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WHO ARE YOU?



Background gi%ecrbi

0 Probability/Random Processes
0 Detection & Estimation

0 Communications

0 Information Theory

0 Advanced Information theory

0 Machine Learning



USC

0 Active hypothesis testing
= So many applications!

= Information theory in the wild

0 Important questions
» How do you build your tree of actions/observations?

= What is the right measure of informativeness that allows you to prune the
tree?

0 Martingales, concentration inequalities

= Very useful tools for a wide-range of applications (need more than the CLT)

o The classics still matter

» Chernoff, Stein, Wald, Blackwell, Fisher, Bayes, Neyman, Pearson
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Exploration-Exploitation Viterbi

exploration collect observations exploitation
environment unknown learn focus on areas of interest



Design of Experiments

Sir Ronald Fisher
1890-1962

The
Design of Experiments

By
Sir Ronald A. Fisher, Sc.D., F.R.S.
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More broadly %%ecrbi

David Blackwell
1919-2010

Abraham Wald

Herman Chernoff 1902-1950

1923-




MOTIVATING EXAMPLE



Boundary Detection gi%ecrbi

o4
a SENSOR NETWORKS:

: 0.'/_ T Actively build boundary

{ - .. -| Dataaggregation at

Ak . =17 each layer

: — -0 Intrinsic complexity of
— T .7 =1 boundaryis

Nowak, M & Willett, JSAC 2004, IPSN 2003
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Recursive Dyadic Partitions Viterbi
1
v/n nodes

— /n nodes

complete representation

transmit all measurements
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Complete Representation Viterbi
=n

Q This is the full tree

Y.

£2
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Recursive Dyadic Partitions Viterbi

|
v/n nodes

vn nodes

pruned representation

transmit averages/some measurements
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Recursive Dyadic Partition Viterbi
=N

0 The pruned tree

/ .
averaged measurements

from the four

grand- children

averaged measurements

from the two children



| USC
The question Viterbi

sy
0 What is the optimal grouping?

The cost of keeping fine-grained measurements/size of the tree
P = partition
0(P)| = size of partition/complexity

The cost of reducing fidelity — squared error

v
R(0,2) = Y (60i,5)—=;;)

1,)=1
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Connections to Group Testing Viterbi

2 S
0 Used in WW2 to test soldiers for syphilis

R. Dorfman, "The Detection of Defective Members of Large Populations," The
Annals of Mathematical Statistics, 1943

Binary search

N N
[‘H‘ remTt™R
N J

( ) 92 f2
‘H‘I’H‘ T \
0 Complexity reduction L ) & /i f fi
N tests — log(/N) tests I
g( ) ]T Yo fo fo fo fo fo fo fo
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Estimation Criterion Viterbi
12 1

0 Penalized empirical risk
« Squared error
Vn 5
R(0,z) = Y (00i,5) — i)
2,)=1
« Complexity of RDP

2= : 2
On = arg min {R(0,2) + 20%f(n)|0(P)|]

6(P)| ~ 64 versus |0(P')| ~ 28 #




Metric for Pruning gi%ecrbi

0 Over a dyadic partition compare penalized cost of average
measurement versus measurements from a finer scale

a Can show

ié B |(0u(id) = 0°G.9))° (\/@)
(%)

Versus minimax lower bound MSE > 0,

T3k

0 Optimally pruned partition of order O (y/n
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Numerical Results Viterbi

65536 Observations estimates
1024 Observations estimates

HHH

m:

256 Observations estimates Partition, |#| = 70

| H
-
H
. | »] I“ fi_:




Adaptive Boundary Estimation gi%gbi

0 Actively building up representation, BUT
O All measurements taken once

Reverse engineering representation

Notion of higher utility/reward
0 Notion of one representation being better than another

a Not active in measurement collection



BASICS OF HYPOTHESIS TESTING



Hypotheses and Likelihoods %%gbi

24
2 Binary Hypotheses:

Hop : null hypothesis X =0:If Hyis true

H; : alternate hypothesis X —1:If H is true
2 Model:
PY =y | X =0] = po(y) Ye)y
PY =y | X =1] = pi(y) finite alphabet

observation likelihood functions
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Binary Hypothesis Testing Viterbi

H- : alternative hypothesis

partition observation space

S

f(y) = decision rule Yi ~ px
= {0,1} i.i.d. observations

Hg : null hypothesis

y = observation % _ AT ertten)

p;i(y) = pdf of y given H; / T

inference decision rule



Good Decision Rules %%gbi

T2 N
o Log-likelihood Ratio (LLR):

o Good decision rules change the metric

change the threshold

X =

A Hy itL,>T1
H, ifL,<T

likelihood ratio test
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Kullback-Leibler Divergence Viterbi
Cos |
o  DEFINITION:

p(y
D(pllq) = Zp ) log —== P(y)

q(y)

Expectation of LLR is related to KL-Divergence

o Like a distance’” between two distributions
o BUT, not symmetric: D(p||q) # D(q||p)



Likelihood Ratio Tests %%gbi

o Equivalent representation with respect to the KL divergence
Ly™) > 7

D (p(y")llpo(y™)) — D (p(y™)llp1(y™)) > %bgT

o  The empirical distribution is closest to which hypothesis?

2 NOTE: g r7 1 — 1D (polp1)
Ei[L,] = —nD(p1]|po)

o Bayes optimal rule versus Neyman-Pearson rule

How to select 7 °?



Bayes Rule %%gbi

24

Ci; = cost of selecting

o Bayesian Risk: i when 7 is true

r(f) = Zﬂjzcz‘jp[f( =i| X =/
7 )
priors  costs infer i given truth is j

o Bayes rule:

. |Hy ifL,>7 - — log TlCo1 = C)
H, ifL, < m0(C1o = Coo)

likelihood ratio test
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Special Cases Viterbi

o  Uniform costs

Cij = 06(i—J)
0
— 7 = log—
m

Maximum a posteriori rule

Uniform costs and equal priors all likelihood ratio tests

T = log(l) =0

Maximum likelihood rule
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Gaussian Example Viterbi

24 |
Hi : Y ~ N(M2702)

) = |(M5") (-5

T

2
7'/: o 1I1’7'—|—IUO—I_IUJ1

M1 — M2 2

h
~—
<
~—

AV AV

——  pdf of +1 received
pdf of 1 received
zero threshold

———  optimal threshold

/ /]
— Q(T_luj) : 2‘1/0/12\34
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How to bound Performance? Viterbi

2 Yisarandom variable

Moment generating function

p(s) = Elexp(—sY)]
o Chernoff Bound
Vs>0 PIY >al<e *u(s) Vs
— PlY >a| <

2 Proof -via Markov inequality

PX <a] <

X = e



Chernoff Bound %%gbi

324

PlY >a] < mine *E [e*"]

3 Chebyshev
102 i Chamoft
— Exact
! \\
0" F \"\\“
U — B
-__--_-_--~<- N——_R____-
9 _— — ——_%‘_——;
Gaussian
o 3 "‘\.__»__._-
example |
10°F P
S
10%
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Error Decay Rates Viterbi

o  Often more easily computable than exact probabilities
o  Enable straightforward comparison across detectors

2 Provide a measure for how far from asymptotic performance
When do asymptotics kick in?

1
Error rate(d) = lim ——log P.(f)

n—oo T

what about fixed n?

f(y) = decision rule

— {07 1}



Error Decay Rates

Viterbi
0 Simulation performance in UWA channels
10

underwater acoustic communication

() \ (R)
. relays
-1
1 e
A N
\ P 0
\
A QY
T 10°
)
i — 1-hop constructive - MLSD . N
|| wm mm m 1-hop constructive - DFE d Ivers |ty \
|| === 1-hop hop destructive - MLSD \
1035 == = = 1-hop destructive - MLSD -‘:_‘ decay rate 2 — 2 lOg log P
| =@ 2-relay cooperative, MLSD \\ lOg P
[| = === 2-relay cooperative, DFE ‘\‘\_
|| === 4-relay cooperative - MLSD \'
== == = 4-relay cooperative - DFE x
10-4 T T T
0 5 10 15 20 25 30 35 40
total energy/symbol (dB)
IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 33, NO. 4, OCTOBER 2008

cost: error propagation at relay
Distributed Space-Time Cooperative Schemes for
Underwater Acoustic Communications

Madhavan Vajapeyam, Member, IEEE, Satish Vedantam, Urbashi Mitra, Fellow, IEEE,

489
James C. Preisig, Member, IEEE, and Milica Stojanovic, Senior Member, IEEE
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Error Rate for Bayes Rule Viterbi

o Error rate:

Error rate(f) = lim —l|08"“(f)

n—oo 1

Bayes risk

o  Theorem: error rate for the Bayes optimal rule

Error rate(LRT) = — Ozn)igl log E (po(y))A(pl (y))(l_”
| — J
|

Chernoff Information

}

2 Not a function of the priors! 7;
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Neyman-Pearson Formulation Viterbi

o Performance Measures:

PIX =0 | X = 1] = P1|X = 0] (Miss probability)
PIX =1| X = 0] =Py|X = 1] (False alarm probability)

2 Formulation: minimize miss probability while ensuring that
false alarm probability is low

mfin P1[X = 0]

subject to PolX =1] <e



USC
Neyman Pearson Rule Viterbi

2z 4

2 Optimal Decision Rule is a LRT:

Hy it L, >T
X ={Hywp.y ifL,=r
H, if L, <1

o How to select parameters:

Challenge when mismatched support and/or discrete RVs

threshold 7 and randomization v unique solutions to
EZIP)O[LTL > 7'] —|—”yP0[Ln :T]

randomization to achieve Prexactly
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Gaussian Example Viterbi

o  Continuous valued RVs, matching support
2 No randomization necessary

o False alarm rate determines threshold

a = IP){X':HX:O}

/ 15 ‘ T T ‘ T T
7- /1/0 ——  pdf of +1 received
- pdf of 1 received
I zero threshold
———  optimal threshold
1k 4

/
‘2‘/ 0/12\34
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Receiver Operating Characteristics Viterbi

0 NP best tradeoff between Pr(§) and Pp(0)

Perfect
classifier ROC curve
10e

D
True positive rate

1.0

False positive rate

Pr(9)



Chernoff-Stein Lemma %%gbi

adq ...

o  Kullback-Leibler Divergence:

] p(y) Eo[Ln] = nD(pol|p1)
D(p|lg) = Zp )log 5 Ex[Ln] = —nD(p1|po)

Expectation of LLR is related to KL-Divergence

o Chernoff-Stein Lemma: Miss rate of NP rule is

. 1 A
lim ——logP|X = 0] = D(po||p1)

n—oo mn
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Bayes Rule versus NP Rule Viterbi

o Bayesrule

Error rate(Bayes) = — min log Z(po(y))k(pl (y)) =
. )

| Chernoff Information

2 Neyman Pearson rule

Error rate(NP) = D(poupl)’
|

Chernoff-Stein exponent



USC
Viterbi

SEQUENTIAL OBSERVATIONS



USC
Sequential Probability Ratio Tests Viterbi

aay
2 Should you always use all of the data?

