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Overview

Fundamental learning tasks

Data corruption

Robust learning

Learning from batches

Density estimation

Discrete and Continuous

Classification

Learn (almost) as well as from genuine data
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The Golden Age of Machine Learning
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The Golden Age of Machine Learning

Many important applications accurately learnable with modest resources

Amount of data

Computation time

Build on theoretical advances in fundamental learning paradigms

Hypothesis testing

Density estimation ←Ð

Classification ←Ð

Regression

Clustering

Reinforcement learning

.... Deep neural networks

Results

As data ↗ error ↘

Polynomial-time algorithms 3



Density Estimation

Known distribution (density) class

Unknown distribution in class

Generates samples

Estimate distribution

Best estimate?
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Discrete Distributions

Support set

Wolog [k] = {0, . . . , k − 1}

Set of distributions

∆k = { Distributions over [k] }

Distribution

p = (p0, . . . , pk−1) pi ≥ 0 ∑pi = 1

s Samples

Xs =X1, . . . ,Xs ∼ p

Independent p(Xs = xs) = ∏pxi
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Distribution Estimation

Unknown p ∈ ∆k → Xs → estimate of p

Estimator

qest ∶ [k]s →∆k

Estimate qest(Xs)

Distance measure

L1 distance: ∣∣p − q∣∣1 def=
k−1

∑
i=0

∣pi − qi∣

Total-variation distance: ∣∣p − q∣∣TV
def= ∑

i∶pi>qi
(pi − qi) = 1

2
∣∣p − q∣∣1

Distance of qest from p when observing Xs

d(qest(Xs), p)

Particular qest, Xs, p

Fundamental difficulty of whole estimation task
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Min-Max Expected Loss

Remove Xs – Expectation

Ls(qest, p) def= EXs∼p d(qest(Xs), p)

Remove p – Worst

Ls(qest) def= max
p∈∆k

Ls(qest, p)

Remove qest - Best

Lk,s
def= min

qest
Ls(qest)

= min
qest

max
p∈∆k

EXs∼p d(qest(Xs), p)

Expected Loss of the best estimator for worst distribution

Min-max Expected loss

Lk,s =?
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Binary and Larger Alphabets

L2,s → Lk,s

Xs =X1, . . . ,Xs ∼ Ber(p) independently Estimate p

N – # 1’s in Xs

N ∼ Bin(p, s) E(N) = sp σ(N) =
√
sp(1 − p)

qemp(Xs) def= N
s

E(N
s
) = p σ(N

s
) =

√
p(1−p)
s

E ∣∣(1 − N
s
, N
s
) − (1 − p, p)∣∣TV = E ∣N

s
− p∣ = Θ(σ(N

s
)) = Θ(

√
p(1−p)
s

)

L2,s = Θ(
√

1
s
)

Lk,s =
√

k−1
2πs

+ o( 1√
s
) [Kamath, O, Pichapati, Suresh 2015]

As s↗∞, Lk,s ↘ 0 ,

Statistical limit

8



Trouble in Paradise
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Corrupt Data

With big data come big problems

Samples oft corrupt

Inadvertent

Faulty

Biased

Malicious

Adversarial, based on p and other samples

Identities of corrupt samples unknown

Can p still be learned accurately?
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Robust Statistics

Early

Tukey, Huber, Donoho, 70’s

Books

Robust Statistics; Huber, 1981

Robust Statistics and Influence Functions; Hampel et al, 1986

Robust Statistics and Outlier Detection; Rousseeuw and Leroy, 2003

Robust Estimation and Hypothesis Testing; Wilcox, 2011

Robust Statistics: Theory and Methods; Maronna, 2018
...

