
UCLA
UCLA Electronic Theses and Dissertations

Title
On the Capacity of Noncoherent Wireless Networks

Permalink
https://escholarship.org/uc/item/7595d704

Author
Sebastian, Joyson

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7595d704
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

On the Capacity of Noncoherent Wireless Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Joyson Sebastian

2018



c© Copyright by

Joyson Sebastian

2018



ABSTRACT OF THE DISSERTATION

On the Capacity of Noncoherent Wireless Networks

by

Joyson Sebastian

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2018

Professor Suhas N. Diggavi, Chair

Wireless networks are characterized by variation in the network states. In practice the

variations are combated by allocating resources for learning the network states. In networks

with high mobility users, the variations are fast enough so that allocating separate resources

may significantly deplete the resources and quality of communication. In this thesis we

study the optimal schemes for nonchoherent networks, where the network channel states are

unknown and are changing within given time periods. We address the question on how to

optimally allocate the resources for training and communication.

In the first part of the thesis, we consider single flow noncoherent wireless networks, where

there is a single information source and a single destination. A simple nontrivial version of

this is the noncoherent multiple input multiple output (MIMO) network. We consider the

noncoherent MIMO with asymmetric link strengths, which would arise when the antennas

are well separated. Examples of this are in the 5G architecture where the basestations can

cooperate through a backhaul and when there is device-to-device cooperation through a

sidechannel. The study of noncoherent MIMO is also fundamental in understanding the

nature of noncoherent networks in the sense that the cut-sets in noncoherent networks form

a MIMO. We prove that for single input multiple output (SIMO) and multiple input single

input (MISO) networks, it is optimal to use the statistically best antenna. For 2× 2 MIMO

with symmetric statistics i.e., the direct links have identical statistics and so do the cross

links, we derive the generalized degrees of freedom (gDoF) and prove that training-based

ii



schemes are not optimal. For larger M ×M MIMO we prove that in general, a training

scheme that learns all the channel parameters is not optimal in gDoF measure. We then

proceed to study the noncoherent diamond network (2-relay channel). We prove that in

certain regimes it is optimal to perform a relay selection and operate the network. In other

regimes where we need to operate both the relays, it is not optimal to learn all the channel

states through training. We propose a novel scheme that partially trains the network and

combine it with scaling at the relays and quantize-map-forward operation and prove that

our scheme is gDoF optimal.

In the second part of the thesis, we consider multiple flow noncoherent wireless networks.

We specifically consider the noncoherent 2-user interference channel, where both the trans-

mitters and the receivers do not know the channels strengths, but the statistics are known.

For studying this, we first consider the fast fading interference channel (FF-IC) where the

transmitters do not know the channel, but the receivers do know the channel. We extend

the existing rate-splitting schemes when the channels are known at the receivers, to the fast

fading case by performing rate-splitting based on the statistics of the channel. We prove

that this scheme achieves the capacity approximately for a wide range of fading models.

With this result for the FF-IC, we proceed to the noncoherent IC. We propose a noncoher-

ent scheme with rate-splitting based on the statistics of the channel. We prove that this

schemes achieves higher gDoF than a training-based scheme. The results extend to the case

of noncoherent IC with feedback, where the outputs at the receivers are fed back to the

corresponding transmitter.
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CHAPTER 1

Introduction

1.1 Noncoherent Networks

Significant progress has been made in the past four decades in the understanding of the ca-

pacity of wireless networks. There has been breakthrough with the approximation approach

in [ADT11] to obtain the capacity of single flow networks. However, the focus has been on

a given wireless networks, i.e., the network states was assumed to be known. The inherent

variability in the wireless networks can cause this assumption to not hold in general. One

approach is to learn the network states and then communicate through the learned network.

However there is a tradeoff between the amount of resources to be allocated in learning

network states and that to be allocated for communication, for example as demonstrated in

[MH99, ZT02], it is not optimal to learn all the channel strengths of a large multiple input

multiple output (MIMO) system. The question we ask in this work is similar, but for net-

works. We assume that the network topologies and channel statistics are known, however the

actual channel strengths are unknown. This is one of the building steps in understanding the

capacity of a general time varying wireless network. We consider a block fading noncoherent

channel model i.e., the channel remains constant for a block of T symbol periods and are

independently distributed across the blocks with a Rayleigh distribution. The channel statis-

tics for a general network could be asymmetric since the location of the nodes are largely

variable, i.e., there could be significant variation in the strengths. This consideration moves

our work to a generalized degrees of freedom framework (gDoF) in contrast to the degrees

of freedom framework (DoF) adopted in the existing works on noncoherent networks. In

this work, we first consider single flow noncoherent networks including noncoherent MIMO
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and noncoherent diamond channels. Then we move on to study multiple flow noncoherent

networks: we study the gDoF of a noncoherent interference channel.

1.1.1 Noncoherent MIMO

The noncoherent MIMO with asymmetric link strengths is the first nontrivial model in

studying the general noncoherent wireless network. In the study of networks, one can think

of the cut-set as a distributed MIMO where the nodes are widely separated, resulting in the

noncoherent MIMO with asymmetric link strengths (see Figure 1.1).

Source Destination

Figure 1.1: Noncoherent MIMO with asymmetric statistics can arise in the analysis of non-

coherent networks.

The noncoherent MIMO can arise in the next generation wireless architecture that en-

visage dense deployment of access points [BLM14] and also in cloud radio access networks

(CRAN) [WZH15]. These give rise to multiple access points connected through a (reli-

able) backhaul and can effectively form a system of widely separated antennas which could

be used for coordinated transmission and reception, e.g. coordinated multipoint COMP

[IDM11]. The widely separated antennas could have disparate average strengths motivat-

ing our model, especially for multiple input single output (MISO) and single input multiple

output (SIMO) channels with asymmetric link strengths. This is illustrated in Figure 1.2.
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SIMO MISO

Figure 1.2: Noncoherent SIMO and MISO with asymmetric statistics can arise in COMP

architecture where multiple basestations can cooperate through the backhaul.

The MIMO case arises when the receiver could be widely spread (see Figure 1.3) as would

be the case when users can cooperate using a separate sidechannel [KD17].

MIMO

Figure 1.3: Noncoherent MIMO with asymmetric statistics can arise with COMP architec-

ture and device-to-device cooperation.

We study the noncoherent MIMO with a coherence period of T symbols and with chan-

nel statistics following independent Gaussian distributions. The average link strengths are

assumed to scale with different SNR-exponents in different links. Compared to the MIMO

with i.i.d. links, we obtain new structural results on the optimal signalling distribution. We

prove that for T = 1, the gDoF is zero for MIMO channels with arbitrary link strength

distributions, extending the result for MIMO with i.i.d links. We then show that selecting

the statistically best antenna is gDoF-optimal for both MISO and SIMO channels.

We also derive the gDoF for the 2 × 2 MIMO channel with different exponents in the

direct and cross links. We develop novel techniques for analyzing the gDoF of the 2 × 2
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MIMO channel. We approximate and discretize the mutual information terms without losing

the gDoF for the outer bound. The outer bound optimization problem reduces to a linear

program after this discretization. The standard linear programming techniques applied to

this scenario yield a distribution with only two mass points as the solution to the optimization

problem. Later we use the structure of the problem to reduce the two mass points into a

single point. Finding this single point turns out to be a piecewise linear optimization problem

which can be solved explicitly. We believe that the outer bounding techniques we develop

for the 2×2 MIMO would provide guidelines in studying general noncoherent networks. The

approach we take in studying noncoherent diamond network is inspired by the techniques

for 2× 2 MIMO.

With our new outer bounds we show that it is always necessary to use both the antennas

of the 2×2 MIMO with asymmetric link strengths, to achieve the optimal gDoF, in contrast

to the results for 2× 2 MIMO with identical link distributions. We show that having weaker

crosslinks, gives gDoF gain compared to the case with identically distributed links. We

observe that it is not optimal to allocate separate training symbols for 2 × 2 MIMO in

general. We extend this observation to larger M ×M MIMO with given SNR-exponents

in direct and cross links, by demonstrating a strategy that can achieve larger gDoF than a

training-based scheme.

1.1.2 Noncoherent diamond networks

The noncoherent wireless networks with multiple nodes and asymmetric link strengths has

not been studied in literature (to the best of our knowledge) from a gDoF perspective. The

work in [KK13] considered noncoherent single relay network with identical link strengths

and unit coherence time. It was shown that under certain conditions on the fading statistics,

the relay does not increase the capacity at high-SNR. In [GY14], similar observations were

made for the noncoherent MIMO full-duplex single relay channel with block-fading. They

showed that Grassmanian signaling can achieve the degrees of freedom (DoF) without using

the relay. Also for certain regimes, decode-and-forward with Grassmanian signaling was
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shown to approximately achieve the capacity at high-SNR. The nodes being well separated

in a network can give rise to significant difference in the channel strengths. Thus, in our

work we consider a parallel 2-relay wireless network (diamond network) with asymmetric

link strengths and study its gDoF-capacity.

Similar to the coherent diamond network, we demonstrate that it is gDoF-optimal to per-

form a relay selection in certain regimes of the noncoherent diamond network. This in effect

gives a network simplification, similar to [NOF14], where it was shown that by selecting a

subset of the relays in an n-relay network, most of the capacity could be achieved. In some of

the regimes it is not sufficient to perform a relay selection. We analyze these regimes by con-

sidering a modified version of conventional cut-set outer bound. We derive the structure of

the distribution that optimizes this outer bound. We discretize the outer bound optimization

problem without losing gDoF and simplify it further using linear programming arguments.

This helps us reduce the outer bound optimization problem to a bilinear optimization prob-

lem for gDoF optimality. We solve the bilinear optimization problem explicitly, its solution

yields different regimes of operation for the network. The structure of the solution for the

outer bound suggests a nonconcurrent operation of the relays in some regimes. In other

regimes it suggests operating both relays, but reducing the power of one of the relays.

Based on the solution for the outer bound, we develop a novel achievability strategy. It

involves partially training the network and the relays perform a scaling and quantize-map

and forward operation. The scaling at the relays avoid the necessity of knowledge of all

the channel states at the destination. We also demonstrate that a training-based scheme

that trains the whole network is not gDoF-optimal. This further confirms that allocating

separate resources for learning network states is not optimal, extending the observation from

noncoherent MIMO.
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1.1.3 Noncoherent interference channels

Moving on from single flow networks to multiple flow networks in the noncoherent setting, one

of the simple scenarios is the two user noncoherent interference channel (IC). The capacity

of the 2-user IC is well understood when the channel strengths are known at the transmitter

and the receiver [HK81, CMG08, ETW08, ST11]. The case when channel strengths are not

known at the receiver is not well studied in terms of its capacity. There have been a few

works that study the DoF behaviour. The DoF region for the MIMO FF-IC was studied in

[VV12] and their results showed that when all users have single antenna, the DoF region

is same for the cases of no CSIT, delayed CSIT and instantaneous CSIT. The results from

[TMP13] showed that DoF region for the FF-IC with instantaneous CSIT and no feedback

contains the DoF region with output feedback and delayed CSIT.

To proceed to the noncoherent IC we first study the fast fading IC (FF-IC) where the

transmitters know the channel statistics and do not have the channel state information,

but we assume that the receivers do know the channel states. For the FF-IC we extend

the rate-splitting schemes [ETW08, ST11] based on the interference to noise ratio (inr).

We perform rate-splitting based on the average inr and demonstrate that this strategy can

achieve the approximate capacity for common fading models including Rayleigh fading. The

approximate capacity result is obtained for IC with feedback as well as for the IC without

feedback.

We use the results for the FF-IC to study the noncoherent IC. The channel statistics

are assumed to be known at the transmitter and we propose a noncoherent rate-splitting

scheme. The rate-splitting is again performed according to the average inr. We prove that

the noncoherent rate-splitting strategy achieves higher gDoF than a training-based scheme

that uses 2 symbols to train the channels. We also demonstrate that when the average inr is

low, treating interference as noise is better than the training-based scheme and noncoherent

rate-splitting. We further consider the noncoherent IC with feedback and study a rate-

splitting scheme based on average inr. For the feedback case, our rate-splitting scheme
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achieves larger gDoF than the case without feedback. Also, we show that the training-based

schemes are not gDoF-optimal for the feedback case. Our scheme for the feedback case is

better than treating interference as noise even when the average inr is small, for T ≥ 3.

1.2 Future work

One of the future directions of study include n-relay diamond networks. Our achievability

scheme for 2-relay diamond network can be extended to the n-relay case. However, the outer

bounds are still an open problem. The more general open problem is the capacity of general

noncoherent networks.

Another direction of study is to study backscatter communication systems in a noncoher-

ent setting. Backscatter communication systems typically use a Reader and a radio frequency

identification (RFID) tag [Dob12]. Reader transmits a radio frequency (RF) signal; the RFID

tag adapts the level of its antenna impedance to vary the reflection coefficient and transmits

data via reflecting and modulating the incident signal back to Reader [XYV14, BR14]. We

have some preliminary results on backscatter systems with intersymbol-interference. We

demonstrate that instead of using a constant carrier sequence, we can optimize the sequence

to obtain larger rates or smaller bit error probability. This involves training the channel

states. The noncoherent version of the problem will be to consider whether a noncoherent

scheme can be designed to outperform the training-based schemes.

1.3 Outline

This thesis is organized as follows. In Chapter 2 we study the noncoherent MIMO with

asymmetric link strengths and in Chapter 3 we study the noncoherent diamond channel.

In Chapter 4 we study the fast fading interference channels (FF-IC) and in Chapter 5 the

results for the FF-IC are extended to the noncoherent interference channel. In Chapter 6 we

give our conclusions and the directions for future work.
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We would like to point out that most of the results in this work have been accepted

or have been submitted for publication. The work on FF-IC [SKD18] has been accepted

in IEEE Transactions on Communications. The works on noncoherent MIMO [SD18c] and

noncoherent diamond channel [SD18a] have been submitted to IEEE Transactions on In-

formation Theory. The work on backscatter communication [SED18] has been submitted

to IEEE Wireless Communications Letters. The work on noncoherent IC [SD18b] is to be

submitted to IEEE Transactions on Information Theory.
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CHAPTER 2

Noncoherent MIMO

2.1 Introduction

The capacity of fading Multiple Input Multiple Output (MIMO) channels when neither the

receiver nor the transmitter knows the fading coefficients was first studied by Marzetta and

Hochwald [MH99]. They considered a block fading channel model where the fading gains are

identically independent distributed (i.i.d.) Rayleigh random variables and remain constant

for T symbol periods. In [ZT02], Zheng and Tse introduced the idea of communication over a

Grassmanian manifold for the noncoherent MIMO channel and derived the capacity behavior

when the links are i.i.d. and the signal-to-noise-ratio (SNR) is high. Their characterization

was tight for the capacity at large SNR, when the coherence time was large compared to

number of antennas. In [YDR13], this tight characterization was extended to the case

when the number of antennas was large compared to the coherence time. In [NYG17],

spatially correlated (temporally flat within a block) noncoherent MIMO broadcast channel

with statistical channel state information (CSI) was considered and an achievable Degrees

of Freedom (DoF) region was derived.

Some works have especially considered the case with coherence time T = 1. The non-

coherent single-input-single-output (SISO) channel with T = 1 was considered by Taricco

and Elia [TE97]. They obtained the capacity behavior in asymptotically low and high

SNR regimes. The noncoherent SISO with T = 1 was further studied by Abou-Faycal et

al. [ATS01] and they showed that for any given SNR, the capacity is achieved by an in-

put distribution with a finite number of mass points. For the noncoherent MIMO with
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T = 1, Lapidoth and Moser [LM03] showed that for high SNR, the capacity behaves double

logarithmically with SNR.

Noncoherent MIMO with temporal correlation within each fading block (instead of the

constant block fading [MH99, ZT02]) has been considered in some of the recent works. In

[MRY13], Morgenshtern et al. studied temporally correlated Rayleigh block-fading Single

Input Multiple Output (SIMO) channel and showed that at high-SNR, the SIMO channel

can have larger DoF than SISO channel, under some mild assumptions on the temporal

correlation. Similar results was derived for noncoherent MIMO with temporally correlated

block fading in [KRD14], where it was shown that the temporally correlated noncoherent

MIMO can have a larger DoF compared to the constant block fading case.

Some works have studied noncoherent networks (with more than two nodes) for the

high-SNR capacity behavior. In [Lap05], the zero DoF result for the noncoherent MIMO

with T = 1 from [LM03] was extended to noncoherent networks with T = 1. Koch and

Kramer studied the noncoherent single relay network [KK13] and showed that under certain

conditions on the fading statistics, the relay does not increase the capacity at high SNR.

In [GY14], the noncoherent MIMO full-duplex single relay channel with block-fading was

studied, and it was shown that Grassmanian signaling can achieve the DoF without using

the relay. Also, the results in [GY14] show that for certain regimes, decode-and-forward

with Grassmanian signaling can approximately achieve the capacity at high SNR and the

characterization was determined by the number of antennas at the nodes.

To the best of our knowledge, the existing works considers a DoF framework for study-

ing the noncoherent channels, i.e, the links in the network scale with same SNR exponent.

However, in networks the links could have asymmetry in the channel strengths and a gDoF

framework where the link strengths are scaled with different exponents of SNR could bet-

ter capture the system behavior. We consider noncoherent MIMO with asymmetric link

strengths as a first step in the direction of studying the asymmetric noncoherent networks.

10



2.1.1 Contributions and outline

In this chapter, we consider a noncoherent channel model with coherence time of T symbol

periods and asymmetric link distributions, where the link strengths are scaled with different

exponents of SNR. In essence, we are moving from the DoF-framework in [MH99, ZT02] to

the generalized DoF of noncoherent MIMO channels.

Next generation wireless architecture envisage dense deployment of access points [BLM14].

Another architectural proposal is to use cloud radio access networks (CRAN) [WZH15].

These imply that multiple access points could be connected through a (reliable) backhaul.

The implication of this is that of widely separated antennas, which form a virtual antenna

array. Such widely separated antennas could be used for coordinated transmission and recep-

tion, e.g. coordinated multipoint COMP [IDM11]. These widely separated antennas could

have disparate average strengths motivating this model (especially SIMO and MISO). This

is illustrated in Figure 1.2 on page 3. The MIMO case arises when the receiver could be

widely spread (see Figure 1.3 on page 3) as would be the case when users can cooperate

using a separate sidechannel [KD17]. Another motivation for this model comes from the

study of networks. Here one can think of the cut-set as a distributed MIMO (see Figure

1.1 on page 2) where the nodes are widely separated again resulting in this model. The

asymmetric case is also motivated by a fundamental question about the robustness of the

results in [MH99, ZT02] to changes in the i.i.d. channel model.

For our channel model with arbitrary (fading) link strengths, we show in Theorem 2.1

that the capacity achieving input distribution is of the form LQ where L is lower triangular

and Q is independent of L and is unitary isotropically distributed. This is in contrast to

the result for the i.i.d. setting, which yields a diagonal matrix instead of L multiplying Q

[MH99]. In Theorem 3.9, we demonstrate that the gDoF of a SIMO channel can be achieved

by retaining only the signal received by the best receive antenna. The gDoF result for the

SIMO channel is used in Theorem 2.5 to show that for T = 1, the gDoF is always zero for a

MIMO channel of any size. In Theorem 3.10, we show that the gDoF of the MISO channel
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can be achieved by only signaling over the statistically best transmit antenna.

In a setting with with N receive antennas, when the exponents in the SNR-scaling are

same for all the links (i.i.d. setting), the number of transmit antennas M , required to attain

the optimal DoF was shown to be min (bT/2c , N), in [ZT02]. They showed that increasing

the number of transmit antennas beyond this value reduces the DoF. In this chapter, we

provide evidence that this is not the case when the SNR exponents are different: in Theorem

2.7, we show that for a 2× 2 MIMO with different exponents in direct and cross links, and

T = 2, both transmit antennas are required to achieve the optimal gDoF. We also show

that having smaller exponents in cross links lead to gDoF gain of (2/T ) γdiff over the case

with same exponents in all the links, where γdiff is the difference in the SNR exponents. In

showing this, several novel techniques were needed. In particular we would like to highlight

the technique used in Lemma 3.1, where in the optimization problem to find the optimal

input distribution for the outer bound, we show that the optimal gDoF can be achieved by

a point mass distribution. To arrive at this, we discretized the input distribution without

a loss in gDoF, and subsequently used linear programming arguments to show that there

exists an optimal distribution with just one mass point. We believe that our techniques for

the 2 × 2 MIMO provide intuitions for studying larger noncoherent networks, especially in

analyzing the cut-sets.

Traditional training-based schemes for MIMO systems allocate a training symbol to train

each transmit antenna independently. Our results for the 2×2 MIMO also demonstrate that

a traditional training based scheme is not gDoF optimal. Our scheme has a gDoF gain of

(2/T ) γdiff compared to a training based scheme. In Theorem 2.8, we extend this observation

to larger M × M MIMO with given SNR exponents in direct and cross links, where we

demonstrate a strategy that can achieve larger gDoF than a training based scheme.

Extending our outer bounds to the general MIMO seems a difficult task at the moment;

the LQ transformation process used for deriving the outer bound for 2 × 2 MIMO as done

in (2.43), (2.44), (2.45), (2.46) and the subsequent Lemmas (Lemma 3.3, Lemma 2.5 and

Lemma 2.6) for bounding the terms in those equations do not easily extend to 3×3 or higher
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Table 2.1: Important abbreviations

Abbreviation Meaning

CN Circularly symmetric complex Gaussian

Tran Transpose

DoF Degrees of freedom

gDoF Generalized degrees of freedom

SNR Signal-to-noise ratio

QMF Quantize-map-forward

MIMOs.

Outline: The rest of this chapter is organized as follows: in Section 2.2, we give the notations

and set up the system model; Section 2.3 presents our main results, and Section 3.4 provides

some analysis and proofs. Some details of the proofs are deferred to the Appendixes. In

some cases, discussion of results in Section 2.3 will refer to lemmas and facts detailed in

Section 3.4.

2.2 Notation and system model

2.2.1 Notational conventions

We use the notation CN (µ, σ2) for circularly symmetric complex Gaussian distribution with

mean µ and variance σ2. We use the symbol ∼ with overloaded meanings: one to indicate

that a random variable has a given distribution and second to indicate that two random

variables have the same distribution. The logarithm to base 2 is denoted by log (). The

notation A† indicates the Hermitian conjugate of a matrix A and Tran (A) indicates the

transpose of A. We also list the important abbreviations and notations used, in Table 2.1

and in Table 2.2 respectively. The degrees of freedom (DoF) for a network is defined as
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Table 2.2: Important notations

Notations Meaning

x ∼ y Random variables x, y have same distribution

x ∼ p Random variable x has the distribution p

A† Hermitian conjugate of a matrix A

.
= Order equality

(P) Optimal value of an optimization problem P

limSNR→∞
C (SNR)

log (SNR)

when the different link strengths in the network scales proportional to SNR, where C (SNR) is

the capacity for a given value of SNR. When the different link strengths in the network scales

with different SNR exponents, the above formula defines the gDoF. We use the notation
.
=

for order equality, i.e., we say f1 (SNR)
.
= f2 (SNR) if

limSNR→∞
f1 (SNR)

log (SNR)
= limSNR→∞

f2 (SNR)

log (SNR)
.

The use of symbols
.

≤,
.

≥ are defined analogously. The script P is used to indicate an

optimization problem and (P) is used to denote the optimal value of the objective function.

We use the notation

gDoF (P) = limSNR→∞
(P)

log (SNR)

to indicate the scaling of the optimal value of P when it depends on SNR. We do not set

aside separate symbols/notation for constants or random variables or scalars or vectors or

matrices, as this is made clear from the context. By default a symbol is a constant scalar,

otherwise we define it as random/vector/matrix when it is introduced. When G and X are

matrices, GX indicates matrix multiplication. When g is scalar and X is vector/matrix,

gX indicates g multiplying each element of X. When we have gn = g (1) , . . . , g (n) and

Xn = X (1) , . . . , X (n) with g (i) being a scalar and X (i) being a vector, then gnXn is a

short notation for g (1)X (1) , . . . , g (n)X (n). Also, when ĝn = ĝ (1) , . . . , ĝ (n) with ĝ (i)
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being a scalar and gn, Xn being same as previously defined, then gnXn

ĝn
is a short notation

for
(
g(1)
ĝ(1)

)
X (1) , . . . ,

(
g(1)
ĝ(1)

)
X (n).

2.2.2 System Model

We consider a block-fading MIMO channel with M transmit and N receive antennas, and a

coherence time of T symbol durations. The signal flow (over a blocklength T ) is given by:

Y = GX +W (2.1)

where X is the M × T matrix of transmitted symbols with rows Xi corresponding to each

transmit antenna; G represents the N × M channel matrix (which is independently gen-

erated every T symbols), and its elements gij are independent with gij ∼ CN
(
0, ρ2

ij

)
=

CN (0, SNRγij), where the exponents γij are (constant) parameters of the MIMO channel.

For convenience, we also use the notation ρ2 (n) to denote the vector of channel strengths to

nth receiver antenna. The columns of G are gi corresponding to channels from each transmit

antenna. The variable Y represents the N × T matrix of received symbols, with rows cor-

responding to each receive antenna; and W is an N × T noise matrix with elements wij ∼
i.i.d. CN (0, 1). The transmit signals have the average power constraint:

1

MT

M∑
m=1

T∑
t=1

E
[
|xmt|2

]
= 1. (2.2)

2.3 Main results

In this section we go through the main results in our chapter. We first look at general results

for the noncoherent MIMO with asymmetric link strengths. We prove a structural result

for the optimizing distribution for the noncoherent MIMO in Theorem 2.1. This result has

some similarities to that for the noncoherent MIMO with i.i.d. links in the sense that part of

the structure is similar. Another general result that we prove is for the noncoherent MIMO

with a channel structure that can be decomposed into smaller disjoint channels. We prove

similar to the coherent case, that the power can be allocated across the disjoint parts and
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coding can be done separately among the disjoint parts to achieve the capacity. This result

is proved in Theorem 2.2. This result can be used to derive the gDoF of noncoherent parallel

channels. This is stated as Corollary 2.3.

Then we look at noncoherent MIMO with specific structures. We consider the nonco-

herent SIMO in Theorem 3.9 and derive its gDoF. We prove that the gDoF is achieved by

using the statistically best antenna. The gDoF result for SIMO can be used to prove that

for any MIMO, the gDoF is zero for T = 1, by decomposing the MIMO into SIMO parts and

constructing a channel with larger capacity. We obtain this result in Theorem 2.5. Next we

consider the noncoherent MISO and prove a similar result, that the gDoF can be achieved

using the statistically best antenna. This is proved in Theorem 3.10.

The next specific structure we look at is the noncoherent 2× 2 MIMO with a given SNR

exponent in the direct links and another SNR exponent in the cross links. We handle this in

Theorem 2.7. We observe that training-based schemes are not gDoF optimal for the 2 × 2

MIMO. We extend this observation to larger M ×M MIMO in Theorem 2.8.

2.3.1 Results for general noncoherent MIMO

Theorem 2.1. The capacity of the noncoherent MIMO system can be achieved with X of the

form X = LQ with L being a lower triangular matrix and Q being an isotropically distributed

unitary matrix independent of L.

Proof. The proof is given in Section 2.4.2.

This theorem is in contrast with the result for the case with G and W having i.i.d.

Gaussian elements, where the structure of an optimal X could be written as X = DQ where

D is diagonal [MH99]. In our system model only W has i.i.d. elements which ends up

restricting the structure to the form LQ.

Theorem 2.2. Let the channel matrix G of the system be block diagonal as G = diag (G1, . . . , GK)

where Gi are the diagonal blocks of G, then the capacity C (P, diag (G1, . . . , GK)) of the chan-
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nel for a power P can be achieved by splitting power across the blocks: C (P, diag (G1, . . . , GK)) =

maxP1+···+PK≤P (C (P1, G1) + · · ·+ C (PK , GK)).

Proof idea. This result holds for coherent MIMO and the proof for noncoherent case is

similar. We just need to show C (P, diag (G1, G2)) = maxP1+P2≤P (C (P1, G1) + C (P2, G2))

because of induction. Let XG1, XG2 be the transmitted symbols in G1 and G2 of the channel.

Similarly YG1, YG2 be the corresponding received symbols. Now I (X;Y ) ≤ I (XG1;YG1) +

I (XG2;YG2) because (XG2, YG2) − XG1 − YG1 , (XG1, YG1) − XG2 − YG2 are Markov chains

and the desired result easily follows. The detailed steps are given in Appendix A.3.

Now we have the following corollary from the above theorem.

γ11

γMM

γ22

Figure 2.1: Parallel channels with given SNR exponents.

Corollary 2.3. The gDoF of parallel channel system (Figure 2.1) G = diag
(
g11 . . gMM

)
with links gii ∼ CN (0, ρ2

ii) = CN (0, SNRγii) is
∑

i

(
1− 1

T

)
γii

Proof. This is obtained by decomposing into individual channels (Theorem 2.2) and using

the SISO results from [ZT02]. For SISO with link gii distributed according to CN (0, ρ2
ii) =

CN (0, SNRγii), the gDoF is
(
1− 1

T

)
γii for any T .

2.3.2 SIMO and MISO channels

In this subsection we consider the noncoherent SIMO and MISO channels with asymmetric

link strengths. The gDoF result for SIMO can be easily derived by extending the results for

the case with i.i.d. links. The gDoF result for SIMO can be extended to arbitrary MIMO

case, for T = 1. For the MISO case, the existing techniques are not sufficient for computing
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γ11

γN1

γ21

Figure 2.2: Noncoherent SIMO with given SNR exponents.

the outer bound. We develop new techniques, manipulating entropy expressions using Linear

Algebra techniques to derive the gDoF of MISO.

Theorem 2.4. For the noncoherent SIMO channel (Figure 2.2) with G = Tran
([

g11 . . gN1

])
,

where gi1 ∼ CN (0, ρ2
i1) = CN (0, SNRγi1), the gDoF is

(
1− 1

T

)
maxi γi1, i.e., the gDoF can

be achieved by using only the statistically best receive antenna.

Proof. We only need to prove the outer bound, since achievability follows by using the

statistically best receive antenna. The outer bound can be proved as an extension of results

for SIMO with identical links. Let ρ2
∗ = maxi ρ

2
i1. Now with W being T × 1 noise vector

with i.i.d. CN (0, 1) elements, G′ being a 1 × N channel matrix with i.i.d. CN (0, SNRγ∗)

elements, W1 being a noise vector with independent (but not identical) Gaussian elements

w1i ∼ CN (0, ρ2
∗ − ρ2

i1) and K being a constant diagonal matrix with elements kii = ρ1i
ρ∗

, we

have K (G′X +W +W1) with same distribution as

Y = GX +W.

Hence by data processing inequality I (X;GX +W ) ≤ I (X;G′X +W ). Now due to the

results for i.i.d. noncoherent MIMO [ZT02], we have I (X;G′X +W )
.

≤ (T − 1) log (ρ2
∗).

Hence the required result follows.

The gDoF result for SIMO can now be used to prove that for T = 1, the gDoF is zero

for any MIMO.

18



D
S

γ11

γ12

γ1M

Figure 2.3: Noncoherent MISO with given SNR exponents.

Theorem 2.5. (gDoF of arbitrary MIMO for T = 1) For any G with T = 1 the gDoF is

zero.

Proof. This can be easily shown by examining gi, the channels and Xi, the symbols re-

spectively from the ith antenna, from G =
[
g1 g2 . . gN

]
, the channel and X =

Tran
[
Tran

(
X1

)
. . . Tran

(
XN

) ]
the symbols for the whole MIMO. Now consider N

SIMO channels Yi = giXi + Wi√
N

, where Wi and W have same distribution but are inde-

pendent. Now

I (X;GX +W )

≤ I

(
X; g1X1 +

W1√
N
, . . . , gNXN +

WN√
N

)
(2.3)

using data processing inequality since
∑N

i=1
Wi√
N
∼ W and

∑N
i=1 giXi = GX. This creates

a new channel which is decomposable into N SIMO channels and has higher capacity than

the original channel. Hence the required result follows using Theorem 2.2 to decompose the

SIMO channels and since each SIMO channel has zero gDoF from Theorem 3.9.

Note that the above result is a generalization of the zero DoF result for MIMO from

[LM03]. In their model the channel statistics is fixed and the power of the i.i.d. noise is

scaled. But our result is more general in the sense that we allow the fading channel strengths

to be scaled with different exponents.
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Theorem 2.6. For the noncoherent MISO channel (Figure 2.3) with G =
[
g11 . . g1M

]
,

the gDoF is
(
1− 1

T

)
maxi γ1i, i.e., the gDoF can be achieved by only using the statistically

best transmit antenna.

Proof idea. We only need to prove the outer bound. In this case Y is a column vector and

h (Y ) can be evaluated using Lemma 3.2. Also, we prove that h (Y |X)
.

≥ E
[
log
(

1 +
∑M

i=1 ρ
2
1i

∥∥Xi

∥∥2
)]

using Linear Algebra techniques. With these two results, the gDoF result follows. See Section

2.4.3 for details.

Remark 2.1. If one were to train the antennas and select the best antenna, the gDoF

achievable is
(
1− M

T

)
maxi γ1i, this is lower than what we can achieve using the statistically

best transmit antenna. In a practical setting for a 2 × 1 MISO system with coherence time

T = 3, SNR = 10 dB, and links with average strengths 0.1 ( i.e, -10 dB) and 0.03 ( i.e, -15

dB), we believe that using training to select the best antenna within every coherence period,

would be suboptimal. Once training is performed, there is only 1 time slot that can be used to

communicate data. We believe that using the statistically best antenna only, without training

both antennas, would yield a better rate.

2.3.3 2× 2 MIMO

In this subsection we describe the results for the 2× 2 MIMO with SNR exponents γD in the

direct links and γCL in the crosslinks. We describe our outer bound and obtain a signaling

distribution to achieve the outer bound in gDoF. The signaling distribution uses the structure

of our solution for outer bound optimization problem.

Theorem 2.7. For the 2× 2 symmetric noncoherent MIMO with

G =

 g11 g12

g21 g22

 ,
where g11 ∼ g22 ∼ CN (0, SNRγD) , g12 ∼ g21 ∼ CN (0, SNRγCL) and γD ≥ γCL (γD ≥ γCL is
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Figure 2.4: 2×2 MIMO with SNR exponents γD in the direct links and γCL in the crosslinks

without loss of generality), the gDoF is given in Table 2.3, and can be achieved by

X =

 a 0 0 . . 0

η c 0 . . 0

Q,
where η ∼ CN

(
0, |b|2

)
independent of the unitary isotropic Q, |a|2 = SNR−γa , |b|2 = SNR−γb , |c|2 =

SNR−γc, and the values of (γa, γb, γc) are as given in Table 2.3.

Table 2.3: gDoF of 2× 2 MIMO with γ11 = γ22 = γD ≥ γCL = γ12 = γ21

Regime Solution (γa, γb, γc) gDoF

T = 2 (0, 0, γCL) γD − 1
2
γCL

T ≥ 3 (0, 0, 0) 2
((

1− 1
T

)
γD − 1

T
γCL
)

Proof idea. From Theorem 2.1, we have an optimal distribution of the form

X =

 a 0 0 . . 0

b c 0 . . 0

Q, (2.4)

where Q is unitary isotropically distributed and independent of a, b, c. We first obtain a

capacity outer bound as the maximum of the expected value of a function f
(
|a|2 , |b|2 , |c|2

)
.

