System Model

D(1): mn × n random matrix with entries Xi ,j
i .i .d .∼ pX .

Θ: Uniform permutation of [mn].

Column repetition pattern: random vector

Sn = {S1,S2, ...,Sn} with Sj
i .i .d .∼ pS .

supp(pS) = {0, . . . , smax}
Repetition includes deletions and replicas.

D(2): Obtained from D(1) by
1 Row shuffling by Θ.
2 Column repetition by Sn.

Replicate the j th column Sj times if Sj > 0.
Delete the j th column if Sj = 0.

No noise on the entries.
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Example

Two databases the same (i.e. no noise), except for row
permutation, column deletions/repetitions.

mn = 4, n = 3, Sn: deletion/replica pattern.

⇥̂ =? D(2)

X4,1X4,2X4,3

X2,1X2,2X2,3

X1,1X1,2X1,3

X3,1X3,2X3,3

⇥D(1)

X1,1X1,2X1,3

X2,1X2,2X2,3

X3,1X3,2X3,3

X4,1X4,2X4,3

Sn = [3 0 2]

X1,1 X1,1 X1,1 X1,3 X1,3

X4,1 X4,3 X4,3X4,1 X4,1

X2,1 X2,3 X2,3X2,1 X2,1

X3,1 X3,1 X3,1 X3,3 X3,3
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Proposed Matching Scheme

No noise, only repetitions.

Exploit the identical repetition pattern across rows.

1 Find a permutation-invariant unique feature of the columns.
2 By matching these features, infer Sn.
3 Discard the deleted columns from D(1).
4 Discard the replicated columns from D(2).
5 Perform exact rowwise matching.

We will use column histograms as the permutation-invariant
feature.
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Matching Scheme

D(2) Histogram
Construction H(2)

D(1) Histogram
Construction H(1)

Ŝn
Detection

(Deletion &
Replication)

Matching

⇥̂
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Matching Scheme: Example

D(1) D(2)
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c
c
c
b
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b
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b
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b
c

a
a
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a
c
c
c
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a
c
b
b
c
b
c
b

a
c
b
b
c
b
c
b

a
a
c
a
c
c
c
b

b
c
c
c
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a
c
b

a
c
b
b
c
b
c
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a
b
b
b
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c
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b
c
b
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Matching Scheme: Example
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c
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c
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c
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Matching Scheme: Example

D(1) D(2)

Ŝ = [ ]2 0 3 1 0 1

ba a c bc
ca c c bb
cc b b cc
ca b a db
bc c b bc
ac b b cb
cc c b bc
bb b a cc

a a aa a c b
a c ca c c b
c b bc b b c
a b ba b a d
c c cc c b b
c b bc b b c
c c cc c b b
b b bb b a c
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Asymptotic Uniqueness of The Histogram

Lemma

Let Hi denote the ith column of the histogram matrix H(1). Then,

P(∃i , j ∈ [n], i ̸= j ,Hi = Hj) → 0 as n → ∞ if mn = ω
(
n

4
|X|−1

)
.

For R > 0, mn = ω(np) ∀p ∈ N.

⇒ Asymptotically, columns of H(1) are unique.

When there is no noise, can be matched with H(2).
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Achievable Database Growth Rate

Theorem

For the no noise case with column deletion probability δ, databases
with growth rate R can be successfully matched if

R < (1 − δ)H(X ).

Furthermore, a necessary condition for the existence of a successful
matching scheme is

R ≤ (1 − δ)H(X ).

Any deletion/replica can be converted to erasure.

Deleted/repeated columns do not offer additional information.

When there is noise:

Histograms can no longer be matched.
Repeated columns offer additional information.
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Database Matching Under Noisy Column Repetitions

Noise & column deletions/replicas.

D(1) D(2)Noise
pY |X

Repetition
Sn

Row Shuffling
Θn

Histograms cannot be matched.

We cannot replace exact histogram matching with typicality
matching.
Each column pair chosen from H(1) and H(2) is jointly-typical
with high probability.

We need new deletion & replica detection algorithms.

Noisy replica detection.
Seeded deletion detection.
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Noisy Column Repetitions: System Model

D(1): mn × n random matrix with entries Xi ,j
i .i .d .∼ pX .

Θ: uniform permutation of [mn].

