Statistical Signal Processing for Receiver Algorithm Design

August 2022 Dongwoon Bai, Sr. Director Samsung SOC Lab Samsung US SOC Lab

 Frequency Offset Estimation with Nuisance Parameters

Samsung Exynos Processors

Automotive

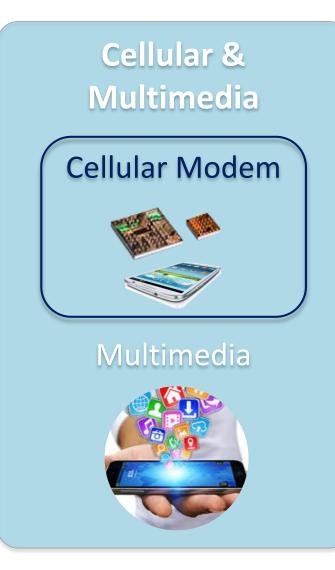
Processor

Product collections for a processor that fits your needs.

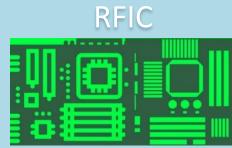
SAMSUNG Exynos Auto

Х

US SOC Lab (San Diego, San Jose, Cedar Rapids, etc)



Advanced Circuit Design



• Samsung US SOC Lab

- Frequency Offset Estimation with a Nuisance Parameter
 - Synchronization of OFDM systems like 4G/5G (cellular), WiFi, etc.

System Model

 Frequency offset (
 w) estimation problem with a nuisance parameter (
 r)

Consider

$$Y_1 = \mathbf{r} + \mathbf{Z}_1,$$

$$Y_2 = \mathbf{r}e^{j\boldsymbol{\omega}} + \mathbf{Z}_2,$$

where Z_n is an iid zero-mean circularly symmetric complex Gaussian noise vector with the variance σ^2 . ω is the unknown parameter we want to estimate, the frequency offset, and r is a unknown complex vector.

Solution given by

$$\hat{\omega} = igta oldsymbol{y}_1^* oldsymbol{y}_2$$
 , for realization, $oldsymbol{Y}_1 = oldsymbol{y}_1$, $oldsymbol{Y}_2 = oldsymbol{y}_2$,

which is claimed to be the maximum likelihood (ML) estimator by the paper:

P. Moose, "A technique for OFDM frequency offset correction," IEEE Trans. on Comm., vol. 42, no. 10, pp. 2908 –2914, Oct 1994.

Moose's 1994 Paper

Moose's frequency offset estimator

- One of most widely used techniques for OFDM synchronization.
- □ Cited by 3580 articles according to Google scholar.
- However, the proof is wrong and this estimator is not ML, misunderstood as the ML estimator for two decades.