This is using Lemma 3.3, Lemma 2.5 and Lemma 2.6 which help to convert the entropy

terms h () into expected values. Then in Lemma 3.1 we prove that the maximization of

E
[
f
(
|a|2 , |b|2 , |c|2

)]
can be achieved with a single mass point of

(
|a|2 , |b|2 , |c|2

)
for optimal

gDoF. Then the gDoF outer bound can be expressed as the maximum of a piecewise linear
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optimization problem, which yields the solution as above. The detailed proof of the outer

bound is in Section 2.4.4. The inner bound can be verified by using the distribution stated

in the Theorem to evaluate the mutual information, the calculation is given in Appendix

A.4.

Note that the above result shows that we need to use both antennas for achieving the

gDoF for T = 2, since with only one antenna we can only achieve 1
2
γD from Theorem 3.9.

This is in contrast to the result for 2 × 2 MIMO with i.i.d. links, where the optimal gDoF

could be achieved using a single transmit antenna for T = 2; also it was shown that using

both antennas was sub-optimal [ZT02]. For T ≥ 3 for a 2× 2 MIMO with all exponents γD,

the gDoF is 2
(
1− 2

T

)
γD [ZT02], whereas in our model with direct link exponents γD and

cross link exponents γCL, the gDoF is 2
((

1− 1
T

)
γD − 1

T
γCL
)
. Thus having weaker crosslinks

gives a gDoF gain of 2
T

(γD − γCL). Also as T →∞ the gDoF achieved is 2γD, which agrees

with the gDoF result for coherent MIMO [CTK14].

Also it is clear that training-based schemes are suboptimal for the 2 × 2 MIMO. For

T = 2, if one were to train the links, one has to use two time slots, which leaves no time for

communicating. For T > 3, the gDoF achievable after using two time slots to communicate

is 2
(
1− 2

T

)
γD which is less than the gDoF 2

((
1− 1

T

)
γD − 1

T
γCL
)

that we achieve. The

gain in gDoF, that we have, is 2
T

(γD − γCL).

2.3.4 Nonoptimality of training

We observed in the previous subsection that training-based schemes cannot achieve the gDoF

for 2× 2 MIMO. We can extend this observation to larger MIMO. We specifically consider

the M ×M MIMO with exponents γD in direct links and γCL in crosslinks (γD > γCL).

Using the following theorem, we prove that training-based schemes can be suboptimal for

this case.

Theorem 2.8. A gDoF of M
((

1− 1
T

)
γD − M−1

T
γCL
)

can be achieved for an M×M MIMO

with coherence time T > M and with exponents γD in direct links and γCL in crosslinks
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Figure 2.5: M ×M MIMO with exponents in direct links γD and in crosslinks γCL

(γD > γCL) (Figure 2.5), by using i.i.d. Gaussian codebooks across antennas and time

periods.

Proof. In this case, the channel matrix G has diagonal elements gii distributed according

to CN (0, SNRγD) and the rest of the elements are distributed according to CN (0, SNRγCL).

Using Gaussian codebooks, the rate R ≥ I (GX +W ;X) is achievable with X being an

M × T matrix with i.i.d. Gaussian elements. Analyzing this mutual information yields an

achievable gDoF of

M
((

1− 1
T

)
γD − M−1

T
γCL
)

per symbol. The calculations are given in Appendix A.5.

Note that the gDoF M
((

1− 1
T

)
γD − M−1

T
γCL
)

cannot be achieved by a conventional

training scheme where all transmitters train independently. This is clear since it requires

M symbols in every coherence period for training and the maximum gDoF achievable using

the rest of symbols is M
(
1− M

T

)
γD [CTK14, (Theorem 2)], assuming the channels are

available perfectly due to training. This is smaller than M
((

1− 1
T

)
γD − M−1

T
γCL
)
. Thus

using Gaussian codebooks and not using training gives a gDoF gain of M(M−1)
T

(γD − γCL).

2.4 Analysis

In this section we first state some mathematical preliminaries required for the analysis. Then

in Section 2.4.2, we derive the structure of the capacity achieving distribution for noncoherent
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MIMO. In Section 2.4.3, we prove the gDoF outer bounds for the noncoherent MISO and in

Section 2.4.4 we derive the gDoF outer bounds for the 2× 2 MIMO system.

2.4.1 Mathematical Preliminaries

Fact 2.1. For exponentially distributed random variable ξ with mean µξ and a ≥ 0, b > 0,

log (a+ bµξ)− γE log (e) ≤ E [log (a+ bξ)] ≤ log (a+ bµξ) where γE is the Euler’s constant.

Proof. This follows due to the results given in Section 4.3 (on page 99).

Fact 2.2. For chi-squared random variable χ2 (k) and a ≥ 0, b > 0,

log (a+ bk)− log (e) 2

k
+ log

(
1 +

1

k

)
≤ E

[
log
(
a+ bχ2 (k)

)]
≤ log (a+ bk) . (2.5)

Proof. The result is proved in Section 4.3 (on page 99) for the Gamma distribution and the

result for the chi-squared distribution follows as a special case.

Fact 2.3. For an exponential random variable ξ with mean µξ and a given constant b > 0

E
[

b

b+ ξ

]
=

b

µξ
e
b
µξ Γ

(
0,

b

µξ

)
≤ b

µξ
ln
(

1 +
µξ
b

)
< 1, (2.6)

where Γ (0, x) is the incomplete gamma function.

Proof. We have

E
[

b

b+ ξ

]
= E

[
1

1 + ξ
b

]
(2.7)

(i)
=

∫ ∞
0

b

µξ
e
− bx
µξ

1

1 + x
dx (2.8)

(ii)
=

b

µξ
e
b
µξ

∫ ∞
1

e
− bx
µξ

1

x
dx (2.9)

(iii)
=

b

µξ
e
b
µξ

∫ ∞
b
µξ

e−t
1

t
dt (2.10)

(iv)
=

b

µξ
e
b
µξ Γ

(
0,

b

µξ

)
(2.11)
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where the step (i) is because ξ/b is exponentially distributed with mean µξ/b, the steps (ii),

(iii) are by change of variables, and the step (iv) is by the definition of incomplete gamma

function. Also exΓ (0, x) ≤ ln
(
1 + 1

x

)
is obtained after observing the connection with the

exponential integral E1 (x) as Γ (0, x) = E1 (x) and using the inequalities from [AS64] for

E1 (x). This yields (b/µξ) e
b/µξΓ (0, b/µξ) ≤ (b/µξ) ln (1 + µξ/b). Also (b/µξ) ln (1 + µξ/b) <

1 because 0 < x ln (1 + 1/x) < 1 for x > 0

Fact 2.4. Let H be an isotropically distributed matrix and Φ be a unitary matrix distributed

according to any distribution independent of H, then H,ΦH,HΦ all have the same distribu-

tion. Moreover ΦH,HΦ are independent of Φ. See [MH99] for details.

Lemma 2.1. Let [ξ1, ξ2, . . . , ξn] be an arbitrary complex random vector and Q be an n ×
n isotropically distributed unitary matrix independent of ξi, then h ([ξ1, ξ2, . . . , ξn]Q) =

h
(∑ |ξi|2)+ (n− 1)E

[
log
(∑ |ξi|2)]+ log

(
πn

Γ(n)

)

Proof idea. This is proved by using the fact that in radial coordinates, the distribution of

[ξ1, ξ2, . . . , ξn]Q will be dependent only on the radius. See Appendix A.1 for more details.

Note that we can use this Lemma also on h
(
ξ1q1

(T )
)

with an isotropically distributed unit

vector q1
(T ) by considering the equality h

(
ξ1q1

(T )
)

= h ([ξ1, 0, .., 0]Q), where the isotropically

distributed unit vector q1
(T ) can be taken as the first row of an isotropically distributed

unitary matrix Q.

Corollary 2.9. Let [ξ1, ξ2, . . . , ξn] be an arbitrary complex random vector, ξ be an arbi-

trary complex random variable and Q be an n × n isotropically distributed unitary matrix

independent of ξ, ξi, then h ( [ξ1, ξ2, . . . , ξn]Q| ξ) = h
(∑ |ξi|2∣∣ ξ)+ (n− 1)E

[
log
(∑ |ξi|2)]+

log
(

πn

Γ(n)

)
Proof. This can be proved similar to the previous lemma since the distribution of

h ( [ξ1, ξ2, . . . , ξn]Q| ξ) will be dependent only on the radius. We can use this corollary also

on h
(
ξ1q1

(T )
∣∣ ξ), similar to the previous Lemma.
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2.4.2 Properties of transmitted signals that achieve capacity

We now establish the properties of capacity achieving distribution for the noncoherent MIMO

with asymmetric statistics. We have our channel model Y = GX +W . Now for any T × T
unitary matrix Φ we have Y Φ† = GXΦ† +WΦ†. Since wij are i.i.d. CN (0, 1), WΦ† and W

have the same distribution, and hence

p
(
Y Φ†|XΦ†

)
= p (Y |X) . (2.12)

Now

C = sup
p(X)

I (X;Y ) (2.13)

subject to the average power constraint (2.2) and we have

I (X;Y ) = E
[
log

(
p (Y |X)

p (Y )

)]

=

∫
dXp (X)

∫
dY p (Y |X) log

 p (Y |X)∫
dX̃p

(
X̃
)
p
(
Y |X̃

)
 . (2.14)

Lemma 2.2. (Invariance of I (X;Y ) to post-rotations of X): Suppose that X has a prob-

ability density p0 (X) that generates some mutual information I0. Then, for any unitary

matrix Φ, the “post-rotated” probability density, p1 (X) = p0

(
XΦ†

)
also generates I0.

Proof idea. This is an adaptation of the existing results for MIMO from [MH99, Lemma 1].

The proof proceeds by substituting the post-rotated density p1 (X) into (2.14), changing the

variables of integration and using p (Y Φ|XΦ) = p (Y |X) from (2.12).

Lemma 2.3. The signal of the form X = LQ with L being a lower triangular matrix and

Q being an isotropically distributed unitary matrix independent of L, achieves the capacity

of the noncoherent MIMO.

Proof. Let X be a capacity achieving random variable and I0 be the corresponding mutual

information achieved. Now X can be decomposed as X = LΦ′ using the LQ decomposition

with L upper diagonal and Φ′ unitary, but they could be jointly distributed and Φ′ may not
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be isotropically unitary distributed. Let Θ be an isotropically distributed unitary matrix that

is independent of L and Φ′. Now use X1 = XΘ for signaling and let Y be the corresponding

received signal. Then

I (X1;Y |Θ) = I (XΘ;Y |Θ) (2.15)

= I0 (2.16)

using Lemma B.1. Now

I (X1;Y ) + I (Θ;Y |X1) = I (Θ;Y ) + I (X1;Y |Θ) (2.17)

I (X1;Y ) + 0
(i)
= I (Θ;Y ) + I (X1;Y |Θ) (2.18)

I (X1;Y )
(ii)

≥ I (X1;Y |Θ) (2.19)

= I0, (2.20)

where (i) was because I (Θ;Y |X1) = 0 since Θ − X1 − Y is a Markov chain and (ii) was

because I (X1;Y |Θ) ≥ 0. Hence without loss of generality the signal of the form LQ = LΦ′Θ

with Q = Φ′Θ achieves the capacity. Now Q = Φ′Θ is also unitary isotropically distributed

and independent of Φ′ using Fact 2.4 on page 25.

Next, we focus our attention on computing h (Y |X), which will be necessary in future

derivations. Let Y (n) be the nth row of Y . Conditioned on X, the rows of Y are independent

Gaussian. Hence:

h (Y |X) =
N∑
n=1

h (Y (n) |X) . (2.21)

With ρ2 (n) being the vector of channel strengths to nthreceiver antenna, we have:

KY (n)|X = E
[
Q†L†g† (n) g (n)LQ

∣∣LQ]+ IT

= Q†L†E
[
g† (n) g (n)

]
LQ+ IT

= Q†L†diag
(
ρ2 (n)

)
LQ+ IT
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where IT is a T × T identity matrix and diag
(
ρ2 (n)

)
is the diagonal matrix formed from

ρ2 (n). Hence:

h (Y (n) |X)

= E
[
log
(
det
(
πeKY (n)|X

))]
(2.22)

= E
[
log
(
det
(
πe
(
Q†L†diag

(
ρ2 (n)

)
LQ+ IT

)))]
(2.23)

(i)
= E

[
log
(
det
(
πe
(
L†diag

(
ρ2 (n)

)
L+ IT

)))]
(2.24)

where (i) uses the property of determinants to cancel Q and Q†. Also, for T ≥M , using the

lower triangular structure of L with LM×M being the first M ×M submatrix of L (rest of

the elements of L are zero for T ≥M) we have:

h (Y (n) |X)

= E
[
log
(

det
((
L†M×Mdiag

(
ρ2 (n)

)
LM×M + IM

)))]
+ (T ) log (πe) . (2.25)

2.4.3 Outer bound for the M × 1 MISO system

We now prove the gDoF outer bound given in Theorem 3.10 for the M ×1 MISO system.We

assume that T > 1, since for T = 1 we have the desired result using Theorem 2.5 on page

19. Also we assume that T ≥ M in the following outer bound computations. The case

for T < M is easily derived following similar steps reaching the same result and is given in

Appendix A.6.

For the capacity achieving distribution, we have the structureX =
[
LM×M 0M×(T−M)

]
Q

(from Theorem 2.1), where

LM×M =


x11 0 0

. . 0 0

. . 0

xM1 . . xMM


and 0M×(T−M) is an M × (T −M) matrix with elements of value zero. For the MISO, we

have Y = GX + W with G =
[
g11 . . g1M

]
and W is 1 × T with i.i.d. CN (0, 1)
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components. We assume ρ2
11 ≥ ρ2

1i without loss of generality. Now note that WQ has also

same distribution as W and is independent of Q (using the fact that W is isotropically

distributed and Fact 2.4). Hence

h (Y ) = h ((GX +W )Q)

= h

([ (
w11 +

∑M
i=1 xi1g1i

)
,
(
w12 +

∑M
i=2 xi2g1i

)
, . . .

. . . ,
(
w1M +

∑M
i=M xi2g1i

)
, w1(M+1) . . . , w1T

]
Q

)
.

Now using Lemma 3.2 on page 66, we have

h (Y ) = h

 M∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2

+
T∑

i=M+1

|w1i|2


+ (T − 1)E

log

 M∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2

+
T∑

i=M+1

|w1i|2
+ log

(
πT

Γ (T )

)
(2.26)

(i)

≤ h

 M∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2

+
T∑

i=M+1

|w1i|2


+ (T − 1)E

[
log

(
M∑
i=1

ρ2
1i

(
i∑

j=1

|xij|2
)

+ T −M
)]

+ log

(
πT

Γ (T )

)
, (2.27)

where (i) was using Tower property of expectation, Jensen’s inequality and
∑M

j=1

∑M
i=j |xij|

2 ρ2
1i =∑M

i=1

∑i
j=1 |xij|

2 ρ2
1i. Now using (3.52) we have

h (Y |X) = E
[
log
(

det
(
L†M×Mdiag

(
ρ2

11, . . . , ρ
2
1M

)
LM×M + IM

))]
+ (T ) log (πe) (2.28)

= E

[
log

(
M∏
i=1

(1 + ωi)

)]
+ (T ) log (πe) (2.29)

where ωi are the eigenvalues of L†M×Mdiag (ρ2
11, . . . , ρ

2
1M)LM×M . The eigenvalues are non-

negative since the matrix is Hermitian. Hence

h (Y |X) = E

[
log

(
M∏
i=1

(1 + ωi)

)]
+ (T ) log (πe) (2.30)
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≥ E
[
log
(

1 +
∑

ωi

)]
+ (T ) log (πe) (2.31)

the last step is true because ωi ≥ 0. Now

∑
ωi = Trace

(
L†M×Mdiag

(
ρ2

11, . . . , ρ
2
1M

)
LM×M

)
(2.32)

= Trace
(

diag
(
ρ2

11, . . . , ρ
2
1M

)
LM×ML

†
M×M

)
(2.33)

=
M∑
i=1

ρ2
1i

(
i∑

j=1

|xij|2
)
. (2.34)

Hence

h (Y |X) ≥ E

[
log

(
1 +

M∑
i=1

ρ2
1i

(
i∑

j=1

|xij|2
))]

+ (T ) log (πe) . (2.35)

Hence

I (X;Y ) ≤ h

 M∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2

+
T∑

i=M+1

|w1i|2


+ (T − 1)E

[
log

(
M∑
i=1

ρ2
1i

(
i∑

j=1

|xij|2
)

+ T −M
)]

− E

[
log

(
1 +

M∑
i=1

ρ2
1i

(
i∑

j=1

|xij|2
))]

+ log

(
πT

Γ (T )

)
− T log (πe) (2.36)

.

≤ (T − 1) log

(
M∑
i=1

ρ2
1iMT + T

)
, (2.37)

where the last step was using maximum entropy results and Jensen’s inequality. Hence

limsup
SNR→∞

1

T

I (X;Y )

log (SNR)
≤
(

1− 1

T

)
γ11. (2.38)

2.4.4 Outer bound for the 2× 2 MIMO system

In this subsection, we prove the gDoF outer bound from Theorem 2.7 for the 2 × 2 MIMO

with exponents γD in the direct links and γCL in the crosslinks. We have the structure of
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the optimal distribution as

X =

 a 0 0 . . 0

b c 0 . . 0

Q
from Theorem 2.1 and we have

G =

 g11 g12

g21 g22

 ,
and Y = GX + W , where W is 2 × T vector with i.i.d. CN (0, 1) components. We assume

T ≥ 2, since for T = 1 the gDoF is zero due to Theorem 2.5. We have:

h (Y ) = h

G
 a 0 0 . . 0

b c 0 . . 0

Q+W

 (2.39)

(i)
= h

G
 a 0 0 . . 0

b c 0 . . 0

+W

Q

 (2.40)

= h

 ag11 + bg12 + w11 cg12 + w12 w13 . w1T

ag21 + bg22 + w21 cg22 + w22 w23 . w2T

Q
 (2.41)

(ii)
= h

 ξ11 0 . . . 0

ξ21 ξ22 0 . . 0

ΦQ

 (2.42)

(iii)
= h

 ξ11 0 . . . 0

ξ21 ξ22 0 . . 0

Q
 , (2.43)

where the step (i) used the fact that W and WQ have the same distribution and is indepen-

dent of Q. In step (ii), ξij arise after LQ transformation (using Gram-Schmidt process) ag11 + bg12 + w11 cg12 + w12 w13 . w1T

ag21 + bg22 + w21 cg22 + w22 w23 . w2T

 =

 ξ11 0 . . . 0

ξ21 ξ22 0 . . 0

Φ

|ξ11|2 = |ag11 + bg12 + w11|2 + |cg12 + w12|2 +
T∑
i=3

|w1i|2 (2.44)

|ξ21|2 =

∣∣∣(ag21 + bg22 + w21) (ag11 + bg12 + w11)∗ + (cg22 + w22) (cg12 + w12)∗ +
∑T

i=3w2iw
∗
1i

∣∣∣2
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

(2.45)
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|ξ22|2 = |ag21 + bg22 + w21|2 + |cg22 + w22|2 +
T∑
i=3

|w2i|2

−

∣∣∣(ag21 + bg22 + w21) (ag11 + bg12 + w11)∗ + (cg22 + w22) (cg12 + w12)∗ +
∑T

i=3 w2iw
∗
1i

∣∣∣2
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

(2.46)

where Φ is unitary. In step (iii) we absorb Φ onto Q using Fact 2.4. The Gram-Schmidt

process for LQ transformation yields ξij as given in (2.44), (2.45) and (2.46).

Also using (3.52), (3.50) we get

h (Y |X)

= E
[
log
(
|a|2 ρ2

11 + |b|2 ρ2
12 + |c|2 ρ2

12 + |a|2 |c|2 ρ2
11ρ

2
12 + 1

)]
+ E

[
log
(
|a|2 ρ2

21 + |b|2 ρ2
22 + |c|2 ρ2

22 + |a|2 |c|2 ρ2
21ρ

2
22 + 1

)]
+ 2T log (πe) (2.47)

For computing h (Y ), let q1
(T ), q2

(T ) be the first two rows of Q. The vectors q1
(T ), q2

(T ) are

orthogonal since Q is isotropic unitary. We have

h (Y ) = h

 ξ11 0 . . . 0

ξ21 ξ22 0 . . 0

Q
 (2.48)

= h
(
ξ11q1

(T )
)

+ h
(
ξ21q1

(T ) + ξ22q2
(T )
∣∣ ξ11q1

(T )
)

(2.49)

Now consider h
(
ξ21q1

(T ) + ξ22q2
(T )
∣∣ ξ11q1

(T )
)
. Since ξ11 is nonnegative and ξ11q1

(T ) is given

in the conditioning, the direction q1
(T ) is known in the conditioning. Hence considering

ξ21q1
(T ) + ξ22q2

(T ) in a new orthonormal basis with the first basis vector chosen as q1
(T ) and

the rest of the basis vectors chosen arbitrarily, the projection of ξ21q1
(T ) + ξ22q2

(T ) onto the

first basis vector is ξ21. The projection onto the rest of the T − 1 vectors forms ξ22q2
(T−1)

where q1
(T−1) is a T − 1 dimensional isotropically distributed unit vector. Hence

h
(
ξ21q1

(T ) + ξ22q2
(T )
∣∣ ξ11q1

(T )
)

= h
([
ξ21, ξ22q

(T−1)
2

]∣∣∣ ξ11, q1
(T )
)

(2.50)

= h
([
ξ21, ξ22q

(T−1)
2

]∣∣∣ ξ11

)
(2.51)
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and

h (Y ) = h
(
ξ11q1

(T )
)

+ h
([
ξ21, ξ22q

(T−1)
2

]∣∣∣ ξ11

)
(2.52)

(i)
= h

(
ξ11q1

(T )
)

+ h
([
ξ21, ξ22q

(T−1)
2

]∣∣∣ |ξ11|2
)

(2.53)

≤ h
(
ξ11q1

(T )
)

+ h
(
ξ22q

(T−1)
2

∣∣∣ |ξ11|2
)

+ h
(
ξ21| |ξ11|2

)
(2.54)

where (i) is because ξ11 is non-negative. Note that above equation contains ξ11, ξ22, ξ21 which

we would like to convert to the form |ξ11|2 , |ξ22|2 , |ξ21|2 which are available from (2.44), (2.45)

and (2.46). We handle h
(
ξ21| |ξ11|2

)
with the following claim.

Claim 2.1. h
(
ξ21| |ξ11|2

)
≤ h

(
|ξ21|2

∣∣ |ξ11|2
)

+ log (π)

Proof. We have

h
(
ξ21| |ξ11|2

) (i)
= h

(
ξ21e

iθ
∣∣ |ξ11|2 , θ

)
(2.55)

(ii)

≤ h
(
ξ21e

iθ
∣∣ |ξ11|2

)
(2.56)

(iii)
= h

(
|ξ21|2

∣∣ |ξ11|2
)

+ log (π) (2.57)

where (i) uses an independent θ ∼ Unif [0, 2π], (ii) is because conditioning reduces entropy,

(iii) is using Lemma (3.2) since given |ξ11|2, ξ21e
iθ is isotropically distributed.

Using the above Claim, we get

h (Y ) ≤ h
(
ξ11q1

(T )
)

+ h
(
ξ22q

(T−1)
2

∣∣∣ |ξ11|2
)

+ h
(
|ξ21|2

∣∣ |ξ11|2
)

+ log (π) (2.58)

(i)

≤ h

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)

+ (T − 1)E
[
log
(
|a|2 ρ2

11 +
(
|b|2 + |c|2

)
ρ2

12 + 1
)]

+ log

(
πT

Γ (T )

)
+ h

(
|ξ21|2

∣∣ |ξ11|2
)

+ h
(
|ξ22|2

∣∣ |ξ11|2
)

+ (T − 2)E
[
log
(
|ξ22|2

)]
+ log (π) (2.59)

where (i) is by applying Lemma 3.2 on h
(
ξ11q1

(T )
)

and Corollary 3.8 on h
(
ξ22q

(T−1)
2

∣∣∣ |ξ11|2
)
.

Now we use the following Lemma to simplify h
(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

)
from the previous expression.
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Lemma 2.4. For any given distribution on (a, b, c),

h

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)

and

E
[
log
(
|a|2 ρ2

11 +
(
|b|2 + |c|2

)
ρ2

12 + 1
)]

have the same gDoF. Similarly for any given distribution on (a, b, c),

h

(
|ag21 + bg22 + w21|2 + |cg22 + w22|2 +

T∑
i=3

|w2i|2
)

and

E
[
log
(
|a|2 ρ2

21 +
(
|b|2 + |c|2

)
ρ2

22 + 1
)]

have the same gDoF.

Proof. The proof proceeds by constructing a noncoherent channel

C1 : V = |ag11 + bg12 + w11|2 + |cg12 + w12|2 +
T∑
i=3

|w1i|2 (2.60)

with inputs a, b, c output V and showing that it does not have any gDoF. The proof uses

outer bounding techniques from [LM03]. See Appendix A.7 for details.

Hence using the previous lemma, we get

h (Y )
.

≤ TE
[
log
(
|a|2 ρ2

11 +
(
|b|2 + |c|2

)
ρ2

12 + 1
)]

+ h

(
|ξ21|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

+ h

(
|ξ22|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

+ (T − 2)E
[
log
(
|ξ22|2 |ξ11|2

)]
− TE

[
log
(
|ξ11|2

)]
. (2.61)

Now we simplify E
[
log
(
|ξ11|2

)]
from the previous expression.

E
[
log
(
|ξ11|2

)]
= E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)]

= E

[
E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)∣∣∣∣∣ a, b, c

]]
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(i).
= E

[
log
(
|a|2 ρ2

11 +
(
|b|2 + |c|2

)
ρ2

12 + 1
)]
, (2.62)

where (i) was using Fact 5.1 on page 135 and that |ag11 + bg12 + w11|2 , |cg12 + w12|2 , |w1i|2

are exponentially distributed given a, b, c. Hence

h (Y )
.

≤ h

(
|ξ21|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

+ h

(
|ξ22|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

+ (T − 2)E
[
log
(
|ξ22|2 |ξ11|2

)]
(2.63)

Now we use the following lemmas to further simplify the terms in the above expression for

h (Y ).

Lemma 2.5. We have

h

(
|ξ22|2 |ξ11|2

∣∣∣∣ |ξ11|2
)
.
= h

(
|ξ22|2 |ξ11|2

∣∣∣∣ |ξ11|2 , a, b, c
)
≤ E

[
log

(
eE
[
|ξ22|2 |ξ11|2

∣∣∣∣ a, b, c])] .

Proof. The proof uses similar techniques as that for Lemma 3.3. See Appendix A.8 for

details.

Lemma 2.6. We have

h

(
|ξ21|2 |ξ11|2

∣∣∣∣ |ξ11|2
)
.
= h

(
|ξ21|2 |ξ11|2

∣∣∣∣ |ξ11|2 , a, b, c
)
≤ E

[
log

(
eE
[
|ξ21|2 |ξ11|2

∣∣∣∣ a, b, c])] .

Proof. This can be proved similar to the previous lemma. We omit the proof.

Hence using (2.44), (2.45) and Lemma 2.6 to bound h

(
|ξ21|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

, we have

|ξ21|2 |ξ11|2 =

∣∣∣∣∣(ag21 + bg22 + w21) (ag11 + bg12 + w11)∗ + (cg22 + w22) (cg12 + w12)∗ +
T∑
i=3

w2iw
∗
1i

∣∣∣∣∣
2

,

h

(
|ξ21|2 |ξ11|2

∣∣∣∣ |ξ11|2
)
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.

≤ E
[
log
((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+2 |c|2 |b|2 ρ2

22ρ
2
12 +

(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
)

+ T − 2
)]

(2.64)

.

≤ E
[
log
((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
) )]

, (2.65)

where the last step followed due to AM-GM inequality 2 |c|2 |b|2 ρ2
22ρ

2
12 ≤ |b|4 ρ2

22ρ
2
12+|c|4 ρ2

22ρ
2
12.

Similarly using (2.44) and (2.46) we have

|ξ22|2 |ξ11|2

=

(
|ag21 + bg22 + w21|2 + |cg22 + w22|2 +

T∑
i=3

|w2i|2
)(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)

−
∣∣∣∣∣(ag21 + bg22 + w21) (ag11 + bg12 + w11)∗ + (cg22 + w22) (cg12 + w12)∗ +

T∑
i=3

w2iw
∗
1i

∣∣∣∣∣
2

.

After some algebraic manipulations, it can be seen that

E
[
|ξ22|2 |ξ11|2

∣∣∣∣ a, b, c]
= (T − 2)2 − (T − 2) + (T − 2)

(
|a|2 ρ2

21 + |b|2 ρ2
22 + |c|2 ρ2

22 + |a|2 ρ2
11 + |b|2 ρ2

12 + |c|2 ρ2
12 + 2

)
+
(
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2 ρ2
12 +

(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
)

+ |b|2 ρ2
22. (2.66)

After retaining only the terms that contribute to gDoF from the above equation, we bound

h

(
|ξ22|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

using Lemma 2.6 to get

h

(
|ξ22|2 |ξ11|2

∣∣∣∣ |ξ11|2
)

.

≤ E
[
log

(
eE
[
|ξ22|2 |ξ11|2

∣∣∣∣ a, b, c])] (2.67)

.

≤ E
[
log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
) )]

. (2.68)

Also

E
[
log
(
|ξ22|2 |ξ11|2

)]
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= E
[
log

(
E
[
|ξ22|2 |ξ11|2

∣∣∣∣ a, b, c])] (2.69)

.

≤ E
[
log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
) )]

. (2.70)

Hence using (2.70), (2.68), (2.65) in (2.63) we get

h (Y )

.

≤ E
[
log
((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
))]

+ (T − 1)E
[
log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
) )]

. (2.71)

Using the above equation and (2.47), we get

I (X;Y )

.

≤ E
[
log
((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
))]

+ (T − 1)E
[
log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
))]

− E
[
log
(
|a|2 ρ2

11 + |b|2 ρ2
12 + |c|2 ρ2

12 + |a|2 |c|2 ρ2
11ρ

2
12 + 1

)]
− E

[
log
(
|a|2 ρ2

21 + |b|2 ρ2
22 + |c|2 ρ2

22 + |a|2 |c|2 ρ2
21ρ

2
22 + 1

)]
. (2.72)

Hence a gDoF equivalent outer bound is given by the optimization problem

P1 :

{
maximize

E[|a|2+|b|2+|c|2]≤T
E
[
f
(
|a|2 , |b|2 , |c|2

)]
, (2.73)

where

f
(
|a|2 , |b|2 , |c|2

)
= log

((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
))

+ (T − 1) log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
))

− log
((

1 + |a|2 ρ2
11

) (
1 + |c|2 ρ2

12

)
+ |b|2 ρ2

12

)
− log

((
1 + |a|2 ρ2

21

) (
1 + |c|2 ρ2

22

)
+ |b|2 ρ2

22

)
. (2.74)
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Lemma 2.7. The gDoF achieved in P1 can be achieved by a point mass distribution, i.e.,

gDoF (P1) = gDoF (P7), where P7 is the following:

P7 :


maximize f

(
|a|2 , |b|2 , |c|2

)
with

|a|2 ≤ T, |b|2 ≤ T, |c|2 ≤ T.

(2.75)

Proof idea. The proof proceeds in several steps:

Step 1: Show that there exists a discretization (over an infinite set) for any distribution

of
(
|a|2 , |b|2 , |c|2

)
that does not incur a loss in gDoF.

Step 2: Show that the discretization can be limited to a finite set without incurring a

loss in gDoF.

Step 3: View the problem as a linear program with 2 constraints, and show that the

there is an optimal distribution with just 2 mass points.

Step 4: Show that the 2 mass points can be collapsed to a single point using arguments

of symmetry.

The details of the proof are given in Appendix A.2.

Changing the variables from
(
|a|2 , |b|2 , |c|2

)
to (γa, γb, γc) with the substitution |a|2 =

SNR−γa , |b|2 = SNR−γb , |c|2 = SNR−γc , it is clear that

gDoF (P1) = gDoF (P7) = (P8) ,

where P8 is the following

P8 :


maximizefγ (γa, γb, γc) with

γa ≥ 0, γb ≥ 0, γc ≥ 0,

(2.76)

with

fγ (γa, γb, γc)

= max

(
max (−γa + γ11,−γb + γ12, 0) + max (−γa + γ21,−γb + γ22, 0)

,max (−γc + γ12, 0) + max (−γc + γ22, 0)

)

38



+ (T − 1) max

(
max (−γa + γ11, 0) + max (−γc + γ22, 0)

, γb + max (γ12, γ22) ,max (−γa + γ21, 0) + max (−γc + γ12, 0)

)
−max (−γa + γ11,−γb + γ12,−γc + γ12,−γa − γc + γ11 + γ12, 0)

−max (−γa + γ21,−γb + γ22,−γc + γ22,−γa − γc + γ21 + γ22, 0) . (2.77)

For symmetric 2×2 MIMO, we have γ11 = γ22 = γD, γCL = γ12 = γ21. Also it can be assumed

without loss of generality that γD > γCL. By inspection of the optimization problem, it is

clear that we can also restrict γa ≤ γD, γb ≤ γD, γc ≤ γD without affecting the solution.

With these additional constraints, we can simplify P8 to P9 for the symmetric 2× 2 MIMO

with P9 defined as the following:

P9 :



maximize max (−2γa + γCL,−γa + γD − γb,−2γb + γCL,−2γc + γCL,−γc)

+ (T − 1) max (−γa + γD − γc,−γb) + TγD − t1 − t2

t1 = max (−γa + γD,−γb + γCL,−γa − γc + γD + γCL)

t2 = max (−γb + γD,−γc + γD,−γa − γc + γD + γCL)

0 ≤ γa ≤ γD, 0 ≤ γb ≤ γD, 0 ≤ γc ≤ γD.

(2.78)

Using standard linear programming arguments, P9 has a solution for (γa, γb, γc, t1, t2) in one

of the corner points of the following region:

R :



0 ≤ γa ≤ γD; 0 ≤ γb ≤ γD, 0

0 ≤ γc ≤ γD;

t1 ≥ −γa + γD; t1 ≥ −γb + γCL

t1 ≥ −γa − γc + γD + γCL; t2 ≥ −γb + γD

t2 ≥ −γa − γc + γD + γCL; t2 ≥ −γc + γD


This can be seen by considering case by case for P9, depending on which term inside the

max (·)’s could come out in the objective function, and noting that maximize
γa,γb,γc,t1,t2

max (f1, f2) is

same as max

(
maximize
γa,γb,γc,t1,t2

(f1) ,maximize
γa,γb,γc,t1,t2

(f2)

)
for linear f1, f2.
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Suppose −2γa + γCL = max (−2γa + γCL,−γa + γD − γb,−2γb + γCL,−2γc + γCL,−γc)
and −γa + γD − γc = max (−γa + γD − γc,−γb), then P9 has a solution in one of the corner

points of of R. This is true for all possible cases of the values of the two max ()’s. Hence P9

itself has a solution in one of the corner points of R.