Stop when confident!
a A Wald, The Annals of Mathematical Statistics, 1945
2 Problem set up

Samples Y,, = [yl, Yo, - - ,ym]
L., = log Po(Ym)
pl(Y’m)

— false alarm rate

Q
£ = miss probability



USC
SPRT solution Viterbi

HO Lm > %
f(Ym) — Hl Lm < A
keep sampling else
1 1—-0
E“ """"""""""""""""""" AN A = log -
and Tr
g | © [4
W ‘E' B =~ log b
| ® [4 l -«
| iH

time, number of samples

same experiment



Now...

observations

USC
Viterbi




USC
Now.... Viterbi

observations
%
o
observations
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Now.... Viterbi

2 Allow myself to take more observations and change

experiment
= Different experiments: different sensors, different groupings

2 Now, how to develop algorithms and analyze?

k)
4 o
n & A L
g 0
-; &l X = -0 — 2 —0
©
> 0— o
| (b [e) o ~o
a | o
0 = ™ @
© N ®
R K a o
\ | ; -
.\ o) o
& Q \ "\ o

\ ‘-o

\ Y

\ ‘o

@
Q/J\ o]

which action is more informative?

wumbo.net



USC
Now.... Viterbi

2 Allow myself to take more observations and change
experiment

= Different experiments: different sensors, different groupings

2 Now, how to develop algorithms and analyze?

4 Q
As %
c > P
O A, & o el
© =
2 Of —0
4 - o
Q Q = e
o . b N o@
u, = experiment/observation mode < A&
O
Y, = oObservation
H = true hypothesis which action is more informative?

cost = c({y1, - ,Yn-1}t,{ur, - ,up_1}| H) wumbo.net
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Viterbi

YOU KNOW ACTIVE” TESTING ALREADY



Bayes Rule %%gbi

s 4q

P A, B]
P|B]
PB|AJP[A]
P B

P[A|B]




Monty Hall Problem %%gbi

2 Three doors: one car and two goats

EEE

A B C

o Pick a door!



Monty Hall Problem %%gbi

2 Three doors: one car and two goats

EE

B C

o Pick a door!

o You select A P(A\A) _
/
car is behind door A \

door A is chosen

Wl



USC
Now reveal a door Viterbi

a2 Your door is still closed
2 Do you change doors?

K B

B C




USC

Key Assumptions Viterbi

d

d

The car is equally likely to be behind all three doors

The player is equally likely to pick one of the doors
(independent of car’s location_

After player picks a door, the host must open a different door
with a goat and let player switch if they wish

If selected door has car, host is equally likely to pick one of
the goat doors

KEY — non-uniform sample space/probabilities
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Decision Tree Viterbi

: door
p_Ia_y_er $ revealed outcome
initial
guess B (A,A,B)

(AA,C)
car

location

(A,B,C)

A

(A,C,B)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)
(C,C,A)

——  (C,C,B)

MIT 6.042/18.062) Leighton & Rubinfeld



o USC
Decision Tree Viterbi

s 4

: door
p_Ia_y_er $ revealed outcome
initial
guess B (A,A,B)

(AA,C)
car

location

(A,B,C)

(A,C,B)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)
(C,C,A)

——  (C,C,B)

MIT 6.042/18.062) Leighton & Rubinfeld
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Now reveal a door Viterbi

o Your door is still closed

2 Do you change doors?

K B

B C

stay car is behind door A door A is chosen
revealed

~.
peaic, 4) — PICIA, TP(A[A)

A
car is behind door A / \

door A is chosen

door Cis revealed



USC
Now reveal a door Viterbi

o Your door is still closed

2 Do you change doors?

revealed

1
= 1
P(A|IC. A) = — 23 — —

car is behind door A

_ door A is chosen
door Cis revealed



USC
Now reveal a door Viterbi

o Your door is still closed

2 Do you change doors?

¥

1
= 2
P(B|C,A) = 31 — =

car is behind door B

sta
revealed ) Q

L=
Qo=

_ door A is chosen
door Cis revealed



Monty Hall Problem %%gbi

e dqy

o This is a sequential decision-making problem

o The decision tree

Action: switch, since the odds of winning are higher

Q
labels are arbitrary = optimal strategy: always switch

d
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Getting closer Viterbi

e |
o  Some elements of our desired framework

» Sequential decisions/observations

A tree, but we are not pruning yet

= Adversarial “game”

o Still one kind of experiment

»  One type of observation is not more informative than another

2 Can we guantify informativeness?

= How do we prune the tree?
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Wireless Body Area Sensing Network  Viterhi

IEEE May 2012, Vol. 50, No. 5

ommunications

WWW.COmMSsoc.org MAGAZINE

ECG &
Tilt sensor

Sp02 &
Motion sensor

Body

Network ®, -Ubiquitous Healthcare: Wireless
Sensors, Devices and Solutions
-Optical Networking Advances
Motion

‘Automotive Networking
‘Smart Grid

sensors

COMMUNICATIONS IN UBIQUITOUS HEALTHCARE

KNOWME: A Case Study in Wireless
Body Area Sensor Network Design

Urbashi Mitra, B. Adar Emken, Sangwon Lee, and Ming Li, University of Southern California

Viktor Rozgic, Raytheon BBN Technologies

Thatte, TrellisWare Technologies, Inc.

'dhan Vathsangam, Daphney-Stavroula Zois, Murali Annavaram, and Shrikanth Narayanan, Uni-
f Southern California

worato, Stanford University and University of Southern California
\ oruijt-Metz and Gaurav Sukhatme, University of Southern California

0 lE E E E ggf‘lwc.mons

A Publication of the IEEE Communications Society

Jovanov et al. Journal of NeuroEngineering and Rehabilitation 2005
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What is my problem? Viterbi

VR A /
Y ¢ /’ / VY
g & & Eﬁ Eﬁ ¢

y = f(X, 11) X this is active hypothesis testing

, for a time-varying process
observation state, control



Problem Framework %%gbi

o Sensor time-series (ECG, accelerometer, etc.) converted to
features

o Each state indicated by a standard basis vector

Q

e = [0,---,0,1,0---0]

d

i’th component

’H
ﬁ

)\J\zz_ T

MX&K
3‘ *g m

Zois & M, TSP’17, ICASSP’14, ISIT’14, Globecom’14, Asilomar’13, GlobalSIP’13
Zois, Levorato &M, TSP’14, TSP’13
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Heterogeneity Viterbi

> >
£ =
[ I
g ©
b b o
= ?
= >
cost

cost

a Different sensors are good at discriminating different states

2  Chicken and egg problem...



What is my problem? %%gbi

o Goal: track temporal evolution of a discrete—time, finite—
state Markov chain

o Design control (sensor allocation problem)

Heterogeneous fidelity across sensors
Heterogeneous costs across sensors

Optimize performance, minimize cost

o Contrast to standard control problems:
« control influences observations (not state)
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POMDP System Viterbi

system measurement
vector
. state - . ~
X censors Y& approximate
state switches ) » MMSE state
sensing )
estimator \
/ state estimate
(belief state) P
predicted state estimate
control Decision Process  (predicted belief state)
Ur+1

, }pk+1|k @redicted belief
sensors selection
state update

partially observable Markov decision process (POMDP)

J




Signal Model %/Jifgbi

e
o System state

=  First order Markov process
X ={ei,e0,...,e,}
L T
efl: I [O,o.o’o’ 1,07...,0]

o Sensor features

Ug_—1 Ug_1
e’iv uk:—-l ~ N(mz ) QZ )

control input (can affect size, form, etc)

Yk

= control is which sensor to listen to and for how long

= Validated by real world experiments



Non-linear Decision Regions

08f

0.7

06}

05+

04

ECG PERIOD

03

ACCVARIANCE

| ! 1 1
1] 5 10 15

USC
Viterbi

Decision regions for
bivariate Gaussians for
six activities

o Distinct means and covariance matrices for each subject

| personalized training



Differential Entropy %%gbi

a4

o Definition
hX) = - [ f@)losf@de X ~ f(a)
o Properties
1. h(X 4+ ¢) = h(X) cis a constant
2. h(cX) =h(X) +1log|c| ¢+#0,c is a constant