Column repetition pattern: random vector

Sn = {S1,S2, ...,Sn} with Sj
i .i .d .∼ pS .

supp(pS) = {0, . . . , smax}

D(2): Obtained from D(1) by
1 Row shuffling by Θ.
2 Column deletion/replication by Sn.

Replicate the j th column Sj times if Sj > 0.
Delete the j th column if Sj = 0.

3 i.i.d. noise pY |X on the retained entries.

X and Y are not independent: pY |X ̸= pY

Seeds: Sub-databases (G(1),G(2)) consisting of Λn pairs of
correctly-matched rows.
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Proposed Matching Scheme for Noisy Repetitions

Exploit the identical repetition pattern across rows.

1 Find a permutation-invariant unique feature of the columns of
D(2).

2 By threshold testing these features, infer the noisy replicas.
3 Using the seeds (G(1),G(2)), extract the deletion pattern.
4 Group the noisy replica runs by introducing markers between

the columns of D(2).
5 Replace the deleted columns with erasure symbols in D(2).
6 Perform a typicality-based rowwise matching.

We will use the Hamming distances between the consecutive
columns of D(2) as the permutation-invariant feature.
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Proposed Matching Scheme

D(2)
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Ŝn
G(1)

G(2)
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Deletion

Addition

Marker &
Er. Symbol D̃(2) Matching
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Marker & Erasure Symbol Addition

Y K : a row of D(2).

Y K = [Y1, Y2, Y3, Y4, Y5, Y6, . . .]

[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
Addition

Ỹ = [Y1, Y2| ⇤ |Y3, Y4, Y5|Y6| ⇤ | . . .]
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Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
Addition
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[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
Addition

Ỹ = [Y1, Y2| ⇤ |Y3, Y4, Y5|Y6| ⇤ | . . .]
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Achievable Database Growth Rates

Theorem

In the noisy column repetition case, for seed size Λn linear with n,
databases with growth rate R can be successfully matched if

R < I (X ;Y S , S)

where S ∼ pS and Y S = Y1, . . . ,YS such that

Pr(Y S = y1, . . . , yS |X = x) =
S∏

i=1

pY |X (yi |x).

Furthermore, a necessary condition for the existence of a successful
matching scheme is

R ≤ I (X ;Y S , S)
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Achievable Database Growth Rates

Since X and S are independent

R = I (X ;Y S ,S) = I (X ;Y S |S).

We can achieve database growth rates as if we knew the
repetition pattern Sn a-priori.

Requires linear seed size Λn in n.

mn: Exponential in n.
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Random Graph Matching

!" !#

Graph g i = (V i , E i ), i ∈ [1, 2]:
1 V i : Vertex set, {v i

1, v
i
2, · · · , v i

n}.
2 E i : Edge set, subset of V × V.

Labeling σi : V i → [1, n].
Matching edges generated i.i.d. based on PX1,X2 .

Binary valued edges: Erdős-Rényi graph, Er(n, p).

Objective: Given (g1, g2) and σ1, find σ̂2 s.t.:

P(σ2(I ) = σ̂2(I )) → 1 as n → ∞,

where I ∼ U(1, n).

Almost all indices should be matched correctly.
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Graph Isomorphism: Matching Identical Graphs

!" !#

Two identical graphs g1 and g2.

Erdős-Rényi graph.
1 n vertices.
2 Edge probability pn.
3 Denoted as Er(n, pn).

g1 has vertex labels, g2 doesn’t.

How to restore the labels for g2?

Solvable iff graph has trivial automorphism group.

Are there polynomial time algorithms for matching?
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Graph Isomorphism

Matching can be done iff pn ∈ [ log nn , 1 − log n
n ]

[Erdős and Rényi ’61, Wright ’73].

When pn is very small, disconnected vertices.

Polynomial time algorithms if pn ∈
[
Θ( log n

n ), 1 − Θ( log n
n )
]
.

1 Maximum Degree: pn ∈ [ω(n−
1
5 log n), 1

2 ]
[Bollobas ’01].

2 Degree Sequences: pn ∈ [Θ( log n
n ), o(n−

11
12 )]

[Bollobas ’82].

3 Neighboring Degrees: pn ∈ [ω( log4 n
n log log n ), 1

2 ]

[Pandurangan ’07].