Recent

Efficient mean estimation in high dimensions

[Diakonikolas, Kamath, Kane, Li, Moitra, Stewart 2016]

[Lai, Rao, Vempala 2016]

[Charikar, Steinhart, Valiant 2017] 11



Common Model [Huber]

Parameter β < 1/2

Fraction ≤ β of samples corrupt

Different distribution, biased, arbitrary, adversarial

Remaining ≥ 1 − β fraction of samples genuine ∼ p
Generalizations to roughly p

Typically estimate distribution parameters

Median of s samples estimates univariate Gaussian mean to O( σ√
n ⋁βσ)

⋁ – max

If β > 1/2, cannot know which distribution genuine

12



Little Secret

Even as s↗∞, error does not ↘ 0

Hard limit on performance in the presence of corrupt data

Hypothesis testing

Density estimation ←Ð

Classification

... 13



The Source of All Evil

k = 2, β fraction of adversarial samples

Two possible distributions: Ber( 1
2
− β

2
) = ( 1

2
+ β

2
, 1
2
− β

2
), Ber( 1

2
+ β

2
)

Ber( 1
2
−β
2
): # 1’s in genuine smpls ≈ s(1−β)( 1

2
−β
2
) = s( 1

2
−β
2
−β
2
+β

2

2
) ≳ s( 1

2
−β)

Adversary can add βs 1’s, force s
2
0’s and 1’s, Similarly for Ber( 1

2
+β

2
)

Same overall samples for both Ber( 1
2
− β

2
) and Ber( 1

2
+ β

2
)

Underlying distribution cannot be determined better than random

∣∣Ber( 1
2
− β

2
) −Ber( 1

2
+ β

2
)∣∣TV = β

Triangle inequality

Any estimated distribution is at distance ≥ β
2
from one of two distributions

While L2,s ≈ 1√
2πs
↘ 0, L2,s,β ≥ β

2
for all s
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Implications

Accuracy does not improve with sample size s

E.g., for β = 0.2, with however many samples, L2,0.2,s ≥ 0.1

Propagates to all learning problems!

End is near?
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There is hope
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Batches

Many applications: samples collected from multiple sources

Each provides a batch of samples

Sensor networks

Recommendation systems

Natural language processing

Crowd sourcing

Federated learning

Can batched data be used for robust learning?
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Faulty Batches

Most batches genuine

Often some are not

Faulty sensors

Biased feedback

Wrongly attributed texts

Malicious sources - may even falsify data based on other samples

In some applications significant fraction of batches unreliable

CNN: 5% of active Facebook accounts are fake

Harvard: 20% of Yelp reviews fake

BBC: Fake Amazon reviews cost £5

ClickCease: 14% of ad campaign clicks fraudulent

Finance: Analysis is only as clean as your data
18



Model [Qiao and Valiant ’17]

k alphabet size

m batches

n samples each

Good batches: i.i.d. samples from p

Can be relaxed

Adversarial batches: arbitrary, may depend on p, even on good batches

β — upper bound on fraction of adversarial batches

Lk,m,n,β =?
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Why Batches Help

Binary alphabet, k = 2

Three batches, m = 3

β = 1/3 → 2 batches genuine ∼ p, 1 batch adversarial

As batch size n→∞, genuine batches → p as O(1/√n)

Find distribution q within O(1/√n) from two batches

Exists, e.g. p

q within O(1/√n) from p

20



Adversarial Lower Bound [Donoho and Liu 1988]

General framework, follows from minimum distance functionals

{fθ ∶ θ ∈ Θ} parametric distribution family

s samples, 1 − β fraction ∼ fθ for some θ ∈ Θ, rest adversarial

Estimate θ in distance measure d

General lower bound

For any s and β, Ls,β ≥ 1
2

max{d(θ, θ′) ∶ ∣∣fθ − fθ′ ∣∣TV ≤ β}

Proof similar to binary example

∣∣f − f ′∣∣TV ≤ β → ∃g, g′ such that (1 − β)f + βg = (1 − β)f ′ + βg′

Adversary can make overall distributions appear same
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Prior Work

Lower bound

Each batch can be viewed as ∼Mul(p,n)

Falls in general adversarial framework [Donoho and Liu 1988]

[Qiao and Valiant ’17] applied adversarial lower bound to fp =Mul(p,n)

For k, m, n, and β < 1/2,

Lk,m,n,β ≥ 1
2

max{∣∣p − p′∣∣TV ∶ ∣∣Mul(p,n) −Mul(p′, n)∣∣TV ≤ β}

≥ β

2
√

2n

As in binary example, applies to k = 2, m→∞ batches

Adversarial lower bound

Upper bound
[Qiao and Valiant ’17] derived an estimator qQV

▸ For β ≤ 1/900 Lk,m,n,β(qQV ) = O( β√
n
⋁
√
k+n
mn
)