3. X ~N(0,0?
S A(X) =

% (27T60‘2) maximal differential entropy

4. X is a mixed random variable — h(X) = —oc



USC

Bounds on estimation error Viterbi
I

SR

— 2T7e
X = E[X] MSE optimizing estimator
E[( _X‘Y)j s L nxy)
2me

s
I

I [X|Y] MSE optimizing estimator

these are the variances
differential entropy bounded by that of a Gaussian
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State Estimator Viterbi

4

2 Minimize: Mean-Square Error (MSE)

MMSE estimator  xy, = E{xy|F}
1 history of observations
and control inputs

o  MMSE estimator equals conditional belief (probability)

1 Xk|k = Pk|k
0.5 e, =10,...,0,1,0,...,0]"
Prik = [Phjo Prjr -+ Pri) -
’ e; ey e3 e, with

P = P(x1 = €i| )

o Designed a Kalman-like estimator (recursive/discrete states)



Optimal Control Policy %%gbi

.4

o Control inputs sequence to optimize filter performance (MSE
performance)

L

Cost function  Jy = E{ > Etr Sk uk—ﬂ)H
k=1

filtering error covariance matrix

o Optimal solution via dynamic programming (DP)

optimal costtogo = min current cost
u,_1€U

&

+ expected future cost
Zois, Levorato, M, ICASSP 2013
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Include energy cost Viterbi
4 7 )
Cost function |J = E{ Z (1 —_ )\)MSE(yk, uk—l) —@(uk_l)}
k=1
\§ J
trade—off
parameter

a Partially observable stochastic control problem: determine
control sequence to optimize trade—off between MSE
performance and energy cost

min J
up,uy,...,uy,_1



Challenges of DP %%gbi

| KN
0 Curse of dimensionality
Predicted belief state drawn from uncountably infinite set

Control space can be exponentially large in N, K
2 Non-linear POMDP

0 expected future cost requires N—dimensional
integration, N = number of measurements

DP impractical for large-scale applications



Goal & Approach %/Ji%gbi

[N
0 Goal: determine
«  Structural properties of the cost — to — go function
« Sufficient conditions to characterize optimal control

-~

a| Assumptions: A

« discriminate between two states, €1and €9

= Select 1 out of N available sensors
\_(scalar measurements) )

o Two hypotheses

Prjk = [p, 1 — p)
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Cost — to — go function properties Viterbi

esdq

a Current cost
((Pkjk—1,Uk—1) = Ppp_ h(Prjr—1, Uk—1)

o Lemma: current cost is concave function of
Pk|k—1

o Theorem: The cost —to — go function 7k(Pk|k_1)
is a concave function of Pk|k—1

k=L L—1,...,1

Zois, Levorato, M, GlobalSIP 2013
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Graphical interpretation Viterbi

2 What does the Theorem really mean?

Jr(p)

0 p* 1
cost versus belief for different
controls/observation modes
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Graphical interpretation Viterbi

2 What does the Theorem really mean?

Jr(p)

0 F 1

o Optimal

uopt —

==

g

nolicy has threshold structure

p—

*

u’, p<p well — known for

_u®, p>p°

linear POMDPs
our system is non-linear
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Informativeness Viterbi
Cea T

o Definition: Given two conditional pdfs f,and fzfrom X to ))
fgis less informative than f, ( fs <p fa)if -

stochastic transformation W : Y — Y

Blackwell .
Ordering Y‘X f fa |X (Z,Y)dZ, Vx € X



USC

Informativeness Viterbi
Ces

o Fact: Consider observation kernels f(y|x, u®)and f (y|x, u”) If
flylx,u?) <p f(y|x,u®), then u® better than uﬂ

Why? Lower future cost V (p,u®) < V(p, u”)

Directly exploits the concavity of the cost-to-go function

a Like a data processing inequality
The stochastic transformation W :V —

is processing the kernel f(ylx,u®)
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Data Processing Inequality Viterbi

o Markov chains

|
=
=
S
=
&
=
N
=

p(z,y, z)
p(z,zly) = plz|y)p(z|y)

o  Theinequality

processing Y cannot increase the information about X
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Determining optimal control Viterbi
—
—uP
—u”
Case |: same mean, Case ll: same mean, Case lll: different
same variance different variance mean, same variance

a Case ll: Blackwell ordering of observation kernels
determines optimal control

a Case Ill: ordering of current cost is achieved by ordering
of function of means (m! — mY)?
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Myopic Solution Viterbi

Zois, Levorato, M, Asilomar 2013
o Optimal solution: expensive to determine over finite horizon

» Classical engineering fix: don’t look too far into the future

o Basic idea: minimize one — step ahead cost

MYyopLc

w,C = argmin£(pg_1,ux—1)
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Myopic Solution Viterbi

Zois, Levorato, M, Asilomar 2013

0 Current cost is concave with respect to Pg|x—1for 2 activity
states and 1 measurement

= Policy has a threshold structure
also! 2(p, up_1)
J— { u’, p<pt
u®, p>p 0

o This seems to be true for > 2 activity states and multi-
dimensional measurement vectors (via numerical validation)



USC

0.42 : : — -
—— Myopic policy 0.961 (ND—C) (N =9) (N =12).
EC’J 0.4} ¢ Equal allocation § 0.94}
0.92¢
© o
g 0.38 § 0.9}
qg 0.36 2 z.zi
) (o) )
Q 0.34 e 0.84r
bl.l’ 8 0.82} —— Myopic policy
E 0.32 'lq-; 0.8r 0 Equal allocation
Q o.7s)
0.3 0.76,
2 4 6 8
Average Energy Cost Average Energy Cost

o Equal allocation: request same number of samples from
each sensor

o Compared to equal allocation, energy gains as high as 60%
for the same estimation/detection performance
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Summary Viterbi

6 5
o Active hypothesis testing problem
» Individual’s state is time-varying across time

« Allocate # measurements/which sensor (observation mode)

2 Notion of informative observation modes

(Blackwell ordering)

o Given belief for each state, we know which sensor to select
(@7
Pklk—1 — 4

2  How do we analyze performance?



USC
Viterbi

OPTIMAL DECAY RATE?



_ USC
Analysis of Interest Viterbi

o Determining closed form probability of error intractable for
WBAN case

How to analyze so that we can determine design
strategies/resource choices?

2 How well does the approach work as the number of
observations get large?

Still interested in non-asymptotic/finite horizon performance

, 1
lim _NP[ —]\X + ]] probability of error

N — 00

subject to P[X =j|X =j] >1—¢

correct detection



Let’s go back to basics

USC
Viterbi

I 1
o To find desired results, need to go simpler/abstract

candidate
hypotheses

Q

Fixed true hypothesis (not time-varying)

(" hi hiy hy hy h )
hQ hg hg hz hQ hg hg hg hg hg hQ hg hg
]Lg ]L3 }Lg }L3 }L3 }L3 }L3 }Lg ]L3 113
h4 h4 h4 h4 h4 h4 h4

\¥h5 h5 hg h5 A/

policies/experiments
U1 U2 U2 U3 U2 U1 Uj U U3 U3 U2 U U9
N
Yyi Y2 Y3

observations

\ -
Kartik, Nayyar & M, TAC’22, ISIT’20, ISIT’19, Asilomar’18
Kartik & M, TSP’22
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Recall: Neyman Pearson Rule Viterbi

0wl

2 Optimal Decision Rule is a LRT:

Hy it L, >T
X ={Hywp.y ifL,=r
H, if L, <1

o How to select parameters:

Challenge when mismatched support and/or discrete RVs

threshold 7 and randomization v unique solutions to
EZIP)O[LTL > 7'] —|—”yP0[Ln :T]

threshold choice determines NP rule
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Near-Optimal Decision Rule Viterbi

o 4

2 Simpler Near-optimal Decision Rule:

%= o Tl 27 7~ n.D(po||p1)
H1 ian<7'

a threshold test like optimal likelihood ratio test

o  Lemma: miss probability probability for this decision rule

Py [X = 0] < exp(—7)
~ exp(—nD(po||p1))

Large 7 leads to high false-alarm probability
need to balance miss and false-alarm probabilities
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Moment Generating Function of LLR Viterbi

o2 4

4 MGF of LLR:
p(s) i E[exp(—SL) ’ Ho D —log po(Y)
Z ]90 pl )) pl(Y)

yey

o Recall Chernoff Information

(and recall Chernoff bound)

o  Theidea: use new measures to drive hypothesis testing
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MGF of LLR — connections Viterbi
o  MGF of LLR:
u(s) = E[exp(—8L> ! Ho po(Y)
= Z po(y “(p1(y))° b= log p1(Y)

yey

o Chernoff Information:

C(pollp1) = — ,qin log pi(s)

o  Kullback-Leibler Divergence:

1

D(pollp1) = lim — log(p(s))



USC

MGF of LLR — connections Viterbi
oy
0 MGF of LLR:
p(s) = E[exp(—sL) ! Ho I~ log po(Y)
— Z po(y “(p1(y))” p1(Y)
yey
a0 Chernoff Information:
C'(pol|lp1) = — min logu(s) Bayes rate

0<s<1

o  Kullback-Leibler Divergence:

1

D(po\|p1) = lim —— |08(M(5)) NP rate
s—0 S
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Renyi Entropy & Divergence Viterbi

o6
o Renyi Entropy

generalizes entropy H,(p) = ﬁ log Z?zl pe

o Renyi Divergence

Do (pollp1) = - i 7 log (Z(po(y))a(pl(y))1a)

yey

2 Renyi Divergence and MGF of LLR

1
D —s)(pollp1) = T log p(s)



Chernoff Bound and Renyi Divergence %%gbi

02y

a  False-alarm probability bound using Chernoff bound:

A

]P)()[X — 1] — PO[Ln < 7'] < eSTIEO[exp (—SLn)]
= e (u(s))"

o False-alarm decay rate:

log(Pg| Ly, < T
_ ( O[n ) > sgg (sD1-s(pol|p1) — s7/n)

= — ;2‘5 (log(u(s)) + s7/n)



Example: Gaussian Likelihoods %%gbi

w09
a2 Null and Alternate Hypotheses:

1 y?
— T 302
Ho : Yy, ~ N(0,07) Pl = e
Hi:Y, ~N(u,o°) _ e
p— (& 20
P1 (y) O'\/%
o Log-likelihood ratio is also Gaussian:
12
02— QMY Mean: 252 under Hy
- x
Variance: — under Hj

o2



Example: Gaussian Likelihoods %%gbi

mwo |
2 MGF of negative LLR:

2 2 .2
—1u2s  p2s
pis) = exp( ozt 202) FEEEE ‘ //
infs>o (log(u(s)) + s7/n) —_ //
can be obtained in closed form \/
_(//0/




Example: Gaussian Likelihoods %%gbi

a g

o False-alarm decay rate:

~ log(e) - ~ log(Po[Ly, < 7))

n n

> — inf (log(u(s)) + s7/n)
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Summary: Gaussian Likelihoods Viterbi

w |
o Decision-rule:

. Hy ifL, >
X { 0 = likelihood ratio test

“YH, ifL, <7

o Miss probability lemma: large threshold desirable

P, [X = 0] < exp(—7)

o False-alarm probability: cannot have very large threshold

Sufficient to - ) B 2u2n log(L)
satisfy constraint —, 2072 o

e —

asymptotically optimal error rate non-asymptotic term




Exploration-Exploitation %%gbi

exploration collect observations exploitation
environment unknown learn focus on areas of interest
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Active Hypothesis Testing Viterbi

I

EXPLORATION
. Lo mEEmEmEmEmmm—_————— ~a ﬁ‘\\
wllht h1 hi hi Iy I ittt N
= 2|1he hy hy hy hy ho ho ! Vhy hy hy ha h ho
;g '%% : hs hs hs hs hs hs hs : l]Lg hs hs ‘J
§ & =h4 hs hys hs hys hy h4= SEmmEETEEEE T
S| \hs hs hs hs ] EXPLOITATION

U1 U2 U2 U3 U2 Ul Uj U2 U3 U3 U2 U2 U

policies/experiments

—_ 2
2B &
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focus on exploitation
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Active Hypothesis Testing — Prior Work V/iterhi
e [ ]

Q

Chernoff, H., 1959. Sequential design of experiments. The Annals of
Mathematical Statistics

Nitinawarat, S., Atia, G.K. and Veeravalli, VV., 2013. Controlled Sensing for
Multihypothesis Testing. IEEE Transactions on Automatic Control

Considers decay rate of maximal error probability with fixed sample size

Asymptotic optimality of stopping time formulation

Naghshvar, M. and Javidi, T., 2013. Active sequential hypothesis
testing. The Annals of Statistics

POMDP formulation - Bounds on value function and asymptotic optimality

Huang, B., Cohen, K. and Zhao, Q., 2019. Active Anomaly Detection in
Heterogeneous Processes. IEEE Transactions on Information Theory

Group testing-type approach and asymptotic optimality

We focus on non-asymptotics:
performance analysis and policy design
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Stopping Time Formulation Viterbi

ey

2 Classical approach

2 Perform experiments until confident — inconclusive
declaration not allowed

0 Stochastic time-horizon

3 Minimize: E[N]+ L x P/ X # X]
expected stopping _ l Bayesian error
fime fixed, usually very large orobability

room for improvement in the non-asymptotic regime



Active Hypothesis Testing

o Access to multiple experiments and can select themin a
data-driven fashion

Experiment

Unknown

Uy

Quantity
X

In _ {U’n—l, Yn—l}

Y

Memory

USC
Viterbi

Observation

Inference XN




System Model %%gbi

o Experiment Selection Strategy:

inference
- >
(Ul,Yl) (U27Y2) (UNQYN) XN
\ J
|
Past information I, U, = gn(I,,random) € U

Observation Y,, independent of past given U,, and X

a Inference Strategy: infer after gathering all data — may
declare inconclusive if necessary

Xy = f(Int1,random) € X U {9}



System Model %%gbi

o Observations:

PV =y | X =i,Un =u] =pi(y) Finié ;F)Jf}\abet

Observation Experiment  Likelihood functions

Observation Y,, independent of past given U,, and X
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Neyman-Pearson Formulation (P1) Viterbi

2y

o Incorrect conclusion: very expensive — must be avoided
Misclassification probability:

YN = Pf’g[UiGX{XN =14, X £ i} Probability of making an
incorrect conclusion

Misclassification probability O if always declare inconclusive

o Correct inference: need to make correct inference with
sufficiently large probability

Un (@) =P Xy =i | X =14

Correct inference probability of type-:
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Neyman-Pearson Formulation (P1) Viterbi

o Optimization Problem:

ferﬁ,lgeg N Infimum value:
subject to Yn(i) > 1 —en, Vie X TN

among all strategies that make correct inference with
high probability, pick those that misclassify least

symmetric formulation
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Symmetric Cases Viterbi

s

N>
misclassification probability N >
i
S5 [
symmetric _ __
formulation el
. o X
min N £
fFEF,gEG K =
subject to Yy (1) > 1 —en, Vie X &
o [
e

correct inference probability —
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Neyman-Pearson Formulation (P2) Viterbi

2

a Incorrect conclusion: focus on a particular hypothesis

on (D) =PHI[ XNy =i | X i Probability of incorrectly

Incorrect inference probability of type-i inferring hypothesis <

o Correct inference: need to make correct inference with
sufficiently large probability

Un(@) =PI Xy =i | X =]

Correct inference probability of type-2
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Asymmetric Case Viterbi

127

Ho
a . .
asymmetric

Hq versus {Hq, Ho, H3}
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Composite Test Viterbi

128

2o H:is a single hypothesis

2 Hcis all other hypotheses

H; versus P/If/
H; ={Ho,Hy---H;_1,/H;11,--- Hy}

on (i) =PHI[Xy =i | X # 1]

= P Xy = i|H{] incorrectinference

Un(@) =P Xy =i | X =]

— P[Xx = i|H;] correctinference
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Neyman-Pearson Formulation (P2) Viterbi

24

o Optimization Problem:

min '
feF,geqg 240 Infimum value:
subject to Yy (i) > 1 —en O (%)

Simple Null { X = i} vs Composite Alternate { X # ¢}

Problem (P2) is easier to analyze
P2 will get us to solving P1
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Neyman-Pearson Formulation (P2) Viterbi

o

2 Asymmetric Hypothesis Test:

Fix experiment selection strategy g
and view as single-shot hypothesis testing problem

(U1,Y1) (U2,Ys) ... (U, Yn) ... (Un,Yn)
\ |
|
Int1
Pj%,q;<IN+1) Q?\I,Z‘(IN—H)
PIINy1 =Iny1 | X =1 PIInt1 =Ins1 | X # 4]

test if In11 comes from P or ()

asymmetric formulation
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Asymmetric vs Symmetric Cases Viterbi

131
a . .
asymmetric P1
H, versus {H,H,,Hs}

symmetric _|
formulation

d

YN = Pf’g[Uiex{XN =1, X # i}

min YN
feF,geg -

subject to Yn(i) >1—en, VieX
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Useful Information-theoretic Quantities Vite i

132

o Confidence Level:

Cz(p) = log p(z) : ﬂn(l) — P[X =1 | Ul:n—17Y1:n—1]
1 = p(i) Posterior belief

P

7 versus not 2

o Expected Confidence Rate: Average Kullback-Leibler
Divergence of the Asymmetric Hypothesis Test

1 1

T ) = B Cilpxar) — o)) = Y |l

Pg(INH)]
QI(IN+1)
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Useful Information-theoretic Quantities Vite i

ey

o Max-min KL-Divergence

e Distributions over e Distributions over set of )
set of experiments: AU alternate hypotheses: AX;

sk

e Max-minimizer: o’ e Min-maximizer: 3¢
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Max-min Divergence Viterbi

134

o Max-min KL-Divergence

D*(1) = ' D(p¥||pY
0) = mulniln ) | edw)ioie; ;)

a(u) = PP [select experiment u]

e Distributions over given o, averaging over all experiments
set of experiments: AU  which two hypotheses yield the smallest
. divergence?
e Max-minimizer: o' -> hardest to distinguish

/

best probability distribution
for hypothesis i
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Max-min optimization Viterbi

135

e Distributions over
set of experiments: AU

*

e Max-minimizer: o*

we want to select the experiment that maximally separates
the distributions for each hypothesis
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Min-Max optimization Viterbi

136

o Equivalent optimization

a€AU jF#£1 ’
= min maxZﬁ(j)D(ngP;L)
BeEA|H i

e Distributions over set of

alternate hypotheses: AX;
. given the best u, which priors
e Min-maximizer: 5* make the two easiest hypothesis
/ hard to distinguish

worst prior probability distribution
for the other null hypotheses
prior on hypotheses
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Min-max optimization Viterbi

137

* Distributions over set of
alternate hypotheses: AX;

e Min-maximizer: 3

the adversary wants to maximize the prior”” of the wrong
hypothesis closest to the true hypothesis
P[purple] <<< P[blue]
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Data Processing Inequality Viterbi

o

o Markov chains

|
=
=
S
=
&
=
N
=

p(z,y, z)
p(z,zly) = plz|y)p(z|y)

o  Theinequality

processing Y cannot increase the information about X



DPI for Divergence

d

d

d

Channel X Dyla

Two input distributions:

USC
Viterbi

— Y

if X ~px thenY ~ py
if X ~qgx thenY ~ gy

DPI: D(pz|¢z) > D(pyllay)

Processing the observation makes it more challenging to determine
whether it came from p or g

Py|x can be deterministic Y =1 4(X) for event A
Y ~ Ber with probability P(A) or Q(A)

D(pzllgz) = D (Ber(IP(A)[[Ber(Q(A))
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Asymmetric Converse (P2) Viterbi

o

2 Weak converse: using DPI for binary hypothesis testing
1

— - 10g o (i) < J4, () + ©(1/N) < D*(i) + ©(1/N)

o Asymptotically optimal strategies: Using Chernoff bound
achievability

- log 6} (i) > D*(i) — O(1/VI)



Chernoff’s Strategy

142

2 For asymmetric formulation, i specified

USC
Viterbi

2 Randomly select experiment, open-loop from distribution

Set of all

experiments

2 For symmetric formulation,
« select most likely i based on data

. *
= Formost likely I, use ¢; above

2 Other works use a similar approach

distributions on Oﬁj . — arg 11N axX min
> AU jF#1

> auD(@}|p})

Kullback-Leibler
divergence
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Asymmetric Achievable Strategy (P2)  Viterbi

flont1) =

i ifCi(png1) — Ci(p1) >0
& otherwise.