Focus on Maximum Degree:

Relation to correlated graphs with seeds and database
matching.
Alternate proofs using information theoretic tools.
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Maximum Degree Algorithm

Step 1: Order all vertices based on degrees:

g1 : v1(1), v
1
(2), · · · , v1(n), d(v1(i)) ≤ d(v1(i+1))

g2 : v2(1), v
2
(2), · · · , v2(n), d(v2(i)) ≤ d(v2(i+1)).

g1 g2
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Maximum Degree Algorithm

Step 2: Match highest degree vertices that are not repeated:

If ∀i ≤ j d(v1(j−1)) ̸= d(v1(j)) ⇒ v1(i) ∼ v2(i).

Assume that m vertices are matched at this step.

g1 g2

5

4

3 5

4

3
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Maximum Degree Algorithm

Step 3: For each of the remaining vertices, construct the
binary signature cm:

ci =

{
1 if v is connected to v(i+(n−m))

0 Otherwise.

If cm uniquely identifies v , match the vertex.

g1 g2101 001

011

010
110

101 001

011

010
110

5

4

3 5

4

3
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Performance of Max Degree

For Max Degree to give the correct matching

Signatures cm should be unique.
Possible only for large m.

For an Erdős-Rényi graph with edge probability pn:
1 Find m1, number of vertices with maximum unique degrees.
2 Find smallest m2, such that signatures of length m2 are unique.
3 m2 ≤ m1 ⇒ success.
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Vertices with Unique Degrees

Number of vertices with maximum unique degrees is

m1 = O

(
(pn(1 − pn)n)

1
4

log
1
4 n

)
.

Proof: Shown by [Bollobas ’01]. We prove using method of
types.

Set of all vertices with degree npn + t: Type pn + t
n vertices.

Probability of v being of type pn + t
n

2−nD(pn+
t
n ||pn).

Approximate D(pn + t
n ||pn), and find t such that expected

number of vertices of type pn + t
n is 1.
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Length of Signatures

Smallest signature length that guarantees unique signatures is

m2 =
log n

H2(pn)
,

where H2(·) is the Rényi entropy with parameter 2.

Proof: See Shirani, Garg, Erkip, Allerton 2017.

Combining: Max Degree finds the correct matching if

log n

H2(pn)
< O

(
(pn(1 − pn)n)

1
4

log
1
4 n

)
,

which is equivalent to

pn ∈ [ω(n−
1
5 log n), 1 − ω(n−

1
5 log n)].
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Random Graphs with Seeds

!" !#

Seeds: Some vertex labels in g2 are given.

Objective: Match the remaining vertices in g2.

Question: Conditions on seed size and graph statistics?
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Related Literature

Rich literature on network alignment, matching two realized
networks.

Recent work on matching random graphs:
Mostly consider the edge erasure model.
Original graph g0 ∼ Er(n, pn).
Edge erasure probability is 1 − sn.

g0

g1 g2
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Literature on Matching Random Graphs

No seeds:

[Pedarsani, Grossglauser, 2011]:
pns

3
n

8(2−sn)
= log n

n + ω(n−1).

[Cullina, Kiyavash, 2016]:
pns

2
n

2 = log n
n + ω(n−1).

[Onaran, Garg, Erkip 2016]: If sn = ω(n−1), matching possible
if pnsn(1 −

√
1 − s2n) = 3 log n

n + ω(n−1).

[Cullina, Kiyavash, 2017]: Extend results to general binary
distribution PX1,X2 .

With seeds, seed size |Λ|:
Kazemi, Hassani, Grossglauser ’15: p ∈ [ 1n , n

− 5
6 ] and

|Λ| > (1 − 1

r
)

(
(r − 1)!

n(ps2)r

) 1
1−r

,

where r is an arbitrary coefficient.

Beyah et. al.’16: |Λ| ≥ 4(2 log n+1)(2−s−ps)
ps3(1−p)2 .

These works mostly analyze the performance of
Maximum-a-Posteriori (MAP) matching.
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Our Seeded Graph Matching Algorithm

Let w1,w2, · · · ,w|Λ| be the labeled seeds.

Step 1: Construct the reduced bipartite graph connecting the
unmatched vertices to seeds.