▸ qQV runs in time exponential in k

[Jain, O ’19] Polynomial-time estimator with near optimal complexity + line

[Chen, Li, Moitra ’19] Quasi polynomial time and sample complexity 22



Near Optimal Learning in Polynomial Time

Loss lower bounds: Statistical Ω(
√

k
m⋅n ) m ⋅ n = s

Adversarial Ω( β√
n
)

Estimator qnew

Polynomial-time estimator, for all β ≤ 0.49, k, n, m

Lk,n,m,β(qnew) ≤ O( β√
n
⋅
√

log 1
β ⋁

√
k
m⋅n)

Works for all β ≤ 0.49

Achieves both lower bounds: Statistical to constant factor

Adversarial to small
√

log 1/β factor

No tradeoff
Polynomial time

First to allow implementation and simulations 23



Robustness is (Almost) Free

k - alphabet size n - batch size m - # batches β - adversarial fraction

Ω( β√
n ⋁

√
k
m⋅n) ≤ Lk,n,m,β ≤ O( β√

n
⋅
√

log 1
β ⋁

√
k
m⋅n)

Statistical lower bound
√
k/(mn) – Even for genuine samples

Adversarial lower bound

Individual samples - β/2

Batches - β/
√
n

If desired error

Below adversarial lower bound – cannot

Above lower bound (×
√

log(1/β)) – can achieve statistical lower bound

β = 0.1, n = 1000 → β
√

log(1/β)/
√
n ≈ 0.005

Robustness (almost) free 24



Experiments

p random distribution in ∆k

Different adversarial distributions with varied TV distances from p

Show results for worst adversary

Compare algorithm’s performance to two estimators

Naive empirical estimator

Does not utilize batch structure

Estimates p as empirical distribution of all samples

May incur loss ≥ β/2

Oracle

Knows identity of adversarial and good batches

Estimate as empirical distribution of good batches

Not affected by adversarial batches

Achieves statistical lower bound Θ(
√

k
m⋅n(1−β)) 25



Results

(a)+(b): m chosen so # good samples m ⋅ n ⋅ (1 − β) is large constant so

statistical limit stays same, m large so adversarial bound dominates.
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(a) n = 1000, k = 200
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(b) β = 0.4, k = 200
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(c) β = 0.4, n = 1000, m = k
β2

2000 4000 6000 8000 10000
batch_total (m)

0.005

0.010

0.015

0.020

L_
1 

dis
ta

nc
e

oracle
Alg 2

(d) k=200,n=1000, β=0.4 26



Algorithm in a Nutshell

Filtering algorithm: Removes suspected bad batches

Empirical frequency on remaining batches

Binary distributions: Median of batch means approximates p to 1/√n

Remove batches with mean ≥
√

log(1/β)/n away from median

General k: TV distance is highest probability difference over all 2k subsets

Small k: Remove outlier batches for all 2k subsets

Large k: Intractable, every batch may be an outlier for some subset

Want subsets with fat tails, as contain more outlier (adversarial) batches

Statistical measure capturing effect of outliers on a subset probability

Easy to find a subset among 2k where measure is approximately highest

Recursively remove outliers till measure small for all subsets

Time complexity linear in mn, small polynomial in k 27



Statistical Measure: Binomial Distributions

Consider X1,X2, ...,Xm ∼ Bin(n, p)

E[Xi] = np and Var(Xi) = np(1 − p)

Let p̂ = 1
mn ∑iXi, as m→∞, p̂→ p

Two variance estimates

First moment: V1 = np̂(1 − p̂)

Second moment: V2 = 1
m ∑i(Xi − np̂)

2

If all samples geniune then V2 −V1 → 0 as m→∞

If βm samples are corrupt so that ∣p̂ − p∣ is large then tail is fat

Fat tails increase second-moment V2 more than first-moment V1

A large value of V2 −V1 indicates fat tail

Idea generalizes to Multinomial

28



Statistical Measure: Multinomial Distributions

Consider X1,X2, ...,Xm ∼Mul(n, p)

E[Xi] = np and Cov(Xi) = n(Diag(p) − pp⊺)

Let p̂ = 1
mn ∑iXi, as m→∞, p̂→ p

Two covariance estimates

First moment: V1 = n(Diag(p̂) − p̂p̂⊺)

Second moment: V2 = 1
m ∑i(Xi − np̂)(Xi − np̂)