Threshold based inference strategy

Randomly select experiment with
distribution o**

Experiment selection strategy



Asymmetric Achievable Strategy (P2) %%gbi

flont1) =

i ifCi(png1) — Ci(p1) >0
& otherwise.

time, number of samples

Threshold based inference strategy recall SPRT:

stop if confident enough

Randomly select experiment with
distribution o**

Experiment selection strategy



Achievable Strategy %%gbi

@s
2 Note that achievable strategy is
« Datadriven in inference (hypothesis selection)
Confidence function is a function of the data
» Randomized in experiment selection

» Devised to prove asymptotic results of best possible
strategy



Symmetric Converse (P1) %%gbi

o  Converse: use total probability theorem and the converse for
(P2)

—% log ynv = —% log (; PlX # Z]¢N(’l)>

< miin D*(i) + ©(1/N)



Symmetric Achievability (P1) %%gbi

e

o Achievability: a variant of the previous strategy

flong1) =

i ifCi(pny1) — Ci(p1) >0
& otherwise.

Threshold based inference strategy

Current most-likely hypothesis: ;

Randomly select experiment with
distribution o**

Experiment selection strategy
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Optimal Error Rates Viterbi

o Theorem: Chernoff-Stein Exponent for Asymmetric case (P2):

i —% log &% (i) = D*(4)

N — o0

o Theorem: Chernoff-Stein Exponent for Symmetric case (P1):

1
lim —— log % = min D*(i
Nbs N CoTN TR (4)
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Active Experiment Selection Strategy  Viterhi

2 MGF of LLR: now depends on the experiment

g =E;exp [ —slo pi (V)
pilu, s) = B p( '%u(y))

J

2 MGF based metric for experiment selection:

) £ 1 j Sl u, s og 2L
M (u, p, 5) = Zj;é (p(3)) MJ( ) A 2INgB€2N

2_j2i(p(7))?

Select the experiment v € U that minimizes M;(u, py, SN)



USC
Performance Guarantees Viterbi

2

o Theorem: the experiment selection strategy is
asymptotically optimal and achieves significantly better
performance in the non-asymptotic regime

« 8§ = S chosen just right” so the right sums converge
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Some Finite Horizon results Viterbi

sty

o For the general case (we will specialize to anomaly detection)
o Determine a Chernoff bound for active experiment selection
o Key: bounded LLRs

p;(Y) |
py(Y)

< B

|Iog

bounded variables are sub-Gaussian

o Can determine bound and optimized threshold
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Numerical Results Viterbi

122

0 1 1 1 1 1
A4 DAS-RS
—5 V—¥ Chernoff 1
/=y, %
Ef_; N ®@® ORS
; —10F e = = Weak Bound |7
A Ts
o “
= —15f ° |
<
g
= —20f 1
= a5t 1
2
= 30} ]
2 -85l . -
3 “o
] N
—40 } 5 20 ]
S
b 3
S
_45 1 1 1 L 1 | 1
0 100 200 300 400 500 600 700 800

Time Horizon N
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Some Takeaways Viterbi
G |

d

For binary hypothesis testing, select the experiment with
largest KL-Divergence
Exploitation does not need to be active

NOT always true for M-ary testing (multiple alternatives)

For M-ary case, we care about the event

min L) > 7
J€alt. hyp

Pairwise LLR for each alternate must exceed the threshold

Similar achievability bounds can be derived in this case —
these achievability bounds lead to our MGF based scheme
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Neural Networks as Policy Optimizers Viterbi

158

2 Consider the following framework
=  DNNs as policy optimizers
= Simulate underlying model, generate data, evaluate performance

= With simulated data, train DNN via gradient descent

not new train based on performance

used in DQN

Policy as Neural
Network

N~

simulate using policy

Underlying Model

Q: How to properly design NNs for experiment selection and
classification?



Third Wave of NN %%(Sbi

I

ANSACTIONS ON COMMUNICATIONS, VOIL. 43 NO. 2/3/4 FEBRUARY /MARCH /APRIL 1995 e ,':\\v : ’
w/ N ¥

Adaptive Receiver Algorithms for Near-Far
Resistant CDMA

Urbashi Mitra, Member, IEEE and H. Vincent Poor, Fellow, IEEFE

single layer perceptron

y ‘\b‘ IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 12, NO. 9, DECEMBER
) . Neural Network Techniques for
o i) Adaptive Multiuser Demodulation
»T:/ : 2 U. Mitra and H. Vincent Poor, Fellow, IEEE

support vector machine

NOW: COMPUTATIONAL HORSEPOWER & NEW ANALYSIS TOOLS
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wdf

2 Theoretically, neural networks are universal approximators
2 Challenge is finding the right architecture

Vision Language
ez OH SRR Convolutional Neural
O = roup o
_ o OGSt Network and Recurrent
€ ® 4 - - market. .
> ¢ BEE T Neural Network for caption
. generation
Source: Deep learning, Nature
Convolution Convolution Fully cgnnected Fully con ected
r ’ ~ Deep Q Network
0
O O o, Otr1 . D EI : m § fO r
v v VT vT ~ I reinforcement
W B D i/ m . p ‘
s 1% -1 S Ste1 BN s\ .
O sy — O——0——0— 1 \\ : '
:> Unfold " ki v -UD QE =0 ' ©®:. = learning
U U U U - = Y AR Y/
B 2\ m . . o
* Xg % o .
l l o] E o Source: Human-level control
% through deep reinforcement
Recurrent Neural Network o

learning, Nature
Source: Deep learning, Nature
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Design Goals Viterbi

ey .

use insights from information and control theory
to design architecture and features

2 Deep reinforcement learning is an adaptation of Q-learning
» examined Recurrent Neural Networks and Q-Networks

« Q-Networks learn efficient query selection policies

Kartik, Sabir, M & Natarajan, Allerton’18
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Recurrent Neural Network Viterbi

Outputﬁ
f T T
Learns to classify
State s, + NN2 —— States, ,4“ --------------- StatesN 4‘_
Input U, Vv, Input Ups1, Ve Input up. vy
- Sequentially provide query-
0.9 A
observation pairs

- After N time steps, guess hypothesis

- If correct, O loss and 1 otherwise :
.  BUT 06
Fails to learn policy o ]

—— random-input_train-20T_test-allT
Ba C kp ro pa gat| on h as nume I‘I ca I random-input_train-allT_test-allT
l1 2I é ll} !lS é % EIB I9 1|0 1'1 1I2 ll3 114 1'5 1I6 ll7 118 1|9 2'0

stability issues timesteps (T)




Solution: Deep Q-Network %%gbi

e dq

Represent Q values as a neural network vs a matrix

o Cannot simply assign Q-value
updates

p(1)
) . Q(ul)
Fit Q-value update to network with MSE p(2)
loss using gradient descent Q(uz)
p(3)
Q-values
Belief vector Fully connected
o  Optimize loss using gradient descent hidden layers
MSE = |[DQN(p) — Q'(p)|?
> Agent
a Issues
Belief space infinite — € exploration R, Simulate belief U,

Numerical stability issues/normalization update Pn
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Numerical Comparison Viterbi

2 Extrinsic Jensen-Shannon Divergence (EJS):
EJS(p,u) =E[C(F(p,u,Y)) —C(p)]

Greedy: select experiment that maximizes EJS

Naghshvar & Javidi, Extrinsic Jensen-Shannon divergence with application in
active hypothesis testing, ISIT, 2012

2 Open loop verification (OPE):
« Explore using EJS

- If pi > O-7(confidence) select experiment with distribution

- Recall Chernoff approach o; > 0.7

Naghshvar and Javidi, Active Sequential Hypothesis Testing, The Annals of
Statistics, 2013
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Numerical Comparison Viterbi

e 4

2 Our adaptive best-response heuristic (KLZ):
« Explore using EJS
- If p; > 0.7, select action from support (i) that maximizes Ji(p, )

Ji(pyu) =D 4 1ijpiD (pi'llp})

2 Compare to our final general strategy

2 Compare these three strategies to DQON
EJS work states conditions under which EJS is asymptotically optimal

Example selected to violate those conditions
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Additional Queries Viterbi
ey
e=10""
=0 | y=1 y=0]y=1
ho | 0.8 0.2 ho | 0.8 0.2
hy | 0.2 0.8 hi | 038 0.2
ha | 0.8 0.2 hy | 0.2 0.8
Ul u2
y=0|y=1 y=0]y=1
ho | 0.8 0.2 ho | 0.8 0.2
hi | 1—e€ € hy 0.8 0.2
ha | 0.8 0.2 ho | 1—€ €
U3 u4