We code in Mathematica to find all the corner points of R and find the maximum across

the corner points. Finding all the corner points and the calculations could be written down

in the chapter, but this would be uninteresting. So we have deferred it to the software.

We believe that this does not compromise the analytical rigor of the proof. We obtain the

solution in Table 2.3. Our Mathematica code is available online at http://www.seas.ucla.

edu/~joyson/Documents/Sym_mimo_outerbound.nb. This code uses γD = 1, γCL = 1 − ε
and we can obtain the general solution with a simple scaling.
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CHAPTER 3

Noncoherent Diamond network

3.1 Introduction

The capacity of (fading) wireless networks has been unresolved for over four decades. There

has been recent progress on this topic through an approximation approach (see [ADT11] and

references therein) as well as a scaling approach (see [GK00, OLT07] and references therein).

However, most of the work is on understanding the capacity of a given wireless network,

i.e., where the network as well as its parameters (including channel gains) are known, at

least at the destination. There has been much less attention1 to the case where the network

parameters (channel gains) are unknown to everyone, i.e., the noncoherent wireless network

capacity. The study of noncoherent point-to-point multiple-input-multiple-output (MIMO)

wireless channels in [MH99, ZT02] etc. and references therein, revealed that there was

an important tradeoff between communication and channel learning in such scenarios. In

particular, it might be useful not to use all the resources available to communicate, if it

costs too much to learn their parameters; for example, one would not use all the antennas

in noncoherent MIMO channels. The question we ask in this chapter is similar, but in the

context of wireless relay networks, in particular we study when one should use training to

learn the channels and if so which links to learn and how to use them. The central question

examined in this chapter is the generalized degrees of freedom (gDoF) of noncoherent wireless

networks (albeit for specific topologies) when there might be significant (known) statistical

variations in the link strengths.

1Exceptions include [Lap05, ND10, KK13].
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The noncoherent wireless model for MIMO, where neither the receiver nor the transmitter

knows the fading coefficients was studied by Marzetta and Hochwald [MH99]. In their

channel model, the fading gains remain constant within a block of T symbol periods and

the fading gains are identically independent distributed (i.i.d.) Rayleigh random variables

across the blocks. The general capacity of a noncoherent MIMO is still unknown, but the

behavior at high signal-to-noise-ratio (SNR) for the noncoherent MIMO with i.i.d. links is

characterized in [ZT02]. There, the idea of communication over a Grassmanian manifold

was used to study the capacity behavior at high SNR. The case with unit coherence time

(T = 1) for the noncoherent single-input-single-output (SISO) channel was considered by

Taricco and Elia [TE97] and they obtained the capacity behavior in asymptotically low and

high SNR regimes. Abou-Faycal et al. [ATS01] further studied this case; they showed that

for any given SNR, the capacity is achieved by an input distribution with a finite number

of mass points. Lapidoth and Moser [LM03] showed that for the noncoherent MIMO with

T = 1, the capacity behaves double logarithmically with the SNR for high SNR and this

result was later extended to noncoherent networks [Lap05]. In contrast, the work of Zheng

and Tse [ZT02] showed that when there is block-fading (i.e., T > 1), then for high SNR,

the capacity can scale logarithmically with the SNR. They showed that when the links are

i.i.d. with M transmit antennas and N receive antennas, the number of transmit antennas

M∗, required to attain the degrees of freedom (DoF) was min (bT/2c ,M,N). The DoF

was shown to be M∗ (1−M∗/T ) in that case. The case of the noncoherent MIMO with

asymmetric statistics on the link strengths was studied in Chapter 2. There, we showed

that the (generalized degrees of freedom) gDoF for single-input-multiple-output (SIMO) and

multiple-input-single-output (MISO) channels can be achieved by using only the strongest

link. Also, for the 2 × 2 MIMO with two different SNR-exponents in the direct-links and

cross-links, the gDoF was derived as a function of the SNR-exponents and the coherence

time. Also, they showed that several insights from the identical link statistics scenarios

of [MH99, ZT02] may not carry over to the case with asymmetric statistics; including the

optimality of training and the number of antennas to be used.
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The noncoherent single relay network with identical link strengths and unit coherence

time was studied in [KK13], where it was shown that the relay does not increase the capacity

at high SNR under certain conditions on the fading statistics. Similar observations were made

in [GY14] for the noncoherent MIMO full-duplex single relay channel with block-fading,

where they showed that Grassmanian signaling can achieve the DoF without using the relay.

Also, their results show that for certain regimes, decode-and-forward with Grassmanian

signaling can approximately achieve the capacity at high SNR and the characterization is

determined by the number of antennas at the nodes. However, the assumption in [KK13,

GY14] is that the channel strengths are symmetric in the sense explained below i.e., these

papers studied DoF and not gDoF. In many scenarios, the average strengths of the links

can be asymmetric, i.e., some links could be significantly weaker than others. This can

happen when the relays are well separated, then the channel gains can be very different and

this is not captured by the DoF. These differences matter in the high SNR regime, if the

channel strengths are significantly different with respect to the operating SNR. This way

of accounting for channel strength asymmetry in terms of SNR was introduced in the work

of Zheng and Tse [ZT03] for calculating the diversity multiplexing tradeoff for the coherent

MIMO2 and was subsequently used for the coherent interference channel to analyze the gDoF

[ETW08]. We use a similar framework to model channel asymmetry for our noncoherent

relay problem. Therefore, in this sense, our model is for asymmetric channels (in terms of

SNR scaling) in contrast to the symmetric channels (in terms of SNR scaling) studied in

[KK13, GY14].

The diamond (parallel relay) network was introduced in [SG00]. Though the single-letter

capacity is still unknown, for the coherent network (known channels) it has been character-

ized to within a constant additive bound (and in some scenarios a constant multiplicative

bound) in [ADT11], with improved bounds established in [ND13, SWF14, KOG15]. As men-

tioned earlier, ours is the noncoherent model, which, to the best of our knowledge, has not

2In the diversity multiplexing tradeoff [ZT03], the channel statistics were symmetric and the different
channel scaling was introduced to account for channel strength variation in their realization. However, this
was not the case for the coherent interference channel [ETW08] where the notion of gDoF was defined.
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been studied for the diamond network. We consider a block-fading channel model where

the fading gains are i.i.d. Rayleigh distributed and remain constant for T symbol periods.

Our model considers the diamond network where the link strength could have different fad-

ing distributions. This is naturally motivated when the relay locations are well separated,

causing the links to have different average strengths (and therefore different statistics).

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure 3.1: The 2-relay diamond network with given SNR exponents of link strengths.

In this chapter we have the following contributions:

1. We develop an outer bound for the block-fading noncoherent diamond network, which

does not follow directly from the standard cut-set bound. We derive the structure of

the optimal distribution required for this outer bound. We reduce the outer bound to

a simpler form preserving the gDoF using novel techniques.

2. We show that any scheme that allocates separate symbols for channel training for each

link, cannot always meet the new gDoF outer bound.

3. We develop a new relaying strategy which we term as train-scale quantize-map-forward

(TS-QMF) for the noncoherent diamond network, which we show achieves the new

gDoF outer bound, and is therefore gDoF-optimal.

4. We demonstrate the tradeoff between network learning and utilization, by showing

that there are certain regimes where a simple relay selection is gDoF-optimal and that

there are other regimes where we need both the relays. Even in the regimes where

both the relays are used, we do not necessarily learn the channel values, as seen in
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the TS-QMF scheme. In regimes where we need to operate both the relays, we use a

time-sharing random variable to coordinate the relay operation.

We first derive a new outer bound for the noncoherent diamond network3 in Theorem 3.1.

The main issue in not using the standard cut-set bound for the block-fading case is that the

transmit symbol block at the relay can depend on the current received symbol block at the

relay, due to the block-nature of the model (see Figure 3.3). Therefore, we need to develop

a slightly modified form of the cut-set bound to account for the block-fading channel. This

is expressed as an optimization problem (akin to the classical cut-set bound which is also

expressed as an optimization). In Theorem 3.3, we develop the structure for the distribution

that solves the optimization problem of the outer bound. We show that this is of the form LQ,

where L is lower triangular and Q is a unitary isotropically distributed matrix independent

of L. Next, in Theorem 3.2, we outline some regimes of the network parameters in which a

relay selection together with the decode-and-forward strategy is gDoF-optimal. This shows

that in the noncoherent case, we might need to use a smaller part of the network, as learning

and communicating in the entire network might be suboptimal. In a way, this gives a form

of network simplification, similar to that observed for the coherent case [NOF14], where it

was shown that (simplified) subnetworks could achieve most of the network capacity. In

[NOF14], the authors demonstrated that for the coherent n-relay diamond network, we can

always find a subset of k relays that can achieve a fraction k/ (k + 1) of the total capacity

within a constant gap.

Next, we proceed to the more difficult regime in which a simple relay selection is not

optimal. For this regime, in Theorem 3.4, we further develop novel outer bounding techniques

to simplify the results in Theorem 3.1. The outer bounding techniques in this Chapter is

influenced by the methods developed in Chapter 2 for the noncoherent MIMO: there, we

discretized the outer bound (without losing gDoF) and used linear programming techniques

to further reduce the outer bound. We analyze the outer bound from Theorem 3.1, and show

3We also provide a more general version for block-fading noncoherent acyclic networks in Appendix B.2.
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that the optimization problem of the outer bound is solved (in terms of gDoF) by a joint

distribution (of the signals for the source and the relays) which has only two mass points. This

is proved in Theorem 3.4 by discretizing the terms in outer bound (without losing gDoF)

and using linear programming arguments. Subsequently, in Theorem 3.5, we reduce the

optimization problem for choosing the two mass points, to a bilinear optimization problem,

and we solve it explicitly. The bilinear optimization does not arise in the noncoherent MIMO

case Chapter 2. In Chapter 2, there was only a piecewise linear optimization.

The approximate capacity of the coherent diamond channel (and of general unicast net-

works) can be achieved by the quantize-map-forward (QMF) strategy [ADT11, ADT15].

Here the strategy is that the relay quantizes the received signal and maps it (uniformly at

random) to the transmit codebook. The standard QMF strategy requires the knowledge of

the channels at the destination, for this, the links need to be trained. If we use a standard

training method for the noncoherent diamond network, we need at least one symbol in every

block to train the channels from the source to the relays, and we need at least two symbols

in every block to train the channels from the relays to the destination (since there are two

variables to be learned at the destination). In Theorem 3.6, we analyze the gDoF (assuming

perfect network state knowledge at every nodes) using only the remaining symbols after

training and we verify that this cannot achieve our outer bound.

Subsequently, we develop a new relaying strategy, which we call “train-scale QMF” (see

Section 3.3.2) which we show is gDoF-optimal with respect to our outer bound, in Theorem

3.7. In the new scheme, we use a combination of training, scaling and QMF schemes to

achieve this: the source sends training symbols to the relays, the relays scale the data

symbols with the channel estimate obtained from training, then the relays perform QMF

on the scaled symbols. The scaling is performed at the relays, so that the destination need

not have the knowledge of the channels from the source to the relays. Another important

characteristic of our scheme is that the source sends training symbols to the relays, but the

relays do not send training symbols to the destination. If the relays need to send training

symbols to the destination, we need to set aside two symbols in every block, and this is not
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gDoF-optimal due to Theorem 3.6.

In certain regimes, the distribution solving the optimization of the outer bound effectively

induces a nonconcurrent operation of the two relays: while one relay is ON, the other relay

is OFF and vice versa. There are regimes where both the relays are operated simultaneously,

but one of the relays is kept at a lower power. These regimes (described in Theorem 3.5)

are identified jointly by the channel strengths and the coherence time. Also, similar to the

coherent case, Theorem 3.2 identifies regimes in which relay selection is optimal for the

noncoherent case. The regimes for relay selection can be identified by channel strengths

alone, independent of the coherence time.

The rest of this chapter is organized as follows: in Section 5.2 we set up the system model,

Section 3.3 presents our main results and some interpretations along with an outline of the

proof ideas, with reference to lemmas and facts detailed in Section 3.4 which provides the

main analysis and many of the proofs. Most detailed proofs are deferred to the appendixes.

3.2 System model

gsr1

gsr2

grd1

grd2

XS

YR1

YR2

XR1

XR2

YD

Figure 3.2: Signal flow over the 2-relay diamond network.

We use the same notations as defined in Section 2.2.1 on page 13. We consider a 2-relay

diamond network as illustrated in Figure 3.2, with a coherence time of T symbol durations.

The signal flow (over a block-length T ) is given by: YR1

YR2

 =

 gsr1

gsr2

XS +

 WR1

WR2

 (3.1)
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YD =
[
grd1 grd2

] XR1

XR2

+WD. (3.2)

For succinct notation let

X =


XS

XR1

XR2

 , XR =

 XR1

XR2

 , Y =


YR1

YR2

YD

 , YR =

 YR1

YR2

 , (3.3)

G =


gsr1 0 0

gsr2 0 0

0 grd1 grd2

 , W =


WR1

WR2

WD

 . (3.4)

Then we have the effective flow

Y = GX +W, (3.5)

where XS is the 1 × T vector of transmitted symbols from the source, gsri is the channel

from the source to the relay Ri, WRi is the 1 × T noise vector at the relay Ri with i.i.d.

CN (0, 1) elements, YRi is the 1 × T vector of received symbols at the relay Ri, XRi is the

1×T vector of transmitted symbols from the relay Ri, gsri is the channel from the relay Ri to

the destination, WD is the 1×T noise vector at the destination with its elements wdj ∼ i.i.d.

CN (0, 1) and YD is the 1 × T vector of received symbols at the destination. The channels

gsri, grdi remains constant over block-length T . Every block has independent instances of

gsri,grdi with gsri ∼ CN (0, ρ2
sri) i.i.d. and grdi ∼ CN (0, ρ2

rdi) i.i.d. For gDoF analysis, we

define γsri, γrdi
4 as

γsri =
log (ρ2

sri)

log (SNR)
, γrdi =

log (ρ2
rdi)

log (SNR)
. (3.6)

The transmitted symbols at each relay are dependent only on the previously received symbols

at the relay. The transmit signals have the average power constraint: (1/T )E
[
‖XS‖2] =

(1/T )E
[
‖XR1‖2] = (1/T )E

[
‖XR2‖2] = 1.

4For our analysis, we assume that γsri = log
(
ρ2sri
)
/ log (SNR) and γrdi = log

(
ρ2rdi

)
/ log (SNR) are

constants. However, we could define γ̂sri = log
(
ρ2sri
)
/ log (SNR) , γ̂rdi = log

(
ρ2rdi

)
/ log (SNR) which depends

on SNR and consider the limits γsri = limSNR→∞ γ̂sri, γrdi = limSNR→∞ γ̂rdi which can be assumed to be
constants independent of SNR. However, the gDoF analysis will yield the same result for both cases.
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3.3 Main Results

In this section, we derive the gDoF for the noncoherent diamond network. For this purpose, in

Theorem 3.1, we first derive a modified version of the cut-set outer bound for the noncoherent

diamond network. This outer bound is in the form of an optimization problem. A looser

version of this outer bound (that can be easily evaluated) can be used in certain regimes to

obtain the gDoF. For achieving the gDoF in these regimes, we use relay selection and the

decode-and-forward strategy. These regimes and the details of the achievability scheme are

given in Theorem 3.2.

For the regimes that are not handled by Theorem 3.2, we calculate new outer bounds in

Section 3.3.1 by simplifying and solving the outer bound optimization problem from Theorem

3.1. The outer bound is developed through Theorem 3.3, Theorem 3.4 and Theorem 3.5.

Theorem 3.3 derives the structure of the optimizing distribution for the outer bound from

Theorem 3.1. Theorem 3.4 uses this structure to bring the outer bound to a form that can

be explicitly solved. The solution is obtained by Theorem 3.5.

In Theorem 3.6, we show that training-based schemes are not optimal in general for

the regime considered in Section 3.3.1. Subsequently, we develop a new scheme that meets

the outer bound developed in Section 3.3.1. The scheme is described in Section 3.3.2. In

Theorem 3.7, this scheme is shown to meet the outer bound.

Theorem 3.1. For the 2-relay diamond network, the capacity is outer bounded by C̄, where

TC̄ = sup
p(X)

min
{
I (XS;YR) , I (XS;YR2) + I (XR1 ;YD|XR2) ,

I (XS;YR1) + I (XR2 ;YD|XR1) , I (XR;YD)
}

(3.7)

with X,XR, YR defined in (3.3).

Proof idea. This is a modified version of the cut-set outer bound for noncoherent networks.

The conventional cut-set outer bound does not automatically follow for the noncoherent case.

The main reason for this is that we have a block-fading model, which means that there is
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a mismatch between the symbols and the block memoryless nature of the channel. Figure

3.3 illustrates this, where it can be seen that the causal relaying means that the symbols

from the current fading block could potentially be used for relaying, causing the mismatch

between the block memoryless model and the relaying. The detailed proof is in Appendix

B.1. Theorem 3.1 is stated for the 2-relay diamond network, but this can be generalized and

a generalized version of the cut-set outer bound for acyclic noncoherent networks is given in

Appendix B.2.

Block
j j + 1 j + 2

YR2

XR2

Transmitted symbol depends only
on previous received symbols at the relay.

Transmitted block can depend on
current received block.

Figure 3.3: The transmitted symbols from the relays depend only on the previously received

symbols, including the current fading block. Therefore the transmitted symbol could depend

on the received symbols in the current fading block.

In the next theorem, we explain the regimes in which the gDoF can be achieved by a

simple relay selection and the decode-and-forward strategy.

Theorem 3.2. For the 2-relay diamond network with parameters in the regimes indicated

in Table 3.1, the gDoF can be achieved by selecting a single relay as indicated in Table 3.1.

Proof. For achievability, we use the decode-and-forward strategy by selecting a single relay

depending on the regime as indicated in Table 3.1. (The existing noncoherent schemes [ZT02]

can be used in each link). For example when γrd1 ≥ γsr1 ≥ γsr2, we use decode-and-forward

using only Relay R1. The gDoF achievable from the source to Relay R1 is (1− 1/T ) γsr1 and

5For the figures in the table, the thickness of each arrow is just an illustration consistent with the range
of the gamma parameters in the first column of the table. There could be other consistent illustrations.
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Table 3.1: Regimes where a simple relay selection is gDoF-optimal.

Regime Illustration5 Relay selected gDoF

γrd1 ≥ γsr1 ≥ γsr2

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

R1

(
1− 1

T

)
γsr1

γsr1 ≥ γrd1 ≥ γrd2

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

R1

(
1− 1

T

)
γrd1

gDoF achievable from Relay R1 to the destination is (1− 1/T ) γrd1 [ZT02]. Each link can be

trained using one symbol, the rest of the symbols can be used for data transmission and this

will achieve the gDoF for each link [ZT02]. Thus, in this case, the gDoF achievable from the

source to the destination evaluates to min {(1− 1/T ) γsr1, (1− 1/T ) γrd1} = (1− 1/T ) γsr1.

The other case from the last row of Table 3.1 can be similarly evaluated.

Now, we only need to show the outer bound for these cases. We use the outer bound

TC̄ ≤ min

{
sup
p(X)

I (XS;YR) , sup
p(X)

I (XR;YD)

}
. (3.8)

This is obtained by loosening (3.7). The above equation consists of a SIMO term and a

MISO term. From Chapter 2, the gDoF for SIMO and MISO can be achieved using just the

strongest link. Hence the above equation yields the gDoF outer bound

γ̄ ≤
(

1− 1

T

)
min {max {γsr1, γsr2} ,max {γrd1, γrd2}} . (3.9)

This equation for the gDoF outer bound reduces to the gDoF term in Table 3.1 in the different

regimes as indicated in the table. For example when γrd1 ≥ γsr1 ≥ γsr2, the right-hand-side

(RHS) of (3.9) reduces to (1− 1/T ) γsr1.
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Discussion: The regimes discussed in this theorem arise also in the coherent case and relay

selection is optimal for the coherent case in these regimes. These regimes are dictated by

the γ parameters alone, independent of T . As we look into other regimes, we will see that

the coherence time T will also affect the relay operation and achievability strategies.

The rest of the results are about the nontrivial regimes of the 2-relay diamond network

that cannot be handled with the simple outer bound from (3.9). We develop new outer

bound techniques and achievability schemes for these cases. The outer bound techniques

involve loosening (3.7), discretizing the terms involved in it without losing gDoF and subse-

quently obtaining a solution for the optimization formulation of the outer bound using linear

programming methods. Achievability schemes involve a modification of the QMF strategy

[ADT11, ADT15]: the differences from the standard QMF strategy to our scheme are that

we only partially train the network and we use a scaling at the relays to avoid the necessity

of the knowledge of the entire network parameters at the destination. Also, from (3.9), it is

clear that if T = 1, the gDoF is zero. Hence we consider T ≥ 2 for the rest of the chapter.

3.3.1 Nontrivial Regimes of the Diamond Network

In this section, we deal with the diamond network with its parameters lying in the regime

that cannot be handled by the decode-and-forward strategy as in Theorem 3.2. This regime

has

γsr1 > γsr2, γsr1 > γrd1, γrd2 > γrd1, γrd2 > γsr2. (3.10)

With this, all regimes of the diamond network are covered (we exclude the cases which can

be obtained by relabeling the relays).

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure 3.4: Regime with γsr1 > γsr2, γsr1 > γrd1 , γrd2 > γrd1 and γrd2 > γsr2 .
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We now proceed with developing a (tight) gDoF outer bound for this regime.

Theorem 3.3. The outer bound (3.7) for the diamond network is optimized by input X

of the form X = LQ with L being a lower triangular matrix and Q being an isotropically

distributed unitary matrix independent of L.

Proof. This is an adaptation of the existing results for the noncoherent MIMO channel

[MH99]. The proof is in Appendix B.3.

Theorem 3.4. The outer bound (3.7) can be further upper bounded as

TC̄
.

≤ min
{

(T − 1) log
(
ρ2
sr1

)
, (P1)

}
, (3.11)

where (P1) is the solution of the optimization problem

P1 :


maximize

E[|a|2]≤T,E[|b|2+|c|2]≤T
min {ψ1, ψ2}

|a|2 , |b|2 , |c|2 ≥ 0

(3.12)

with

ψ1 =TE
[
log
(
ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + T

)]
− E

[
log
(
ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + ρ2

rd1ρ
2
rd2 |c|2 |a|2 + 1

)]
, (3.13)

ψ2 = (T − 1) log
(
ρ2
sr2

)
+ E

[
log
(
ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + 1
)]

+ (T − 1)E
[
log
(
ρ2
rd1 |c|2 + T − 1

)]
− E

[
log
(
ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + ρ2

rd1ρ
2
rd2 |c|2 |a|2 + 1

)]
. (3.14)

Proof. Due to Theorem 3.3, we have
XR2

XR1

XS

 =


a 0 0 . . . 0

b c 0 . . . 0

d e f 0 . . 0

Q (3.15)

as the structure of the optimizing distribution, with a, b, c, d, e, f as random with unknown

distributions andQ being an isotropic unitary T×3 matrix independent of the other variables.
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Hence we have

TC̄ = sup
p(a,b,c,d,e,f)

min
{
I (XS;YR) , I (XS;YR2) + I (XR1 ;YD|XR2) ,

I (XS;YR1) + I (XR2 ;YD|XR1) , I (XR;YD)
}

(3.16)

≤ sup
p(a,b,c,d,e,f)

min {I (XS;YR) , I (XS;YR1) + I (XR2 ;YD|XR1) , I (XR;YD)} (3.17)

≤ min

{
sup

p(a,b,c,d,e,f)

I (XS;YR) ,

sup
p(a,b,c,d,e,f)

min {I (XR;YD) , I (XS;YR2) + I (XR1 ;YD|XR2)}
}

(3.18)

(i)
.

≤ min
{

(T − 1) log
(
ρ2

sr1

)
,

sup
p(a,b,c,d,e,f)

min {I (XR;YD) , I (XS;YR2) + I (XR1 ;YD|XR2)}
}

(3.19)

(ii)
.

≤ min

{
(T − 1) log

(
ρ2

sr1

)
, sup
p(a,b,c)

min {ψ1, ψ2}
}

(3.20)

(iii)
= min

{
(T − 1) log

(
ρ2

sr1

)
, (P1)

}
. (3.21)

In step (i), we observe that I (XS;YR) corresponds to a noncoherent SIMO channel. From

Chapter 2, the gDoF of the noncoherent SIMO is achieved by using the strongest link alone.

Hence

sup
p(a,b,c,d,e,f)

I (XS;YR)
.

≤ (T − 1) log
(
ρ2

sr1

)
follows in step (i). The step (ii) is by showing

I (XR;YD)
.

≤ ψ1, I (XS;YR2) + I (XR1 ;YD|XR2)
.

≤ ψ2,

where ψi are independent of d, e, f . The details of step (ii) are in Section 3.4.2. In step (iii),

we defined (P1) = supp(a,b,c) min {ψ1, ψ2}. The optimization problem P1 can be viewed as a

tradeoff between between a MISO cut (Figure 3.8 on page 69) and a parallel cut (Figure 3.9

on page 71). The tradeoff arises because the unknown channel from one of the relays acts

as an interference to the transmission from the other relay, hence the operation of Relay R1

and Relay R2 need to be optimized.
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In the following lemma, we further reduce P1 into a form that can be solved explicitly.

Lemma 3.1. The solution of P1 has the same gDoF as the solution of P9.

P9 :



maximize min

{
pλ
(
(T − 1) γrd2 log (SNR)− log

(
SNRγrd1 |c1|2 + 1

))
+ (T − 1) (1− pλ) γrd1 log (SNR) , (T − 1) γsr2 log (SNR)

+ (T − 2) pλ log
(
SNRγrd1 |c1|2 + 1

)
+ (T − 1) (1− pλ) γrd1 log (SNR)

}
|c1|2 ≤ T, 0 ≤ pλ ≤ 1,

(3.22)

i.e.,

gDoF (P1) = gDoF (P9) . (3.23)

Proof sketch. The proof proceeds in several steps in Appendix B.4. We show in (B.61) that

we can discretize the function min {ψ1, ψ2} over discrete values of
(
|a|2 , |b|2 , |c|2

)
without

losing gDoF. The discretization is over countably infinite points with the distance between

points chosen inversely proportional to the SNR. This is illustrated as the first step in Figure

3.5. We then show that at any SNR the discretization can be limited to a finite number of

points without losing gDoF. This is illustrated as the second step in Figure 3.5. With a fixed

finite number of points, maximizing min {ψ1, ψ2} can be reduced to a linear program with

the probabilities at the discrete points as the variables. This linear program together with

the total power and probability constraints can be shown to have its optimal solution with

just 3 nonzero probability points. This is illustrated as the third step in Figure 3.5. We

then collapse 3 nonzero probability points to 2 points using the structure of the objective

function. Again we use the structure of the function min {ψ1, ψ2} to reduce the problem to

an optimization problem over two variables |c1|2 , pλ as in P9. The details are in Appendix

B.4.
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Discussion: Effectively, P9 is derived from P1 with a probability distribution

(
|a|2 , |b|2 , |c|2

)
=


(
T, 0, |c1|2

)
w.p. pλ

(0, T/2, T/2) w.p. (1− pλ)
(3.24)

as the solution and reducing the optimization problem to the variables pλ, |c1|2. These points

are not directly obtained, but the problem is reduced in several steps, to reach the final form

containing contribution only from the two points. The existence of the two points in the

outer bound suggests the necessity to use a time-sharing random variable to coordinate the

two relays to achieve the gDoF. The variable a is associated with relay R2 and (b, c) is with

relay R1. The mass point
(
T, 0, |c1|2

)
needs both relays, however the point (0, T/2, T/2)

needs only Relay R1. After further solving the optimization problem, if |c1|2 turns out to

be zero, the joint distribution would be using a nonconcurrent operation of the relays: while

one relay is ON , the other needs to be OFF and vice versa. Though this is in the outer

bound, it suggests the (gDoF) optimal system operation through this interpretation.

p(x)

p1

p2

pi

p1

p2

pi

Infinite discretization

Finite discretizationOptimal with 3 points

Figure 3.5: Proof methodology by discretization and linear programming arguments for

Lemma 3.1.
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Theorem 3.5. The optimization problem P9 given in (3.22) has the solution as given in

Table 3.2.

Table 3.2: Solution of (P9) for achieving the gDoF.

Regime |c1|2 pλ

(T − 2) γrd2 − (T − 1) γrd1 ≤ 0 0 γsr2
γrd2

(T − 2) γrd2 − (T − 1) γrd1 > 0
γrd2 > γsr2 + γrd1 0 γsr2

γrd2−γrd1

γrd2 ≤ γsr2 + γrd1 SNRγrd2−γsr2−γrd1 1

Proof idea. The detailed proof is in Section 3.4.3. We change variables from |c1|2 to γc using

the transformation ρ2
rd1 |c1|2 = SNRγc with γc ≤ γrd1. This yields a bilinear optimization

problem in terms of γc and pλ. The bilinear optimization problem gives different solutions

depending on the value of coefficients involved, and we tabulate the results.

Discussion: We have regimes in which |c1|2 = 0. Here the optimizing distribution of the

outer bound effectively suggests a nonconcurrent operation of the two relays. Also, when

pλ = 0, |a|2 is always zero and hence the Relay R2 is not used. (This follows due to the

structure of the solution (3.15) and the nature of the mass points from (3.24)).

Theorem 3.6. (Nonoptimality of training schemes) For the regime described in (3.10),

training-based schemes cannot always achieve the outer bound (3.21).

Proof. If only a single relay is used, we need to set aside at least one symbol in every block

of length T , to train the channel from the source to the relays and the channel from the

relays to the destination. Then the gDoF achievable is

γ1,train × T = (T − 1) max {min {γsr1, γrd1} ,min {γsr2, γrd2}} . (3.25)

If both the relays are used, for training the channels from the relays to the destination,

we need to set aside at least two symbols in every block of length T , since there are two

parameters to be learned at the destination. For training the channels from the source to the
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relays, we need to set aside at least one symbol in every block of length T . After training,

we can have super-symbols from the source to the relays with length at most T − 1, and

from the relays to the destination with length at most T − 2. Now, using the cut-set outer

bound with this super-symbols, and assuming perfect network state knowledge at all nodes

i.e., using a coherent outer bound, we can upper bound the gDoF γ2,train achievable using

training-based scheme as

γ2,train × T ≤min { (T − 1) γsr1, (T − 2) γrd2, (T − 1) γsr2 + (T − 2) γrd1,

(T − 1) γsr1 + (T − 2) γrd2}
(3.26)

(i)
= min {(T − 1) γsr1, (T − 2) γrd2, (T − 1) γsr2 + (T − 2) γrd1} , (3.27)

where (i) is because γsr1 > γsr2, γsr1 > γrd1, γrd2 > γrd1, γrd2 > γsr2 in this regime.

Now, examining the outer bound (3.21), in order to complete the proof, we just need to

give a sample point where

γ1,train × T, γ2,train × T < min {(T − 1) γsr1, gDoF (P1)} (3.28)

with strict inequality. We give a sample point T = 3, γsr1 = 4, γsr2 = 1, γrd1 = 2, γrd2 = 3.

Now with this choice

(T − 1) max {min {γsr1, γrd1} ,min {γsr2, γrd2}} = 4 (3.29)

min {(T − 1) γsr1, (T − 2) γrd2, (T − 1) γsr2 + (T − 2) γrd1} = 3 (3.30)

min {(T − 1) γsr1, gDoF (P1)} = 5.33, (3.31)

where gDoF (P1) is evaluated using Lemma 3.1 and Table 3.2. One can construct several

other counterexamples to demonstrate the suboptimality of training.

3.3.2 Train-Scale Quantize-Map-Forward (TS-QMF) Scheme for the Noncoher-

ent Diamond Network

In this section, we describe our scheme for achieving the gDoF for the nontrivial regime

(3.10) of the diamond network. The same scheme can be used to achieve the gDoF in the
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other regimes, but decode-and-forward is also gDoF-optimal in those regimes. Our scheme

is a modification of the QMF scheme developed in [ADT11, OD13, ADT15]. The QMF

strategy, introduced in [ADT11] is the following. Each relay first quantizes the received

signal, then randomly maps it to a Gaussian codeword and transmits it. The destination

then decodes the transmitted message, without requiring the decoding of the quantized

values at the relays. The specific scheme that [ADT11] focused on was based on a scalar

(lattice) quantizer followed by a mapping to a Gaussian random codebook. In [OD10, OD13],

this was generalized to a lattice vector quantizer and [LKG11] generalized it to discrete

memoryless networks. Our scheme is illustrated in Figure 3.6 and Figure 3.7. We discuss

the modifications compared to the QMF scheme, more details on the QMF scheme can be

found in [ADT11, OD13, ADT15]. The modifications compared to the QMF scheme are:

1. The source uses super-symbols of length T and the first symbol of the supersymbol is

kept for training the channels from the source to the relays.

2. The relays use the first symbol from every received supersymbol to scale (the scaling

is precisely defined in following paragraphs) the rest of the symbols in the received

supersymbol, the scaled version (ignoring the first symbol) is quantized and mapped

into super-symbols of length T and transmitted.

3. The relays are assumed to have access to a time-sharing random variable Λ. We choose

Λ to be a Bernoulli random variable and the codebooks for the relays are generated

using a distribution that is joint with the distribution of the time-sharing random

variable.

We describe our scheme in more detail in the following paragraphs.

3.3.2.1 Source

The codewords at the source are generated according to a Gaussian distribution p (XS),

where XS is a vector of length (T − 1). The source encodes the message m ∈
[
1 : 2nTR

]
onto
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S
D

R1

R2

1 (T − 1)

Pilot Data

Xn
S

T

Data

Scale and QMF

1 (T − 1)

Pilot Data

Scale QMF

T

Data

Λ = 0

Λ = 1

Codeword depends on

the time-sharing

variable Λ

Figure 3.6: Summary of the achievability scheme: the source sends one pilot symbol in every

block. The relays scale the data symbols using the pilot and perform QMF operation after

scaling. The codewords sent at the relays depend also on the time sharing random variable

Λ.
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Xn
S with Xn

S = XS (1) . . . XS (n) and each XS (i) is a vector of length (T − 1). The source

then transmits the sequence

[1, XS (1)] , . . . [1, XS (i)] , . . . [1, XS (n)] .

Thus in every block of length T , the first symbol is for training and the rest of the symbols

carry the data.

3.3.2.2 Relays

The relays are assumed to have access to a time-sharing random variable Λ. The codebooks

at the relays are generated according to the joint distribution p (Λ) p (XR1|Λ) p (XR2 |Λ),

where p (XRi |Λ) are Gaussian distributed. The random variables XR1 , XR2 are vectors of

length T . Hence the codeword sent at each relay depends also on the time-sharing random

variable.

Since the source sends a known symbol (e.g., 1) for training at the beginning of every block

(of length T ), Relay R1 can obtain gnsr1 + wn after n blocks, where gnsr1 = gsr1 (1) . . . gsr1 (n)

contains the i.i.d. channel realizations across the n blocks and wn = w (1) . . . w (n) contains

the i.i.d. noise elements with w (i) ∼ CN (0, 1). The data symbols are received as Y n
R1

=

gnsr1X
n
S + W n

R1
, where WR1 is a noise vector of length T − 1 with i.i.d. CN (0, 1) elements.