MOOSE: OFDM FREQUENCY OFFSET CORRECTION To find the conditional density function in (A.8), note that $\boldsymbol{Y}_2 = (\boldsymbol{Y}_1 - \boldsymbol{W}_1)H(\boldsymbol{\Theta}) + \boldsymbol{W}_2$ (A.9) so that $\boldsymbol{Y}_2 = \boldsymbol{Y}_1 \boldsymbol{H}(\boldsymbol{\Theta}) + \boldsymbol{W}_2 - \boldsymbol{W}_1 \boldsymbol{H}(\boldsymbol{\Theta}).$ (A.10) If W_1 and W_2 are Gaussian, zero mean white random vectors with variance σ^2 , then the conditional density function in (A.6) is multivariate Gaussian with mean value vector $Y_1H(\Theta)$ and $2M \times 2M$ covariance matrix $K = E[(\boldsymbol{W}_2 - \boldsymbol{W}_1 H(\Theta))^t (\boldsymbol{W}_2 - \boldsymbol{W}_1 H(\Theta))] = 2\sigma^2 \boldsymbol{I}.$ (A.11) We note that K is independent of Θ , therefore, $\hat{\Theta} = \max[f(\mathbf{Y}_2 \mid \Theta, \mathbf{Y}_1)] = \min[J(\Theta)]$ (A.12) $J(\Theta) = (\boldsymbol{Y}_2 - \boldsymbol{Y}_1 H(\Theta))(\boldsymbol{Y}_2 - \boldsymbol{Y}_1 H(\Theta))^t.$ (A.13) Using the fact that $H(\Theta)[dH(\Theta)/d\Theta]^t + [dH(\Theta)/d\Theta]H^t(\Theta) = 0 \quad (A.14)$ we can find that $dJ(\Theta)/d\Theta = -Y_2[dH(\Theta)/d\Theta]^t Y_1^t - Y_1[dH(\Theta)/d\Theta] Y_2^t.$ APPENDIX MAXIMUM LIKELIHOOD ESTIMATE OF DIFFERENTIAL PHASE Using (A.4), it follows directly that (A.15) is identically zero Let M complex values $\{Z_k\}$ be represented by a length when $\hat{\Theta} = \Theta$ such that 2M row vector $\sin(\hat{\Theta})[Y_{2R}Y_{1R}^{t} + Y_{2I}Y_{1I}^{t}] = \cos(\hat{\Theta})[Y_{2I}Y_{1R}^{t} - Y_{2R}Y_{1I}^{t}].$ $\boldsymbol{Z} = \begin{bmatrix} Z_{1R} & Z_{2R} \cdots Z_{MR} & Z_{1I} & Z_{2I} \cdots Z_{MI} \end{bmatrix}$ (A.16) $= [\mathbf{Z}_{R} \ \mathbf{Z}_{I}].$ (A.I) Therefore, Consider the random vectors $\hat{\Theta} = \tan^{-1} \left[(Y_{2I}Y_{1R}^t - Y_{2R}Y_{1I}^t) / (Y_{2R}Y_{1R}^t + Y_{2I}Y_{1I}^t) \right]$ $Y_1 = R_1 + W_1$ (A.2) $= \tan^{-1} \left\{ \left(\sum_{k=1}^{M} \operatorname{Im}[Y_{2k}Y_{1k}^*] \right) \left(\sum_{k=1}^{M} \operatorname{Re}[Y_{2k}Y_{1k}^*] \right) \right\}$ $\boldsymbol{Y}_2 = \boldsymbol{R}_1 H(\boldsymbol{\Theta}) + \boldsymbol{W}_2$ (A.3) where (A.17) $H(\Theta) = \begin{bmatrix} C & S \\ C & S \end{bmatrix}$ $C = \cos(\Theta)I$ & $S = \sin(\Theta)I$ is the maximum likelihood estimate (MLE) of Θ . (A.4 is a $2M \times 2M$ rotation matrix. The maximum likelihood estimate of the parameter Θ , given the observations Y_1 and Y₂ (sec, for example, Sage and Melsa, [9, p. 196]) is the value of Θ that maximizes the conditional joint density function of the observations. That is $\hat{\boldsymbol{\Theta}} = \max[f(\boldsymbol{Y}_1, \boldsymbol{Y}_2 \mid \boldsymbol{\Theta})]$ (A.5) which can be written a $\hat{\boldsymbol{\Theta}} = \max_{\boldsymbol{\Theta}} [f(\boldsymbol{Y}_2 \mid \boldsymbol{\Theta}, \boldsymbol{Y}_1) f(\boldsymbol{Y}_1 \mid \boldsymbol{\Theta})].$ (A.6) But Θ gives no information about Y_1 , that is $f(\mathbf{Y}_1 \mid \Theta) = f(\mathbf{Y}_1)$ (A.7) so that $\hat{\Theta} = \max_{\Theta} [f(\boldsymbol{Y}_2 \mid \Theta, \boldsymbol{Y}_1)].$ (A.8)

2913

ML Estimation under a Nuisance Parameter

• What is ML estimation?

 $\widehat{\omega}(\boldsymbol{y}) = \arg \max_{\boldsymbol{\omega}} p_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\omega})$

• What if an unknown nuisance parameter (r) exists?

$$\widehat{\omega}(\boldsymbol{y},\boldsymbol{r}) = \arg\max_{\boldsymbol{\omega}} p_{\boldsymbol{Y}}(\boldsymbol{y};\boldsymbol{\omega},\boldsymbol{r})$$

- □ In general, the maximum $\hat{\omega}$ is a function of the unknown r, which is not a feasible estimator, meaning that we can say ML estimation does not exist.
- □ How to take care of a nuisance parameter
 - ML estimation after marginalization of the nuisance parameter *r* given its prior probability:

$$\hat{\omega} = \arg\max_{\omega} \int_{\boldsymbol{r}} p_{\boldsymbol{Y}}(\boldsymbol{y};\omega,\boldsymbol{r}) p_{\boldsymbol{R}}(\boldsymbol{r}) d\boldsymbol{r}$$

• Joint ML estimation if not:

$$(\hat{\omega}, \hat{\boldsymbol{r}}) = \operatorname*{arg\,max}_{\omega, \boldsymbol{r}} p_{\boldsymbol{Y}}(\boldsymbol{y}; \omega, \boldsymbol{r})$$

• Conditional inference: Elimination of the nuisance parameter through conditioning is the approach taken in Moose's paper in my understanding.

