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 Frequency Offset Estimation with a Nuisance
Parameter

— Synchronization of OFDM systems like 4G/5G
(cellular), WiFi, etc.



System Model

° Frequency offset (w) estimation problem with a nuisance
parameter (r)

-

Consider
Y1 =71+ le

YZ — Tejw +Zz,

where Z is an iid zero-mean circularly symmetric complex Gaussian noise
vector with the variance ¢?. w is the unknown parameter we want to estimate,
the frequency offset, and r is a unknown complex vector.

\.

¢ Solution given by
w = nyyg ) for realization, Y, =y, Y, = y,,
which is claimed to be the maximum likelihood (ML) estimator by the paper:

P. Moose, “A technique for OFDM frequency offset correction,” IEEE Trans.
on Comm., vol. 42, no. 10, pp. 2908 —2914, Oct 1994.



Moose’s 1994 Paper

¢ Moose’s frequency offset
estimator

1 One of most widely used
techniques for OFDM
synchronization.

d Cited by 3580 articles
according to Google scholar.

d However, the proof is wrong
and this estimator is not ML,
misunderstood as the ML
estimator for two decades.

MOOSE: OFDM PREQUENCY OFFSET CORRECTION
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APPENDIX
MaxMUM LIKELIHOOD BESTIMATE OF DIFFERENTIAL PHASE

Let M complex values {Z:} be represented by a length
2M row vector

Z=|Zip Zzr---Zmr Zir Zar---Zmil

=[2r 2 (A
Consider the random vectors
Yi=R+W; (A2)
Y =R H(O)+ W, (A-3)
where
H(®) = [g g] C=cos(®)I & §=sin(O)

(A4
is a 2M x 2M rotation matrix. The maximum likelihood
estimate of the parameter ©, given the observations ¥; and
Y3 (see, for example, Sage and Melsa, [9, p. 196]) is the value
of © that maximizes the conditional joint density function of
the observations. That is

8 = max(/ (¥, Y2 | ©)] (A5)
which can be written as
6= max[f(¥3 | 8, ¥1) /(¥ | ©)]. (A6)
But © gives no information about Y, that is
i(Y1]8) = f(¥1) (A7)

50 that
6= max|f(¥z | ©, Y1) (A.8)

To find the conditional density function in (A.8), note that
Y,=¥.-Wi)H(O)+W; A9)

so that
Y=Y H(B8)+W,— W, H(8). (A.10)

If W, and W, are Gaussian, zero mean white random
vectors with variance o2, then the conditional density function
in (A.6) is multivariate Gaussian with mean value vector
Y H(8) and 2M x 2M covariance matrix

K = E[(W, - W, H(©))(W; - W, H(8))) = 20°1.
(A1)
We note that K is independent of ©, therefore,

& = max{f(Y: | ©, Y1)] = min[J(6)] (A12)
with
J(®)=(Ya ~Y H@®)(Y: -V 1H@®)".  (A13)
Using the fact that
H(O)dH(0)/d0] + dH(@)/do]H (@) =0 (Al
we can find that
dJ(6)/d8 = —¥ 3[dH(8)/dO]Y? - Y ||dH(8)/dB]Y}.
(A.15)
Using (A.4), it follows directly that (A.15) is identically zero
when © = 8 such that
sin (B)[¥ 3rY { + Yar¥1y] = 0os (B)¥ 21 ¥}p — YarY{]-
{A.16)
Therefore,

8 =tn™ [(Yur¥ig ~ YorYsy)/ (Y 2rY g + Yar¥is))

= tan~! { (fjlm[yzkm]) (fae[mml) }

k=1 k=1
(AdD
is the maximum likelihood estimate (MLE) of ©.




ML Estimation under a Nuisance Parameter

° What is ML estimation?
®(y) = argmaxpy(y; )
°© What if an unknown nuisance parameter () exists?

&(y,r) = argmax py(y; w, 1)
w

[ In general, the maximum & is a function of the unknown r, which is not a
feasible estimator, meaning that we can say ML estimation does not exist.

O How to take care of a nuisance parameter

« ML estimation after marginalization of the nuisance parameter r given its prior
probability:

& = arg max / py (s w0, P)pr(r)dr
w ™

« Joint ML estimation if not: .
(wj fr’) — argwII;aXpY (y; w? r)

« Conditional inference: Elimination of the nuisance parameter through conditioning is the
approach taken in Moose’s paper in my understanding.