Relay R1 scales Y n
R1

to Y
′n

R1
=

Y nR1

ĝnsr1
=

gnsr1
ĝnsr1
Xn

S +
Wn

R1

ĝnsr1
, where ĝsr1 is obtained from gsr1 + w as

ĝsr1 = ei∠(gsr1+w) + (gsr1 + w) , (3.32)

where ∠ (gsr1 + w) is the angle of gsr1 +w. This scaling is done at the relay using the trained

channel, in order to avoid the necessity of having the knowledge of gsr1 at the destination.

Our scaling uses a modified version ĝsr1 instead of gsr1 +w; this is because 1/ (gsr1 + w) could

take infinite magnitude and this problem is avoided by using 1/ĝsr1.
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Quantize
Y n
R1

1
ĝn
sr1

Y
′n
R1

Ŷ n
R1 Map Xn

R1

ĝsr1 = ei∠(gsr1+w) + (gsr1 + w)

Figure 3.7: Processing at Relay R1.

Relay R1 quantizes the scaled version Y
′n

R1
=

gnsr1
ĝnsr1
Xn

S +
Wn

R1

ĝnsr1
into Ŷ n

R1
=

gnsr1
ĝnsr1
Xn

S +
Wn

R1

ĝnsr1
+Qn

R1

with QR1 ∼
WR1

ĝsr1
independent of all the other variables. The quantized symbols are mapped

into Xn
R1

and sent. The transmitted codeword Xn
R1

depends also on the time-sharing random

variable. Note that the relays do not train the channels to the destination, as it turns out

to be suboptimal as proved in Theorem 3.6.

Relay R2 does similar processing. It quantizes Y
′n

R1
=

gnsr2
ĝnsr2
Xn

S +
Wn

R2

ĝnsr2
into Ŷ n

R1
=

gnsr2
ĝnsr2
Xn

S +
Wn

R2

ĝnsr2
+ Qn

R2
with QR2 ∼

WR2

ĝsr2
independent of all the other variables. The quantized symbols

are mapped into Xn
R2

and sent. Again the transmitted codeword Xn
R2

depends also on the

time-sharing random variable.

3.3.2.3 Destination

Using weak typicality decoding [OD10, LKG11, OD13, ADT15], the following rate is achiev-

able:

TR = min

{
I
(
XS; ŶR, YD

∣∣∣XR,Λ
)
, I (XR, XS;YD|Λ)− I

(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)
,

I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
)
− I

(
Y ′R1

; ŶR1

∣∣∣XS, XR, ŶR2 , YD,Λ
)
,

I
(
XS, XR2 ; ŶR1 , YD

∣∣∣XR1 ,Λ
)
− I

(
Y ′R2

; ŶR2

∣∣∣XS, XR, ŶR1 , YD,Λ
) }

(3.33)

with

Y ′R =

 Y ′R1

Y ′R2

 , ŶR =

 ŶR1

ŶR2

 (3.34)

and using a distribution p (Λ) p (XS) p (XR1 |Λ) p (XR2 |Λ) p
(
ŶR1

∣∣∣Y ′R1
, XR1Λ

)
p
(
ŶR2

∣∣∣Y ′R2
, XR2Λ

)
.
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We choose the distribution for Λ as

Λ =


0 w.p. pλ

1 w.p. 1− pλ
(3.35)

with pλ being a constant to be chosen. We choose XS as a (T − 1) × 1 vector with i.i.d.

CN (0, 1) elements, i.e.,

XS = [xs (1) , . . . , xs (i) , . . . , xs (T − 1)] (3.36)

with i.i.d. elements xs (i) ∼ CN (0, 1) , and we choose

XR1 =


aR10XR10 if Λ = 0

aR11XR11 if Λ = 1

(3.37)

XR2 =


aR20XR20 if Λ = 0

aR21XR21 if Λ = 1,

(3.38)

where XR10, XR11, XR20, XR21 are all T × 1 vectors with i.i.d. CN (0, 1) components, all of

them independent of each other, and aR10, aR11, aR20, aR21 are constants to be chosen.

We also have

ŶR1 = Y ′R1
+QR1 , (3.39)

where Y ′R1
= gsr1

ĝsr1
XS +

WR1

ĝsr1
, QR1 ∼

WR1

ĝsr1
and QR1 is independent of the other random variables.

Similarly

ŶR2 = Y ′R2
+QR2 , (3.40)

where Y ′R2
= gsr2

ĝsr2
XS +

WR2

ĝsr2
, QR2 ∼

WR2

ĝsr2
and QR2 is independent of the other random variables.

Theorem 3.7. For the diamond network with parameters as described in Section 3.3.1, with

the choice

aR10 = c1, aR11 = 1, aR20 = 1, aR21 = 0 (3.41)

and choosing the values of |c1|2 , pλ from Table 3.2, the gDoF can be achieved.
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Proof sketch. The detailed proof is in Section 3.4.4. In the proof we analyze the expression

of the achievable rate from (3.33). Using Theorem 3.13 and due to the relay operation of

train-scale-quantization, we first show that the penalty terms −I
(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)

,

−I
(
Y ′R1

; ŶR1

∣∣∣XS, XR, ŶR2 , YD,Λ
)

and −I
(
Y ′R2

; ŶR2

∣∣∣XS, XR, ŶR1 , YD,Λ
)

do not affect the

gDoF when we use Gaussian codebooks with time sharing. Then we show that the terms

I
(
XS; ŶRYD

∣∣∣XR,Λ
)
, I
(
XS, XR2 ; ŶR1 , YD

∣∣∣XR1 ,Λ
)

achieve (T − 1) γsr1 log (SNR) in gDoF;

hence they achieve part of the outer bound min {(T − 1) γsr1 log (SNR) , (P1)} from (3.21).

Then we show that the terms I (XRXS;YD|Λ), I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
)

can be reduced

to the same form as in (P1) from (3.21). In the inner bound, after using (3.41), we can

optimize over |c1|2 , pλ to achieve the best rates. We show that this optimization problem is

same as the one that appeared in Theorem 3.1 in the calculation of the outer bound. Hence

choosing the values of |c1|2 , pλ from the solution of the outer bound from Table 3.2 and using

it in the inner bound, we achieve the gDoF.

Discussion: The specific choices in Theorem 3.7 are designed to exactly match the

terms arising in the inner bound with the terms arising in the outer bound. The

time-sharing random variable Λ is chosen to have a cardinality of 2, since the outer

bound distribution has 2 mass points (3.24). The scaling is performed at the relays so

that the penalty terms −I
(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)

, −I
(
Y ′R1

; ŶR1

∣∣∣XS, XR, ŶR2 , YD,Λ
)

and

−I
(
Y ′R2

; ŶR2

∣∣∣XS, XR, ŶR1 , YD,Λ
)

do not affect the gDoF. A QMF scheme with Gaussian

codebooks without the scaling at the relays does not demonstrate this property as we ob-

serve in Remark 3.2 on page 82. We train the channels from the source to the relays using

a single training symbol, but we do not train the channels from the relays to the destina-

tion. The intuition behind this is that using a single training symbol is gDoF-optimal for

a SIMO channel, but using two training symbols is not gDoF-optimal for a MISO channel.

This intuition is made more precise in Theorem 3.6. Observing the values of |c1|2 , pλ from

Table 3.2, and the network operation as defined in this section, we see three regimes of relay

operation. We can interpret these regimes by recalling that the tradeoff in the cut-set outer

bound (tradeoff arises as P1 in the outer bound (3.21)) is between a MISO cut (Figure 3.8 on
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page 69) and a parallel cut (Figure 3.9 on page 71). The other cuts are already maximized

by our choice of a Gaussian codebook at the source. The tradeoff arises in using Relay R1

or Relay R2 because the unknown channel from one of the relays acts as an interference to

the transmission from the other relay. The three regimes are described below:

1. If (T − 2) γrd2 − (T − 1) γrd1 ≤ 0, then the relays operate nonconcurrently, Relay R1

is ON with probability 1 − (γsr2/γrd2) and Relay R2 is ON with probability γsr2/γrd2.

Note that we already have γrd2 > γrd1, so (T − 2) γrd2 − (T − 1) γrd1 ≤ 0 implies that

γrd2, γrd1 are quite close to each other in their values. In this case, the nonconcurrent

operation ensures maximum gDoF across the MISO cut (see Figure 3.8), by avoiding

interference between the relay symbols at the destination. The parallel cut (see Figure

3.9) can match the gDoF across MISO cut even when R1 is not always ON, since the

parallel cut has contribution from γsr2.

2. If (T − 2) γrd2 − (T − 1) γrd1 > 0 and γrd2 > γsr2 + γrd1, then the relays again operate

nonconcurrently, Relay R1 is ON with probability 1−γsr2/ (γrd2 − γrd1) and Relay R2 is

ON with probability γsr2/ (γrd2 − γrd1). Here γrd2, γrd1 are not close to each other, hence

for maximum gDoF across the MISO cut (Figure 3.8), Relay R2 needs to be always

ON. The nonconcurrent operation reduces the gDoF across the MISO cut (Figure 3.8).

However, since γrd2 > γsr2 + γrd1, the gDoF across the MISO cut (Figure 3.8) can have

a lower value to match the parallel cut (Figure 3.9).

3. If (T − 2) γrd2 − (T − 1) γrd1 > 0 and γrd2 ≤ γsr2 + γrd1, then both the relays operate

simultaneously, but Relay R1 operates with a reduced power, its transmit power is

scaled by SNRγrd2−γsr2−γrd1 . Here R2 needs to be always ON to get maximum gDoF

value across the MISO cut (Figure 3.8) compared to the parallel cut (Figure 3.9), since

γrd2 ≤ γsr2 + γrd1. Also Relay R1 operates at a lower power to reduce interference with

Relay R2. Reducing the power of Relay R1 reduces the gDoF across the parallel cut

(Figure 3.9), but this does not affect the overall gDoF because γrd2 ≤ γsr2 + γrd1.

We also note that we can get another set of regimes by relabeling the relays (reversing the
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roles of the relays in Figure 3.4) and this would reverse the roles of Relay R1 and and Relay

R2 in the modes of operation.

3.4 Analysis

In this section we provide more detailed analysis for the results stated in the previous section.

In Section 3.4.1, we state the mathematical preliminaries required for the analysis. This

include the results from previous works. In Section 3.4.2, we give the details required for

Theorem 3.4 to loosen the outer bound (3.7) to a different form which can be optimized

explicitly; this optimization is detailed in Section 3.4.3. In Section 3.4.4, we analyze the rate

achievable for the TS-QMF scheme from Theorem 3.7. A subresult required for the analysis

of the TS-QMF scheme is described in Section 3.4.5. The TS-QMF scheme requires the relays

to perform a scaling followed by QMF operation. We analyze a point-to-point SISO channel

in Section 3.4.5, which has similar structure as the effective relay-to-destination channel.

3.4.1 Mathematical Preliminaries

Fact 3.1. For exponentially distributed random variable ξ and a ≥ 0, b > 0, log (a+ bµξ)−
γ log (e) ≤ E [log (a+ bξ)] ≤ log (a+ bµξ), where γ is the Euler’s constant.

Proof. The details are in Section 4.3 (on page 99).

Lemma 3.2. Let [ξ1, ξ2, . . . , ξn] be an arbitrary complex random vector and Q be an n × n
unitary isotropic distributed random matrix independent of ξi, then

h ([ξ1, ξ2, . . . , ξn]Q) = h
(∑

|ξi|2
)

+ (n− 1)E
[
log
(∑

|ξi|2
)]

+ log (πn/Γ (n)) . (3.42)

Proof. See page 25 for details.

Remark 3.1. The above lemma can be applied to h ([ξ1, 0, . . . , 0]Q) = h (ξ1q̄), where q̄ is an

n-dimensional isotropically distributed random unit vector (q̄ can be taken as the first row of

Q), to obtain h (ξ1q̄) = h
(
|ξ1|2

)
+ (n− 1)E

[
log
(
|ξ1|2

)]
+ log (πn/Γ (n)) .
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Corollary 3.8. Let [ξ1, ξ2, . . . , ξn] be an arbitrary complex random vector, ξ be an arbitrary

complex random variable and Q be an n × n unitary isotropic distributed random matrix

independent of ξ, ξi, then h ( [ξ1, ξ2, . . . , ξn]Q| ξ) = h
(∑ |ξi|2∣∣ ξ)+ (n− 1)E

[
log
(∑ |ξi|2)]+

log (πn/Γ (n)).

Fact 3.2. For an exponentially distributed random variable ξ with mean µξ and a ≥ 0, b > 0,

we have

E
[

b

b+ ξ

]
=

b

µξ
e
b
µξ Γ

(
0,

b

µξ

)
(3.43)

and

b

µξ
ln
(

1 +
µξ
b

)
≥ b

µξ
e
b
µξ Γ

(
0,

b

µξ

)
≥ b

2µξ
ln

(
1 +

2µξ
b

)
, (3.44)

where Γ (0, x) is the incomplete gamma function. Note that 0 ≤ x ln (1 + 1/x) ≤ 1.

Proof. See page 24 for details.

3.4.1.1 Chi Squared distribution

We will use the properties of chi-squared distribution in our inner bounds for the noncoherent

diamond network. If wi ∼ CN (0, 1) i.i.d., then

T∑
i=1

|wi|2 ∼
1

2
χ2 (2T ) ,

where χ2 (k) is chi-squared distributed (which is the sum of squared of k standard normal

(real) random variables). Also,
√

1
2
χ2 (2T )q(T ) will be a T dimensional random vector with

i.i.d. CN (0, 1) components, where q(T ) is a T dimensional isotropically distributed complex

unit vector. Also, we have the entropy

h

(
1

2
χ2 (2T )

)
= T + ln ((T − 1)!) + (1− T )ψ (T ) , (3.45)

where ψ () is the digamma function which satisfies

ln (T )− 1

T
< ψ (T ) < ln (T )− 1

2T
. (3.46)
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Also, from [Bat08] we have

ln

(
T +

1

2

)
< ψ (T + 1) < ln

(
T + e−γ

)
. (3.47)

Chi-squared distribution is related to Gamma distribution as

χ2 (k) ∼ Γ

(
k

2
, 2

)
. (3.48)

Fact 3.3. For a chi-squared distributed random variable χ2 (k) and a ≥ 0, b > 0,

log (a+ bk)− 2 log (e)

k
+ log

(
1 +

1

k

)
≤ E

[
log
(
a+ bχ2 (k)

)]
≤ log (a+ bk) . (3.49)

Proof. The result is proved in Section 4.3 (on page 99) for the Gamma distribution and the

result for the chi-squared distribution follows as a special case.

Fact 3.4. For a noncoherent N×M MIMO channel Y = GX+W with X chosen as X = LQ,

Q being a T × T isotropically distributed unitary random matrix, L being an M × T lower

triangular random matrix independent of Q, G being the N×M random channel matrix with

independently distributed Gaussian elements and W being the N × T random noise matrix

with i.i.d. CN (0, 1) elements, we have:

h (Y |X) =
N∑
n=1

h (Y (n) |X) , (3.50)

where Y (n) is the nth row of Y and

h (Y (n) |X) = E
[
log
(
det
(
πe
(
L†diag

(
ρ2 (n)

)
L+ IT

)))]
, (3.51)

where ρ2 (n) is the vector of channel strengths to nth receiver antenna ( i.e., ρ2 (n) contains

the variance of the elements of the nth row of G) and IT is the identity matrix of size T ×T .

Also, for T > M , using the lower triangular structure of L with LM×M being the first M×M
submatrix of L, we have:

h (Y (n) |X) = E
[
log
(

det
((
L†M×Mdiag

(
ρ2 (n)

)
LM×M + IM

)))]
+ T log (πe) , (3.52)

where IM is the identity matrix of size M ×M .
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Proof. This follows by standard calculations for Gaussian random variables and using the

properties of determinants and unitary matrices. See page 27 for details.

Theorem 3.9. For the non-coherent SIMO channel Y = GX + Z, where X is the

1 × T vector of transmitted symbols, G = Tran
([

g11 . . gN1

])
, gi1 ∼ CN (0, ρ2

i1) =

CN (0, SNRγi1), and W being an N × T noise matrix with i.i.d. CN (0, 1) elements, the

gDoF is (1− 1/T ) maxi γi1, i.e., the gDoF can be achieved by using only the statistically best

receive antenna.

Proof. See page 18 for details.

Theorem 3.10. For the non-coherent MISO channel Y = GX+Z, where X is the M×T vec-

tor of transmitted symbols, G =
[
g11 . . g1M

]
, g1i ∼ CN (0, ρ2

1i) = CN (0, SNRγ1i), and

W being an 1×T noise vector with i.i.d. CN (0, 1) elements, the gDoF is (1− 1/T ) maxi γ1i,

i.e., the gDoF can be achieved by only using the statistically best transmit antenna.

Proof. See page 20 for details.

3.4.2 Proof of Theorem 3.4

We just need to show I (XR;YD)
.

≤ ψ1, I (XS;YR2) + I (XR1 ;YD|XR2)
.

≤ ψ2 to complete the

proof, continuing from the outline of proof given on page 53.

3.4.2.1 An outer bound: I (XR;YD)
.

≤ ψ1

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure 3.8: The cut corresponding to I (XR;YD).
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Using the structure of solution from (3.15) on page 53, we have

YD =
[
grd1 grd2

] XR1

XR2

+WD (3.53)

=
[
grd1 grd2

] b c 0 . . . 0

a 0 0 . . . 0

Q+WD (3.54)

with WD = [wd1, . . . , wdT ], the elements wdi being i.i.d. CN (0, 1). Now,

h (YD) =h

[ grd1 grd2

] b c 0 . . . 0

a 0 0 . . . 0

Q+WD

 (3.55)

(i)
=h

[ grd1 grd2

] b c 0 . . . 0

a 0 0 . . . 0

+WD

Q

 (3.56)

=h ([agrd2 + bgrd1 + wd1, cgrd1 + wd2, wd3, . . . , wdT ]Q) (3.57)

(ii)
=h

(
|agrd2 + bgrd1 + wd1|2 + |cgrd1 + wd2|2 +

T∑
i=3

|wdi|2
)

(3.58)

+ (T − 1)E

[
log

(
|agrd2 + bgrd1 + wd1|2 + |cgrd1 + wd2|2 +

T∑
i=3

|wdi|2
)]

+ log

(
πT

Γ (T )

)
, (3.59)

where (i) is because WD and WDQ have same the distribution since WD has i.i.d. CN (0, 1)

elements and Q is unitary, (ii) is using Lemma 3.2. Now, using (3.52) we can evaluate

h (YD|XR) to get

h (YD|XR) = E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + ρ2
rd1ρ

2
rd2 |c|2 |a|2 + 1

)]
+ T log (πe) .

(3.60)

Lemma 3.3. For any given distribution on (a, b, c), the terms

h

(
|agrd2 + bgrd1 + wd1|2 + |cgrd1 + wd2|2 +

T∑
i=3

|wdi|2
)

and

E
[
log
(
ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + T

)]
have the same gDoF.

70



Proof. The proof is in Appendix A.7.

The following two corollaries follow similar to the above lemma, we omit the proof.

Corollary 3.11. For any given distribution on (a, b, c), the terms h (agrd2 + bgrd1 + wd1),

h (agrd2 + bgrd1 + wd1| a), h
(
|agrd2 + bgrd1 + wd1|2

)
, E
[
log
(
ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + 1
)]

, all have

the same gDoF.

Corollary 3.12. For any given distribution on (a, b, c), the

terms h
(
|cgrd1 + wd2|2 +

∑T
i=3 |wdi|2

)
, h

(
|cgrd1 + wd2|2 +

∑T
i=3 |wdi|2

∣∣∣ a),

E
[
log
(
ρ2
rd1 |c|2 + T − 2

)]
, all have the same gDoF.

Note that

E

[
log

(
|agrd2 + bgrd1 + wd1|2 + |cgrd1 + wd2|2 +

T∑
i=3

|wdi|2
)]

.
= E

[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + T
)]

(3.61)

using the Tower property of expectation [WHH05, pp. 380-383] and Fact 5.1. Hence using

Lemma 3.3 and the above equation, we get

I (XR;YD)
.
=TE

[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + T
)]

− E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + ρ2
rd1ρ

2
rd2 |c|2 |a|2 + 1

)]
=ψ1. (3.62)

3.4.2.2 An outer bound: I (XS;YR2) + I (XR1 ;YD|XR2)
.

≤ ψ2

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure 3.9: The cut corresponding to I (XS;YR2) + I (XR1 ;YD|XR2).
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We have

I (XS;YR2)
.

≤ (T − 1) log
(
ρ2

sr2

)
(3.63)

due to the DoF results for the noncoherent SISO channel [ZT02]. Now,

I (XR1 ;YD|XR2)

= h (YD|XR2)− h (YD|XR1 , XR2) (3.64)

(i)
= h

[ grd2 grd1

] a 0 0 . . 0

b c 0 . . 0

Q+WD

∣∣∣∣∣∣
[
a 0 0 . . 0

]
Q

− T log (πe)

− E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + ρ2
rd1ρ

2
rd2 |c|2 |a|2 + 1

)]
, (3.65)

where (i) was using the structure of XR1 , XR2 from (3.15) on page 53 and by evaluating

h (YD|XR1 , XR2) using (3.52). Now,

h

[ grd2 grd1

] a 0 0 . . 0

b c 0 . . 0

Q+WD

∣∣∣∣∣∣
[
a 0 0 . . 0

]
Q


(i)
= h

[ grd2 grd1

] a 0 0 . . 0

b c 0 . . 0

 1 0

0 QT−1

+WD

∣∣∣∣∣∣ a
 (3.66)

= h
(
bgrd1 + agrd2 + wd1,

[
grd1c 0 . . 0

]
QT−1 +WD,T−1

∣∣∣ a) (3.67)

(ii)

≤ h (bgrd1 + agrd2 + wd1| a) + h
(([

grd1c 0 . . 0
]

+WD,T−1

)
QT−1

∣∣∣ a) (3.68)

(iii).
= h (bgrd1 + agrd2 + wd1| a) + h

(
|grd1c+ wd2|2 +

T∑
i=3

|wdi|2
∣∣∣∣∣ a
)

+ (T − 2)E
[
log
(
ρ2

rd1 |c|2 + T − 1
)]

(3.69)

(iv).
= E

[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + 1

)]
+ (T − 1)E

[
log
(
ρ2

rd1 |c|2 + T − 1
)]

(3.70)

(i) is because by conditioning on
[
a 0 0 . . . 0

]
Q the first row of Q is known and

hence the entropy is evaluated after projecting onto a new orthonormal basis with first

basis vector chosen as the first row of Q. The random matrix QT−1 is unitary isotropically

distributed in T − 1 dimensions. Since WD has i.i.d. elements, after this projection, the
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distribution of WD remains same. The random vector WD,T−1 is T − 1 dimensional with

i.i.d. CN (0, 1) elements. The step (ii) is using the fact that conditioning reduces entropy

and the fact that WD,T−1 has the same distribution as WD,T−1QT−1. The step (iii) is using

Lemma 3.2 on h
(([

grd1c 0 . . 0
]

+WD,T−1

)
QT−1

∣∣∣ a) and (iv) is using Corollary 3.11

and Corollary 3.12. Hence we get

I (XS, XR1 ;YR2 , YD|XR2)

.

≤ (T − 1) log
(
ρ2

sr2

)
+ E

[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + 1

)]
+ (T − 1)E

[
log
(
ρ2

rd1 |c|2 + T − 1
)]

− E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + ρ2
rd1ρ

2
rd2 |c|2 |a|2 + 1

)]
(3.71)

= ψ2. (3.72)

3.4.3 Solving the Outer Bound Optimization Problem

For the outer bound we have the optimization program:

P9 :



maximize min
{
pλ
(
(T − 1) γrd2 log (SNR)− log

(
SNRγrd1 |c1|2 + 1

))
+ (T − 1) (1− pλ) γrd1 log (SNR) , (T − 1) γsr2 log (SNR)

+ (T − 2) pλ log
(
SNRγrd1 |c1|2 + 1

)
+ (T − 1) (1− pλ) γrd1 log (SNR)

}
|c1|2 ≤ T, 0 ≤ pλ ≤ 1,

(3.73)

with

gDoF (P1) = gDoF (P9) (3.74)

due to Lemma 3.1 on page 55 and P1 is defined in Theorem 3.4 on page 53. Now, with

|c1|2 ≤ 2T , we have 0 ≤ log
(
SNRγrd1 |c1|2 + 1

) .
≤ γrd1 log (SNR). So we change variables by
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letting log
(
SNRγrd1 |c1|2

)
= γc log (SNR) to get

P10 :


maximize min

{
pλ ((T − 1) γrd2 − γc) + (T − 1) (1− pλ) γrd1,

(T − 1) γsr2 + (T − 2) pλγc + (T − 1) (1− pλ) γrd1

}
0 ≤ γc ≤ γrd1, 0 ≤ pλ ≤ 1

(3.75)

with

gDoF (P1) = gDoF (P9) = (P10) . (3.76)

Note that we removed scaling by log (SNR) in P10, so its solution directly yields the gDoF.

Following (3.24) on page 56, now P10 gives two mass points for
(
|a|2 , |b|2 , |c|2

)
for optimal

gDoF

(
|a|2 , |b|2 , |c|2

)
=


(
T, 0, |c1|2

)
=
(
T, 0, SNRγc−γrd1

)
w.p. pλ

(0, T/2, T/2) w.p. 1− pλ.
(3.77)

Now P10 is a bilinear optimization problem which we solve explicitly.

3.4.3.1 Solving the bilinear problem

We collect the terms in P10 to rewrite it as

P10 :


maximize min

{
pλ ((T − 1) (γrd2 − γrd1)− γc) + (T − 1) γrd1,

(T − 1) γsr2 + pλ ((T − 2) γc − (T − 1) γrd1) + (T − 1) γrd1

}
0 ≤ γc ≤ γrd1, 0 ≤ pλ ≤ 1

(3.78)

Note that (T − 2) γc− (T − 1) γrd1 < 0. Hence (T − 1) γsr2 + pλ ((T − 2) γc − (T − 1) γrd1) +

(T − 1) γrd1 is decreasing in pλ. If (T − 1) (γrd2 − γrd1)− γc < 0 both the terms inside min ()

are decreasing with pλ and hence the optimal would be achieved at pλ = 0. However, this

value can be achieved in the regime (T − 1) (γrd2 − γrd1)− γc ≥ 0 with pλ = 0 for any value

of γc. (See Figure 3.10).

Hence it suffices to consider the regime

(T − 1) (γrd2 − γrd1)− γc ≥ 0 (3.79)
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pλ

x

γrd2
γrd1

− x 1
T−1 − 1 < 0

pλ = 0

Figure 3.10: For the objective function from (3.78), the regime (T − 1) (γrd2 − γrd1)− γc < 0

is dominated by the line pλ = 0.

in P10. In this regime, examining the two terms within the min of P10, (T − 1) γsr2 +

pλ ((T − 2) γc − (T − 1) γrd1)+(T − 1) γrd1 is decreasing and pλ ((T − 1) (γrd2 − γrd1)− γc)+

(T − 1) γrd1 is increasing, as a function of pλ. Hence the maxmin in terms of pλ is achieved

at the intersection point, if that point is within [0, 1]. (See Figure 3.11). The intersec-

tion point is determined by (T − 1) γsr2 + pλ ((T − 2) γc − (T − 1) γrd1) + (T − 1) γrd1 =

pλ ((T − 1) (γrd2 − γrd1)− γc) + (T − 1) γrd1, which gives the intersection point to be

p′λ =
γsr2

γrd2 − γc
. (3.80)

p′λ

pλ

Objectivefunction

10 10

Figure 3.11: Behavior of the bilinear program from (3.78) as a function of pλ for any γc ≤
(T − 1) (γrd2 − γrd1).

Now, we claim that it is sufficient to consider the regime p′λ ≤ 1 ⇐⇒ γsr2/ (γrd2 − γc) ≤
1 ⇐⇒ γc ≤ γrd2 − γsr2. Otherwise p′λ > 1 ⇐⇒ γc > γrd2 − γsr2, and in this regime, the
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maxmin in terms of pλ is achieved by pλ = 1 (see Figure 3.12), and the maxmin value is

given by 1 × ((T − 1) (γrd2 − γrd1)− γc) + (T − 1) γrd1 = (T − 1) γrd2 − γc. But a greater

p′λ

pλ

Objectivefunction

10

Figure 3.12: Behavior of the bilinear program from (3.78) as a function of pλ when p′λ > 1.

value can be achieved by choosing γc = γrd2− γsr2 (instead of γc > γrd2− γsr2) at pλ = 1, and

that value is given by (T − 1) γrd2 − (γrd2 − γsr2). Hence it suffices to consider the regime

with

γc ≤ γrd2 − γsr2. (3.81)

Now, using the extra constraints (3.79), (3.81) and substituting the optimal p′λ =

γsr2/ (γrd2 − γc) in P10 (3.78), we get the equivalent problem

maximize
0≤γc≤(T−1)(γrd2−γrd1),γrd2−γsr2,γrd1

(T − 1) γsr2 +
γsr2

γrd2 − γc
((T − 2) γc − (T − 1) γrd1) + (T − 1) γrd1.

(3.82)

Now it can be verified that

d

dγc

[
γsr2

γrd2 − γc
((T − 2) γc − (T − 1) γrd1)

]
=

γsr2

(γrd2 − γc)2 ((T − 2) γrd2 − (T − 1) γrd1) .

Hence if (T − 2) γrd2 − (T − 1) γrd1 ≤ 0, the maximum in (3.82) is achieved at γc = 0,

otherwise the maximum is achieved at γc = min {γrd1, (T − 1) (γrd2 − γrd1) , γrd2 − γsr2}.
With the following claim, we show that if (T − 2) γrd2 − (T − 1) γrd1 > 0, then

min {γrd1, (T − 1) (γrd2 − γrd1) , γrd2 − γsr2} is same as min {γrd1, γrd2 − γsr2}.

Claim 3.1. If (T − 2) γrd2 − (T − 1) γrd1 > 0, then

min {γrd1, (T − 1) (γrd2 − γrd1) , γrd2 − γsr2} = min {γrd1, γrd2 − γsr2}
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Proof. To prove this, it suffices to show that (T − 1) (γrd2 − γrd1) > γrd1. We have

(T − 2) γrd2 − (T − 1) γrd1 > 0

⇔ (T − 1) γrd2 − (T − 1) γrd1 > γrd2

⇔ (T − 1) (γrd2 − γrd1) > γrd2

Now the required result follows, because γrd2 > γrd1 in the regime under consideration (see

Figure 3.4).

Now, we go through the different regimes that give different solutions.

3.4.3.2 (T − 2) γrd2 − (T − 1) γrd1 ≤ 0

In this case maximum is achieved at

γ∗c = 0, p∗λ =
γsr2

γrd2 − γ∗c
=
γsr2

γrd2

. (3.83)

Hence following (3.77), we have the solution
(
T, 0, |c1|2

)
=
(
T, 0, SNR−γrd1

)
with probability

pλ = γsr2/γrd2 and (0, T/2, T/2) with probability (1− pλ) = 1− γsr2/γrd2. Effectively we can

choose (T, 0, 0) (since |c1|2 = SNR−γrd1 causes the link grd1 to contribute zero gDoF) with

probability pλ = γsr2/γrd2 and (0, T/2, T/2) with probability (1− pλ) = 1 − γsr2/γrd2. Note

that this regime with (T − 2) γrd2− (T − 1) γrd1 ≤ 0 disappears as T →∞, since we already

have γrd2 > γrd1 (γrd2 > γrd1 from the description in Section 3.3.1). Following (3.77) we

tabulate the optimal distribution for (a, b, c) in Table 3.3.

Table 3.3: Solution with (T − 2) γrd2 − (T − 1) γrd1 ≤ 0

(a, b, c) Probability(√
T , 0, 0

)
pλ = γsr2

γrd2(
0,
√
T/2,

√
T/2

)
(1− pλ) = 1− γsr2

γrd2

In this case, we calculate the gDoF by substituting the solution in (3.82) and scaling with
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1/T . The outer bound gDoF for the network is

1

T

(
(T − 1) γsr2 +

γsr2

γrd2

(− (T − 1) γrd1) + (T − 1) γrd1

)
=

(
1− 1

T

)(
γsr2 + γrd1 −

γsr2γrd1

γrd2

)
.

3.4.3.3 (T − 2) γrd2 − (T − 1) γrd1 > 0

In this case the optimal value is achieved by

γ∗c = min {γrd1, γrd2 − γsr2} , p∗λ =
γsr2

γrd2 − γ∗c
. (3.84)

Case 1, γ∗c = γrd1 = min {γrd1, γrd2 − γsr2} We have the solution

(
T, 0, |c1|2

)
=
(
T, 0, SNRγc−γrd1

)
= (T, 0, 1) (3.85)

with probability pλ = γsr2/ (γrd2 − γrd1) and (0, T/2, T/2) with probability (1− pλ) =

1 − γsr2/ (γrd2 − γrd1). For gDoF, we can effectively have (T, 0, T ) with probability pλ =

γsr2/ (γrd2 − γrd1) and (0, T/2, T/2) with probability (1− pλ) = 1 − γsr2/ (γrd2 − γrd1). The

result is tabulated in Table 3.4.

Table 3.4: Solution for case 1

(a, b, c) Probability(√
T , 0,

√
T
)

pλ = γsr2
γrd2−γrd1(

0,
√
T/2,

√
T/2

)
(1− pλ) = 1− γsr2

γrd2−γrd1

By substituting the solution in (3.82) and scaling with 1/T , the outer bound gDoF for

the network in this case is

1

T

(
(T − 1) γsr2 +

γsr2

γrd2 − γrd1

((T − 2) γrd1 − (T − 1) γrd1) + (T − 1) γrd1

)
=

(
1− 1

T

)
(γsr2 + γrd1)−

(
1

T

)
γsr2γrd1

γrd2 − γrd1
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Case 2, γ∗c = γrd2 − γsr2 = min {γrd1, γrd2 − γsr2} With this value of x∗ we get the point

(
T, 0, |c1|2

)
=
(
T, 0, SNRγc−γrd1

)
=
(
T, 0, SNRγrd2−γsr2−γrd1

)
(3.86)

with probability pλ = γsr2/ (γrd2 − γ∗c ) = 1. The result is tabulated in Table 3.5.

Table 3.5: Solution for case 2

(a, b, c) Probability(√
T , 0,

√
SNRγrd2−γsr2−γrd1

)
pλ = 1

By substituting the solution in (3.82) and scaling with 1/T , the outer bound gDoF for

the network in this case is

1

T

(
(T − 1) γsr2 +

γsr2

γrd2 − (γrd2 − γsr2)
((T − 2) (γrd2 − γsr2)− (T − 1) γrd1) + (T − 1) γrd1

)
=

1

T
γsr2 +

(
1− 2

T

)
(γrd2) .