When Does ML Estimation Exists?

Still interested in solving

 $\widehat{\omega}(\boldsymbol{y},\boldsymbol{r}) = \arg\max_{\boldsymbol{\omega}} p_{\boldsymbol{Y}}(\boldsymbol{y};\boldsymbol{\omega},\boldsymbol{r})$

• but looking for a factorization of the pdf between ω and r, i.e.,

 $p_{\mathbf{Y}}(\mathbf{y};\boldsymbol{\omega},\mathbf{r}) = f(\mathbf{y};\boldsymbol{\omega}) g(\mathbf{y};\mathbf{r}), \quad f,g \ge 0.$

 If so, any prior info on r does not change the solution. There is a universally good ŵ(y,r) regardless of r, i.e., ŵ(y) = ŵ(y,r). In this case, we can say ML estimation exists.

$$\widehat{\omega}(\boldsymbol{y}, \boldsymbol{r}_{1}) = \arg\max_{\omega} p_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\omega}, \boldsymbol{r}) \Big|_{\boldsymbol{r}=\boldsymbol{r}_{1}} = \left[\arg\max_{\omega} f(\boldsymbol{y}; \boldsymbol{\omega})\right] g(\boldsymbol{y}; \boldsymbol{r}) \Big|_{\boldsymbol{r}=\boldsymbol{r}_{1}}$$
$$= \left[\arg\max_{\omega} f(\boldsymbol{y}; \boldsymbol{\omega})\right] g(\boldsymbol{y}; \boldsymbol{r}) \Big|_{\boldsymbol{r}=\boldsymbol{r}_{2}} = \arg\max_{\omega} p_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\omega}, \boldsymbol{r}) \Big|_{\boldsymbol{r}=\boldsymbol{r}_{2}} = \widehat{\omega}(\boldsymbol{y}, \boldsymbol{r}_{2}),$$
for any $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$, s.t., $g(\boldsymbol{y}; \boldsymbol{r}_{1}), g(\boldsymbol{y}; \boldsymbol{r}_{2}) > 0.$

• Try to eliminate the first equation through conditioning on Y₁.

$$Y_1 = \mathbf{r} + \mathbf{Z}_1,$$

$$Y_2 = \mathbf{r}e^{j\boldsymbol{\omega}} + \mathbf{Z}_2,$$

- □ It is claimed the first equation does not give any information on ω , which could be true if *r* were known.
- However, it is not true since the first equation gives some information on unknown *r* and two equations are related through *r*:

$$p_{\boldsymbol{Y}_1,\boldsymbol{Y}_2}(\boldsymbol{y}_1,\boldsymbol{y}_2;\boldsymbol{\omega},\boldsymbol{r}) = p_{\boldsymbol{Y}_1}(\boldsymbol{y}_1;\boldsymbol{r}) p_{\boldsymbol{Y}_2}(\boldsymbol{y}_2;\boldsymbol{\omega},\boldsymbol{r})$$

Conditional Inference

• Concept

We say Strong Ancillarity holds if we can find T, U s.t.

$$p_{\boldsymbol{Y}}(\boldsymbol{y};\omega,\boldsymbol{r})/|J_{\boldsymbol{g}}(\boldsymbol{y})| = p_{\boldsymbol{T},\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\omega,\boldsymbol{r}) = p_{\boldsymbol{T}|\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\omega)|p_{\boldsymbol{U}}(\boldsymbol{u};\boldsymbol{r}),$$

where T is a conditional sufficient statistic and U is an ancillary statistic. Then, we have

$$\hat{\omega} = \arg\max_{\omega} p_{\boldsymbol{Y}}(\boldsymbol{y}; \omega, \boldsymbol{r}) = \arg\max_{\omega} p_{\boldsymbol{T}|\boldsymbol{U}}(\boldsymbol{t}, \boldsymbol{u}; \omega)$$

We say Weak Ancillarity holds if we can find T, U s.t.