When Does ML Estimation Exists?

¢ Still interested in solving
@y, 1) = argmax py(y; @,7)

° but looking for a factorization of the pdf between w and r, i.e.,
py(V;0,1r)=f(y;0) gly;r),  f,9=0.

¢ If so, any prior info on r does not change the solution. There is
a universally good &(y,r) regardless of r, i.e., @(y) = &(y,r). In
this case, we can say ML estimation exists.

= [arg E)naXf()’; a))] g(y;r)

w(y,r1) = argmaxpy(y; , 1)
w r=rq r=7rq

= [arg max f (y; w)] 9@ )ly=r, = argmax py(y; 0, 1)lr=r, = Oy, 72),

for any ri, 1y, S.t., g(y' rl)l g(y' r2) > 0.



Moose’s Approach

¢ Try to eliminate the first equation through conditioning on Y.

Y1 - T-I—Zl,
YZ — Te]w +Zz,

It is claimed the first equation does not give any information on w, which
could be true if r were known.

L However, it is not true since the first equation gives some information on
unknown r and two equations are related through r :

Py, y, V1, Y2 0,1) = Py, (Y1) Py, (¥2; 0, 1)



Conditional Inference

¢ Concept

-

We say Strong Ancillarity holds if we can find T', U s.t.

________________________

________________________

where T is a conditional sufficient statistic and U is an ancillary statistic. Then,
we have

o= o mm mm mm mm = = = = = =y

_____________

__________________________

Py (ya W, T')/|Jg (y)| — pT,U(ta u; w, T) :ipT|U(t7 u, (U) iipU(ua W, r)‘l

__________________________

______________

_____________




Generalized Transformation

¢ What if the transformation is a function of unkown w?

py (y;w,r) = |Jy(y;w)|pru(gr(y;w), gu(y;w);w, )
= |Jg_1(t,u;w)|_1pT,U(t,u;w,r)

¢ What will happen to strong ancillarity?

 The property of strong ancillarity does not hold any more:

@ = argmax py (¥; w, r) # argmax pry(t, u;w).
w w

1 We may content with finding a suboptimal solution



Correct Derivation - Conditional Inference (1/2)

¢ Complete transformation

U Independent T and U can be found as

}fl — T—I_Zl? T =

—

L2 _YY, + Y, = Y Z + Zs,
Y, = Tejw+Z2, U =

Y1 -+ e_ijg = 2r + Z1 -+ B_ijQ.
¢ Transformed joint p.d.f.
pT,U(tJ u; w, T) — pT(t)pU(ua 7’),
1 1
t) = A
pr(®) = e (gl

1 1
pu(u;r) = o) exp (—202 u—2r||2).

where

¢ The Jacobian determinant

| Jg| = 224,



Correct Derivation - Conditional Inference (2/2)

¢  Put them together
Py (y;w, )

: 1 11 1 1 :
= 1 22M ——||¢]]7 ) — w—2r|2 )
| (2mo2)M eXp ( 202 121} ):: (2rm02)M exXp ( 952 ||u — 27| i
°© Expressingitiny=(y,y,)
| 1 1 ‘ :
. 1 o2M " 5\ |
pY(y,bJ,'r) —i 2 —(27T0'2)M exp (_ﬁ|_63 yl+y2|| ) i
XT S 1 |y + e 2|2 |
: X I~ € T |
' (2mo2)M P Tog2!l¥ Y2 |
° The suboptimal solution Missing Information
w = al"gUIJTlaXE|Jg|pT(gT(yljy2;w)) i

: 1 - |
= argur}laXEZQMWeXp (—@H _ejwyl +y2||2>i



Can We Do Better Than Moose’s Estimator y,"y,?

¢ Counter example showing the ML estimation does not exists: Assume that we know the nuisance
parameter, r

U If the ML estimation exists, it should not be a function of r even if r is known.

Yl =1‘+Zl,
Y2 =1"e]w+Z2,

O However, the first equation does not give any information on w and the ML estimation for known r is given by @ =r"y, only
from the second equation, which does not match with Moose’s solution @ =y;"y,.

U Moreover, since the ML estimation is a function of the nuisance parameter r, the ML estimation does not exists.

U The answer is “Yes” if some useful prior knowledge on r can be utilized.

¢  Performance comparison
U 3dB gap
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