3.4.4 Achievability Scheme

Here we discuss the gDoF-optimality of our achievability scheme. We analyze the rate

expression

TR = min

{
I
(
XS; ŶRYD

∣∣∣XR,Λ
)
, I (XRXS;YD|Λ)− I

(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)
,

I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
)
− I

(
Y ′R1

; ŶR1

∣∣∣XS, XR, ŶR2 , YD,Λ
)
,

I
(
XS, XR2 ; ŶR1 , YD

∣∣∣XR1 ,Λ
)
− I

(
Y ′R2

; ŶR2

∣∣∣XS, XR, ŶR1 , YD,Λ
) }

(3.87)

from (3.33) arising out of the QMF decoding.

We first note that there is penalty of the form I
(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)

in the rate

expression (3.87). The following theorem helps to show that the penalty does not contribute

to a penalty in gDoF, while still having the terms of the form I
(
XS; ŶRYD

∣∣∣XR,Λ
)

which

roughly behaves as I
(
XS; ŶR

)
to achieve full gDoF.
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Theorem 3.13. Let Y = gX + W , with X being a vector of length (T − 1) with i.i.d.

CN (0, 1) elements and W also being a vector of length (T − 1) with i.i.d. CN (0, 1) elements

and g ∼ CN (0, ρ2). We define a scaled version of Y as Y ′ = g
ĝ
X + W

ĝ
with

ĝ = ei∠(g+w) + (g + w) , (3.88)

where ∠ (g + w′) is the angle of g + w′ with w′ ∼ CN (0, 1). And Y ′ is quantized to Ŷ =

g
ĝ
X + W

ĝ
+Q with Q ∼ W

ĝ
. With this setting we claim:

I
(
Ŷ ;X

) .

≥ (T − 1) log
(
ρ2
)

(3.89)

and

I
(
Ŷ ;Y ′

∣∣∣X) .

≤ 0 (3.90)

and hence I
(
Ŷ ;X

)
− I

(
Ŷ ;Y ′

∣∣∣X) .

≥ (T − 1) log (ρ2) .

Proof. The proof is in Section 3.4.5.

Also, due to the relay operation described in Section 3.3.2 (see also Figure 3.7 on page

62), the relays-to-destination channel behaves like a MISO channel with independently dis-

tributed symbols from the transmit antennas. In the following theorem, we analyze an

entropy expression arising from such a channel.

Theorem 3.14. For a MISO channel Y =
[
g11 g12

]
X + W1×T with g11 ∼ CN (0, ρ2

11),

g12 ∼ CN (0, ρ2
12), W1×T being a 1×T vector with i.i.d. CN (0, 1) elements and X chosen as

X =

 a1X1

a2X2

 , (3.91)

where X1 and X2 are 1× T vectors with i.i.d. CN (0, 1) elements, we have

h (Y |X)
.

≤ log
((

1 + ρ2
11 |a1|2

) (
1 + ρ2

21 |a2|2
))
. (3.92)

Proof. See Appendix B.5.

80



Now, we analyze the penalty terms from the rate expression of (3.87). We first look at

the term I
(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)

.

I
(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)

= h
(
ŶR

∣∣∣XS, XR, YD,Λ
)
− h

(
ŶR

∣∣∣Y ′R, XS, XR, YD,Λ
)

(3.93)

(i)

≤ h
(
ŶR

∣∣∣XS

)
− h

(
ŶR

∣∣∣Y ′R, XS, XR, YD,Λ
)

(3.94)

(ii)
= h

(
ŶR

∣∣∣XS

)
− h ([QR1 , QR2 ]) (3.95)

(iii)
= h

(
ŶR1

∣∣∣XS

)
− h (QR1) + h

(
ŶR2

∣∣∣XS

)
− h (QR2) (3.96)

= I
(
Y ′R1

; ŶR1

∣∣∣XS

)
+ I

(
Y ′R2

; ŶR2

∣∣∣XS

)
(3.97)

(iv)
.

≤ 0, (3.98)

where (i) is using the fact that conditioning reduces entropy, (ii) is because of the choice of the

quantizer (3.39),(3.40) with quantization noise independent of the other random variables,

(iii) is because QR1 , QR1 are independent of each other and YR2 , YR1 are independent of each

other given XS, and (iv) is using (3.89) from Theorem 3.13.

Similarly I
(
Y ′R1

; ŶR1

∣∣∣XS, XR, ŶR2 , YD,Λ
) .

≤ 0 and I
(
Y ′R2

; ŶR2

∣∣∣XS, XR, ŶR1 , YD,Λ
) .

≤ 0.

Hence for our scheme, the rates

TR
.

≤ min
{
I
(
XS; ŶRYD

∣∣∣XR,Λ
)
, I (XRXS;YD|Λ) ,

I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
)
, I
(
XS, XR2 ; ŶR1 , YD

∣∣∣XR1 ,Λ
) }

(3.99)

are achievable.

Remark 3.2. For a standard QMF scheme [ADT11] with Gaussian codebooks without train-

ing and scaling, we can calculate that the penalty terms of the form I
(
Y ′R; ŶR

∣∣∣XS, XR, YD,Λ
)

cause a loss in gDoF for the noncoherent diamond network. To understand this with a sim-

ple example, consider Y = gX + W with X being a vector of length T with i.i.d. CN (0, 1)

elements and W being a vector of length T with i.i.d. CN (0, 1) elements, g ∼ CN (0, ρ2) and

Y is quantized to Ŷ = gX +W +Q with Q ∼ W . Then in this case, it can be easily verified

that I
(
Ŷ ;X

) .

≥ (T − 1) log (ρ2), but I
(
Ŷ ;Y

∣∣∣X) = h (Y |X) − h
(
Y | Ŷ , X

)
.
= log (ρ2)
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(in contrast to (3.90) for our scheme). However, we demonstrate that for our scheme with

training, scaling and using Gaussian codebooks, the penalty terms do not affect gDoF.

Now, we simplify the four terms in (3.99). The first term

I
(
XS; ŶRYD

∣∣∣XR,Λ
)
≥ I

(
XS; ŶR

∣∣∣XR,Λ
)

(3.100)

(i)
= I

(
XS; ŶR

)
(3.101)

≥ max
{
I
(
XS; ŶR1

)
, I
(
XS; ŶR2

)}
(3.102)

(ii)
.

≥ (T − 1) max
{

log
(
ρ2

sr1

)
, log

(
ρ2

sr2

)}
(3.103)

(iii)
= (T − 1) log

(
ρ2

sr1

)
, (3.104)

where (i) is because XR,Λ are independently distributed of XS, ŶR, (ii) is using (3.89) from

Theorem 3.13 and (iii) is because the regime of the parameters of the network has γsr1 > γsr2.

Now, we consider the second term in (3.99), recalling the choice of XR1 ,XR2 from (3.35)-

(3.38) on page 63.

I (XRXS;YD|Λ) ≥I (XR;YD|Λ) (3.105)

=h (YD|Λ)− h (YD|XR,Λ) (3.106)

(i)
.

≥pλh (grd1aR10XR10 + grd2aR20XR20 +W1×T )

+ (1− pλ)h (grd1aR11XR11 + grd2aR21XR21 +W1×T )

− pλ log
((

1 + ρ2
rd1 |aR10|2

) (
1 + ρ2

rd2 |aR20|2
))

− (1− pλ) log
((

1 + ρ2
rd1 |aR11|2

) (
1 + ρ2

rd2 |aR21|2
))

(3.107)

(ii)
.

≥pλT log
(
max

{
ρ2

rd1 |aR10|2 , ρ2
rd2 |aR20|2

})
+ (1− pλ)T log

(
max

{
ρ2

rd1 |aR11|2 , ρ2
rd2 |aR21|2

})
− pλ log

((
1 + ρ2

rd1 |aR10|2
) (

1 + ρ2
rd2 |aR20|2

))
− (1− pλ) log

((
1 + ρ2

rd1 |aR11|2
) (

1 + ρ2
rd2 |aR21|2

))
, (3.108)

where (i) is using Theorem 3.14 to evaluate h (YD|XR,Λ). Also, W1×T is noise vector of

length T with i.i.d. CN (0, 1) elements. The step (ii) is using the fact that conditioning
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reduces entropy and the fact that XRij has i.i.d. CN (0, 1) elements (refer to (3.35)-(3.38)

on page 63).

Now, the third term in (3.99)

I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
)

= I
(
XS; ŶR2 , YD

∣∣∣XR2 ,Λ
)

+ I
(
XR1 ; ŶR2 , YD

∣∣∣XS, XR2 ,Λ
)

(3.109)

≥ I
(
XS; ŶR2

∣∣∣XR2 ,Λ
)

+ I (XR1 ;YD|XS, XR2 ,Λ) (3.110)

(i)
= I

(
XS; ŶR2

)
+ I (XR1 ;YD|XR2 ,Λ) (3.111)

(ii).
= (T − 1) log

(
ρ2

sr2

)
+ I (XR1 ;YD|XR2 ,Λ) (3.112)

= (T − 1) log
(
ρ2

sr2

)
+ h (YD|XR2 ,Λ)− h (YD|XR1 , XR2 ,Λ) (3.113)

(iii)
.

≥ (T − 1) log
(
ρ2

sr2

)
+ pλh (grd1aR10XR10 + grd2aR20XR20 +W1×T | aR20XR20)

+ (1− pλ)h (grd1aR11XR11 + grd2aR21XR21 +W1×T | aR21XR21)

− pλ log
((

1 + ρ2
rd1 |aR10|2

) (
1 + ρ2

rd2 |aR20|2
))

− (1− pλ) log
((

1 + ρ2
rd1 |aR11|2

) (
1 + ρ2

rd2 |aR21|2
))
, (3.114)

where (i) is because XR2 ,Λ are distributed independently of XS, ŶR2 , and XS is distributed

independently of XR1 , YD, (ii) is using (3.89) from Theorem 3.13 to evaluate I
(
XS; ŶR2

)
and

(iii) is using Theorem 3.14 to evaluate h (YD|XR1 , XR2 ,Λ). Also W1×T is the noise vector of

length T with i.i.d. CN (0, 1) elements. Now,

h

(
grd1aR10XR10 + grd2aR20XR20 +W1×T

∣∣∣∣∣ aR20XR20

)
(i)
= h

(
grd1aR10xR10 + grd2aR20 ‖XR20‖+ w1, grd1XR10×(T−1) +W1×(T−1)

∣∣∣∣∣ aR20XR20

)
(3.115)

≥ h

(
grd1aR10xR10 + grd2aR20 ‖XR20‖+ w1

∣∣∣∣∣ aR20, xR10, ‖XR20‖
)
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+ h

(
aR10grd1XR10×(T−1) +W1×(T−1)

∣∣∣∣∣ aR20, grd1

)
(3.116)

(ii)
.

≥ E
[
log
(
ρ2

rd1 |aR10|2 |xR10|2 + ρ2
rd2 |aR20|2 ‖XR20‖2 + 1

)]
+ (T − 1)E

[
log
(
|aR10|2 |grd1|2 + 1

)]
(3.117)

(iii).
= log

(
|aR10|2 ρ2

rd1 + |aR20|2 ρ2
rd2 + 1

)
+ (T − 1) log

(
|aR10|2 ρ2

rd1 + 1
)
, (3.118)

where (i) is by projecting grd1aR10XR10 +grd2aR20XR20 +W1×T onto a new orthonormal basis

with first basis vector chosen in the direction of XR20 and rest of the basis vectors with an

arbitrary choice. The direction of XR20 is known from aR20XR20 given in the conditioning

since aR20 is a known constant. Note that XR10 having i.i.d. CN (0, 1) elements, projected

onto any direction independent of XR10 gives a CN (0, 1) random variable which is xR10 in

step (i), and XR10 projected to rest of the T − 1 basis vectors gives a vector XR10×(T−1) of

length T − 1 with i.i.d. CN (0, 1) elements. Also w1 is i.i.d. CN (0, 1) noise and W1×(T−1)

is the noise vector of length T − 1 with i.i.d. CN (0, 1) elements. The step (ii) is using the

property of Gaussians and (iii) is using Fact 5.1 and Fact 3.3 on page 68. Similarly,

h (grd1aR11XR11 + grd2aR21XR21 +W1×T | aR21XR21)

.

≥ log
(
|aR11|2 ρ2

rd1 + |aR21|2 ρ2
rd2 + 1

)
+ (T − 1) log

(
|aR11|2 ρ2

rd1 + 1
)
. (3.119)

Hence, by substituting (3.119), (3.118) in (3.114), we get

I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
)

.

≥ (T − 1) log
(
ρ2

sr2

)
+ pλ

(
log
(
|aR10|2 ρ2

rd1 + |aR20|2 ρ2
rd2 + 1

)
+ (T − 1) log

(
|aR10|2 ρ2

rd1 + 1
))

+ (1− pλ)
(
log
(
|aR11|2 ρ2

rd1 + |aR21|2 ρ2
rd2 + 1

)
+ (T − 1) log

(
|aR11|2 ρ2

rd1 + 1
))

− pλ log
((

1 + ρ2
rd1 |aR10|2

) (
1 + ρ2

rd2 |aR20|2
))

− (1− pλ) log
((

1 + ρ2
rd1 |aR11|2

) (
1 + ρ2

rd2 |aR21|2
))
. (3.120)

The fourth term in (3.99) is symmetric with the third term, hence it can be simplified similar
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to the above equation to obtain

I
(
XS, XR2 ; ŶR1 , YD

∣∣∣XR1 ,Λ
)

.

≥ (T − 1) log
(
ρ2

sr1

)
+ pλ

(
log
(
|aR10|2 ρ2

rd1 + |aR20|2 ρ2
rd2 + 1

)
+ (T − 1) log

(
|aR20|2 ρ2

rd2 + 1
))

+ (1− pλ)
(
log
(
|aR11|2 ρ2

rd1 + |aR21|2 ρ2
rd2 + 1

)
+ (T − 1) log

(
|aR21|2 ρ2

rd2 + 1
))

− pλ log
((

1 + ρ2
rd1 |aR10|2

) (
1 + ρ2

rd2 |aR20|2
))

− (1− pλ) log
((

1 + ρ2
rd1 |aR11|2

) (
1 + ρ2

rd2 |aR21|2
))
. (3.121)

Since we are dealing with the case from Section 3.3.1, from our choice (looking at (3.121)

and (3.104)) it follows that

I
(
XS; ŶRYD

∣∣∣XR,Λ
)
, I
(
XS, XR2 ; ŶR1 , YD

∣∣∣XR1 ,Λ
) .

≥ (T − 1) log
(
ρ2

sr1

)
(3.122)

.
= (T − 1) γsr1 log (SNR) (3.123)

for any aR10, aR11, aR20, aR21. Now, we choose

aR10 = c1, aR11 = 1, aR20 = 1, aR21 = 0 (3.124)

and substitute in (3.120) to get

I
(
XS, XR1 ; ŶR2 , YD

∣∣∣XR2 ,Λ
) .

≥ (T − 1) log
(
ρ2

sr2

)
+ pλ

(
log
(
|c1|2 ρ2

rd1 + ρ2
rd2 + 1

)
+ (T − 1) log

(
|c1|2 ρ2

rd1 + 1
))

+ (1− pλ)
(
log
(
ρ2

rd1 + 1
)

+ (T − 1) log
(
ρ2

rd1 + 1
))

− pλ log
((

1 + ρ2
rd1 |c1|2

) (
1 + ρ2

rd2

))
− (1− pλ) log

((
1 + ρ2

rd1

))
(3.125)

(i).
= (T − 1) log

(
ρ2

sr2

)
+ pλ

(
(T − 2) log

(
|c1|2 ρ2

rd1 + 1
))

+ (1− pλ)
(
(T − 1) log

(
ρ2

rd1 + 1
))

(3.126)

.
= (T − 1) γsr2 log (SNR)

85



+ pλ
(
(T − 2) log

(
|c1|2 SNRγrd1 + 1

))
+ (1− pλ) (T − 1) γrd1 log (SNR) , (3.127)

where (i) was using |c1|2 ρ2
rd1 < ρ2

rd2 since ρ2
rd1 < ρ2

rd2 and |c1|2 is power constrained. And

similarly on substituting aR10 = c1, aR11 = 1, aR20 = 1, aR21 = 0 in (3.108), we get

I (XRXS;YD|Λ)
.

≥ pλ (T − 1) log
(
ρ2

rd2

)
+ (1− pλ) (T − 1) log

(
ρ2

rd1

)
− pλ log

((
1 + ρ2

rd1 |c1|2
))

(3.128)

.
= pλ (T − 1) γrd2 log (SNR) + (1− pλ) (T − 1) γrd1 log (SNR)

− pλ log
((

1 + SNRγrd1 |c1|2
))
. (3.129)

Now, substituting (3.123), (3.127) and (3.129) into (3.99), we get that the rates

TR
.

≤ min

{
(T − 1) γsr1 log (SNR) , (T − 1) γsr2 log (SNR) + (1− pλ) (T − 1) γrd1 log (SNR)

+ pλ
(
(T − 2) log

(
|c1|2 SNRγrd1 + 1

))
, (1− pλ) (T − 1) γrd1 log (SNR)

+ pλ (T − 1) γrd2 log (SNR)− pλ log
((

1 + SNRγrd1 |c1|2
))}

(3.130)

are achievable. Thus with

P9 :



maximize min
{

(T − 1) γsr2 log (SNR) + (T − 1) (1− pλ) γrd1 log (SNR)

+ (T − 2) pλ log
(
SNRγrd1 |c1|2 + 1

)
,

(T − 1) (1− pλ) γrd1 log (SNR)

+ pλ
(
(T − 1) γrd2 log (SNR)− log

(
SNRγrd1 |c1|2 + 1

))}
|c1|2 ≤ 2T, 0 ≤ pλ ≤ 1,

(3.131)

the rates

TR
.

≤ min {(T − 1) γsr1 log (SNR) , (P9)} (3.132)
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are achievable. And from Lemma 3.1, the solution of P9 has the same gDoF as the solution

of the optimization problem P1, where P1 appeared in the outer bound as

TC
.

≤ min {(T − 1) γsr1 log (SNR) , (P1)} (3.133)

in (3.21). Hence the outer bound can be achieved, using the optimal values of pλ, |c1|2 for

P9 from Table 3.2, in the input distribution as described in (3.35)- (3.38) and (3.41).

3.4.5 Study of Train-Scale and Quantizing for a Simple Channel

We consider Y = gX+W with X being a vector of length T−1 with i.i.d. CN (0, 1) elements

and W being a vector of length T − 1 with i.i.d. CN (0, 1) elements, g ∼ CN (0, ρ2). It is

scaled to Y ′ = (g/ĝ)X + W/ĝ, where we choose ĝ = ei∠(g+w) + (g + w) ,where ∠ (g + w′) is

the angle of g + w′. Note that |ĝ| = 1 + |g + w| and

1 + |g + w|2 ≤ |ĝ|2 ≤ 2(1 + |g + w|2). (3.134)

Now Y ′ is quantized to

Ŷ =
g

ĝ
X +

W

ĝ
+Q (3.135)

withQ ∼ W/ĝ. ForX, being a vector of length T−1 with i.i.d. CN (0, 1), we can equivalently

use

X = αq(T−1)†, (3.136)

where q(T−1) is a T − 1 dimensional isotropically distributed unitary vector and

α ∼
√

1

2
χ2 (2 (T − 1)), (3.137)

where χ2 (k) is chi-squared distributed. (See Section 3.4.1.1 on page 67 for details on chi-

squared distribution).

Now, through the rest of this section we claim that I
(
Ŷ ;X

)
− I

(
Ŷ ;Y ′

∣∣∣X) .

≥
(T − 1) log (ρ2) by first showing I

(
Ŷ ;X

) .

≥ (T − 1) log (ρ2) and then showing

I
(
Ŷ ;Y ′

∣∣∣X) .

≤ 0.
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3.4.5.1 Analysis of I
(
Ŷ ;X

)

I
(
Ŷ ;X

)
= h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

)
− h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)

(3.138)

(i)

≥ h

(
g

ĝ
αq(T−1)†

∣∣∣∣ gĝ
)

− h
(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)

(3.139)

(ii)
= h

(∣∣∣∣gĝα
∣∣∣∣2
∣∣∣∣∣ gĝ
)

+ (T − 2)E

[
log

(∣∣∣∣gĝα
∣∣∣∣2
)]

+ log

(
πT−1

Γ (T − 2)

)
− h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)
, (3.140)

where (i) is using the fact that conditioning reduces entropy and (ii) is using the result from

Corollary 3.8.

Now consider h
(

(g/ĝ)αq(T−1)† +W/ĝ +Q
∣∣αq(T−1)†). By projecting (g/ĝ)αq(T−1)† +

W/ĝ +Q onto a new orthonormal basis with the first basis vector taken as q(T−1)†, which is

known in conditioning, we get

h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)

(i)
= h

(
g

ĝ
α +

w

ĝ
+ q,

W ′
1×T−2

ĝ
+Q′1×T−2

∣∣∣∣α) (3.141)

(ii)

≤ h

(
g

ĝ
α +

w

ĝ
+ q

∣∣∣∣α)
+ (T − 2) log

(
πeE

[∣∣∣∣wĝ + q

∣∣∣∣2
])

(3.142)

(iii)
= h

(
g

ĝ
α +

w

ĝ
+ q

∣∣∣∣α)
+ (T − 2) log

(
πeE

[
2

∣∣∣∣wĝ
∣∣∣∣2
])

(3.143)

(iv)

≤ h

((
g

ĝ
− 1

)
α +

w

ĝ
+ q

∣∣∣∣α)
+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
(3.144)
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(v)

≤ log

(
πeE

[∣∣∣∣(gĝ − 1

)
α +

w

ĝ
+ q

∣∣∣∣2
])

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
(3.145)

(vi)
= log

(
πeE

[∣∣∣∣(gĝ − 1

)
α

∣∣∣∣2 + 2

∣∣∣∣wĝ
∣∣∣∣2
])

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
, (3.146)

where in step (i) W ′
1×T−2/ĝ, Q

′
1×T−2 are independent vectors of length (T − 2) with i.i.d.

elements distributed according to w/ĝ, w ∼ CN (0, 1) and q ∼ w/ĝ. This step is similar to

that in (3.115). The step (ii) is using the fact that conditioning reduces entropy, maximum

entropy results and the fact thatW ′
1×T−2/ĝ, Q

′
1×T−2 have i.i.d. elements distributed according

to w/ĝ, q, (iii) is because w/ĝ, q are i.i.d., (iv) is by subtracting α in the first term, since

α is known and using Fact 3.2 from page 67 on E
[
|w/ĝ|2

]
≤ E

[
|w|2 /

(
1 + |g + w′|2

)]
=

E
[
1/
(
1 + |g + w′|2

)]
, (v) is using maximum entropy results and (vi) is using the fact that

w/ĝ ∼ q.

Hence

h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)

≤ log

(
πeE

[∣∣∣∣(gĝ − 1

)
α

∣∣∣∣2 + 2

∣∣∣∣wĝ
∣∣∣∣2
])

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
(3.147)

(i)

≤ log

(
πeE

[∣∣∣∣( g

ei∠(g+w′) + (g + w′)
− 1

)
α

∣∣∣∣2 + 2

∣∣∣∣ w

ei∠(g+w′) + (g + w′)

∣∣∣∣2
])

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
(3.148)

(ii)
= log

(
πeE

[∣∣∣∣( ei∠(g+w′) + w′

ei∠(g+w′) + (g + w′)

)∣∣∣∣2 (T − 1) + 2

∣∣∣∣ w

ei∠(g+w′) + (g + w′)

∣∣∣∣2
])

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
(3.149)
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(iii)

≤ log

(
πeE

[
2 + 2 |w′|2

1 + |g + w′|2
(T − 1) +

2

1 + |g + w′|2

])
(3.150)

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
(3.151)

(iv)

≤ log

(
πeE

[
2 |w′|2

1 + |g + w′|2
(T − 1) +

2T

ρ2 + 1
ln
(
2 + ρ2

)])

+ (T − 2) log

(
πe

2

ρ2 + 1
ln
(
2 + ρ2

))
, (3.152)

where (i) is using ĝ = ei∠(g+w′) + (g + w′), (ii) is using E
[
|α|2
]

= T − 1 with α independent

of everything else (α was chosen in (3.137)), (iii) is using
∣∣ei∠(g+w′) + w′

∣∣2 ≤ 2
(
1 + |w′|2

)
,

E
[
|w|2

]
= 1 and

∣∣ei∠(g+w′) + (g + w′)
∣∣2 ≥ 1 + |g + w′|2 and (iv) is using Fact 3.2 on

E
[
1/
(
1 + |g + w′|2

)]
.

Now, for E
[
|w′|2 /

(
1 + |g + w′|2

)]
, we use the following fact.

Lemma 3.4. log
(
E
[

|w|2

1+|g+w|2

]) .

≤ log
(

1
ρ2

)
Proof. See Appendix B.6.

Hence using the previous lemma on 3.152, it follows that

h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)

.

≤ (T − 1) log

(
1

ρ2

)
. (3.153)

Now, substituting (3.153) in (3.140), we get

I
(
Ŷ ;X

) .

≥h
(∣∣∣∣gĝα

∣∣∣∣2
∣∣∣∣∣ gĝ
)

+ (T − 2)E

[
log

(∣∣∣∣gĝα
∣∣∣∣2
)]
− (T − 1) log

(
1

ρ2

)
(3.154)

=h
(
|α|2
)

+ (T − 1)E

[
log

(∣∣∣∣gĝ
∣∣∣∣2
)]

+ (T − 2)E
[
log
(
|α|2
)]

− (T − 1) log

(
1

ρ2

)
(3.155)

(i).
= (T − 1)E

[
log

(∣∣∣∣gĝ
∣∣∣∣2
)]
− (T − 1) log

(
1

ρ2

)
(3.156)

(ii)

≥ (T − 1)E
[
log
(
|g|2
)]
− (T − 1)E

[
log
(

2
(

1 + |g + w′|2
))]

(3.157)
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− (T − 1) log

(
1

ρ2

)
(3.158)

(iii).
= (T − 1) log

(
ρ2

2 (2 + ρ2)

)
− (T − 1) log

(
1

ρ2

)
(3.159)

.
= (T − 1) log

(
ρ2
)
, (3.160)

where (i) is because α ∼
√

1
2
χ2 (2 (T − 1)) and using properties of chi-squared random

variables (see Section 3.4.1.1 on page 67), (ii) is using |ĝ|2 ≤ 2
(
1 + |g + w′|2

)
, (iii) is using

Fact 5.1 from page 135 for E
[
log
(
1 + |g + w′|2

)]
. Hence we have

I
(
Ŷ ;X

) .

≥ (T − 1) log
(
ρ2
)
.

3.4.5.2 Analysis of I
(
Ŷ ;Y ′

∣∣∣X)

I
(
Ŷ ;Y ′

∣∣∣X) =h
(
Ŷ
∣∣∣X)− h( Ŷ ∣∣∣Y ′, X) (3.161)

=h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)

− h
(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣ gĝαq(T−1)† +
W

ĝ
, αq(T−1)†

)
(3.162)

=h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)
− h (Q) (3.163)

h (Q) = h

(
W

ĝ

)
(3.164)

≥ h

(
W

ĝ

∣∣∣∣ ĝ) (3.165)

(i)
= (T − 1)× h

(
w

ĝ

∣∣∣∣ ĝ) (3.166)

(ii)

≥ (T − 1)

(
E

[
log

(
1

2
(
1 + |g + w′|2

))]+ h (w)

)
(3.167)

(iii).
= (T − 1) log

(
1

ρ2

)
, (3.168)

where (i) is using the fact that W is a vector of length (T − 1) with i.i.d. elements distributed

as w ∼ CN (0, 1), (ii) is using the structure of ĝ and (iii) is using Fact 5.1 from page 135
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for E
[
log
(
1 + |g + w′|2

)]
and h (w)

.
= 0. Hence

I
(
Ŷ ;Y ′

∣∣∣X) .

≤ h

(
g

ĝ
αq(T−1)† +

W

ĝ
+Q

∣∣∣∣αq(T−1)†
)
− (T − 1) log

(
1

ρ2

)
(3.169)

We had already shown h
(

(g/ĝ)αq(T−1)† +W/ĝ +Q
∣∣αq(T−1)†) .

≤ (T − 1) log (1/ρ2) in

(3.153). Hence we have

I
(
Ŷ ;Y ′

∣∣∣X) .

≤ 0. (3.170)

92



CHAPTER 4

Fast Fading Interference Channel

4.1 Introduction

The 2-user Gaussian IC is a simple model that captures the effect of interference in wireless

networks. Significant progress has been made in understanding the capacity of the Gaussian

IC [HK81, CMG08, ETW08, ST11]. In practice the links in the channel could be time-

varying rather than static. Characterizing the capacity of FF-IC without CSIT has been an

open problem. In this chapter we make progress in this direction by obtaining the capacity

region of certain classes of FF-IC without instantaneous CSIT within a constant gap.

4.1.1 Related work

Previous works have characterized the capacity region to within a constant gap for the IC

where the channel is known at the transmitter and receiver. The capacity region of the 2-user

IC without feedback was characterized to within 1 bit/s/Hz in [ETW08]. In [ST11], Suh and

Tse characterized the capacity region of the IC with feedback to within 2 bits per channel

use. These results were based on the Han-Kobayashi scheme [HK81], where the transmitters

use superposition coding splitting their messages into common and private parts, and the

receivers use joint decoding. Other variants of wireless networks based on the IC model

have been studied in literature. The interference relay channel (IRC), which is obtained

by adding a relay to the 2-user interference channel (IC) setup, was introduced in [SE07]

and was further studied in [TY11, MDG12, BPY15, GCS16]. In [WT11a], Wang and Tse

studied the IC with receiver cooperation. The IC with source cooperation was studied in
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[PV11, WT11b].

When the channels are time varying, most of the existing techniques for IC cannot be used

without CSIT. In [Far13], Farsani showed that if each transmitter of FF-IC has knowledge

of the inr to the non-corresponding receiver1, the capacity region can be achieved within

1 bit/s/Hz. Lalitha et al. [SSE11] derived sum-capacity results for a subclass of FF-IC

with perfect CSIT. The idea of interference alignment [CJ08] has been extended to FF-IC

to obtain the degrees of freedom (DoF) region for certain cases. The degrees of freedom

region for the MIMO interference channel with delayed CSIT was studied in [VV12]. Their

results show that when all users have single antenna, the DoF region is same for the cases of

no CSIT, delayed CSIT and instantaneous CSIT. The results from [TMP13] show that DoF

region for FF-IC with output feedback and delayed CSIT is contained in the DoF region

for the case with instantaneous CSIT and no feedback. Kang and Choi [KC13] considered

interference alignment for the K-user FF-IC with delayed channel state feedback and showed

a result of 2K/ (K + 2) DoF. They also showed the same DoF can be achieved using a

scaled output feedback, but without channel state feedback. Therefore, the above works

have characterizations for DoF for several fading scenarios, and also show that for single

antenna systems, feedback is not very effective in terms of DoF. However, as we show in

this chapter, the situation changes when we look for more than DoF, and for approximate

optimality of the entire capacity region. In particular, we allow for arbitrary channel gains,

and do not limit ourselves to SNR-scaling results2. In particular, we show that though the

capacity region is same (within a constant) for the cases of no CSIT, delayed CSIT and

instantaneous CSIT, there is a significant difference with output feedback. When there is

output feedback and delayed CSIT the capacity region is larger than that for the case with

no feedback and instantaneous CSIT in contrast to the DoF result from [TMP13]. This gives

1For Tx1 the non-corresponding receiver is Rx2 and similarly for Tx2 the non-corresponding receiver is
Rx1

2However, we can also use our results to get the generalized DoF studied in [ETW08] for the FF-IC. This
shows that for generalized DoF, feedback indeed helps, as shown in our results.
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us a finer understanding of the role of CSIT as well as feedback in FF-IC with arbitrary (and

potentially asymmetric) link strengths, and is one of the main contributions of this chapter.

Some simplified fading models have been introduced to characterize the capacity region of

the FF-IC in the absence of CSIT. In [WSD13], Wang et al. considered the bursty IC, where

the presence of interference is governed by a Bernoulli random state. The capacity of one-

sided IC under ergodic layered erasure model, which considers the channel as a time-varying

version of the binary expansion deterministic model [ADT11], was studied in [ASC09, ZG11].

The binary fading IC, where the channel gains, the transmit signals and the received signals

are in the binary field was studied in [VMA14, VMA17] by Vahid et al. In spite of these

efforts, the capacity region of FF-IC without CSIT is still unknown, and this chapter presents

what we believe to be the first approximate characterization of the capacity region of FF-IC

without CSIT, for a class of fading models satisfying the regularity condition, defined as the

finite logarithmic Jensen’s gap.

4.1.2 Contribution and outline

In this chapter we first introduce the notion of logarithmic Jensen’s gap for fading models.

This is defined in Section 4.3 as a number calculated for a fading model depending on

the probability distribution for the channel strengths. It is effectively the supremum of

log (E [link strength]) − E [log (link strength)] over all links and operating regimes of the

system. We show that common fading models including Rayleigh and Nakagami fading

have finite logarithmic Jensen’s gap, but some fading models (like bursty fading [WSD13])

have infinite logarithmic Jensen’s gap. Subsequently, we show the usefulness of logarithmic

Jensen’s gap in obtaining approximate capacity regions of FF-ICs without instantaneous

CSIT. We show that Han-Kobayashi type rate-splitting schemes [HK81, CMG08, ETW08,

ST11] based on inr, when extended to rate-splitting schemes based on E [inr] for the FF-ICs,

give the capacity gap as a function of logarithmic Jensen’s gap, yielding the approximate

capacity characterization for fading models that have finite logarithmic Jensen’s gap. Since

our rate-splitting is based on E [inr], it does not need instantaneous CSIT. The constant
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gap capacity result is first obtained for FF-IC without feedback or instantaneous CSIT. We

also show that for the FF-IC without feedback, instantaneous CSIT cannot improve the

capacity region over the case with no instantaneous CSIT, except for a constant gap. We

subsequently study FF-IC with feedback and delayed CSIT to obtain a constant gap capacity

result. In this case, having instantaneous CSIT cannot improve the capacity region over the

case with delayed CSIT. We show that our analysis of FF-IC can easily be extended to fading

interference MAC channel to yield an approximate capacity result.

The usefulness of logarithmic Jensen’s gap is further illustrated by analyzing a scheme

based on point-to-point codes for a class of FF-IC with feedback, where we again obtain

capacity gap as a function of logarithmic Jensen’s gap. Our scheme is based on amplify-

and-forward relaying, similar to the one proposed in [ST11]. It effectively induces a 2-tap

inter-symbol-interference (ISI) channel for one of the users and a point-to-point feedback

channel for the other user. The work in [ST11] had similarly shown that an amplify-and-

forward based feedback scheme can achieve the symmetric rate point, without using rate-

splitting. Our scheme can be considered as an extension to this scheme, which enables us

to approximately achieve the entire capacity region. Our analysis also yields a capacity

bound for a 2-tap fading ISI channel, the tightness of the bound again determined by the

logarithmic Jensen’s gap.