$$p_{\boldsymbol{Y}}(\boldsymbol{y};\omega,\boldsymbol{r})/|J_{\boldsymbol{g}}(\boldsymbol{y})| = p_{\boldsymbol{T},\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\omega,\boldsymbol{r}) = p_{\boldsymbol{T}|\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\omega) \left[p_{\boldsymbol{U}}(\boldsymbol{u};\omega,\boldsymbol{r}) \right]$$

Then, the same property does not hold any more since

$$\hat{\omega}(\boldsymbol{r}) = \arg\max_{\omega} p_{\boldsymbol{Y}}(\boldsymbol{y}; \omega, \boldsymbol{r}) \neq \arg\max_{\omega} p_{\boldsymbol{T}|\boldsymbol{U}}(\boldsymbol{t}, \boldsymbol{u}; \omega)$$

Generalized Transformation

• What if the transformation is a function of unkown ω ?

$$p_{\mathbf{Y}}(\mathbf{y};\omega,\mathbf{r}) = |J_{\mathbf{g}}(\mathbf{y};\omega)| p_{\mathbf{T},\mathbf{U}}(\mathbf{g}_{\mathbf{T}}(\mathbf{y};\omega),\mathbf{g}_{\mathbf{U}}(\mathbf{y};\omega);\omega,\mathbf{r})$$
$$= |J_{\mathbf{g}^{-1}}(\mathbf{t},\mathbf{u};\omega)|^{-1} p_{\mathbf{T},\mathbf{U}}(\mathbf{t},\mathbf{u};\omega,\mathbf{r})$$

• What will happen to strong ancillarity?

 $p_{\mathbf{Y}}(\mathbf{y};\omega,\mathbf{r}) = \begin{vmatrix} J_{\mathbf{g}^{-1}}(\mathbf{t},\mathbf{u};\omega) \end{vmatrix}^{-1} p_{\mathbf{T}|\mathbf{U}}(\mathbf{t},\mathbf{u};\omega) & p_{\mathbf{U}}(\mathbf{u};\mathbf{r}) \end{vmatrix}$ $= \begin{vmatrix} J_{\mathbf{g}}(\mathbf{y};\omega) \end{vmatrix} p_{\mathbf{T}|\mathbf{U}}(\mathbf{g}_{\mathbf{T}}(\mathbf{y};\omega),\mathbf{g}_{\mathbf{U}}(\mathbf{y};\omega);\omega) & p_{\mathbf{U}}(\mathbf{g}_{\mathbf{U}}(\mathbf{y};\omega);\mathbf{r}). \end{vmatrix}$

The property of strong ancillarity does not hold any more:

$$\hat{\boldsymbol{\omega}} = \arg\max_{\boldsymbol{\omega}} p_{\boldsymbol{Y}}(\boldsymbol{y};\boldsymbol{\omega},\boldsymbol{r}) \neq \arg\max_{\boldsymbol{\omega}} p_{\boldsymbol{T}|\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\boldsymbol{\omega}).$$

□ We may content with finding a suboptimal solution

 $\hat{\omega} = \arg \max_{\omega} \left| J_{\boldsymbol{g}}(\boldsymbol{y}; \omega) | p_{\boldsymbol{T} | \boldsymbol{U}}(\boldsymbol{g}_{\boldsymbol{T}}(\boldsymbol{y}; \omega), \boldsymbol{g}_{\boldsymbol{U}}(\boldsymbol{y}; \omega); \omega), \right|$ where information in $\left| p_{\boldsymbol{U}}(\boldsymbol{g}_{\boldsymbol{U}}(\boldsymbol{y}; \boldsymbol{\omega}); \boldsymbol{r}) \right|$ is ignored.

Correct Derivation – Conditional Inference (1/2)

Complete transformation

 \Box Independent *T* and *U* can be found as

$$\begin{array}{rcl} \boldsymbol{Y}_1 &=& \boldsymbol{r} + \boldsymbol{Z}_1, \\ \boldsymbol{Y}_2 &=& \boldsymbol{r} e^{j\omega} + \boldsymbol{Z}_2, \end{array} & \overleftarrow{\boldsymbol{T}} & \stackrel{\Delta}{=} & -e^{j\omega}\boldsymbol{Y}_1 + \boldsymbol{Y}_2 = -e^{j\omega}\boldsymbol{Z}_1 + \boldsymbol{Z}_2, \\ \boldsymbol{U} & \stackrel{\Delta}{=} & \boldsymbol{Y}_1 + e^{-j\omega}\boldsymbol{Y}_2 = 2\boldsymbol{r} + \boldsymbol{Z}_1 + e^{-j\omega}\boldsymbol{Z}_2. \end{array}$$