Labeled Seeds
v1

v2

vn−jΛj−1

un−jΛj

w1

w2

wjΛj−1

wjΛj

Unlabeled Seeds
v1

v2

vn−jΛj−1

un−jΛj

w1

w2

wjΛj−1

wjΛj

ḡ1 ḡ2
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Our Seeded Graph Matching Algorithm

Step 2: Construct the adjacency matrices of the bipartite
graphs corresponding to g1 and g2.

0 1 0 1 1

0 0 1 0 0

0 0 0 0 1

··
·

··
·

··
·

··
·

··
·

··
·

g2

1

1

0U
nl
ab
el
ed

Seeds

0 1 0 0 1

0 0 1 0 0

0 0 1 0 1

··
·

··
·

··
·

··
·

··
·

··
·

g1

0

1

0L
ab
el
ed

Seeds

Analogy to database matching:

Database Matching Graph Matching
Rows (User IDs) Unseeded Vertices

Columns (Attributes) Seeded Vertices

Entries Edges
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Our Seeded Graph Matching Algorithm

Step 3: Find the unique row r1k in g1 which is jointly typical
with r2j with respect to pX1,X2 .

0 1 0 0 0 1

1 0 0 1 0 0

0 0 0 1 0 1

··
·

··
·

··
·

··
·

··
·

··
·

g1

1 0 1 1 0 0

r2j

If such a row does not exist or not unique, algorithm fails.

If successful, add the identified vertex as a seed, and repeat
steps 1, 2 until matching is complete.
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When Does the Algorithm Work?

Theorem

For a pair of Erdős-Rényi graphs (g1, g2) characterized by pX1,X2 ,

the above algorithm succeeds in matching if |Λ| > log n
I (X1;X2)

.

The proof is similar database matching.

I (X1;X2) accounts for reduction in information each seed
node provides.

Binary valued edges: I (X1;X2) ≤ 1

Shirani, Garg, Erkip, JSAC 2021.
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This Lecture

How can information theory help in database and graph
matching?

Consider random databases/graphs.

Allows using tools from information theory, leading to
theoretical guarantees and new algorithms.

Database matching.

Correlated databases.
Time series: Deletions and replicas.

Noiseless.
Noisy.

General graph matching.

Matching identical graphs.
Correlated graphs with seeds.
Correlated graphs without seeds.

New typicality results on permutations of sequences.
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Graph Matching without Seeds

!" !#

Edges are pairwise correlated.

There are no seeds.

Question: Conditions for successful graph matching?
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Adjacency Matrix

Consider the adjacency matrix of a graph Gσ.

The adjacency matrix is symmetric.
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Labelings and Adjacency Matrix

Each labeling gives a permutation of Gσ.

In databases, mislabeling entries only affects the
corresponding rows.

In graphs, mislabeling nodes permutes the rows and columns
of the adjacency matrix.

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

a3;1 a3;2 a3;3 a3;4

a4;1 a4;2 a4;3 a4;4

1 2 3 4

1

2

3

4

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

a3;1 a3;2 a3;3 a3;4

a4;1 a4;2 a4;3 a4;4

1 2 3 4

1

2

3

4

GraphDatabase
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Database vs Graph Matching

Database matching can be done by matching each row of C(2)

separately.

Typicality matching.

For graph matching need to match the complete adjacency
matrices.

Typicality of adjacency matrices.
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Typicality of Erdős-Rényi Graphs

Consider the upper triangle adjacency matrix [Gσ,i ,j ]i<j .

Can think of [Gσ,i ,j ]i<j as a n(n−1)
2 sequence of bits.

If g ∼ Er(n, p), then [Gσ,i,j ]i<j is a vector of i.i.d. Bern(p)
random variables.

Recall: An
ϵ (X ): ϵ-typical set of length n sequences w.r.t PX .

Result: [Gσ,i ,j ]i<j is ϵ-typical w.r.t Bern(p) with probability
one:

P([Gσ,i ,j ]i<j ∈ A
n(n−1)

2
ϵ (X )) → 1, n → ∞.

All permutations of [Gσ,i ,j ]i<j are also ϵ-typical w.r.t Bern(p)
with probability one.
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Typicality of Graph Pairs

0 0 0 1 1

0 0 1 1 0

1 0 0 0 1

··
·

··
·

··
·

··
·

··
·

··
·

g2

0

1

0

0 1 0 0 1

0 0 1 0 0

1 0 1 0 1

··
·

··
·

··
·

··
·

··
·

··
·

g1

1

1

0

Recall matching edges generated i.i.d. according to PX1,X2 .