The chapter is organized as follows. In section 5.2 we describe the system setup and the

notations. In section 4.3 we develop the logarithmic Jensen’s gap characterization for fading

models. We illustrate a few applications of logarithmic Jensen’s gap characterization in the

later sections: in section 4.4, by obtaining approximate capacity region of FF-IC without

feedback, in section 4.5, by obtaining approximate capacity region of FF-IC with feedback

and delayed CSIT, and in section 4.6, by developing point-to-point codes for a class of FF-IC

with feedback.
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4.2 Model and Notation

We consider the two-user FF-IC (Figure 4.1)

Y1(l) = g11(l)X1(l) + g21(l)X2(l) + Z1(l) (4.1)

Y2(l) = g12(l)X1(l) + g22(l)X2(l) + Z2(l), (4.2)

where Yi(l) is the channel output of receiver i (Rxi) at time l, Xi(l) is the input of transmitter

i (Txi) at time l, Zi(l) ∼ CN (0, 1) is complex AWGN noise process at Rxi, and gij(l) is the

time-variant random channel gain. The channel gain processes {gij(l)} are constant over

a block of size T and independent across blocks and across links (i, j). Without loss of

generality we assume block size T = 1 for the fading, our results can be easily extended

for arbitrary T case by coding across the blocks. The transmitters are assumed to have

no knowledge of the channel gain realizations, but the receivers do have full knowledge of

their corresponding channels. We assume that |gij(l)|2 is a random variable with a known

distribution. We assume average power constraint (1/N)
∑N

l=1 |Xi(l)|2 ≤ 1, i = 1, 2 at the

transmitters, and assume Txi has a message Wi ∈
{

1, . , 2NRi
}

, for a block length of N ,

intended for Rxi for i = 1, 2, and W1,W2 are independent of each other. We denote SNRi :=

E
[
|gii|2

]
for i = 1, 2, and INRi := E

[
|gij|2

]
for i 6= j. For the instantaneous interference

channel gains we use inri := |gij|2, i 6= j. Note that we allow for arbitrary channel gains,

and do not limit ourselves to SNR-scaling results, but get an approximate characterization

of the FF-IC capacity region.

Tx1

Tx2

Rx1

Rx2

+

+

Z1 ∼ CN (0, 1)

X1

X2

Z2 ∼ CN (0, 1)

g11

g21

g22

g12

Y1

Y2

Figure 4.1: The channel model without feedback.

Under the feedback model (Figure 4.2), after each reception, each receiver reliably feeds
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back the received symbol and the channel states to its corresponding transmitter3. For

example, at time l, Tx1 receives (Y1 (l − 1) , g11(l − 1), g21(l − 1)) from Rx1. Thus X1(l) is

allowed to be a function of
(
W1, {Y1 (k) , g11(k), g21(k)}k<l

)
.

Tx1

Tx2

Rx1

Rx2

+

+

Z1 ∼ CN (0, 1)

X1

X2

Z2 ∼ CN (0, 1)

g11

g21

g22

g12

Y1

Y2

Delay

Delay

(Y1, g11, g21)

(Y2, g22, g12)

Figure 4.2: The channel model with feedback.

We define symmetric FF-IC to be a FF-IC such that g11 ∼ g22 ∼ gd and g12 ∼ g21 ∼ gc

(we use the symbol ∼ to indicate random variables following same distribution), all of them

being independent. Here gd and gc are dummy random variables according to which the direct

links and cross links are distributed. We denote SNR := E
[
|gd|2

]
, and INR := E

[
|gc|2

]
,

for the symmetric case.

We use the vector notation g
1

= [g11, g21], g
2

= [g22, g12] and g = [g11, g21, g22, g12]. For

schemes involving multiple blocks (phases) we use the notation X
(i)N
k , where k is the user

index, i is the block (phase) index and N is the number of symbols per block. The notation

X
(i)
k (j) indicates the jth symbol in the ith block (phase) of kth user. We explain this in

Figure 4.3.

The natural logarithm is denoted by ln () and the logarithm with base 2 is denoted by

log (). Also we define log+(·) := max (log(·), 0). For obtaining approximate capacity region

of ICs, we say that a rate region R achieves a capacity gap of δ if for any (R1, R2) ∈ C,

3IC with rate limited feedback is considered in [VSA12] where outputs are quantized and fed back. Our
schemes can also be extended for such cases.
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i− 1 i i+ 1Block Block Block

Blocklength N
1 2 j. . .

User k

X
(i)N
k : Notation for the N

X
(i)
k (j) : Notation for one symbol.

symbols of the block taken together.

Figure 4.3: The notation for schemes involving multiple blocks (phases).

(R1 − δ, R2 − δ) ∈ R, where C is the capacity region of the channel.

4.3 A logarithmic Jensen’s gap characterization for fading models

Definition 4.1. For a given fading model, let Φ =
{
φ : |gij|2 ∼ φ, for some i, j ∈ {1, 2}

}
be

the set of all probability density functions, that the fading model induce on the channel link

strengths |gij|2, across all operating regimes of the system. We define logarithmic Jensen’s

gap cJG of the fading model to be

cJG = sup
a∈R+,W∼φ∈Φ

(log (a+ E [W ])

−E [log (a+W )]) . (4.3)

In other words it is the smallest value of c such that

log (a+ E [W ])− E [log (a+W )] ≤ c, (4.4)

for any a ≥ 0 , for any φ ∈ Φ, with W distributed according to φ.

The following lemma converts requirement in Definition 4.1 to a simpler form.

Lemma 4.1. The requirement log (a+ E [W ]) − E [log (a+W )] ≤ c for any a ≥ 0, is

equivalent to log (E [W ])− E [log (W )] = −E [log (W ′)] ≤ c, where W ′ = W
E[W ]

.

Proof. We first note that letting a = 0 in the requirement log (a+ E [W ])−E [log (a+W )] ≤
c shows that log (E [W ])− E [log (W )] = −E [log (W ′)] ≤ c is necessary.
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To prove the converse, note that ξ (a) = log (a+ E [W ]) − E [log (a+W )] ≥ 0 due to

Jensen’s inequality. Taking derivative with respect to a and again using Jensen’s inequality

we get

(ln 2) ξ′ (a) = (a+ E [W ])−1 − E
[
(a+W )−1] ≤ 0. (4.5)

Hence, ξ (a) achieves the maximum value at a = 0 in the range [0,∞). Hence we have the

equivalent condition

log (E [W ])− E [log (W )] ≤ c, (4.6)

which is equivalent to −E [log (W ′)] ≤ c.

Hence, it follows that for any distribution that has a point mass at 0 (for example, bursty

interference model [WSD13]), we do not have a finite logarithmic Jensen’s gap, since it has

E [log (W ′)] = −∞. Now we discuss a few distributions that can be easily shown to have a

finite logarithmic Jensen’s gap. Note that any finite c, which satisfies Equation (4.4), is an

upper bound to the logarithmic Jensen’s gap cJG.

4.3.1 Gamma distribution

Gamma distribution generalizes some of the commonly used fading models, including

Rayleigh and Nakagami fading. The probability density function for Gamma distribution is

given by

f (w) = wk−1e−
w
θ /
(
θkΓ(k)

)
(4.7)

for w > 0, where k > 0 is the shape parameter, and θ > 0 is the scale parameter.

Proposition 4.2. If the elements of Φ are Gamma distributed with shape parameter k, they

satisfy Equation (4.4) with constant c = log (e) /k − log (1 + 1/ (2k)).

Proof. Using Lemma 4.1, it is sufficient to prove log (E [W ]) − E [log (W )] ≤ log (e) /α −
log (1 + 1/ (2α)). It is known for the Gamma distribution that E [W ] = kθ and E [ln (W )] =

ψ (k) + ln (θ) , where ψ is the digamma function. Therefore,

log (E [W ])− E [log (W )] = log(e) (ln (k)− ψ (k)) . (4.8)
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We first use the following property of digamma function ψ (k) = ψ (k + 1) − 1/k, and then

use the inequality ln (k + 1/2) < ψ (k + 1)from [Bat08, Lemma 1.7]. Hence,

log (E [W ])− E [log (W )]

< log(e) (ln (k)− ln (k + 1/2) + 1/k) (4.9)

= log (e) /k − log (1 + 1/ (2k)) . (4.10)

Corollary 4.3. If the elements of Φ are exponentially distributed (which corresponds to

Rayleigh fading), they satisfy Equation (4.4) with constant c = 0.86.

Proof. In Rayleigh fading model the |gij|2 is exponentially distributed. The exponential

distribution itself is a special case of Gamma distribution with k = 1. Substituting α = 1 in

(4.10) we get log (E [W ])− E [log (W )] < 0.86.

Nakagami fading can be obtained as a special case of the Gamma distribution; in this

case the logarithmic Jensen’s gap will depend upon the parameters used in the model.

4.3.2 Weibull distribution

The probability density function for Weibull distribution is given by

f (w) = (k/λ) (w/λ)k−1 e−(w/λ)k (4.11)

for x > 0 with k, λ > 0.

Proposition 4.4. If the elements of Φ are Weibull distributed with parameter k, they satisfy

Equation (4.4) with c = γ log (e) /k + log (Γ (1 + 1/k)), where γ is Euler’s constant.

Proof. For Weibull distributed W , we have E [W ] = λΓ
(
1 + 1

k

)
and E [ln (W )] = ln (λ)− γ

k
,

where Γ (·) denotes the gamma function and γ is the Euler’s constant. Hence, it follows that

log (E [W ]) − E [log (W )] ≤ γ log (e) /k + log (Γ (1 + 1/k)) . Using Lemma 4.1 concludes the

proof.
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Note that exponential distribution can be specialized from Weibull distribution as well,

by setting k = 1. Hence, we get the tighter gap in the following corollary.

Corollary 4.5. If the elements of Φ are exponentially distributed, they satisfy Equation (4.4)

with constant c = 0.83.

In the following table we summarize the values we obtain as upper bound on logarithmic

Jensen’s gap, according to Definition 4.1 and Equation (4.4) for different fading models.

Table 4.1: Upper bound of logarithmic Jensen’s gap for different fading models

Fading Model c

Rayleigh 0.83

Gamma k = 1 0.86

Gamma k = 2 0.40

Gamma k = 3 0.26

Weibull k = 1 0.83

Weibull k = 2 0.24

Weibull k = 3 0.11

4.3.3 Other distributions

Here we give a lemma that can be used together with Lemma 4.1 to verify whether a given

fading model has a finite logarithmic Jensen’s gap.

Lemma 4.2. If the cumulative distribution function F (w) of W satisfies F (w) ≤ awb over

w ∈ [0, ε] for some a ≥ 0, b > 0, and 0 < ε ≤ 1, then

E [ln (W )] ≥ ln (ε) + aεb ln (ε)−
(
aεb
)
/b. (4.12)
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Proof. The condition in this lemma ensures that the probability density function f(w) grows

slow enough as w → 0− so that f(w) ln (w) is integrable at 0. Also the behavior for large

values of w is not relevant here, since we are looking for a lower bound on E [ln (W )]. The

detailed proof is in Appendix C.3.

Hence, if the cumulative distribution of the channel gain grows polynomially in a neigh-

borhood of 0, the resulting logarithm becomes integrable, and thus it is possible to find a

finite constant c for the Equation (4.4).

4.4 Approximate Capacity Region of FF-IC without feedback

In this section we make use of the logarithmic Jensen’s gap characterization to obtain the

approximate capacity region of FF-IC with neither feedback nor instantaneous CSIT.

Theorem 4.6. For a non-feedback FF-IC with a finite logarithmic Jensen’s gap cJG , the

rate region RNFB described by (4.13) is achievable with λpk = min
(

1
INRk

, 1
)

:

R1 ≤ E
[
log
(

1 + |g11|2 + λp2 |g21|2
)]
− 1 (4.13a)

R2 ≤ E
[
log
(

1 + |g22|2 + λp1 |g12|2
)]
− 1 (4.13b)

R1 +R2 ≤ E
[
log
(

1 + |g22|2 + |g12|2
)]

+ E
[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]
− 2 (4.13c)

R1 +R2 ≤ E
[
log
(

1 + |g11|2 + |g21|2
)]

+ E
[
log
(

1 + λp2 |g22|2 + λp1 |g12|2
)]
− 2 (4.13d)

R1 +R2 ≤ E
[
log
(

1 + λp1 |g11|2 + |g21|2
)]

+ E
[
log
(

1 + λp2 |g22|2 + |g12|2
)]
− 2 (4.13e)

2R1 +R2 ≤ E
[
log
(

1 + |g11|2 + |g21|2
)]

+ E
[
log
(

1 + λp2 |g22|2 + |g12|2
)]

+ E
[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]
− 3 (4.13f)

R1 + 2R2 ≤ E
[
log
(

1 + |g22|2 + |g12|2
)]
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+ E
[
log
(

1 + λp1 |g11|2 + |g21|2
)]

+ E
[
log
(

1 + λp2 |g22|2 + λp1 |g12|2
)]
− 3 (4.13g)

and the region RNFB has a capacity gap of at most cJG + 1 bits per channel use.

Proof. This region is obtained by a rate-splitting scheme that allocates the private message

power proportional to 1
E[inr]

. The analysis of the scheme and outer bounds are similar to that

in [ETW08]. See subsection 4.4.2 for details.

Remark 4.1. For the case of Rayleigh fading we obtain a capacity gap of 1.83 bits per

channel use, following Table 4.1.

Corollary 4.7. For FF-IC with finite logarithmic Jensen’s gap cJG, instantaneous CSIT

cannot improve the capacity region of except by a constant.

Proof. Our outer bounds in subsection 4.4.2 for the non-feedback IC are valid even when

there is instantaneous CSIT. These outer bounds are within constant gap of the rate region

RNFB achieved without instantaneous CSIT.

Corollary 4.8. Delayed CSIT cannot improve the capacity region of the FF-IC except by a

constant.

Proof. This follows from the previous corollary, since instantaneous CSIT is always better

than delayed CSIT.

Remark 4.2. The previous two corollaries are for FF-IC with 2 users and single antennas.

It does not contradict the results for MISO broadcast channel, X-channel, MIMO IC and

multi-user IC where delayed CSIT or instantaneous CSIT can improve capacity region by

more than a constant [MT10, MJS12, KC13, NGJ12, VV12].

Corollary 4.9. Within a constant gap, the capacity region of the FF-IC (with finite logarith-

mic Jensen’s gap cJG) can be proved to be same as the capacity region of IC (without fading)

with equivalent channel strengths SNRi := E
[
|gii|2

]
for i = 1, 2, and INRi := E

[
|gij|2

]
for

i 6= j.
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Proof. This is an application of the logarithmic Jensen’s gap result. The proof is given in

Appendix C.4.

4.4.1 Discussion

It is useful to view Theorem 4.6 in the context of the existing results for the ICs. It is known

that for ICs, one can approximately achieve the capacity region by performing superposition

coding and allocating a power to the private symbols that is inversely proportional to the

strength of the interference caused at the unintended receiver. Consequently, the received

interference power is at the noise level, and the private symbols can be safely treated as

noise, incurring only a constant rate penalty. At first sight, such a strategy seems impossible

for the fading IC, where the transmitters do not have instantaneous channel information.

What Theorem 4.6 reveals (with the details in subsection 4.4.2) is that if the fading model

has finite logarithmic Jensen’s gap, it is sufficient to perform power allocation based on the

inverse of average interference strength to approximately achieve the capacity region.

We compare the symmetric rate point achievable for the non-feedback symmetric FF-IC

in Figure 4.4. The fading model used is Rayleigh fading. The inner bound in numerical

simulation is from Equation (5.5) (which is slightly tighter than (4.13) since some terms in

(5.5) are simplified and bounded with the worst case values to obtain (4.13)) in subsection

4.4.2 according to the choice of distributions given in the same subsection. The outer bound

is plotted by simulating Equation (4.17) in subsection 4.4.2. The SNR is varied after fixing

α = log(INR)
log(SNR)

. The simulation yields a capacity gap of 1.48 bits per channel use for α = 0.5

and a capacity gap of 1.51 bits per channel use for α = 0.25. Our theoretical analysis for

FF-IC gives a capacity gap of cJG + 1 ≤ 1.83 bits per channel use independent of α, using

data from Table 4.1 in Section 4.3.
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Figure 4.4: Comparison of outer and inner bounds with given α = log(INR)
log(SNR)

for non-feedback

symmetric FF-IC at the symmetric rate point. For high SNR, the capacity gap is approxi-

mately 1.48 bits per channel use for α = 0.5 and 1.51 bits per channel use for α = 0.25 from

the numerics. Our theoretical analysis yields gap as 1.83 bits per channel use independent

of α.
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4.4.2 Proof of Theorem 4.6

From [CMG08] we obtain that a Han-Kobayashi scheme for IC can achieve the following

rate region for all p (u1) p (u2) p (x1|u1) p (x2|u2). Note that we use
(
Yi, gi

)
instead of (Yi) in

the actual result from [CMG08] to account for the fading.

R1 ≤ I
(
X1;Y1, g1|U2

)
(4.14a)

R2 ≤ I
(
X2;Y2, g2|U1

)
(4.14b)

R1 +R2 ≤ I
(
X2, U1;Y2, g2

)
+ I

(
X1;Y1, g1|U1, U2

)
(4.14c)

R1 +R2 ≤ I
(
X1, U2;Y1, g1

)
+ I

(
X2;Y2, g2|U1, U2

)
(4.14d)

R1 +R2 ≤ I
(
X1, U2;Y1, g1|U1

)
+ I

(
X2, U1;Y2, g2|U2

)
(4.14e)

2R1 +R2 ≤ I
(
X1, U2;Y1, g1

)
+ I

(
X1;Y1, g1|U1, U2

)
+ I

(
X2, U1;Y2, g2|U2

)
(4.14f)

R1 + 2R2 ≤ I
(
X2, U1;Y2, g2

)
+ I

(
X2;Y2, g2|U1, U2

)
+ I

(
X1, U2;Y1, g1|U1

)
. (4.14g)

Now similar to that in [ETW08], choose mutually independent Gaussian input distributions

Uk, Xpk to generate Xk.

Uk ∼ CN (0, λck) , Xpk ∼ CN (0, λpk) , k ∈ {1, 2} (4.15)

X1 = U1 +Xp1, X2 = U2 +Xp2, (4.16)

where λck + λpk = 1 and λpk = min (1/INRk, 1). Here we introduced the rate-splitting

using the average inr. On evaluating the region described by (5.5) with this choice of input

distribution, we get the region described by (4.13); the calculations are deferred to Appendix

C.1.

Claim 4.1. An outer bound for the non-feedback case is given by (4.17):

R1 ≤ E
[
log
(

1 + |g11|2
)]

(4.17a)
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R2 ≤ E
[
log
(

1 + |g22|2
)]

(4.17b)

R1 +R2 ≤ E
[
log
(

1 + |g22|2 + |g12|2
)]

+ E
[
log

(
1 + |g11|2

(
1 + |g12|2

)−1
)]

(4.17c)

R1 +R2 ≤ E
[
log
(

1 + |g11|2 + |g21|2
)]

+ E
[
log

(
1 + |g22|2

(
1 + |g21|2

)−1
)]

(4.17d)

R1 +R2 ≤ E

[
log

(
1 + |g21|2 +

|g11|2

1 + |g12|2

)]

+ E

[
log

(
1 + |g12|2 +

|g22|2

1 + |g21|2

)]
(4.17e)

2R1 +R2 ≤ E
[
log
(

1 + |g11|2 + |g21|2
)]

+ E

[
log

(
1 + |g12|2 +

|g22|2

1 + |g21|2

)]

+ E
[
log

(
1 + |g11|2

(
1 + |g12|2

)−1
)]

(4.17f)

R1 + 2R2 ≤ E
[
log
(

1 + |g22|2 + |g12|2
)]

+ E

[
log

(
1 + |g21|2 +

|g11|2

1 + |g12|2

)]

+ E
[
log

(
1 + |g22|2

(
1 + |g21|2

)−1
)]

. (4.17g)

Proof. The outer bounds (4.17a) and (4.17b) are easily derived by removing the interference

from the other user by providing it as side-information.

The outer bound in Equation (4.17e) follows from [ETW08, Theorem 1]. Those in Equa-

tion (4.17f) and Equation (4.17g) follow from [ETW08, Theorem 4]. We just need to modify

the theorems from [ETW08] for the fading case by treating
(
Yi, gi

)
as output, and using the

i.i.d property of the channels. We illustrate the procedure for Equation (4.17g) in Appendix

C.2. Equation (4.17e) and Equation (4.17f) can be derived similarly.

The derivation of outer bounds (4.17c) and (4.17d) uses similar techniques as for Equation

(4.17g). We derive Equation (4.17d) in Appendix C.2. Equation (4.17c) follows due to

symmetry.
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Claim 4.2. The gap between the inner bound (4.13) and the outer bound (4.17) for the

non-feedback case is at most cJG + 1 bits per channel use.

Proof. The proof for the capacity gap uses the logarithmic Jensen’s gap property of the

fading model. Denote the gap between the first outer bound (4.17a) and first inner bound

(4.13a) by δ1, for the second pair denote the gap by δ2, and so on. By inspection δ1 ≤ 1 and

δ2 ≤ 1. Now

δ3 = E
[
log

(
1 + |g11|2

(
1 + |g12|2

)−1
)]

− E
[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]

+ 2 (4.18)

(a)

≤ E
[
log
(

1 + |g11|2 (1 + INR1)−1
)]

− E
[
log
(

1 + λp1 |g11|2
)]

+ 2 + cJG (4.19)

(b)

≤ 2 + cJG. (4.20)

The step (a) follows from Jensen’s inequality and logarithmic Jensen’s gap property of |g12|2.

The step (b) follows because λp1 = min
(

1
INR1

, 1
)
≥ 1

INR1+1
. Similarly, we can bound the

other δ’s and gather the inequalities as:

δ1, δ2 ≤ 1; δ3, δ4 ≤ 2 + cJG (4.21)

δ5 ≤ 2 + 2cJG; δ6, δ7 ≤ 3 + 2cJG. (4.22)

For δ5, δ6, and δ7 we have to use the logarithmic Jensen’s gap property twice and hence

2cJG appears. We note that δ1 is associated with bounding R1, δ2 with R2, (δ3, δ4, δ5) with

R1 +R2, δ6 with 2R1 +R2 and δ7 with R1 + 2R2. Hence, it follows that the capacity gap is

at most max
(
δ1, δ2,

δ3
2
, δ4

2
, δ5

2
, δ6

3
, δ7

3

)
≤ cJG + 1 bits per channel use.

4.4.3 Fast Fading Interference MAC channel

We now consider the interference MAC channel [PDT09] with fading links (Figure 4.5),

where we can obtain an approximate capacity result similar to the FF-IC. This setup has
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Figure 4.5: Fast Fading Interference MAC channel

similar network structure as FF-IC. However Rx1 needs to decode the messages from both

the two transmitters, while Rx2 needs to decode only the message from Tx2.

Theorem 4.10. A rate splitting scheme based on average INR can achieve the approximate

capacity region of fast fading interference MAC channel with a finite logarithmic Jensen’s

gap cJG, within 1 + 1
2
cJG bits per channel use.

Proof. The proof is by extending the techniques used in [PDT09] and using similar calcula-

tions as for the FF-IC. Details are in Appendix C.5.

4.5 Approximate Capacity Region of FF-IC with feedback

In this section we make use of the logarithmic Jensen’s gap characterization to obtain the ap-

proximate capacity region of FF-IC with output and channel state feedback, but transmitters

having no prior knowledge of channel states. Under the feedback model, after each reception,

each receiver reliably feeds back the received symbol and the channel states to its correspond-

ing transmitter. For example, at time l, Tx1 receives (Y1 (l − 1) , g11(l − 1), g21(l − 1)) from

Rx1. Thus X1(l) is allowed to be a function of
(
W1, {Y1 (k) , g11(k), g21(k)}k<l

)
. The model

is described in section 5.2 and is illustrated with Figure 4.2 in the same section.

Theorem 4.11. For a feedback FF-IC with a finite logarithmic Jensen’s gap cJG , the rate

region RFB described by (4.23) is achievable for 0 ≤ |ρ|2 ≤ 1, 0 ≤ θ < 2π with λpk =

min
(

1
INRk

, 1− |ρ|2
)

:

R1 ≤ E
[
log
(
|g11|2 + |g21|2
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+2 |ρ|2 Re
(
eiθg11g

∗
21

)
+ 1
)]
− 1 (4.23a)

R1 ≤ E
[
log
(

1 +
(

1− |ρ|2
)
|g12|2

)]
+ E

[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]
− 2 (4.23b)

R2 ≤ E
[
log
(
|g22|2 + |g12|2

+2 |ρ|2 Re
(
eiθg∗22g12

)
+ 1
)]
− 1 (4.23c)

R2 ≤ E
[
log
(

1 +
(

1− |ρ|2
)
|g21|2

)]
+ E

[
log
(

1 + λp2 |g22|2 + λp1 |g12|2
)]
− 2 (4.23d)

R1 +R2 ≤ E
[
log
(
|g22|2 + |g12|2

+2 |ρ|2 Re
(
eiθg∗22g12

)
+ 1
)]

+ E
[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]
− 2 (4.23e)

R1 +R2 ≤ E
[
log
(
|g11|2 + |g21|2

+2 |ρ|2 Re
(
eiθg11g

∗
21

)
+ 1
)]

+ E
[
log
(

1 + λp2 |g22|2 + λp1 |g12|2
)]
− 2 (4.23f)

and the region RFB has a capacity gap of at most cJG + 2 bits per channel use.

Proof. The proof is in subsection 4.5.1.

Remark 4.3. For the case of Rayleigh fading we obtain a capacity gap of 2.83 bits per

channel use, following Table 4.1.

Corollary 4.12. Instantaneous CSIT cannot improve the capacity region of the FF-IC (with

finite logarithmic Jensen’s gap cJG) with feedback and delayed CSIT except for a constant.

Proof. Our outer bounds in subsection 4.5.1 for feedback case are valid even when there is

instantaneous CSIT. These outer bounds are within constant gap of the rate region RFB

achieved using only feedback and delayed CSIT.

Corollary 4.13. If the phases of the links gij are uniformly distributed in [0, 2π], then within

a constant gap, the capacity region of the feedback FF-IC (with finite logarithmic Jensen’s
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gap cJG) with feedback and delayed CSIT can be proved to be same as the capacity region

of a feedback IC (without fading) with equivalent channel strengths SNRi := E
[
|gii|2

]
for

i = 1, 2, and INRi := E
[
|gij|2

]
for i 6= j.

Proof. This is again an application of the logarithmic Jensen’s gap result. The proof is given

in Appendix C.6.

4.5.1 Proof of Theorem 4.11

Note that since the receivers know their respective incoming channel states, we can view

the effective channel output at Rxi as the pair
(
Yi, gi

)
. Then the block Markov scheme of

[ST11, Lemma 1] implies that the rate pairs (R1, R2) satisfying

R1 ≤ I
(
U,U2, X1;Y1, g1

)
(4.24a)

R1 ≤ I
(
U1;Y2, g2|U,X2

)
+ I

(
X1;Y1, g1|U1, U2, U

)
(4.24b)

R2 ≤ I
(
U,U1, X2;Y2, g2

)
(4.24c)

R2 ≤ I
(
U2;Y1, g1|U,X1

)
+ I

(
X2;Y2, g2|U1, U2, U

)
(4.24d)

R1 +R2 ≤ I
(
X1;Y1, g1|U1, U2, U

)
+ I

(
U,U1, X2;Y2, g2

)
(4.24e)

R1 +R2 ≤ I
(
X2;Y2, g2|U1, U2, U

)
+ I

(
U,U2, X1;Y1, g1

)
(4.24f)

for all p (u) p (u1|u) p (u2|u) p (x1|u1, u) p (x2|u2, u) are achievable. We choose the input dis-

tribution according to

U ∼ CN
(

0, |ρ|2
)
, Uk ∼ CN (0, λck) (4.25)

Xpk ∼ CN (0, λpk)

X1 = eiθU + U1 +Xp1, X2 = U + U2 +Xp2 (4.26)
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(U,Uk, Xpk being mutually independent) with 0 ≤ |ρ|2 ≤ 1, 0 ≤ θ < 2π, λck + λpk = 1− |ρ|2

and λpk = min
(
1/INRk, 1− |ρ|2

)
.

With this choice of λpk we perform the rate-splitting according to the average inr in

place of rate-splitting based on the constant inr. Note that we have introduced an extra

rotation θ for the first transmitter, which will become helpful in proving the capacity gap

by allowing us to choose a point in inner bound for every point in outer bound (see proof

of claim 4.3). On evaluating the terms in (5.14) for this choice of input distribution, we get

the inner bound described by (4.23); the calculations are deferred to Appendix C.7.

An outer bound for the feedback case is given by (4.27) with 0 ≤ |ρ| ≤ 1 (ρ being a

complex number):

R1 ≤ E
[
log
(
|g11|2 + |g21|2 + 2Re (ρg11g

∗
21) + 1

)]
(4.27a)

R1 ≤ E
[
log
(

1 +
(

1− |ρ|2
)
|g12|2

)]
+ E

log

1 +

(
1− |ρ|2

)
|g11|2

1 +
(

1− |ρ|2
)
|g12|2

 (4.27b)

R2 ≤ E
[
log
(
|g22|2 + |g12|2 + 2Re (ρg∗22g12) + 1

)]
(4.27c)

R2 ≤ E
[
log
(

1 +
(

1− |ρ|2
)
|g21|2

)]
+ E

log

1 +

(
1− |ρ|2

)
|g22|2

1 +
(

1− |ρ|2
)
|g21|2

 (4.27d)

R1 +R2 ≤ E
[
log
(
|g22|2 + |g12|2 + 2Re (ρg∗22g12) + 1

)]
+ E

log

1 +

(
1− |ρ|2

)
|g11|2

1 +
(

1− |ρ|2
)
|g12|2

 (4.27e)

R1 +R2 ≤ E
[
log
(
|g11|2 + |g21|2 + 2Re (ρg11g

∗
21) + 1

)]
+ E

log

1 +

(
1− |ρ|2

)
|g22|2

1 +
(

1− |ρ|2
)
|g21|2

 . (4.27f)

The outer bounds can be easily derived following the proof techniques from [ST11, The-

orem 3] using E [X1X
∗
2 ] = ρ, treating

(
Yi, gi

)
as output, and using the i.i.d property of the

channels. The calculations are deferred to Appendix C.8.
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Claim 4.3. The gap between the inner bound (4.23) and the outer bound (4.27) for the

feedback case is at most cJG + 2 bits per channel use.

Proof. Denote the gap between the first outer bound (4.27a) and inner bound (4.23a) by

δ1, for the second pair denote the gap by δ2, and so on. For comparing the gap between

regions we choose the inner bound point with same |ρ| as in any given outer bound point.

The rotation θ for the first transmitter also becomes important in proving a constant gap

capacity result. We choose θ in the inner bound to match arg (ρ) in the outer bound. With

this choice we get

δ1 = E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|Re

(
eiθg11g

∗
21

)
+ 1
)]

− E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re

(
eiθg11g

∗
21

)
+ 1
)]

+ 1 (4.28)

= E

log

 1 + 1
|g11|2+|g21|2

+ |ρ|
(

2Re(eiθg11g∗21)
|g11|2+|g21|2

)
1 + 1

|g11|2+|g21|2
+ |ρ|2

(
2Re(eiθg11g∗21)
|g11|2+|g21|2

)

+ 1. (4.29)

We have

∣∣∣∣2Re(eiθg11g∗21)
|g11|2+|g21|2

∣∣∣∣ =
|e−iθg∗11g21+eiθg11g∗21|

|g11|2+|g21|2
≤ 1, hence we call

e−iθg∗11g21+eiθg11g∗21
|g11|2+|g21|2

= sinϕ and

let |g11|2 + |g21|2 = r2. Therefore,

δ1 = E
[
log

(
1 + 1/r2 + |ρ| sinϕ
1 + 1/r2 + |ρ|2 sinϕ

)]
+ 1. (4.30)

If sinφ < 0, then 1+1/r2+|ρ| sinϕ
1+1/r2+|ρ|2 sinϕ

≤ 1. Otherwise, if sinφ > 0, then 1+1/r2+|ρ| sinϕ
1+1/r2+|ρ|2 sinϕ

= 1 +

(|ρ|−|ρ|2) sinϕ

1+1/r2+|ρ|2 sinϕ
≤ 2 since 0 ≤

(
|ρ| − |ρ|2

)
sinφ ≤ 1 and 1 + 1/r2 + |ρ|2 sinφ > 1. Hence, we

always get

δ1 ≤ 2. (4.31)

Now we consider the gap δ2 between the second inequality (4.27b) of the outer bound

and the second inequality (4.23b) of the inner bound.

δ2 = E

log

1 +

(
1− |ρ|2

)
|g11|2

1 +
(

1− |ρ|2
)
|g12|2


− E

[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]

+ 2 (4.32)
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(a)

≤ E
[
log
(

1 +
(

1− |ρ|2
)
INR1 +

(
1− |ρ|2

)
|g11|2

)]
− log

(
1 +

(
1− |ρ|2

)
INR1

)
+ cJG

− E
[
log
(

1 + λp1 |g11|2 + λp2 |g21|2
)]

+ 2 (4.33)

≤ E

log

1 +

(
1− |ρ|2

)
|g11|2

1 +
(

1− |ρ|2
)
INR1

 (4.34)

− E
[
log
(

1 + λp1 |g11|2
)]

+ 2 + cJG

(b)

≤ 2 + cJG, (4.35)

where (a) follows by using logarithmic Jensen’s gap property on |g12|2 and Jensen’s inequality.

The step (b) follows because(
1− |ρ|2

)
1 +

(
1− |ρ|2

)
INR1

=
1

1
1−|ρ|2 + INR1

(4.36)

≤ min
(

1/INR1, 1− |ρ|2
)

= λp1 (4.37)

Similarly, by inspection of the other bounding inequalities we can gather the inequalities on

the δ’s as:

δ1, δ3 ≤ 2; δ2, δ4 ≤ cJG + 2; δ5, δ6 ≤ cJG + 3. (4.38)

We note that (δ1, δ2) is associated with bounding R1, (δ3, δ4) with R2, (δ5, δ6) with R1 +R2.

Hence it follows that the capacity gap is at most max
(
δ1, δ2, δ3, δ4,

δ5
2
, δ6

2

)
≤ cJG + 2 bits per

channel use.

4.6 Approximate capacity of feedback FF-IC using point-to-point

codes

As the third illustration for the usefulness of logarithmic Jensen’s gap, we propose a strategy

that does not make use of rate-splitting, superposition coding or joint decoding for the

feedback case, which achieves the entire capacity region for 2-user symmetric FF-ICs to

within a constant gap. This constant gap is dictated by the logarithmic Jensen’s gap for the
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fading model. Our scheme only uses point-to-point codes, and a feedback scheme based on

amplify-and-forward relaying, similar to the one proposed in [ST11].

The main idea behind the scheme is to have one of the transmitters initially send a

very densely modulated block of data, and then refine this information using feedback and

amplify-and-forward relaying for the following blocks, in a fashion similar to the Schalkwijk-

Kailath scheme [SK66], while treating the interference as noise. Such refinement effectively

induces a 2-tap point-to-point inter-symbol-interference (ISI) channel at the unintended re-

ceiver, and a point-to-point feedback channel for the intended receiver. As a result, both

receivers can decode their intended information using only point-to-point codes.