KL-divergence is asymmetric
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Deep Q Network for Active Classification Vieihi

G |

o Optimal strategy computationally expensive

Infinite state space

2 New measure from theoretical analysis: structural properties

1.4

o KLZ close to optimal rate

o OPE asymptotically optimal,
but very slow convergence

Rate Jy
o

*—+ DQN
e—e KILZ
v—v OPE
a~—A EJS

- Optimal Rate

a not optimal

Expected Confidence
o
N

0.4}

DQN learns the best policy

0.2
0

20 40 60 80 100
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(TIGHT) FINITE HORIZON?
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Testing for Anomalies Viterbi

170

Multicomponent system with potential anomalies

Controller activates sensor
and gets data

d@)i

Sensor for each
component
Anomalous Component



Testing for Anomalies %%gbi

171

Goal: Test whether there is anomaly or not

Controller activates sensor
and gets data

Sensor for each
component




Anomaly Detection — a problem with UsC
symmetries Viterbi

173

multicomponent system
with at most one anomaly

controller activates sensors
at different components
j 7 at each time slot

U
@
£ g

. . . . . . . sensor for each

component

Number of components: M (= 7)

True system state: X (= 3)
X €{0,1,..., M}
¥ {O if no anomaly

7 if component 3 anomalous



System Model %%gbi

174

i @!» Cc!>)
Component u

Observation y

Conditional Density pi(y)if X =u po(y) if X # u

Anomalous Not Anomalous

Symmetric if density does not dependonu  pi'(y) = pi(y) Vu



System Model gi%cgbi

@
- g

& Component u
Observation y

po(y) pi(y)  conditional density

Symmetric if density does not depend on u



Recall: Symmetric Case

USC
Viterbi

N

misclassification probability
v =PI Ui {Xn =i, X #4}]
min
feF,geg TN
subject to Yy (1) > 1 —en, Vie X

correct inference probability

©

these all look the same!

N>
2 2
N

S
S g
v

>
S X
2

B e
S >
v

symmetric
» .
formulation




Same framework as before %%gbi

o Experiment Selection Strategy:

inference
>

A

(U1,Y1) (Us,Y2) ... (Un,Yn) ... (Un,Yn) Xn

\ J

Past information I,

Observation Y,, independent of past given U,, and X

o Inference Strategy: decide safe or not safe
binary valued X’N ~ f(]N—|—1) safe: X =0
inference also randomized not safe: X # 0
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Contributions Viterbi

I
0 Pose fixed-horizon active Neyman-Pearson anomaly
detector
= asymptotically optimal error rates

»  For a symmetric system, even stronger non-asymptotic
converse bounds

o  Design deterministic experiment selection strategies
= Achieve asymptotic bounds

» Up to an additive logarithmic term (strong sense) in non-
asymptotic regime = 2" order optimal

o Open loop strategies (asymptotically optimal) not strong in
finite case
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Neyman-Pearson Formulation Viterbi

I

fors Problem (P)
correct detection probability JeF,g€9

A subject to Yy > 1 —en
o =PIXn =0]X #0]

_ _ - Infimum value: ¢y
incorrect detection probability

minimize error subject to correct detection constraint

0 Incorrect safe declaration very expensive — can tolerate a few false alarms

2 GOAL: Find detection/inference & experiment selection strategies to
solve (P)



Log-likelihood Ratios %%gbi

2

= e,

Component u

Observation y EEEREER /.
Conditional Density pi(y)if X =u po(y) if X # u
Anomalous Not Anomalous

0(y) e _ u
by TU=J DY = E[L;(u,Y)

0 otherwise. Y ~ pg

log

Lj(uvy) = {

log-likelihood ratios X =0vs X = Kullback-Leibler Divergences
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Accumulated LLR and Confidence Level Vit b

ey

o Accumulate log-likelihood ratios for each component

Zn(J) = ZLj(UkaYk)

o Confidence level: is a log-likelihood ratio

cfﬁm) = —log JZE; exp (Iogfn\(j) - Zn(j))_

ior belief ~ min{Z,(J
prior belie ;nelzg{ n(J)}
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Accumulated LLR Evolution Viterbi

Cap |

evolution of LLRs under different experiment selection strategies

30 !
o—eo KLZ
x—x  OPE i
251 , study the evolution of
- accumulated LLR vector
20 |+ T b @
O
S
| -
2
15}
?é\l
(a4
—_
—
10 -
analysis easier for
5| random walks
difficult otherwise
OL
_5 | | | | | |
=5 0 5 10 15 20 25 30

LLR A}
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Interpreting the plot Viterbi

=

o  Kullback-Leibler Divergence:

] p(y) Eo[Ln] = nD(pol|p1)
D(p|lg) = Zp )log 5 Ex[Ln] = —nD(p1|po)

Expectation of LLR is related to KL-Divergence

o Random walk
L, — nD(po|lp1) under H
L, — —nD(pi||po) under H;



USC

Recall Max-min KL-Divergence Viterbi
e |
o Define o, B distributions
D* = ‘max ;ngg ueua(u)Dj argmax: «
= i, e > AOD)  argmin:§

o Lemma: for anomaly detection/symmetric case

recall D, #0 when anomaly

1 ) o (u) = B*(u) = D/ D"

* —— —
ueld Y
uniform when symmetric
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Asymptotic Results Viterbi

2

o Weak converse: Based on Data Processing Inequality

L gt < p* o
N & N_I—EN N(I—EN)
error probability YNy > 1 —en

o Previous converse for the general case:

—% log Vv = —% log (ZL: PLX 7 i]ch(i))

< min D*(i) + ©(1/N)
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Asymptotic Results Viterbi

Cae |

2 Asymptotic achievability:

Experiment selection strategy: randomly select component from
distribution o™ (Open loop sufficient!)

Inference strategy: decide safe only if confidence sufficiently large

CTns1, 1) = —log | Y exp (log 71 () — Za())

| jeu

a  Strategy essentially the same, but can decompose
confidence function better due to symmetry of distributions



: USC
Asymptotic Results Viterbi

ey

2 Optimal error rate: under some minor assumptions

1 Generalization of

im ——logodpn = D Chernoff-Stein Lemma
N — o0 N g¢N

1
. 1
(5
ueld Y

o) e _ u
log g%(z) if u = DY =E[L;(u,Y)]

0 otherwise. Y ~ pg§

Lj(ua y) — {
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Viterbi

NON-ASYMPTOTIC RESULTS
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Martingales Viterbi

o
0 Definition
{M, }>°, is a Martingale wrt {X,}>°,if V n >0
1. M, = f(Xo, - X»)
2. E[|M,|] < o

3. E|My.1| My, Myl = M, almost surely

{ X0 1520 need not be specified, only items 2. and 3.



Why Martingales? %%gbi

o Prove bounds/convergence

Estimation and control

2 Can generalize LLN and CLT

Sums of random variables

o Martingale difference sequences

Exploited in prediction/control

a  Foster-Lyapunov drift

Explore the stability of Markov processes

a Martingale theory allows for a lack of Markovity and
linearity



USC
Example Viterbi

o2 4

{X,} iid with M,, = >, _, X such that
E[X,] = 0
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Martingale property Viterbi

o3y

n+1

k=0
n—+1

= ) E[Xi|Xn, - Xo]
k=0

E

=
5
§
5
||

Xn,. . XO:|

= E[Xpp1| X, Xol + ) E[Xi| Xp, - Xo]
k=0

= E[Xppa] + ) Xi

k=0
— 04+ M, =M, &2
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Concentration Inequalities Viterbi

o
0 Azuma-Hoeffding inequality (1963/1967)
{M,,} is Martingale, if 3 {5;} € R such that
P[M, — M, 1|<8] = 1 Vn

then

02
P{|M, — My| > C] < 26Xp(—225i2> C >0

If increments bounded, probability of a large deviation is small

Samples concentrate about a point as n gets large



USC
Proof Ingredients Viterbi

os 4

2 Proof of AH
« Chernoff bound/Markov inequality
« Convexity/lensen’s inequality
« Martingale property

=  Minimize over Chernoff variable

2 AH versus us...
» General Martingales, bounded increments

«  We will exploit conditional independence, but possibly
unbounded increments

« BIG PICTURE, very similar



N USC
Key Decomposition Lemma Viterbi

o 4

51 (7)e—Zn ()
p1() = (/L= pr(0)  Prri () = Zkzu(,]’é)l(k)ezn(k)

C(Iny1,p1) = [Zn +D(5*||ﬁ1)] +- [— D(B*|pn+1)

= . : : arg min max
Zn =Y B(5)Znl)) °
JeU
sub-martingale in general

symmetric case: i.i.d. sum and strategy independent
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Key Decomposition Lemma Viterbi

oy

51 (7)e—Zn ()
p1(7) = p13)/(1 = p1(0) ﬁwHCﬂ==§¥£;éﬂkyzzmm

C(Iny1,p1) = [Zn +D(5*||ﬁ1)] +- [— D(B*|pn+1)

\ J
Zn =" B () Zn(j) !

non-positive
JeEU

sub-martingale in general

symmetric case: i.i.d. sum and strategy independent



USC
Non-asymptotic Bounds - Symmetric  Viterbi

1

2 Theorem

Strong converse: follows from decomposition and
strong converse in Polyanskiy, Poor and Verdu, IT Transactions 2010