Result: The pair (G 1
σ1 ,G

2
σ2) is ϵ-typical w.r.t PX1,X2 with

probability one when σ1 = σ2.

Idea for graph matching: Find σ2 (labeling for g2) which
results in a jointly typical pair (G 1

σ1 ,G
2
σ2).
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Typicality and Permutation

Wrong labeling of nodes leads to a permutation of the
adjacency matrix and permutation of the corresponding binary
sequence.

To argue success of typicality-based graph matching, we need
to investigate joint typicality of permutations of random
vectors.

Bound as a function of permutation parameters: # of fixed
points, and cycle decomposition.

Erkip 105/ 112



Typicality and Permutation

Wrong labeling of nodes leads to a permutation of the
adjacency matrix and permutation of the corresponding binary
sequence.

To argue success of typicality-based graph matching, we need
to investigate joint typicality of permutations of random
vectors.

Bound as a function of permutation parameters: # of fixed
points, and cycle decomposition.

Erkip 105/ 112



Typicality and Permutation

Wrong labeling of nodes leads to a permutation of the
adjacency matrix and permutation of the corresponding binary
sequence.

To argue success of typicality-based graph matching, we need
to investigate joint typicality of permutations of random
vectors.

Bound as a function of permutation parameters: # of fixed
points, and cycle decomposition.

Erkip 105/ 112



Permutation Parameters

Example: π(Y 5) = (Y2,Y1,Y4,Y3,Y5).

Permutation parameters:
1 Fixed Point: Index i such that π(i) = i .
2 Cycle: Orbit of each index (i , π(i), π2(i), · · · ).
3 Cycle Length: |{πk(i)|k ∈ N}|.

Notation:
# of fixed points: m,
# of non-trivial cycles: c,
Length of cycles: (i1, i2, · · · , ic), i1 ≥ i2 ≥ · · · ≥ ic .

Example: m = 1, c = 2, i1 = 2, i2 = 2.
Notation: π = (12)(34)(5).
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Typicality and Permutation

Result: Suppose (X n,Y n) i.i.d. ∼ PX ,Y . Then for any
permutation π,

P((X n, π(Y n) ∈ An
ϵ (X ,Y ))

is a function of m, c and (i1, i2, · · · , ic).
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Typicality and Permutation

Theorem

Let (X n,Y n) be a pair of i.i.d sequences. For any permutation π
with m fixed points, the following holds:

P((X n, π(Y n) ∈ An
ϵ (X ,Y ))

≤ 2−
n
4
(D(PX ,Y ||(1−α)PXPY+αPX ,Y )−|X ||Y|ϵ+O( log n

n
)),

where α = m
n .

Proof idea:

Convexity of KL divergence
Grouping elements of (X n, π(Y n)) into independent subsets.
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Typicality Matching and Converse

Theorem

Typicality based graph matching is successful if

∀α ∈ [0, 1−δ] : 8(1−α)
log n

n
≤ D(P

(n)
X ,Y ||(1−α)P

(n)
X P

(n)
Y +αP

(n)
X ,Y )

as n → ∞.
Furthermore, a necessary condition for existence of successful
graph matching is

2 log n

n
≤ I (X1;X2).

Shirani, Garg, Erkip, JSAC 2021.
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Conclusions

Database and graph matching.

Privacy implications.
Rich literature in system level approach and algorithms for
matching given graphs/databases.

Stochastic approach allows:

Use of tools from probability and information theory.
New algorithms.
Necessary and sufficient conditions for success.
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Key Observations

Database matching.

Analogy with channel decoding.

Structure is useful.
Repetitions can be inferred when

When there is no noise.
When there are enough (but small) number of seeds.

Graph matching.

Exploits richer structure.
Seeds are still very important.
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Future Directions

Database matching:
Obtaining entries (column) for each member (row) may be
costly.

How can matching be done by incurring only a small cost?
Relates to rateless codes and feedback.
Also relates to fingerprinting.
Efficient algorithms for noisy databases with deletions/replicas.
Correlated rows/columns.

Graph matching:
Matching more than two graphs.
Matching partially labeled graphs.
Graphs with partial vertex overlap.
Community structures and preferential attachment.