Consider the symmetric FF-IC, where the channel statistics are symmetric and inde-

pendent, i.e., g11(l) ∼ g22(l) ∼ gd and g12(l) ∼ g21(l) ∼ gc and all the random variables

independent of each other. We consider n transmission phases, each phase having a block

length of N . For Tx1, generate 2nNR1 codewords
(
X

(1)N
1 , . . . , X

(n)N
1

)
i.i.d according to

CN (0, 1) and encode its message W1 ∈
{

1, . . . , 2nNR1
}

onto
(
X

(1)N
1 , . . . , X

(n)N
1

)
. For Tx2,

generate 2nNR2 codewords X
(1)N
2 = XN

2 i.i.d according to CN (0, 1) and encode its message

W2 ∈
{

1, . . . , 2nNR2
}

onto X
(1)N
2 = XN

2 . Note that for Tx2 the message is encoded into N

length sequence to be transmitted at first phase, whereas for Tx1 the message is encoded

into nN length sequence to be transmitted through n phases.

Tx1 sends X
(i)N
1 in phase i. Tx2 sends X

(1)N
2 = XN

2 in phase 1. At the beginning of

phase i > 1, Tx2 receives

Y
(i−1)N

2 = g
(i−1)N
22 X

(i−1)N
2 + g

(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2 (4.39)

from feedback. It can remove g
(i−1)N
22 X

(i−1)N
2 from Y

(i−1)N
2 to obtain g

(i−1)N
12 X

(i−1)N
1 +Z

(i−1)N
2 .

Tx2 then transmits the resulting interference-plus-noise after power scaling as X
(i)N
2 , i.e.

X
(i)N
2 =

g
(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR
. (4.42)

Thus, in phase i > 1, Rx2 receives

Y
(i)N

2 = g
(i)N
22 X

(i)N
2 + g

(i)N
12 X

(i)N
1 + Z

(i)N
2 (4.43)
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KY1(1) =
[
1 + |g11 (1)|2 + |g21 (1)|2

]
,KY1(2) =

 |g11 (2)|2 +
|g21(2)|2(|g12(1)|2+1)

1+INR + 1
g∗
11(1)g21(2)g12(1)√

1+INR

g11(1)g
∗
21(2)g

∗
12(1)√

1+INR
|g11 (1)|2 + |g21 (1)|2 + 1

 ,
(4.40)

KY1(l) =

 |g11 (l)|2 +
|g21(l)|2(|g12(l−1)|2+1)

1+INR + 1
[
g∗11(l−1)g21(l)g12(l−1)√

1+INR
, 0l−2

]
[
g∗11(l−1)g21(l)g12(l−1)√

1+INR
, 0l−2

]†
KY1(l − 1)

 . (4.41)

= g
(i)N
22

(
g

(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR

)

+ g
(i)N
12 X

(i)N
1 + Z

(i)N
2 (4.44)

and feeds it back to Tx2 for phase i + 1. The transmission scheme is summarized in Table

4.2. Note that for phase i = 1 Tx1 receives

Y
(1)N

1 = g
(1)N
11 X

(1)N
1 + g

(1)N
21 X

(1)N
2 + Z

(1)N
1 (4.45)

and for phase i > 1 Tx1 observes a block ISI channel since it receives

Y
(i)N

1 = g
(i)N
11 X

(i)N
1 + g

(i)N
21

(
g

(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR

)

+ Z
(i)N
1 (4.46)

= g
(i)N
11 X

(i)N
1 +

(
g

(i)N
21 g

(i−1)N
12√

1 + INR

)
X

(i−1)N
1

+ Z̃
(i)N
1 , (4.47)

where Z̃(i)N
1 = Z

(i)N
1 + g

(i)N
21 Z

(i−1)N
2 (1 + INR)−1/2.

Table 4.2: Transmitted symbols in n-phase scheme for symmetric FF-IC with feedback

User Phase 1 Phase 2 . . Phase n

1 X
(1)N
1 X

(2)N
1 . . X

(n)N
1

2 X
(1)N
2

g
(1)N
12 X

(1)N
1 +Z

(1)N
2√

1+INR
. .

g
(n−1)N
12 X

(n−1)N
1 +Z

(n−1)N
2√

1+INR

At the end of n blocks, Rx1 collects Y1
N =

(
Y

(1)N
1 , . . . , Y

(n)N
1

)
and decodes W1

117



such that
(
X1

N (W1) ,Y1
N
)

is jointly typical (where X1
N =

(
X

(1)N
1 , . . . , X

(n)N
1

)
) treat-

ing X
(1)N
2 = XN

2 as noise. At Rx2, channel outputs over n phases can be combined

with an appropriate scaling so that the interference-plus-noise at phases {1, . . . , n − 1}
are successively canceled, i.e., an effective point-to-point channel can be generated through

Ỹ N
2 = Y

(n)N
2 +

∑n−1
i=1

(∏n
j=i+1

−g(j)N22√
1+INR

)
Y

(i)N
2 (see the analysis in the subsection 4.6.1 for

details). Note that this can be viewed as a block version of the Schalkwijk-Kailath scheme

[SK66]. Given the effective channel Ỹ N
2 , the receiver can simply use point-to-point typicality

decoding to recover W2, treating the interference in phase n as noise.

Theorem 4.14. For a symmetric FF-IC with a finite logarithmic Jensen’s gap cJG , the rate

pair

(R1, R2) =
(

log (1 + SNR+ INR)− 3cJG − 2 ,

E
[
log+

[
|gd|2 / (1 + INR)

]])
is achievable by the scheme. The scheme together with switching the roles of users and

time-sharing, achieves the capacity region of symmetric feedback IC within 3cJG + 2 bits per

channel use.

Proof. The proof follows from the analysis in the following subsection.

4.6.1 Analysis of Point-to-Point Codes for Symmetric FF-ICs

We now provide the analysis for the scheme, going through the decoding at the two receivers

and then looking at the capacity gap for the achievable region.

4.6.1.1 Decoding at Rx1

At the end of n blocks Rx1 collects Y1
N =

(
Y

(1)N
1 , . . . Y

(n)N
1

)
and decodes W1 such that(

X1
N (W1) ,Y1

N
)

is jointly typical, where X1
N =

(
X

(1)N
1 , . . . X

(n)N
1

)
. The joint typicality

is considered according the product distribution pN (X1,Y1), where

p (X1,Y1) = p
((
X

(1)
1 , . . . X

(n)
1

)
,
(
Y

(1)
1 , . . . Y

(n)
1

))
(4.48)
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is a joint Gaussian distribution, dictated by the following equations that arise from our

n-phase scheme:

Y
(1)

1 = g
(1)
11 X

(1)
1 + g

(1)
21 X

(1)
2 + Z

(1)
1 . (4.49)

And for i = 2, 3, . . . , n:

Y
(i)

1 = g
(i)
11X

(i)
1 + g

(i)
21

(
g

(i−1)
12 X

(i−1)
1 + Z

(i−1)
2√

1 + INR

)
+ Z

(i)
1 (4.50)

with X
(i)
1 , X

(1)
2 , Z

(i)
1 , Z

(i−1)
2 being i.i.d CN (0, 1). Essentially X

(1)
2 , Z

(i)
1 are both Gaussian

noise for Rx1.

Using standard techniques it follows that for the n-phase scheme, as N → ∞
user 1 can achieve the rate 1

n
E
[
log
(
|KY1(n)|

∣∣KY1|X1(n)
∣∣−1
)]

, where |KY1(n)| denotes

the determinant of covariance matrix for the n-phase scheme, as defined in (4.40),

and (4.41), where 0l−2 is (l − 2) length zero vector, † indicates Hermitian conju-

gate, g11 (i) ∼ gd i.i.d and g12 (i) , g21 (i) ∼ gc i.i.d. Letting n → ∞, Rx1 can

achieve the rate R1 = lim
n→∞

1
n
E
[
log
(
|KY1(n)|

∣∣KY1|X1(n)
∣∣−1
)]

. We need to evaluate

lim
n→∞

1
n
E
[
log
(
|KY1(n)|

∣∣KY1|X1(n)
∣∣−1
)]

. The following lemma gives a lower bound on

1
n
E [log (|KY1(n)|)].

Lemma 4.3.

(1/n)E [log (|KY1(n)|)] ≥ (1/n) log
(∣∣∣K̂Y1(n)

∣∣∣)− 3cJG,

where K̂Y1(n) is obtained from KY1(n) by replacing g12 (i)’s,g21 (i)’s with
√
INR and g11 (i)’s

with
√
SNR.

Proof. The proof involves expanding the matrix determinant and repeated application of the

logarithmic Jensen’s gap property. The details are given in Appendix C.9.

Subsequently, we use the following lemma in bounding lim
n→∞

1
n

log
(∣∣∣K̂Y1(n)

∣∣∣).

119



Lemma 4.4. If A1 = [|a|] , A2 =

 |a| b

b∗ |a|

 , A3 =


|a| b 0

b∗ |a| b

0 b∗ |a|

 , etc. with |a|2 >

4 |b|2, then

lim inf
n→∞

(1/n) log (|An|) ≥ log (|a|)− 1.

Proof. The proof is given in Appendix C.10.

For the n-phase scheme, the
∣∣∣K̂Y1(n)

∣∣∣ matrix has the form An, as defined in Lemma 4.4

after identifying |a| = 1 + INR+ SNR and b =
(√

SNR · INR
)
/
(√

1 + INR
)
. Note that

with this choice |a|2 > 4 |b|2 holds due to AM-GM (Arithmetic Mean ≥ Geometric Mean)

inequality. Hence, we have

lim inf
n→∞

1

n
log
(∣∣∣K̂Y1(n)

∣∣∣) ≥ log (1 + INR+ SNR)− 1 (4.51)

using Lemma 4.4. Also, KY1|X1(n) is a diagonal matrix of the form

KY1|X1
(n) = diag

(
|g21 (n)|2
1 + INR

+ 1,
|g21 (n− 1)|2

1 + INR
+ 1, . . .

,
|g21 (2)|2
1 + INR

+ 1, |g21 (1)|2 + 1

)
. (4.52)

Hence, using Jensen’s inequality

lim sup
n→∞

1

n
E
[
log
(∣∣KY1|X1

(n)
∣∣)] (4.53)

≤ lim sup
n→∞

1

n
log

((
INR

1 + INR
+ 1

)n−1

(1 + INR)

)
(4.54)

= log
(
INR (1 + INR)−1 + 1

)
(4.55)

≤ 1. (4.56)

Hence, by combining Lemma 4.3, Equation (4.51) and Equation (4.56), we get

R1 ≤ log (1 + INR + SNR)− 3cJG − 2 (4.57)

is achievable.
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4.6.1.2 Decoding at Rx2

For user 2 we can use a block variant of Schalkwijk-Kailath scheme [SK66] to achieve

R2 = E
[
log+

(
|gd|2 / (1 + INR)

)]
. The key idea is that the interference-plus-noise sent

in subsequent slots can indeed refine the symbols of the previous slot. The chain of refine-

ment over n phases compensate for the fact that the information symbols are sent only in

the first phase. We have

Y
(1)N

2 = g
(1)N
22 XN

2 + g
(1)N
12 X

(1)N
1 + Z

(1)N
2 (4.58)

and

Y
(i)N

2 = g
(i)N
22

(
g

(i−1)N
12 X

(i−1)N
1 + Z

(i−1)N
2√

1 + INR

)
+ g

(i)N
12 X

(i)N
1

+ Z
(i)N
2 (4.59)

for i > 1. Now let

Ỹ N
2 = Y

(n)N
2 +

n−1∑
i=1

 n∏
j=i+1

−g(j)N
22√

1 + INR

Y
(i)N

2 .

We have

Ỹ N
2 = Y

(n)N
2 +

n−1∑
i=1

 n∏
j=i+1

−g(j)N
22√

1 + INR

Y
(i)N

2 (4.60)

= g
(n)N
22

(
g

(n−1)N
12 X

(n−1)N
1 + Z

(n−1)N
2√

1 + INR

)

+ g
(n)N
12 X

(n)N
1 + Z

(n)N
2 (4.61)

+
(
−g(n)N

22 (1 + INR)−1/2
)

×

g(n−1)N
22

(
g

(n−2)N
12 X

(n−2)N
1 + Z

(n−2)N
2√

1 + INR

)

+g
(n−1)N
12 X

(n−1)N
1 + Z

(n−1)N
2


+
(
g

(n)N
22 g

(n−1)N
22 (1 + INR)−1

)
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×

g(n−2)N
22

(
g

(n−3)N
12 X

(n−3)N
1 + Z

(n−3)N
2√

1 + INR

)

+g
(n−2)N
12 X

(n−2)N
1 + Z

(n−2)N
2


+ · · ·

+

 n∏
j=2

(
−g(j)N

22 (1 + INR)−1/2
)

×
(
g

(1)N
22 XN

2 + g
(1)N
21 X

(1)N
2 + Z

(1)N
1

)
(4.62)

= g
(1)N
22

 n∏
j=2

−g(j)N
22√

1 + INR

XN
2 + g

(n)N
12 X

(n)N
1

+ Z
(n)N
2 . (4.63)

due to cross-cancellation. Now Rx2 decodes for its message from Ỹ N
2 . Hence, Rx2 can

achieve the rate

R2 ≤ lim inf
n→∞

1

n
E

log

1 +

 n∏
j=2

(
|g22 (j)|2 (1 + INR)−1

)
×
(
|g22 (1)|2

1 + |g12 (n)|2

) , (4.64)

where g22 (1) , . . . , g22 (n) ∼ gd being i.i.d and g12 (n) ∼ gc. Hence, it follows that

R2 ≤ E
[
log+

(
|gd|2 (1 + INR)−1

)]
(4.65)

is achievable.

4.6.1.3 Capacity gap

We can obtain the following outer bounds from Theorem 4.11 for the special case of sym-

metric fading statistics.

R1, R2 ≤ E
[
log
(
|gd|2 + |gc|2 + 1

)]
(4.66)

R1 +R2 ≤ E
[
log

(
1 + |gd|2

(
1 + |gc|2

)−1
)]
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+ E
[
log
(
|gd|2 + |gc|2 + 2 |gd| |gc|+ 1

)]
, (4.67)

where Equation (4.66) is obtained from Equation (4.27b) and Equation (4.27d) by setting

ρ = 0 (note that ρ = 0 yields the loosest version of outer bounds in Equation (4.27b) and

Equation (4.27d)). Similarly, Equation (4.67) is a looser version of outer bound Equation

(4.27e) independent of ρ. The outer bounds reduce to a pentagonal region with two non-

trivial corner points (see Figure 4.6). Our n-phase scheme can achieve the two corner points

within 2 + 3cJG bits per channel use for each user. The proof is using logarithmic Jensen’s

gap property and is deferred to Appendix C.11.

Outer bound

R1

R2

Achievable by n phase schemes

4.5 bits/s/Hz

Figure 4.6: Illustration of bounds for capacity region for symmetric FF-IC. The corner

points of the outer bound can be approximately achieved by our n-phase schemes. The gap

is approximately 4.5 bits per channel use for the Rayleigh fading case.

4.6.2 An auxiliary result: Approximate capacity of 2-tap fast Fading ISI chan-

nel

Consider the 2-tap fast fading ISI channel described by

Y (l) = gd (l)X (l) + gc (l)X (l − 1) + Z (l) , (4.68)
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where gd ∼ CN (0, SNR) and gd ∼ CN (0, INR) are independent fading known only to

the receiver and Z ∼ CN (0, 1). Also we assume a power constraint of E
[
|X|2

]
≤ 1 on

the transmit symbols. Our analysis for R1 can be easily modified to obtain a closed form

approximate expression for this channel. This gives rise to the following corollary on the

capacity of fading ISI channels.

Corollary 4.15. The capacity CF−ISI of the 2-tap fast fading ISI channel is bounded by

CF−ISI ≤ log (1 + SNR + INR) + 1

CF−ISI ≥ log (1 + SNR + INR)− 1− 3cJG,

where the channel fading strengths is assumed to have a logarithmic Jensen’s gap of cJG.

Proof. The proof is given in Appendix C.12.
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CHAPTER 5

Noncoherent Interference Channel

5.1 Introduction

There has been considerable amount of study on noncoherent wireless channels [MH99,

ATS01, ZT02, KK13]. However, most of the progress has been on unicast networks, except

the recent work [NYG17] on noncoherent broadcast channel. In this chapter, we consider the

noncoherent interference channel with symmetric statistics and demonstrate an achievable

gDoF region.

5.1.1 Related work

The noncoherent wireless model for multiple input multiple output (MIMO) channel, was

studied by Marzetta and Hochwald [MH99]. In their model, where neither the receiver nor

the transmitter knows the fading coefficients and the fading gains remain constant within

a block of length T symbol periods. Across the blocks, the fading gains are identically

independent distributed (i.i.d.) according to Rayleigh distribution. The capacity behavior

at high signal-to-noise ratio (SNR) was studied for the noncoherent MIMO in [ZT02]. Some

works have specifically studied the case with T = 1 [TE97, ATS01, LM03]. In [ATS01],

it was demonstrated that for T = 1, the capacity is achieved by a distribution with finite

number of mass points, but the number of mass points grew with SNR. The capacity for the

T = 1 case was shown to behave double logarithimically in [LM03].

There have been other works that studied noncoherent relay channels. The noncoherent

single relay network was studied in [KK13], they considered identical link strengths and unit
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coherence time. They showed that under certain conditions on the fading statistics, the

relay does not increase the capacity at high-SNR. In [GY14], similar observations were made

for the noncoherent MIMO full-duplex single relay channel with block-fading. They showed

that Grassmanian signaling can achieve the degrees of freedom (DoF) without using the

relay. Also for certain regimes, decode-and-forward with Grassmanian signaling was shown

to approximately achieve the capacity at high-SNR.

The above works considered a DoF framework for the noncoherent model, in the sense

that for high-SNR, the link strengths are not significantly different, i.e., the links scale

with the same SNR-exponent. The generalized degrees of freedom (gDoF) framework for

noncoherent MIMO was considered in Chapter A and it was shown that several insights

from the DoF framework may not carry on to the gDoF framework. It was shown that

a conventional training scheme is not gDoF optimal and that all antennas may have to

be used for achieving the gDoF, even when the coherence time is low, in contrast to the

results for the MIMO with i.i.d. links. In Chapter B, the gDoF of the 2-relay diamond

network was studied. The training-based schemes were proven to be sub-optimal and a new

scheme was proposed, which partially trains the network, performs a scaling and quantize-

map-forward operation [OD10, OD13, ADT11] at the relays. These above works focused on

unicast networks. Recently an achievability scheme for noncoherent broadcast channel was

considered in [NYG17]. They derived an achievable DoF region for noncoherent broadcast

channel using statistical channel state information.

In this chapter, we study noncoherent interference channel (IC) with symmetric statistics.

This, we believe, is the first work on noncoherent channels in multicast networks. The

(coherent) IC is well understood in terms of its capacity [HK81, CMG08, ETW08, ST11]

when the channels are known at the receivers and transmitters. The capacity region of the

2-user IC without feedback was characterized in [ETW08], to within 1 bit/s/Hz. In [ST11],

a similar result was derived for the IC with feedback, obtaining the capacity region within 2

bits/s/Hz. When the channels are time varying, most of the existing techniques for IC cannot

be used without channel state information at transmitter (CSIT). The idea of interference
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alignment from [CJ08], has been extended to fast fading interference channels (FF-IC) for

certain cases, to obtain the DoF region.

The degrees of freedom region for the MIMO FF-IC was studied in [VV12] and their

results showed that when all users have single antenna, the DoF region is same for the cases

of no CSIT, delayed CSIT and instantaneous CSIT. The results from [TMP13] showed that

the DoF region for the FF-IC with instantaneous CSIT and no feedback contains the DoF

region with output feedback and delayed CSIT. This result changes when one considers more

than DoF, for example as in Chapter C, where the approximate capacity region (within a

constant additive gap) for FF-IC (with no instantaneous CSIT) was derived. There, we

used a rate-splitting scheme based on average interference-to-noise ratio (INR), extending

the existing rate-splitting schemes for IC [ETW08, ST11], and proved that this was approxi-

mately optimal for FF-IC. This approximate capacity region was derived for FF-IC without

feedback and also for the case with feedback; the feedback improves the capacity region for

FF-IC, similar to the case for the static IC [ST11].

5.1.2 Contributions

In this chapter we extend the results from Chapter C for FF-IC (where the receivers know the

channel, but not the transmitters) to the case when both transmitters and receivers do not

know the channel, i.e., the noncoherent IC. We consider the IC with symmetric statistics.

We use a noncoherent version of the Han-Kobayashi scheme [HK81], where the transmitters

use superposition coding, splitting their messages into common and private parts, and the

receivers use joint decoding. We use Gaussian codebooks and use rate-splitting based on

average interference-to-noise ratio (INR). We evaluate the achievable gDoF region with this

scheme and compare it to a training based scheme. For a 2-user IC, a training based scheme

uses at least 2 symbols in every coherence period T , to train the channels. We consider the

gDoF of the IC with the rest of the T−2 symbols available for communication. We show that

our noncoherent scheme outperforms the training-based scheme in gDoF. We also consider

the scheme which treats interference as noise (TIN) and observe that TIN has higher gDoF
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than the noncoherent scheme and the training-based schemes when the INR is low compared

to the INR. But in the other regimes, the noncoherent scheme achieves the best gDoF.

We also consider the noncoherent FF-IC with channel state and output feedback. Again

we propose a noncoherent scheme that uses Gaussian codebooks and rate-splitting based

on average interference-to-noise ratio (INR) similar to Chapter C. We evaluate the gDoF

region and compare it with a training based scheme and prove that the noncoherent scheme

outperforms the training-based scheme. The noncoherent scheme with feedback increases

the gDoF compared to the noncoherent scheme without feedback. Also we observe that with

feedback, the performance of our noncoherent scheme is better than TIN schemes for T ≥ 3,

even when the INR is low compared to the SNR.

The chapter is organized as follows. In Section 5.2, we discuss our system model. In

Section 5.3, we discuss our results on the FF-IC without feedback and in Section 5.4, we

discuss the FF-IC with feedback. Some of the proofs for the analysis is deferred to the

appendixes.

5.2 System model

We use the same notations as defined in Section 2.2.1 on page 13. We consider the 2-user

noncoherent Gaussian fading IC (Figure 5.1) with coherence time T . We have

Y1 = g11X1 + g21X2 +W1 (5.1)

Y2 = g12X1 + g22X2 +W2 (5.2)

where the Xi,Yi, Wi are 1 × T vectors and the links gij are fading. The realizations of

gij for any fixed (i, j) are i.i.d. across time, and the realizations for different (i, j) are

independent. We consider the case with symmetric fading statistics g11 ∼ g22 ∼ CN (0, SNR)

and g12 ∼ g21 ∼ CN (0, INR). Neither the receivers nor the transmitters have knowledge of

any of the realizations of gij, but the channel statistics are known to both the receivers and

the transmitters.
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Figure 5.1: The channel model without feedback.

Under the feedback model (Figure 5.2), after each reception, each receiver reliably feeds

back the received symbol and the channel states to its corresponding transmitter1. We

consider the delayed feedback of symbols in blocks of T , however the results that we derive

still hold even if the feedback is performed during every symbol period.

Tx1

Tx2

Rx1

Rx2

+

+

Z1 ∼ CN (0, 1)

X1

X2

Z2 ∼ CN (0, 1)

g11

g21

g22

g12

Y1

Y2

Delay

Delay

(Y1, g11, g21)

(Y2, g22, g12)

Figure 5.2: The channel model with feedback.

The interference level α is defined as, α = log (INR) / log (SNR). Let C (SNR, INR) denote

the capacity region. Let D̃ be a scaled version of C (SNR, INR) given by D̃ (SNR, INR) =

{(R1/ log (SNR) , R2/ log (SNR)) : (R1, R2) ∈ C (SNR, INR)}. Following [ETW08], we define

the generalized degrees of freedom region as

D (α) = lim
SNR,INR→∞

αfixed

D̃ (SNR, INR) .

1IC with rate limited feedback is considered in [VSA12] where outputs are quantized and fed back. Our
schemes can also be extended for such cases.
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We also assume T ≥ 2, since if T = 1 the gDoF region of the IC is null following the result

for noncoherent MIMO from Chapter 2.

5.3 Noncoherent IC without feedback

Theorem 5.1. Using a noncoherent rate splitting scheme the gDoF regions given in Table

5.1 are achievable.

Table 5.1: Achievable gDoF regions for different regimes of α.

α < 1/2 1/2 ≤ α ≤ 1 α ≥ 1

d1 ≤
(
1− 1

T

)
− α

T

d2 ≤
(
1− 1

T

)
− α

T

d1 + d2 ≤ 2
(
1− 1

T

)
− 2α

d1 + d2 ≤
(
2− 3

T

)
− α

(
1− 1

T

)
d1 + d2 ≤ 2

(
1− 2

T

)
α

2d1 + d2 ≤
(
2− 3

T

)
− α

T

d1 + 2d2 ≤
(
2− 3

T

)
− α

T

d1 ≤
(
1− 2

T

)
d2 ≤

(
1− 2

T

)
d1 + d2 ≤

(
1− 1

T

)
α− 1

T

Proof. The proof follows by analyzing a Han-Kobayashi scheme similar to that in Chapter

4 with rate-splitting based on average interference to noise ratio. The details are in Section

5.3.2.

5.3.1 Discussion

We now compare our achievable gDoF with that of a training-based scheme. The approxi-

mate capacity region of coherent fast fading IC is given in Chapter 4. The gDoF for the case

which uses 2 symbols for training can be easily obtained from the gDoF region for coherent

case with a multiplication factor of (1− 2/T ). Hence, the gDoF regime for a scheme that

uses 2 symbols for training is given by

d1, d2 ≤
(

1− 2

T

)
(5.3a)

d1 + d2 ≤
(

1− 2

T

)
(max (1, α) + max (1− α, 0)) (5.3b)
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d1 + d2 ≤ 2

(
1− 2

T

)
max (1− α, α) (5.3c)

2d1 + d2, d1 + 2d2 ≤
(

1− 2

T

)
(max (1, α) + max (1− α, α) + max (1− α, 0)) . (5.3d)

In Figures 5.3, 5.4, 5.5, the gDoF achievable with our noncoherent scheme is compared

with gDoF achievable using the training-based scheme. It can be observed that our non-

coherent scheme outperforms the training-based scheme. We also consider the strategy of

treating interference-as-noise (TIN) with Gaussian codebooks. Using standard analysis and

using Gaussian codebooks, it can be easily shown that the gDoF:

d1, d2 ≤
(

1− 1

T

)
(1− α)

can be achieved by treating interference as noise. Now, we give the achievable symmetric

gDoF for the three strategies that we discussed, with coherence time T = 5, in Figure 5.6.

It can be calculated from our gDoF regions that treating interference as noise outperforms

other strategies when α < (1− 1/T ) / (2− 3/T ). Note that for the coherent case, rate-

splitting based on INR is only as good as TIN for low INR (α < 1/2). For noncoherent case,

rate-splitting scheme have lower performance than TIN for low INR, because the uncertainty

in the interfering channel together with the uncertainty in the interfering message to be

decoded, reduces the amount of the direct message that can be decoded. This reduction

is more significant in the noncoherent case (compared to the coherent case) because the

uncertainty in the channels does not appear in the coherent case.

Difficulty with Outer Bounds: One trivial outer bound is the coherent outer bound

i.e., assuming that the receivers have perfect channel state information. We could also try

to derive noncoherent outer bounds following existing techniques. For example, following

[ETW08, Theorem 1] and using a genie-aided technique with S1 = g12X1 + Z2, and S2 =

g21X2 + Z1, we could derive an outer bound

T (R1 +R2) ≤ h (Y1|S1,Λ) + h (Y2|S2,Λ)− h (S1|X1,Λ)− h (S2|X2,Λ) (5.4)

with input distributions p (Λ) p (X1|Λ) p (X2|Λ) with a time-sharing random variable Λ.

However, this bound is not better than the coherent outer bound. To understand this, we
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Figure 5.3: gDoF for α < 1/2,T ≥ 2. The solid line is achievable for a noncoherent scheme

and the dotted line is is an outer bound gDoF for a scheme that uses 2 symbols for training.
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T
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)
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3+α
T
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T
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Figure 5.4: gDoF for 1/2 < α < 1, T ≥ 3. For T = 2 no gDoF is achievable using known

schemes. The solid line is achievable for a noncoherent scheme and the dotted line is an

outer bound gDoF for a scheme that uses 2 symbols for training.
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Figure 5.5: gDoF for 1 ≤ α,T ≥ 3. For T = 2 no gDoF is achievable using known schemes.

The solid line is achievable for a noncoherent scheme and the dotted line is is an outer bound

gDoF for a scheme that uses 2 symbols for training.
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try evaluating (5.4) with X1, X2 taken as independent vectors with i.i.d. CN (0, 1) elements.

In this case, it can be shown that

h (Y1|S1)
.

≥ log (1 + INR + SNR) + (T − 1) log

(
1 +

SNR

INR

)
,

h (S1|X1)
.
= log (1 + INR) .

h (Y1|S1)− h (S1|X1)
.

≥ T log

(
1 +

SNR

INR

)
This means that for α < 1/2 for gDoF, the bound (5.4) is looser than the bound R1 +R2

.

≤
2 log

(
1 + SNR

INR

)
, which is same as the coherent outer bound for α < 1/2.

5.3.2 Proof of Theorem 5.1

From [CMG08], we obtain that a Han-Kobayashi scheme [HK81] for IC can achieve the

following rate region for all p (U1) p (U2) p (X1|U1) p (X2|U2):

TR1 ≤ I (X1;Y1|U2) (5.5a)

TR2 ≤ I (X2;Y2|U1) (5.5b)

T (R1 +R2) ≤ I (X2, U1;Y2) + I (X1;Y1|U1, U2) (5.5c)

T (R1 +R2) ≤ I (X1, U2;Y1) + I (X2;Y2|U1, U2) (5.5d)

T (R1 +R2) ≤ I (X1, U2;Y1|U1) + I (X2, U1;Y2|U2) (5.5e)

T (2R1 +R2) ≤ I (X1, U2;Y1) + I (X1;Y1|U1, U2) + I (X2, U1;Y2|U2) (5.5f)

T (R1 + 2R2) ≤ I (X2, U1;Y2) + I (X2;Y2|U1, U2) + I (X1, U2;Y1|U1) . (5.5g)

Now similar to that in [ETW08, SKD18, SKD17], we choose Uk as a vector of length T with

i.i.d. CN (0, λc) elements and Xpk as a vector of length T with i.i.d. CN (0, λp) elements for

k ∈ {1, 2} and X1 = U1 +Xp1, X2 = U2 +Xp2, where λc +λp = 1 and λp = min (1/INR, 1).

For gDoF characterization, we can assume INR ≥ 1. If INR < 1, it is equivalent to the

case with INR = 1 for gDoF, since both of these cases obtain α = 0. Hence, we can have

λp = 1/INR. Here we used the rate splitting using the average interference to noise ratio.
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Fact 5.1. For an exponentially distributed random variable ξ and a ≥ 0, b > 0,

log (a+ bµξ)− γ log (e) ≤ E [log (a+ bξ)] ≤ log (a+ bµξ).

Proof. This follows due to the results given in Section 4.3 (on page 99).

We now simplify the region (5.5) for low interference (α < 1) regime. We consider the

terms in (5.5), one by one.

Claim 5.1. The term I (X1;Y1|U2) is lower bounded in gDoF by (T − 1) log (1 + SNR) −
log (1 + INR).

Proof. See Appendix D.1.

Claim 5.2. The term I (X2, U1;Y2) is lower bounded in gDoF by

(T − 1) log (1 + SNR + INR)− log (1 + INR).

Proof. We have

I (X2, U1;Y2) = h (Y2)− h (Y2|X2, U1) (5.6)

h (Y2)
.

≥ T log (1 + SNR + INR) (5.7)

Also from (D.3) for h (Y1|X1, U2) in Appendix D.1 and using symmetry we can get,

h (Y2|X2, U1)
.

≤ log (1 + SNR + INR) + log (1 + INR) (5.8)

Hence I (X2, U1;Y2)
.

≤ (T − 1) log (1 + SNR + INR)− log (1 + INR) .

Claim 5.3. The term I (X1;Y1|U1, U2) is lower bounded in gDoF by

(T − 2) log (1 + SNR/INR) + log (1 + SNR/INR + INR)− log (INR) .

Proof. See Appendix D.2.

Claim 5.4. The term I (X1, U2;Y1|U1) is lower bounded in gDoF by

(T − 1) log (1 + SNR/INR + INR)− log (INR).
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Proof. We have

I (X1, U2;Y1|U1) = h (Y1|U1)− h (Y1|X1, U2, U1)

≥ h (Y1|U1)− h (Y1|X1, U2)

.

≥ h (Y1|U1)− log (1 + SNR + INR)− log (1 + INR)

Where the last step is using (D.3) for h (Y1|X1, U2) in Appendix D.1. Now

h (Y1|U1) = h
(
g11X1 + g21X2 + Z1

∣∣U1

)
=
∑
i

h
(
g11X1i + g21X2i + Z1i

∣∣ {g11X1j + g21X2j + Z1j}i−1
j=1 , U1

)
(i)
.

≥ h
(
g11X11 + g21X21 + Z11

∣∣U1, X11, X21

)
+

+
T∑
i=2

h
(
g11X1i + g21X2i + Z1i

∣∣U1i, g21, g11

)
.

≥ log (1 + SNR + INR)

+ (T − 1) log

(
1 +

SNR

INR
+ INR

)
(5.9)

where (i) is due to the fact that conditioning reduces entropy and Markovity

(g11X1i + g21X2i + Z1i)− (U1i, g21, g11)−
(
{g11X1j + g21X2j + Z1j}i−1

j=1 , U1

)
. Hence

I (X1, U2;Y1|U1)
.

≥ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (INR) .

We collect the results from the previous four claims in Table 5.2.

Table 5.2: gDoF inner bounds for the terms in achievability region

Term Inner bound in gDoF

I (X1, U2;Y1|U1) (T − 1) log
(
1 + SNR

INR
+ INR

)
− log (INR)

I (X1;Y1|U1, U2) (T − 2) log
(
1 + SNR

INR

)
+ log

(
1 + SNR

INR
+ INR

)
− log (INR)

I (X2, U1;Y2) (T − 1) log (1 + SNR + INR)− log (1 + INR)

I (X1;Y1|U2) (T − 1) log (1 + SNR)− log (1 + INR)
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Substituting the inner bounds into the achievability region (5.5), we get the following

achievability region in gDoF:

TR1

.

≤ (T − 1) log (1 + SNR)− log (1 + INR) (5.10a)

TR2

.

≤ (T − 1) log (1 + SNR)− log (1 + INR) (5.10b)

T (R1 +R2)
.

≤ (T − 1) log (1 + SNR + INR)− log (1 + INR)

+ (T − 2) log

(
1 +

SNR

INR

)
+ log

(
1 +

SNR

INR
+ INR

)
− log (INR) (5.10c)

T (R1 +R2)
.

≤ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (INR)

+ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (INR) (5.10d)

T (2R1 +R2)
.

≤ (T − 1) log (1 + SNR + INR)− log (1 + INR)

+ (T − 2) log

(
1 +

SNR

INR

)
+ log

(
1 +

SNR

INR
+ INR

)
− log (INR)

+ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (INR) (5.10e)

T (R1 + 2R2)
.