⊺

TV (p, p̂) = maxS ∣p(S) − p̂(S)∣ = maxu∈{0,1}k ∣p ⋅ u − p̂ ⋅ u∣

For small TV, ensure no binary vector u corresponds to a fat tail

Identify fat tails by finding arg maxu∈{0,1}k ∣u⊺(V2 −V1)u∣, NP-hard

SDP approximation (Alon and Naor, 2004) finds u∗ for which the above

quantity ≥ half the maximum

Show it suffices 29



Piecewise Polynomial Distributions

t-piece degree-d distribution – t pieces, each a degree-d polynomial

Pt,d – all t-piece degree-d distributions

Pt,0 histograms

Pt,1 piecewise-linear distributions 4-piece degree-3 distribution

Approximate any piecewise continuous distribution with large enough t, d

Approximate many staple distribution

families with very low t and d

Gaussians, mixtures, log-concave,

low-modal
Gaussian approximation by
4-piece degree-3 distribution

30



Robust Learning Piecewise-Polynomial Distributions

Loss lower bounds: Statistical 2 ⋅ d(p,Pt,d) +Ω(
√

t(d+1)
m⋅n )

Adversarial 2 ⋅ d(p,Pt,d) +Ω( β√
n
)

Estimator qnew

Polynomial-time estimator, for all β < universal constant, α ≈ 3, t, d

L(qnew) ≤ α ⋅ d(p,Pt,d) +O( β√
n
⋅
√

log 1
β
) ⋁ Õ(

√
t(d+1)
mn

)

Use our algorithm to find p′ close to p in Ak distance for k = t(d + 1)
Use algorithm in [ADLS 17] for this p′

Same comments as before

First robust estimation algorithm for continuous distributions from batches

Allows first simulations
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Related Work

For structured discrete distributions

[Chen, Li, Moitra ’19] quasi-polynomial time

[Chen, Li, Moitra ’20] polynomial time, suboptimal in # batches
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Experiments

Compared to same two estimators

Naive empirical estimator: Does not utilize batch structure

Oracle: Knows identity of good batches, uses them alone

β = 0.4, n = 500, m(1 − β) = 62
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Gaussian Mixtures

Genuine distribution: 0.7N(−2,1) + 0.3N(1,1)
Adversarial distribution: N(0,1)
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(a) Piecewise linear polynomials
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(b) Piecewise degree-2 polynomials
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Beta Mixtures

Genuine distribution: 0.7Beta(17,4) + 0.3Beta(3,10),
Adversarial distribution: Beta(2,2)
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(a) Piecewise linear polynomials
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(b) Piecewise degree-2 polynomials
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Classification

Hypothesis class H – family of Boolean functions Ω→ {0,1}

Finite VC dimension VH

Excess loss of classifier: Classifier error probability - minh∈H h error probability

hERM empirical risk minimizer – h ∈ H with lowest empirical error

With s genuine samples, hERM achieves excess loss O(
√

VH
s

)

Min-max optimal over all classifiers
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Robust Classification

With β fraction adversarial samples, exc. loss of hERM may be ≥Ω(β)

Excess loss lower bounds: Statistical Ω(
√

VH
m⋅n)

Adversarial Ω( β√
n
)

Estimator hnew

For all β < 1/2, H, n, m, p, expected excess loss of hnew

≤ O( β√
n
⋅
√

log 1
β
) ⋁ Õ(

√
VH
mn

)

Key idea: Learn p robustly in distance defined by H, then ERM

Achieves adversarial batch lower bound to small
√

log 1/β factor

Achieves statistical lower bound to log factors of n
β

Robustness (almost) free

Polynomial time algorithm for collection H of union of ≤ k intervals
37



Review

Robust learning – some samples corrupt

β fraction of samples corrupt

Hard limit on accuracy, for any number of samples

Robust learning from batches

Arises in many natural applications – sensors, recommendations, NLP

β fraction of batches corrupt even adversarial

Firsts (robust learning from batches)

Computationally efficient algorithm + essentially optimal

Simulations for discrete distributions + positive results

Estimation of continuous distributions + near optimal + efficient for Pt,d
Classification + near optimal + efficient for interval classification

The best things in life are (almost) free

Up to adversarial bound achieve same accuracy as for genuine samples 38



Thank You!
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