L —log oy < INVy (eN + €—N> + Iogi

- 7 EN

—log oy = INVy (eN — €—N> — 0 (Iog 1)
1_ Y EN

Strong achievability: based on decomposition, an adaptive experiment
selection strategy and a Chernoff bound

n > 0: may depend on IV

INV: quantile function of Zx + D(8*||p1)
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Berry-Esseen Theorem Viterbi

oo d

0 Consider the empirical mean of i.i.d. variables  E[X;] =0

21 _ 2
X b4 X, EX{] =0

Yn . X %) = p

o Then

Fula) = 2(@) < 50

CDF of Y,,4/1

o)

CDF of standard normal
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Berry-Esseen Approximation Viterbi

o Corollary: straightforward application of the Berry-Esseen
theorem (approximate everything as Gaussian from CLT)

6T
—log ¢y < ND* —V/NVQ™! <eN — %N - > +0 (Iog i)

vVINV3 EN

_ 61 N
—logdpsyy > ND* — VNV 1(6 _ N )—O(Io —)
BN = ATy T e € o

V' : variance of LLR
T: centered absolute third moment of LLR

(2: tail distribution of standard normal
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Two Experiment Selection Strategies  Viterhi

00§

2 Open-loop randomized: asymptotically optimal

randomly select component from distribution o*

o Adaptive deterministic: also asymptotically optimal
at each time n, select the component j

that minimizes Z,,_1(j) — log p1(j)

confidence  C(In+1,p1) = —log Z exp ('08 p1(J) — Zn(j))
| jeu

o Example setting: two-component and binary observations



SC
Individual Sampling Results %/Jiterbi

0 ——
“ .
\ o Open-loop strategies:
- 1. Uniform random selection
€ - = 2. Round robin
< .
e 3. Open-loop sampling cannot
E get better than this
£ —10}
g
g st i . .
2 —
= ¥-¥ ORS Adaptive Selection
“g = RR
% A—A DAS ~
gﬁ e Strong Bound N\
— N
— RRbound N\ Note that computed strong lower
Weak Bound N bounds are fairly tight
_250 200 400 600 800 1000 1200 1400 1600

Time Horizon N

128 component system with Gaussian likelihoods
and individual sampling
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Exploration Phase Viterbi

2 Exploration important for symmetric case B

« Search for anomaly based using Q QO
O 0 ® ®
grouped observations db db ddb d %
900600000000 0006
g 1
[]
[]
[]
[]
[]
- HE
== = =S EE =T
Classical approaches suggest lawnmower- Binary-search type approaches
type exhaustive search more efficient
Chernoff, 1959; Nitinawarat, Atia, Naghshvar, Javidi 2012, 2013;

Veeravalli 2013 Chiu, Javidi 2020



Confidence

Exploration Time

25 ‘ ‘
&—® Group
»—x  Individual
20y T T ]
| R s R | LA
T — T o — . T U S
g “Exploration times 1 1
T - \ ffffffff S -
o ¢ PP ST PP PIOS PHPPIIRY . € e
_5 """"" 3’",'\""""‘;' """""""""" v AN AWANAN A TARA Y . " E A O
_10 l | | | | | |
0 100 200 300 400 500 600 700 800

USC
Viterbi

Exploration time: T = min{n' : Cx(pn) > 0Vn >n'}

Time horizon N

after exploration time, our
most likely hypothesis is
always the true hypothesis

exploration strategy should
ensure exploration time is
small — we derive high
probability upper bounds
on this



Exploration Time

USC
Viterbi

Confidence: safe vs unsafe

30

25

20

15

10

Exploration time: T = min{n’ : Cx(p,) > 0Vn >n'}

e—e DAS
x—x ORS
v—v SIN

W
Explforationétime fdr ORS
0 2I0 4I0 6I0 8I0 l(I)O lé() 140

Time horizon N

After exploration time our
most likely hypothesis is
always the true hypothesis

compute exploration time
only in hindsight

Exploration strategy should
ensure exploration time is
small — we derive high
probability upper bounds
on this
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SARS-CoV-2 Testing Viterbi

UCsr
2 A few realities have emerged S
Testing the Tests: COVID-19
n Antibody Assays Scrutinized for
Accuracy by UCSF, UC Berkeley

= Tests have different efficacies Researchers

« Timing of test administration matters

| BRIEF |
FDA OKs updated instructions for

- Both for serological (antibody) and PCR (RNA) tEStS atouacy conoemme re testamid
0 The future should enable ':? &
» Heterogeneous tests \‘oﬁ\ |
» Regular testing CORONAVIRUS (COVID-19)

COVID-19 Genetic PCR Tests Give False
Negative Results if Used Too Early

A new study confirms what many suspected, that PCR testing
even 8 days after infection shows 20 percent false positives

—

2 How can active methods help?
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Recall Group Testing Viterbi

2 Used in WW2 to test soldiers for syphilis

R. Dorfman, "The Detection of Defective Members of Large Populations," The
Annals of Mathematical Statistics, 1943

Binary search

N ~N
[‘H‘ remnoron
N %
4 A 92 f2
8 TI'E 11 91 fi fi fi
0 N tests 2 log(N) tests T
Yo fo fo fo fo fo fo fo
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Mapping to Active Testing Viterbi

2 A variety of formulations

Form all possible groups, each distinct group is an experiment

- Computationally expensive

Pre-select grouping strategies U y
1 2

- E.g. Binary search

—Tlmevarylnggroups[ﬂ'ﬂ‘ﬁﬂ ret T'ﬂ”ﬂ“ﬂ“ﬂ”ﬂ“ﬂ“ﬂ‘}

ug[MM Y1

s f{@ iy

U19]'ﬁ‘




Fully-adaptive Tests %%gbi

ey

16 * Perform a cheap test first on
—&r— Without prior - 95% 1 i — i
SAtihinacts Appivorb each individual — we consider
14} Without prior: =82% tests with 80% and 90%
—&— With prior - 99%, 80%
~&— With prior - 99%, 90% accuracy

* Use the prior for group
testing subsequently

e Can reduce number of group
tests by 20%

Tests per Individual

* Performing cheap tests first
better when the cost of
cheap test is about 10-15
times smaller

0.2 | | | | | |
0 200 400 600 800 1000 1200

Number of Individuals

fully adaptive tests can take a lot of time — need to parallelize



Group Sampling Results %%gbi

s

Selecting optimal group size

0.014 ‘ ‘ ‘ ‘ ‘
A— Meuic|| Optimal rate
0.012 | T 1
Optimal size L.,k
0.010 | P 1 k‘Dili 7 }
sk .
D™ = max
2 oons) : 1<k<M M
g 00067 1 kD}l,}.o.’k}
B * 1
2 O\ k™ = arg max
0.004 | High fidelity (p=0.6) 1 1<k< M M
but not covering -
0.0 | enough components i
' More coverage but Optimal size
low fidelity (p=0.5) \ P
0.000 ‘ ‘ ‘ ‘ ‘ ‘ |
0 2 4 6 8 10 12 14 16
Group size k

A 16-component system with linear dilution: binary
symmetric noise goes from 0.6 to 0.5 (indistinguishable)



Group Sampling Results %%gbi

N

Open-loop strategy: randomly
select a subset with size k

\
N

|
N

Adaptive Selection: select k
most likely elements

|
—_
o

Logarithm of Misclassification Probability log ¢y (0)
|
o0

_12|| &—A DAS ‘e . .
Y—¥ ORS " Dramatic performance gap between
~
- = Weak Bound N open-loop and adaptive selection
—14 0 1 60 260 360 460 560 660 760 800

Time Horizon N

A 16-component system with linear dilution
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ONE LAST APPLICATION



218

USC
Source Localization Viterbi

0 classical signal processing problem

O Applications:

-

0 Drawbacks of existing works:
Parametric methods — model mismatch issues
Model parameters hard to estimate
Model-free approaches coarse localization

ML-based approaches require lots of training data
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Localization Challenge Viterbi

0 Source location s* € R? (unknown) B
Y =H(s*)+ 2
a If Y € RYXN N2 hypothesis testing problem
Trade-off known distributions for signal structure
2 Random samples at locations
2 Only knowledge about target signal is that it is unimodal
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What is a good model? Viterbi

2 Real sidescan sonar data
2 Any other structural properties to exploit?

Intensity = H (z, y)



USC

Review Singular Value Decomposition  Viterhi
1

X €
X

(CTan
uxv#?
I , : :
-unitary 22 = singular value matrix
I
T
o, >0 1<r
op 0 0 0 O
0 oo 0 0 O
= Umxm 02 o5 0 0 Van
0O 0 0 0 O
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Low Rank! Viterbi

0 Real sidescan sonar data

2 Approximate target as rank one matrix in image space

Intensity = H (x, y)
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Low rank approximation Viterbi

o Largest singular value

(0-17 up, Vl) ] ]
Q Best rank one apprOXImatlon

X = argmin|X —X| g
X
subject to rank (X) =]
— 0'1111V{{
||| : Frobenius norm
' ' ' M TSP’1
Q Uy, vy are also unimodal, 'fX unimodal [Chen & M TSP’19]
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Review of Matrix Completion Viterbi
(=]
X (i, j) known for black cells
X — — f unknown for white cells (missing data)
. .
= X If X low-rank, we can recover
missing data
ming rank (Z) ming ) ; o;
for P(Z) =P (X) for.-P (Z) = P (X)

NP-hard /"/ convex relaxation

ka nuclear norm e o; = singular values of X

E Candes & B Recht, Found of Computational Math 3/2009
D Gross IEEE Trans on Information Theory 3/2011
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Our Prior Work Viterbi

2 Multisource localization from random samples

» Exploit unimodality of each source signal

minimize HPQ(H—E L UgV

oL, U,V
{ak,ur,vi} 1

subject to ug, v are unimodal

2 Can be solved via projected gradient methods

Chen & M, DSP’17,Asilomar’17, ICASP’18,ICASSP’19, TSP’19
Zhang, Chen, Xie, Shapiro &M, SPL'21



Multiple Sources

USC
Viterbi

0.4

Rooted MSE [km]

-G Kernel method, K = 3
= Proposed, K =3
—B— Kernel method, K = 2

e Proposed, K = 2

---9- -

K = 3 sources

Performance saturation of kernel

method baseling
Bl s

10

100

1000

Number of sensors, M

do not need to complete matrix first
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CAN WE MAKE THIS ACTIVE?
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Signal Model Viterbi

2 Source at location s* € R? (unknown)
Y =H(s*)+ 2
0 H(s*) unimodal
For a single source H (s*) isrank 1 [Chen & M TSP’19]
0 Definition: Matrix is unimodal with mode at (i*, %) if
« My ; <My, - -<Mp; >Mp=y1;2>--->M,; Vy
M1 <M;o--- < M;j» >M;jsi12>--2>M;, Vi
2 No assumptions except unimodality (non-parametric) =

convergence + optimal error bounds HARD!