• Transformed joint p.d.f.

$$p_{\boldsymbol{T},\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\omega,\boldsymbol{r}) = p_{\boldsymbol{T}}(\boldsymbol{t})p_{\boldsymbol{U}}(\boldsymbol{u};\boldsymbol{r}),$$

where

$$p_{\boldsymbol{T}}(\boldsymbol{t}) = \frac{1}{(2\pi\sigma^2)^M} \exp\left(-\frac{1}{2\sigma^2}||\boldsymbol{t}||^2\right),$$

$$p_{\boldsymbol{U}}(\boldsymbol{u};\boldsymbol{r}) = \frac{1}{(2\pi\sigma^2)^M} \exp\left(-\frac{1}{2\sigma^2}||\boldsymbol{u}-2\boldsymbol{r}||^2\right).$$

• The Jacobian determinant

$$|J_{\boldsymbol{g}}| = 2^{2M}$$

Correct Derivation – Conditional Inference (2/2)

• Put them together

$$p_{\boldsymbol{Y}}(\boldsymbol{y};\omega,\boldsymbol{r}) = |J_{\boldsymbol{g}}(\boldsymbol{t},\boldsymbol{u};\omega)|p_{\boldsymbol{T},\boldsymbol{U}}(\boldsymbol{t},\boldsymbol{u};\omega,\boldsymbol{r}) \\ = \left|2^{2M}\frac{1}{(2\pi\sigma^2)^M}\exp\left(-\frac{1}{2\sigma^2}||\boldsymbol{t}||^2\right)\right|\frac{1}{(2\pi\sigma^2)^M}\exp\left(-\frac{1}{2\sigma^2}||\boldsymbol{u}-2\boldsymbol{r}||^2\right)$$

• Expressing it in $y=(y_1,y_2)$ $p_Y(y;\omega,r) = \begin{bmatrix} 2^{2M} \frac{1}{(2\pi\sigma^2)^M} \exp\left(-\frac{1}{2\sigma^2}||-e^{j\omega}y_1+y_2||^2\right) \\ \times \left[\frac{1}{(2\pi\sigma^2)^M} \exp\left(-\frac{1}{2\sigma^2}||y_1+e^{-j\omega}y_2-2r||^2\right)\right] \end{bmatrix}$

Missing Information

The suboptimal solution

$$\hat{\omega} = \arg \max_{\omega} \left| J_{\boldsymbol{g}} | p_{\boldsymbol{T}}(\boldsymbol{g}_{\boldsymbol{T}}(\boldsymbol{y}_1, \boldsymbol{y}_2; \omega)) \right|$$

= $\arg \max_{\omega} \left| 2^{2M} \frac{1}{(2\pi\sigma^2)^M} \exp\left(-\frac{1}{2\sigma^2} || - e^{j\omega} \boldsymbol{y}_1 + \boldsymbol{y}_2 ||^2\right) \right|$
= $\angle \boldsymbol{y}_1^* \boldsymbol{y}_2.$

Can We Do Better Than Moose's Estimator $y_1^*y_2$?

• Counter example showing the ML estimation does not exists: Assume that we know the nuisance parameter, *r*

 \Box If the ML estimation exists, it should not be a function of r even if r is known.

$$Y_1 = r + Z_1,$$

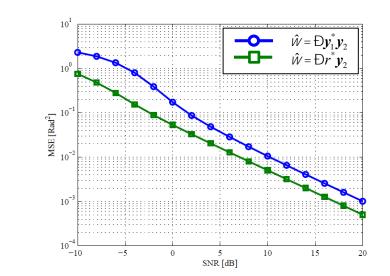
$$Y_2 = re^{j\omega} + Z_2,$$

- □ However, the first equation does not give any information on ω and the ML estimation for known r is given by $\hat{\omega} = r^* y_2$ only from the second equation, which does not match with Moose's solution $\hat{\omega} = y_1^* y_2$.
- \Box Moreover, since the ML estimation is a function of the nuisance parameter r, the ML estimation does not exists.

 \Box The answer is "Yes" if some useful prior knowledge on r can be utilized.

Performance comparison

3dB gap



• Correction Paper

Dongwoon Bai, et al, "Comments on 'A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction'," *IEEE Transactions on Communications*, Vol. 61, no. 5, pp. 2109-2111, May 2013.

Thank You

We are Hiring! Refer to NASIT Job Opportunities Page