Erkip 112/ 112



Future Directions

Database matching:
Obtaining entries (column) for each member (row) may be
costly.
How can matching be done by incurring only a small cost?
Relates to rateless codes and feedback.
Also relates to fingerprinting.

Efficient algorithms for noisy databases with deletions/replicas.
Correlated rows/columns.

Graph matching:
Matching more than two graphs.
Matching partially labeled graphs.
Graphs with partial vertex overlap.
Community structures and preferential attachment.

Erkip 112/ 112



Future Directions

Database matching:
Obtaining entries (column) for each member (row) may be
costly.
How can matching be done by incurring only a small cost?
Relates to rateless codes and feedback.
Also relates to fingerprinting.
Efficient algorithms for noisy databases with deletions/replicas.

Correlated rows/columns.

Graph matching:
Matching more than two graphs.
Matching partially labeled graphs.
Graphs with partial vertex overlap.
Community structures and preferential attachment.

Erkip 112/ 112



Future Directions

Database matching:
Obtaining entries (column) for each member (row) may be
costly.
How can matching be done by incurring only a small cost?
Relates to rateless codes and feedback.
Also relates to fingerprinting.
Efficient algorithms for noisy databases with deletions/replicas.
Correlated rows/columns.

Graph matching:
Matching more than two graphs.
Matching partially labeled graphs.
Graphs with partial vertex overlap.
Community structures and preferential attachment.

Erkip 112/ 112



Future Directions

Database matching:
Obtaining entries (column) for each member (row) may be
costly.
How can matching be done by incurring only a small cost?
Relates to rateless codes and feedback.
Also relates to fingerprinting.
Efficient algorithms for noisy databases with deletions/replicas.
Correlated rows/columns.

Graph matching:
Matching more than two graphs.
Matching partially labeled graphs.
Graphs with partial vertex overlap.
Community structures and preferential attachment.

Erkip 112/ 112



References

[1] E. Onaran, S. Garg and E. Erkip, “Optimal De-anonymization in Random Graphs with

Community Structure,” Asilomar 2016.

[2] F. Shirani, S. Garg and E. Erkip, “An Information Theoretic Framework for Active

De-anonymization in Social Networks Based on Group Memberships,” Allerton 2017.

[3] F. Shirani, S. Garg and E. Erkip, “Seeded Graph Matching: Efficient Algorithms and

Theoretical Guarantees,” Asilomar 2017.

[4] F. Shirani, S. Garg and E. Erkip, “Typicality Matching for Pairs of Correlated Graphs,” ISIT

2018.

[5] F. Shirani, S. Garg and E. Erkip, “Optimal Active Social Network De-anonymization using

Information Thresholds,” ISIT 2018.

[6] F. Shirani, S. Garg and E. Erkip, “Matching Graphs with Community Structure: A

Concentration of Measure Approach,” Allerton 2018.

[7] F. Shirani, S. Garg and E. Erkip, “A Concentration of Measure Approach to Database

De-anonymization,” ISIT 2019.

[8] F. Shirani, S. Garg and E. Erkip, “A Concentration of Measure Approach to Correlated

Graph Matching,” JSAIT 2021.

[9] M. Shariatnasab, F. Shirani, S. Garg and E. Erkip, “On Graph Matching Using Generalized

Seed Side-Information,” ISIT 2021.

[10] S. Bakirtas and E. Erkip, “Database Matching Under Column Deletions,” ISIT 2021.

[11] M. Shariatnasab, F. Shirani, and E. Erkip, “Fundamental Privacy Limits in Bipartite

Networks under Active Attacks,” JSAC 2022.

[12] S. Bakirtas and E. Erkip, “Seeded Database Matching Under Noisy Column Repetitions,”

to appear in ITW 2022.

[13] S. Bakirtas and E. Erkip, “Matching of Markov Databases Under Random Column

Repetitions,” to appear in Asilomar 2022.

Erkip 112/ 112


	Background
	Motivation
	Motivation: Graph Matching
	Motivation: Database Matching

	Prelude
	Privacy
	Typicality

	Database Matching
	Correlated Databases
	Database Matching under Column Deletions and Repetitions

	Graph Matching
	Graph Isomorphism
	Graph Matching with Seeds
	Graph Matching without Seeds

	Discussion and Conclusions
	References