Narayanamurthy & M, ISIT’22, Asilomar’22
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Algorithm - Exploration Viterbi

2 Initial Exploration: Latin Squares

2 choose each row, column exactly once, with equal probability

- widely used in experiment design, cryptography, board games
2 Randomized initialization insufficient
2 complete rank-1 matrix to get initial row, col estimate

« Recall from matrix completion, SVD, W1, V1 are also
unimodal if X unimodal



USC

Adaptive Sampling - Exploitation Viterbi
s

2 Given initialization/exploration, how we do we exploit?

Uncertainty-Based approach: query max entropy location

O Theorem: (Uncertainty Quantification for MC, Chen et al. ‘21)

Consider a rank r matrix Y "X US, VT

given O(nr°polylog(n)) entries sampled uniformly at random
let Y denote output of ANY matrix completion algorithm
With probability at least 1 — n~3

Yi; ~ N (Y, C/r/n(|UD |2+ [[VO)]?)
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Decomposing the problem Viterbi

2 Consider our single source

« The two singular vectors are individually unimodal

b "

« We can look in “each” direction independently

» Recall unimodality definition:
Ml)j S M2’j R S M’L*,j 2 Mi*-I—l,j Z R > Mn,j

/

which component is maximum?




USC
Decomposing the problem Viterbi

27 4

2 Consider our single source

« The two singular vectors are individually unimodal

b vy

W

 We canlook in “each” direction independently

« Recall unimodality definition:
Ml)j S M2’j R S M’L*,j 2 Mi*-I—l,j Z R > Mn,j

which component is maximum?
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Stochastic Multi Armed Bandits | Viterbi

2 For each t, agent chooses one of K

arms and plays it

0 Thej-th arm produces reward r; ; ~ P;

with mean i; (unknown)

2 Agent’s objective: maximize cumulative rewards

or, find ¢* = arg max; (;

2 Several variants studied based on differing P;



USC
Stochastic Multi Armed Bandits Il Viterbi

2 Example: Stochastic Bernoulli Bandit -- P; are Bernoulli
Let r;,, € {0,1}and E[r; ;] = p;
If Ki were known, optimal policy is to play fixed action
" = arg max; [4;

If unknown, need to do something better



USC
Stochastic Multi Armed Bandits Il Viterbi

2 4

2 Example: Stochastic Bernoulli Bandit -- P; are Bernoulli
= Let ;4 € {0,1}and E[r; 4] = p;
« If Hi were known, optimal policy is to play fixed action
" = arg max; [4;
« If unknown, need to do something better
0 Regret: R, =nmax; u; —E[D> 7 7]
-  Q: how does ), scale withn ?

Ry,

. A:a“good learner” attains sub-linear regret, i.e., llm — =0
n—oo 1)

0 For Bernoulli bandits (our example), R,, = O(y/n)
[Lattimore and Szepesvari] Bandit Algorithms, 20
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Algorithms: ETC Viterbi

0 Explore-then-Commit (ETC):
Play each arm a fixed number of times, 1 (Exploration)

After K'm rounds, always play “best” arm (Exploitation)

_ Recall that we have K arms &
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Algorithms: UCB Viterbi

0 Upper Confidence Bound (UCB): optimism in the face of uncertainty

UCB of arm?, in round ¢ is

21og(1/9)
Ti(t —1)

UCB;(t —1,0) = ;(t —1) + \/

& confidence parameter — controls exploration vs exploitation tradeoff

T;(t — 1) number of times arm ¢ has been played till round ¢

- If arm has been tried many times, second term will be small (less uncertainty)
fi;(t — 1) empirical reward of arm ¢ at round ¢ (averaging)

In each round, pick the arm with largest UCB

« 0 large m» 3 lot of initial exploration (limited optimism)
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UCB intuition | Viterbi

0 Consider 2-arm bandit problem with 1 = 0, g = —0.5

2O Initially, variance#

UCBs(t — 1, 6)
“confidence” ¥ UCB; (t — 1,6) —
0 although fi1(t — 1) = fia(t — 1)
arm 2 picked next since pa
UCBy(t —1,6) > UCB;(t—1,5) u(t—=1) iy % fia(t — 1)

0 hope is that as time progresses,

UCB; (t — 1,5) > UCBs(t — 1, 6)
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UCB intuition Il Viterbi

0 as time progresses, LLN/CLT says

fui(t) — p; UCB (¢ — 1,0)
0 CLT also provides “Gaussian like” I_I —
tails and thus (informally) UCBs(t - 1,6)

2log(1/5) = HE
£ og )
P(IM_M|>\/TL-(%—1)) <0 ME fia(t — 1)

0 UCB picks the “correct” arm and guarantees sub-linear regret

0 Actual regret bounds depend on
choice of ¢

sub-optimality gaps, i.e., A; = (max; ;) — ;
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MAB: Algorithms Il Viterbi

- Naive UCB
—  Asymptotic Optimal UCB

0 Gaussian rewards, 10 arm problem 4 | — Minimax optima ucs

20

Naive UCB, Asymptotic UCB, Minimax _
UCB vary only in choice of ¢ B s
Black line is ¥ = ¢Vt

0 200 400 600 800 1000
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What is our main result? Viterbi

2 With our Latin Squares exploration, followed by UCB-based
active sampling, we have

0 Theorem: With probability at least 1 — o(1)

correct"‘,; , correct” log? m

coord err||?
sub opt gapy ? sub opt gapz 12 | | m

E [regret] < C Z

« Terms for each direction independently — 2 MABs

« Can exploit prior results on MAB with sub-Gaussian random
variables (bounds on regret)

- sub-Gaussianity and concentration inequalities again
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Main Result Viterbi

0 Define
- Y = Muv' with |lul| =|lv||=1 (svD)
- b=max; ;Y (max value)
- A}';f“ =Y+ 1 — Y and A”k, =Y i — Yi1 (sub-optimality gaps)
- Yy = uk +20A%, and v, = v+ 204}, (= correction terms)

cri = (k)" and e* = (i*,5%)7 (coordinates)
© Ry =200 (18, — 87| (regret)

0 Theorem: With probability at least 1 — o(1)

SN Vit ,log” m
ER,] <C ” g ek — 7
2o LR B, "
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Discussion of Result Viterbi

Q Ay, Ay, are “sub-optimality” gaps 1

- as in multi-armed bandit Ilterature regret X W

- can potentially be improved to (better stopping time analysis)

&)

J Y. Yk are “correction” factors
- typical results in MAB consider equal, known variance

- our problem — potentially distinct variance estimates

m

- best known results (for equal variance case) scale as 107gnm

- Q:can we adapt to our problem? (likely need “better” variance estimates)
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Special Cases Viterbi

0 For Gaussian Energy h(z,y) := —= exp (_%)

ek, — ) log? m

n
E[R, ] < Cv?
[ m]_CV Z (_Hck,l_C*l|2) m
k,l=1 €XP 2ny?
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Variance Parameter Viterbi

““““ o)
« Laplacian energy
function, vary - /B_/
= As7?increases, o o
proposed method 7 ,
better = ;
I —©&— passive (m = 80) -3}~ passive (m = 100)
" G reedy; proposed 0.2 —O— greedy (m = 80) -~ greedy (m = 100)
methods un |f0rm |y - ~&— proposed (m = 80) == proposed (m = 100)
better than passive }0.5 1 1.5 2 2.5 3 3.5 4 45 5

scale parameter of Laplacian energy, y



Measurement Noise
1

Gaussian energy function
add noise, z; j ~ N (0,0
Proposed method more
noise tolerant

outperforms passive and
greedy approaches as
expected

2

2
n

)

SN
*
0
[
o

1.5

1

0.5

USC
Viterbi

- passive
-O— greedy
—&— proposed

0

0.2

04 06 0.8 1

noise standard deviation, oy,

1.2 14 16 1.8 2
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Summary + Future Work Viterbi

O

O

Proposed method for active non-parametric peak location

Showed experimental improvement for several energy
functions

Provide preliminary theoretical guarantees

Improve error bounds
Consider multiple sources

Apply to zeroth-order optimization problems



BIG PICTURE %%gbl

0 Active hypothesis testing
" So many applications!

. Information theory in the wild

0 Important questions
. How do you build your tree of actions/observations?

" What is the right measure of informativeness that allows you to prune the
tree?

0 Martingales, concentration inequalities

" Very useful tools for a wide-range of applications (need more than the CLT)

o The classics still matter

. Chernoff, Stein, Wald, Blackwell, Fisher, Bayes, Neyman, Pearson
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