≤ (T − 1) log (1 + SNR + INR)− log (1 + INR)

+ (T − 2) log

(
1 +

SNR

INR

)
+ log

(
1 +

SNR

INR
+ INR

)
− log (INR)

+ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (INR) . (5.10f)

Hence we get the following gDoF region:

d1 ≤
(

1− 1

T

)
− α

T
(5.11a)

d2 ≤
(

1− 1

T

)
− α

T
(5.11b)

d1 + d2 ≤
(

1− 1

T

)
− α

T
+

(
1− 2

T

)
(1− α) +

1

T
max (1− α, α)− α

T
(5.11c)

d1 + d2 ≤ 2

(
1− 1

T

)
max (1− α, α)− 2α

T
(5.11d)

2d1 + d2 ≤
(

1− 1

T

)
− α

T
+

(
1− 2

T

)
(1− α) + max (1− α, α)− 2α

T
(5.11e)

d1 + 2d2 ≤
(

1− 1

T

)
− α

T
+

(
1− 2

T

)
(1− α) + max (1− α, α)− 2α

T
. (5.11f)
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It can be verified that this gDoF region can be simplified for different regimes of α < 1 as

given in Table 5.1. Now we consider the regime α > 1 and and evaluate the gDoF region.

5.3.2.1 High Interference Case (α > 1)

Claim 5.5. The term I (X1;Y1|U2) is lower bounded in gDoF by (T − 2) log (1 + SNR).

Proof. See Appendix D.3.

Claim 5.6. The term I (X2, U1;Y2) is lower bounded in gDoF by

(T − 1) log (1 + SNR + INR)− log (1 + SNR).

Proof. We have

I (X2, U1;Y2) = h (Y2)− h (Y2|X2, U1) ,

h (Y2)
.

≥ T log (1 + SNR + INR) ,

h (Y2|X2, U1)

(i)
.

≥ log (1 + SNR + INR) + log (1 + SNR) ,

where (i) is using (D.45) from Appendix D.3 in the proof of Claim 5.5. Hence I (X2, U1;Y2)
.

≤
(T − 1) log (1 + SNR + INR)− log (1 + SNR) follows.

Claim 5.7. The term I (X1, U2;Y1|U1) is lower bounded in gDoF by

(T − 1) log
(
1 + SNR

INR
+ INR

)
− log (SNR).

Proof. We have

I (X1, U2;Y1|U1) =h (Y1|U1)− h (Y1|X1, U2)

(i)
.

≥h (Y1|U1)− log (1 + SNR + INR)− log (SNR) ,

h (Y1|U1)

(ii)
.

≥ log (1 + SNR + INR) + (T − 1) log

(
1 +

SNR

INR
+ INR

)
,

where (i) was using (D.45) for h (Y1|X1, U2) and (ii) was from (5.9). Hence the desired result

follows.
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We collect the results from the previous three claims and a trivial bound for

I (X1;Y1|U1, U2) in Table 5.3.

Table 5.3: gDoF inner bounds for the terms in achievability region

Term Lower bound in gDoF

I (X1, U2;Y1|U1) (T − 1) log
(
1 + SNR

INR
+ INR

)
− log (SNR)

I (X1;Y1|U1, U2) 0

I (X2, U1;Y2) (T − 1) log (1 + SNR + INR)− log (1 + SNR)

I (X1;Y1|U2) (T − 2) log (1 + SNR)

Substituting the inner bounds into the achievability region (5.5), we get the following

achievability region in gDoF:

TR1, TR2

.

≤ (T − 2) log (1 + SNR) (5.12a)

T (R1 +R2)
.

≤ (T − 1) log (1 + SNR + INR)− log (1 + SNR) (5.12b)

T (R1 +R2)
.

≤ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (SNR)

+ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (SNR) (5.12c)

T (2R1 +R2) , T (R1 + 2R2)
.

≤ (T − 1) log (1 + SNR + INR)− log (1 + SNR)

+ (T − 1) log

(
1 +

SNR

INR
+ INR

)
− log (SNR) . (5.12d)

It can be verified that the above region can be reduced to the gDoF region in third column

of Table 5.1 for α > 1.

5.4 Noncoherent scheme for feedback case

Theorem 5.2. For a noncoherent IC with feedback, the gDoF region given in Table 5.4 is

achievable:

139



Table 5.4: Achievable gDoF regions for noncoherent IC with feedback.

α < 1/2 1/2 ≤ α ≤ 1 α ≥ 1

d2, d2 ≤
(
1− 1

T

)
− 2α

T

d1 + d2 ≤ 2
(
1− 1

T

)
− α

(
1 + 1

T

) d2, d2 ≤
(
1− 2

T

)
d1 + d2 ≤

(
2− 3

T

)
− α

(
1− 1

T

) d1 + d2 ≤
(
1− 1

T

)
α− 1

T

Proof. This is obtained using the block Markov scheme of [ST11, Lemma 1] for the nonco-

herent case. We again use a rate-splitting based on average interference to noise ratio in this

case. The proof is given in Section 5.4.2.

5.4.1 Discussion

We now compare our achievable gDoF with that of a training-based scheme. The approx-

imate capacity region of coherent fast fading IC with feedback is given in Chapter 4. The

gDoF for the case which uses 2 symbols for training can be easily obtained from the gDoF

region for the coherent case with a multiplication factor of (1− 2/T ). Hence, the gDoF

regime for a scheme that uses 2 symbols for training is given by:

d1, d2 ≤
(

1− 2

T

)
max (1, α) (5.13a)

d1 + d2 ≤
(

1− 2

T

)
(max (1, α) + max (1− α, 0)) . (5.13b)
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Figure 5.7: Symmetric achievable gDoF for coherence time T = 3: feedback and non feedback

cases
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Figure 5.8: Symmetric achievable gDoF for coherence time T = 5: feedback and non feedback

cases

We give the achievable symmetric gDoF for the noncoherent rate-splitting scheme, train-

ing based scheme and treating interference as noise (TIN) scheme, with coherence time

T = 3, in Figure 5.7 and with coherence time T = 5, in Figure 5.8. It can be calculated from

Table 5.4 and (5.13) that treating interference as noise (TIN) outperforms our noncoherent
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strategy with feedback, when T = 2 and α < 1. Our strategy in the presence of feedback

is as good as TIN for or outperforms TIN when T ≥ 3. The noncoherent rate-splitting

scheme attempts to decode part of the interfering message at the transmitter, and use it in

subsequent transmissions. The amount of rate that can be decoded increases with T , when

T = 2 the advantage gained by decoding at the transmitter is low. For low INR, the uncer-

tainty in the interfering channel together with the uncertainty of the interfering message to

be decoded at the receiver reduces the amount of direct message that can be decoded in the

rate splitting scheme. The advantage gained by decoding at the transmitter outweighs this

loss when T ≥ 3.

5.4.2 Proof of Theorem 5.2

Using the block Markov scheme of [ST11, Lemma 1], we obtain the achievability of the rate

pairs (R1, R2) satisfying

TR1 ≤ I (U,U2, X1;Y1) (5.14a)

TR1 ≤ I (U1;Y2|U,X2) + I (X1;Y1|U1, U2, U) (5.14b)

TR2 ≤ I (U,U1, X2;Y2) (5.14c)

TR2 ≤ I (U2;Y1|U,X1) + I (X2;Y2|U1, U2, U) (5.14d)

T (R1 +R2) ≤ I (X1;Y1|U1, U2, U) + I (U,U1, X2;Y2) (5.14e)

T (R1 +R2) ≤ I (X2;Y2|U1, U2, U) + I (U,U2, X1;Y1) (5.14f)

for all p (U) p (U1|U) p (U2|U) p (X1|U1, U) p (X2|U2, U). We choose U = 0, Uk as a vector of

length T with i.i.d. CN (0, λc) elements, Xpk as a vector of length T with i.i.d. CN (0, λp)

elements for k ∈ {1, 2}, X1 = U1 + Xp1, X2 = U2 + Xp2 where λc + λp = 1 and λp =

min (1/INR, 1) similar to [ST11, SKD18]. The region (5.14) following [ST11, Lemma 1] is

still valid with U = 0. For gDoF characterization, we can assume INR ≥ 1. Hence we have

λp = 1/INR. Now we analyze the terms in (5.14) for obtaining an achievable gDoF region.

Claim 5.8. The term I (U,U2, X1;Y1) is lower bounded in gDoF by

(T − 1) log (1 + SNR + INR)− log (1 + min (SNR, INR)).
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Proof. We have

h (Y1) ≥ TE
[
log
(
|g11|2 + |g21|2 + 1

)]
.
= T log (1 + SNR + INR) , (5.15)

h (Y1|U,U2, X1) = h (g11X1 + g21X2 + Z1|U,U2, X1)

(i)
.

≤ log (1 + SNR + INR) + log (1 + INR) , (5.16)

h (Y1|U,U2, X1)

(ii)
.

≤ log (1 + SNR + INR) + log (1 + SNR) , (5.17)

where (i) is using U = 0 and (D.3) on page 225 in the proof of Claim 5.1. The step (ii) is

using U = 0 and (D.45) on page 230 in the proof of Claim 5.5. Hence using the above two

equations, we get

h (Y1|U,U2, X1)
.

≤ log (1 + SNR + INR) + log (1 + min (SNR, INR)) . (5.18)

Hence the desired result follows.

Claim 5.9. The term I (U2;Y1|U,X1) is lower bounded in gDoF by (T − 1) log (1 + INR)−
log (1 + min (SNR, INR)).

Proof. We have

h (Y1|U,X1) = h
(
g11X1 + g21X2 + Z1

∣∣U,X1

)
(5.19)

=
∑
i

h
(
g11X1i + g21X2i + Z1i

∣∣ {g11X1j + g21X2j + Z1j}i−1
j=1 , U,X1

)
(5.20)

(i)
.

≥ h
(
g11X11 + g21X21 + Z11

∣∣X21, U,X1

)
+

T∑
i=2

h
(
g11X1i + g21X2i + Z1i

∣∣U,X1, g21, g11

)
(5.21)

(ii)
.

≥ log (1 + SNR + INR) + (T − 1) log (1 + INR) , (5.22)

where (i) is due to the fact that conditioning reduces entropy and Markovity

(g11X1i + g21X2i + Z1i) − (U,X1, g21, g11) −
(
{g11X1j + g21X2j + Z1j}i−1

j=1 , U,X1

)
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and (ii) is using Gaussianity for terms h
(
g11X11 + g21X21 + Z11

∣∣X21, U,X1

)
and

h
(
g11X1i + g21X2i + Z1i

∣∣U,X1, g21, g11

)
. Also

h (Y1|U,U2, X1)
.

≤ log (1 + SNR + INR) + log (1 + min (SNR, INR))

from the proof of previous claim. Hence the desired result follows.

Claim 5.10. The term I (X1;Y1|U1, U2, U) is lower bounded in gDoF by

log
(
1 + SNR

INR
+ min (SNR, INR)

)
+ (T − 2) log

(
1 + SNR

INR

)
− log (1 + min (SNR, INR)).

Proof. The proof is given in Appendix D.4.

We collect the inner bounds for terms in the achievability region in Table 5.5.

Table 5.5: gDoF inner bounds for the terms in achievability region

Term Lower bound in gDoF

I (U,U2, X1;Y1) (T − 1) log (1 + SNR + INR)− log (1 + min (SNR, INR))

I (U2;Y1|U,X1) (T − 1) log (1 + INR)− log (1 + min (SNR, INR))

I (X1;Y1|U1, U2, U)
log
(
1 + SNR

INR
+ min (SNR, INR)

)
+ (T − 2) log

(
1 + SNR

INR

)
− log (1 + min (SNR, INR))

Using the above results in (5.14) we have the gDoF region:

TR1, TR2

.

≤ (T − 1) log (1 + SNR + INR)− log (1 + min (SNR, INR)) (5.23a)

TR1, TR2

.

≤ (T − 1) log (1 + INR)− 2 log (1 + min (SNR, INR))

+ log

(
1 +

SNR

INR
+ min (SNR, INR)

)
+ (T − 2) log

(
1 +

SNR

INR

)
(5.23b)

T (R1 +R2)
.

≤ (T − 1) log (1 + SNR + INR)− 2 log (1 + min (SNR, INR))

+ log

(
1 +

SNR

INR
+ min (SNR, INR)

)
+ (T − 2) log

(
1 +

SNR

INR

)
. (5.23c)

It can be verified that the above region can be reduced to the gDoF region in Table 5.4.
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CHAPTER 6

Conclusions and Future work

6.1 Noncoherent MIMO

In Chapter 2, we considered the noncoherent MIMO channel with link strengths scaled

with different exponents of SNR. Under this model, we derived a structure for the capacity

achieving input distribution. We showed that for T = 1, the gDoF is zero for MIMO of

any size. Also for the SIMO and the MISO channels, we proved that selecting the best

antenna can achieve the gDoF. We derived the gDoF for 2 × 2 symmetric MIMO with two

different exponents in the direct and cross links and showed that both the antennas are always

needed to achieve the gDoF. Also training-based schemes were shown to be suboptimal for

the 2 × 2 symmetric MIMO. We extended this observation to M ×M symmetric MIMO

with two different exponents in the direct and cross links; we demonstrated a strategy that

could achieve larger gDoF than training-based schemes. A possible direction for future work

would be to try to derive the gDoF of M ×M symmetric MIMO. Then to look into the

case of arbitrary size MIMO with different exponents. The outer bounds for larger MIMO

seems to be a challenge at the moment, our outer bounds for 2× 2 MIMO illustrates some

of the difficulties: we used a Gram Schmidt process for LQ decomposition of matrices and

developed new lemmas to bound the terms in the mutual information expression. The same

methods do not seem to be directly applicable to larger MIMO.
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6.2 Noncoherent Diamond Network

In Chapter 3, we characterized the gDoF of the diamond network with 2 relays, when the

links are scaling differently with SNR. For some regimes, a simple decode-and-forward scheme

was sufficient to achieve the gDoF and a conventional form of the cut-set outer bound could

be used. There were other regimes, where relay selection or training-based schemes would

not achieve the conventional cut-set bound gDoF. For these cases, we derived a new outer

bound beginning with a modification of the conventional cut-set outer bound. In order to

analyze this optimization problem in the outer bound, we then loosened the terms in this

outer bound and discretized the terms without losing gDoF. Then we proved that the optimal

distribution for the outer bound can have just two mass points without losing gDoF. This

distribution could be explicitly obtained. To obtain the inner bound, we used the structure

of the solution of the outer bound. The inner bound used a time-sharing random variable

with two mass points. This design mimics the gDoF-optimal distribution for the outer bound

which had two mass points. In our scheme, the channels from the source to the relays were

trained using a single symbol in every block of length T . The relays scale the received

data symbols using the channel estimate, and then perform a quantize-map-forward (QMF)

operation on the scaled symbols: this we called train-scale QMF (TS-QMF) scheme. We do

not use training from the relays to the destination, as seen in the TS-QMF scheme, which

is shown to be gDoF-optimal. We show that if training is to be done on all links of the

channel, then the gDoF cannot always be achieved.

One of the future directions of study include noncoherent n-relay diamond networks. Our

achievability scheme for the noncoherent 2-relay diamond network can be extended to the

n-relay case. However, the outer bounds are still an open problem. The more general open

problem is the capacity of general noncoherent networks.
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S D

Figure 6.1: n-relay diamond network.

Source Destination

Figure 6.2: A general wireless network with single source and destination.

6.3 Fast Fading ICs

In Chapter 4, we introduced the notion of logarithmic Jensen’s gap and demonstrated that

it can be used to obtain approximate capacity region for FF-ICs. We proved that the rate-

splitting schemes for ICs [ETW08, CMG08, ST11], when extended to the fast fading case

give capacity gap as a function of the logarithmic Jensen’s gap. Our analysis of logarithmic

Jensen’s gap for fading models like Rayleigh fading show that rate-splitting is approximately

optimal for such cases. We then developed a scheme for symmetric FF-ICs, which can be
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implemented using point-to-point codes and can approximately achieve the capacity region.

An important direction to study will be to see if similar schemes with point-to-point codes can

be extended to general FF-ICs. Also our schemes are not approximately optimal for bursty

IC [WSD13] since it does not have finite logarithmic Jensen’s gap, it would be interesting

to study if the schemes can be extended to bursty IC and then to any arbitrary fading

distribution. Extension to FF-ICs with more than 2 users seems difficult, since there are no

approximate (within constant additive gap) capacity results known even for 3-user IC with

fixed channels.

6.4 Noncoherent IC

In Chapter 5, we studied the noncoherent IC with symmetric channel statistics. We proposed

an achievability scheme based on noncoherent rate-splitting using the channel statistics. We

derived the achievable gDoF using this scheme. We demonstrated that our scheme achieves

higher gDoF than a scheme which trains the links of the IC. We also studied a noncoher-

ent rate-splitting scheme for IC with feedback and proved that our scheme achieves higher

gDoF than a training-based scheme. For low INR and when there is no feedback, treating

interference as noise is better than noncoherent rate-splitting. A simple outer bound is the

coherent outer bound (assuming channel state information at receiver). The noncoherent

outer bounds that we derived using existing techniques were not better than the coherent

outer bound. Hence a possible direction for further studies is to explore new techniques to

derive better outer bounds than the coherent outer bound.

6.5 Backscatter communication systems

Another direction of study is to study backscatter communication systems in a noncoherent

setting. Backscatter communication systems typically use a Reader and a radio frequency

identification (RFID) tag [Dob12]. Reader transmits a radio frequency (RF) signal; the RFID
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tag adapts the level of its antenna impedance to vary the reflection coefficient and transmits

data via reflecting and modulating the incident signal back to Reader [XYV14, BR14]. We

have some preliminary results on backscatter systems with intersymbol-interference. We

Emitter

Tag

Reader

gt1

gt2

gr1

gr2

Figure 6.3: Backscatter system with 2-tap ISI and collaboration between Emitter and Reader

demonstrate that instead of using a constant carrier sequence, we can optimize the sequence

to obtain larger rates or smaller bit error probability. We optimize the sequence based on the

effective channel G in the system. The original optimization problem is numerically hard,

hence we have two approximate problems based on det
(
G†G+ I

)
and det

(
G†G

)
. Figure

6.4 illustrates our results for optimizing mutual information rates. Figure 6.5 illustrates our

results with a given channel code and using our optimization technique to reduce the bit

error rate. Figure 6.6 is similar, but includes estimation errors in obtaining the channel G,

which arises due to the noise involved during training. The details of our scheme are given

in Appendix E.1. The current results involve training the channel states. The noncoherent

version of the problem will be to consider whether a noncoherent scheme can be designed to

outperform the training-based schemes.
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APPENDIX A

Proofs for Chapter 2

A.1 Proof of Lemma 3.2

Here we derive the formula for calculating h ([ξ1, ξ2, . . . , ξn]Q) with [ξ1, ξ2, . . . , ξn] being an

arbitrary complex random vector and Q being an n × n isotropically distributed unitary

matrix independent of ξi. We do this by noting that in radial coordinates, the distribution

of [ξ1, ξ2, . . . , ξn]Q will be dependent only on the radius. Let

V = [ξ1, ξ2, . . . , ξn]Q.

Now for any fixed unitary Q′, V and V Q′ have the same distribution due to the property of

isotropic distribution. Hence for any v1, v2 ∈ Cn if ‖v1‖ = ‖v2‖ then

pv (v1) = pv (v2) , (A.1)

since there exists a unitary matrix Q′′ such that v1Q
′′ = v2. One such Q′′ can be obtained

using Householder transformation. Now the probability distribution can be viewed in R2n

and we use 2n dimensional vector U . Let

Υ =
∑
|ξi|2 . (A.2)

Let
(
r, θ
)

be the radial coordinates,
(
t, θ
)

be similar coordinates but with t = r2. Let

pu,t
(
t, θ
)

= pu
(
u
(
t, θ
))

be obtained from pu (u) by expressing u in
(
t, θ
)

coordinates. Simi-

larly pu,r
(
r, θ
)

= pu
(
u
(
r, θ
))

.

The 2n − 1 dimensional surface area (embedded in 2n dimensional Euclidean) is(
2πn

Γ(n)

)
r2n−1. Hence (

2πn

Γ (n)

)
pu,r

(
r, θ
)
r2n−1dr
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is the probability that |U | ∈ [r, r + dr]. Hence
(

πn

Γ(n)

)
pu,t
(
t, θ
)
tn−1dt is the probability that

Υ = ‖U‖2 ∈ [t, t+ dt]. Hence(
πn

Γ (n)

)
pu,t
(
t, θ
)
tn−1 = pΥ (t) (A.3)

pu,t
(
t, θ
)

= pΥ (t)
1

tn−1
(

πn

Γ(n)

) . (A.4)

Now

h (U) = −
∫
pu (u) log (pu (u)) du (A.5)

(i)
= −

∫
pu
(
u
(
r, θ
))

log
(
pu
(
u
(
r, θ
)))( 2πn

Γ (n)

)
r2n−1dr (A.6)

(ii)
= −

∫
pu
(
u
(
t, θ
))

log
(
pu
(
u
(
t, θ
)))( πn

Γ (n)

)
tn−1dt (A.7)

(iii)
= −

∫
pΥ (t) log

pΥ (t)
1

tn−1
(

πn

Γ(n)

)
 dt (A.8)

= −
∫
pΥ (t) log (pΥ (t)) dt+ log

(
πn

Γ (n)

)
+ (n− 1)

∫
pΥ (t) log (t) dt (A.9)

= h (Υ ) + (n− 1)E [log (Υ )] + log

(
πn

Γ (n)

)
(A.10)

= h
(∑

|ξi|2
)

+ (n− 1)E
[
log
(∑

|ξi|2
)]

+ log

(
πn

Γ (n)

)
, (A.11)

where (i) is by change of variables to
(
r, θ
)

and integrating over θ and noting that pu
(
u
(
r, θ
))

is independent of θ, (ii) is by change of variables to
(
t, θ
)
, (iii) is using (A.4).

A.2 Proof of Lemma 3.1

Here we consider the optimization problem P1 from (2.73) on page 37 and show that its ob-

jective function E
[
f
(
|a|2 , |b|2 , |c|2

)]
can be optimized for gDoF by a point mass distribution.

We have the form for f
(
|a|2 , |b|2 , |c|2

)
as

f
(
|a|2 , |b|2 , |c|2

)
= log

((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
))
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+ (T − 1) log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
))

− log
((

1 + |a|2 ρ2
11

) (
1 + |c|2 ρ2

12

)
+ |b|2 ρ2

12

)
− log

((
1 + |a|2 ρ2

21

) (
1 + |c|2 ρ2

22

)
+ |b|2 ρ2

22

)
. (A.12)

Now

∂

∂ |a|2
f
(
|a|2 , |b|2 , |c|2

)
=

ρ2
11

(
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

)
ρ2

21(
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
)

+ (T − 1)
ρ2

11

(
|c|2 ρ2

22 + 1
)

+
(
|c|2 ρ2

12 + 1
)
ρ2

21(
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2 (ρ2
12 + ρ2

22) +
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
)

− (ρ2
11)
(
1 + |c|2 ρ2

12

)(
1 + |a|2 ρ2

11

) (
1 + |c|2 ρ2

12

)
+ |b|2 ρ2

12

− (ρ2
21)
(
1 + |c|2 ρ2

22

)(
1 + |a|2 ρ2

21

) (
1 + |c|2 ρ2

22

)
+ |b|2 ρ2

22

. (A.13)

Hence∣∣∣∣ ∂

∂ |a|2
f
(
|a|2 , |b|2 , |c|2

)∣∣∣∣ ≤ ρ2
11 + ρ2

21 + (T − 1)
(
ρ2

11 + ρ2
21

)
+
(
ρ2

11

)
+
(
ρ2

21

)
(A.14)

≤ 2 (T + 1) max
i,j

ρ2
ij. (A.15)

Similarly ∣∣∣∣ ∂

∂ |b|2
f
(
|a|2 , |b|2 , |c|2

)∣∣∣∣ ≤ 2 (T + 1) max
i,j

ρ2
ij, (A.16)∣∣∣∣ ∂

∂ |c|2
f
(
|a|2 , |b|2 , |c|2

)∣∣∣∣ ≤ 2 (T + 1) max
i,j

ρ2
ij (A.17)

holds. Let ρ2
∗ = maxi,j ρ

2
ij. Now with ∆ = 1/ (2 (T + 1) ρ2

∗), if∥∥∥(|a|2 , |b|2 , |c|2)− (|a′|2 , |b′|2 , |c′|2) ∥∥∥ ≤ √3∆, then∣∣∣f (|a|2 , |b|2 , |c|2)− f (|a′|2 , |b′|2 , |c′|2)∣∣∣ (A.18)

≤
∥∥∥∥[2 (T + 1) ρ2

∗, 2 (T + 1) ρ2
∗, 2 (T + 1) ρ2

∗
] ∥∥∥∥√3∆ (A.19)

≤ 3. (A.20)
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Hence by considering a discrete version of the problem as

P2 :


maximize

E[|a|2+|b|2+|c|2]≤T
E
[
f
(
|a|2 , |b|2 , |c|2

)]
Support

(
|a|2 , |b|2 , |c|2

)
= {0,∆, 2∆, . . . ,∞}3

(A.21)

the optimum value achieved is within 3 of the optimum value of P1. Hence for outer bound

on gDoF, it is sufficient to solve P2.

gDoF (P1) = gDoF (P2) . (A.22)

We will now show that it is sufficient to restrict Support
(
|a|2 , |b|2 , |c|2

)
=

{0,∆, 2∆, . . . , bρ4
∗c∆}3

for outer bound on gDoF.

Let the optimum value of P2 be achieved by a probability distribution {p∗i } at the points

{(l∗1i∆, l∗2i∆, l∗3i∆)} with l∗ji ∈ Z. Let

S1 =
{
i : max (l∗1i∆, l

∗
2i∆, l

∗
3i∆) ≤ ρ4

∗∆
}
, (A.23)

S2 =
{
i : max (l∗1i∆, l

∗
2i∆, l

∗
3i∆) > ρ4

∗∆
}

(A.24)

and let max (l∗1i∆, l
∗
2i∆, l

∗
3i∆) = l∗Mi∆ for labeling. The optimum value (P2) is given by

(P2) =
∑
i∈S1

p∗i f (l∗1i∆, l
∗
2i∆, l

∗
3i∆) +

∑
i∈S2

p∗i f (l∗1i∆, l
∗
2i∆, l

∗
3i∆) . (A.25)

We will now show that
∑

i∈S2
p∗i f (l∗1i∆, l

∗
2i∆, l

∗
3i∆) does not contribute to gDoF; the points

in S2 have large power and hence they have low probability due to power constraints; this

ends up limiting the contribution to gDoF. We prove this precisely in the following steps.

Using the structure of f
(
|a|2 , |b|2 , |c|2

)
and ∆ = 1/ (2 (T + 1) ρ2

∗), we can bound

|f (l∗1i∆, l
∗
2i∆, l

∗
3i∆)| ≤ log ((2l∗Mi + 1) (2l∗Mi + 1) + (l∗Mi + 1) (l∗Mi + 1))

+ (T − 1) log ((l∗Mi + 1) (l∗Mi + 1) + 2l∗Mi + (l∗Mi + 1) (l∗Mi + 1))

+ 2 log ((1 + l∗Mi) (1 + l∗Mi) + l∗Mi) (A.26)

≤ (T + 2) log ((2l∗Mi + 1) (2l∗Mi + 1) 3) (A.27)

= 2 (T + 2) log (2l∗Mi + 1) + (T + 2) log (3) . (A.28)
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Hence∣∣∣∣∣∑
i∈S2

p∗i f (l∗1i∆, l
∗
2i∆, l

∗
3i∆)

∣∣∣∣∣
≤
∑
i∈S2

p∗i 2 (T + 2) log (2l∗Mi + 1) + (T + 2) log (3) (A.29)

(i)

≤ 2 (T + 2)

(∑
i∈S2

p∗i

)
log

(
2

∑
i∈S2

p∗i l
∗
Mi∑

j∈S2
p∗j

+ 1

)
+ (T + 2) log (3) (A.30)

(ii)

≤ 2 (T + 2)

(∑
i∈S2

p∗i

)
log

(
2

T

∆
∑

j∈S2
p∗j

+ 1

)
+ (T + 2) log (3) (A.31)

= 2 (T + 2)

(∑
i∈S2

p∗i

)
log

(
2
T

∆
+
∑
j∈S2

p∗j

)

− 2 (T + 2)

(∑
i∈S2

p∗i

)
log

(∑
j∈S2

p∗j

)
+ (T + 2) log (3) (A.32)

(iii)

≤ 2 (T + 2)

(∑
i∈S2

p∗i

)
log

(
2
T

∆
+ 1

)
+ 2 (T + 2)

log (e)

e
+ (T + 2) log (3) (A.33)

(iv)

≤ 2 (T + 2)

(
T

ρ4
∗∆

)
log

(
2
T

∆
+ 1

)
+ 2 (T + 2)

log (e)

e
+ (T + 2) log (3) (A.34)

(v)
= 2 (T + 2)

(
2T (T + 1)

ρ2
∗

)
log
(
4T (T + 1) ρ2

∗ + 1
)

+ 2 (T + 2)
log (e)

e
+ (T + 2) log (3) (A.35)

(vi)

≤ r1 (T ) independent of SNR, (A.36)

where (i) is due to Jensen’s inequality, (ii) is due to the power constraint
∑

i∈S2
p∗i l
∗
Mi∆ ≤

T ⇒∑
i∈S2

p∗i l
∗
Mi ≤ T

∆
, (iii) is due to the fact 0 ≤

(∑
i∈S2

p∗i
)
≤ 1 and −x log (x) ≤ log(e)

e
for

x ∈ [0, 1], (iv)is due to the fact
∑

i∈S2
p∗i l
∗
Mi∆ ≤ T (power constraint) and ρ4

∗∆ < l∗Mi∆ in S2

and hence
∑

i∈S2
p∗i ρ

4
∗∆ ≤ T and hence

∑
i∈S2

p∗i ≤ T
ρ4∗∆

, (v) is using ∆ = 1
2(T+1)ρ2∗

and (vi) is

due to the fact 1
x

log (x) is bounded for x ∈ [1,+∞) and assuming ρ2
∗ > 1. Hence it follows

that

(P2) =
∑
i∈S1

p∗i f (l∗1i∆, l
∗
2i∆, l

∗
3i∆) + r1 (T ) .
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Hence it follows that

P3 :


maximize

E[|a|2+|b|2+|c|2]≤T
E
[
f
(
|a|2 , |b|2 , |c|2

)]
Support

(
|a|2 , |b|2 , |c|2

)
= S1

(A.37)

achieves the same gDoF as P2, because any non-zero probability outside S1 in P2 can be as-

signed to (0, 0, 0) in P3 by changing the value of objective function by a constant independent

of SNR. Hence

gDoF (P1) = gDoF (P2) = gDoF (P3) . (A.38)

Now P3 is a linear program with finite number of variables and constraints (with a finite

optimum value because of Jensen’s inequality). The variables are {pi} and the maximum

number of non trivial active constraints on {pi} is 2, derived from

E
[
|a|2 + |b|2 + |c|2

]
= T, (A.39)

∑
pi = 1. (A.40)

Trivial constraints are pi ≥ 0. Hence by the theory of linear optimization, there exists an

optimal {p∗i } with at most 2 non zero values. Hence it follows that

P4 :



maximize
∑2

i=1 pif1

(
|ai|2 , |bi|2 , |ci|2

)
∑2

i=1 pi
(
|ai|2 + |bi|2 + |ci|2

)
≤ T,∑

pi = 1,

|ai|2 , |bi|2 , |ci|2 ≥ 0

(A.41)

has (P4) ≥ (P3). Note that we have allowed
(
|ai|2 , |bi|2 , |ci|2

)2

i=1
to be real positive variables

to be optimized. But it is also clear that (P4) ≤ (P1). Hence

gDoF (P1) = gDoF (P2) = gDoF (P3) = gDoF (P4) . (A.42)
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Now consider

P5 :



maximize
∑2

i=1 pif1

(
|ai|2 , |bi|2 , |ci|2

)
pi |ai|2 ≤ T, pi |bi|2 ≤ T, pi |ci|2 ≤ T,∑
pi = 1,

|ai|2 , |bi|2 , |ci|2 ≥ 0.

(A.43)

It can be easily shown that gDoF (P4) = gDoF (P5), we omit the proof.

Claim A.1. Adding the constraints |ai|2 ≤ T, |bi|2 ≤ T, |ci|2 ≤ T preserves gDoF (P5).

Proof. We have

f
(
|a|2 , |b|2 , |c|2

)
= log

((
|a|2 ρ2

11 + |b|2 ρ2
12 + 1

) (
|a|2 ρ2

21 + |b|2 ρ2
22 + 1

)
+
(
|c|2 ρ2

12 + 1
) (
|c|2 ρ2

22 + 1
))

+ (T − 1) log
((
|a|2 ρ2

11 + 1
) (
|c|2 ρ2

22 + 1
)

+ |b|2
(
ρ2

12 + ρ2
22

)
+
(
|a|2 ρ2

21 + 1
) (
|c|2 ρ2

12 + 1
))

− log
((

1 + |a|2 ρ2
11

) (
1 + |c|2 ρ2

12

)
+ |b|2 ρ2

12

)
− log

((
1 + |a|2 ρ2

21

) (
1 + |c|2 ρ2

22

)
+ |b|2 ρ2

22

)
. (A.44)

Suppose |ai|2 > T and consider

t1 = pi log
((
|ai|2 ρ2

11 + |bi|2 ρ2
12 + 1

) (
|ai|2 ρ2

21 + |bi|2 ρ2
22 + 1

)
+
(
|ci|2 ρ2

12 + 1
) (
|ci|2 ρ2

22 + 1
))
.

We will show that setting |ai|2 = T would change the value of t1 only by a constant indepen-

dent of SNR. The other terms have a similar structure and can be handled in a similar way.

If
(
|ci|2 ρ2

12 + 1
) (
|ci|2 ρ2

22 + 1
)
>
(
|ai|2 ρ2

11 + |bi|2 ρ2
12 + 1

) (
|ai|2 ρ2

21 + |bi|2 ρ2
22 + 1

)
the claim is

trivially true that we can replace |ai|2 > T with |ai|2 = T while changing the value of t1 by

only a constant. Otherwise

t1
.
= pi log

((
|ai|2 ρ2

11 + |bi|2 ρ2
12 + 1

) (
|ai|2 ρ2

21 + |bi|2 ρ2
22 + 1

))
(A.45)

= pi log
(
|ai|2 ρ2

11 + |bi|2 ρ2
12 + 1

)︸ ︷︷ ︸
t11

+ pi log
(
|ai|2 ρ2

21 + |bi|2 ρ2
22 + 1

)︸ ︷︷ ︸
t12

. (A.46)

Now consider t11 = pi log
(
|ai|2 ρ2

11 + |bi|2 ρ2
12 + 1

)
. If |ai|2 ρ2

11 < |bi|2 ρ2
12 + 1 we can replace

|ai|2 > T with |ai|2 = T .
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If |ai|2 ρ2
11 > |bi|2 ρ2

12 + 1 then t2
.
= pi log

(
|ai|2 ρ2

11 + 1
)

where the approximation is tight

within a constant (constant less than 1). Now if we replace |ai|2 > T with |ai|2 = T the

difference arising is bounded independent of SNR:

pi log
(
|ai|2 ρ2

11 + 1
) (i)

≤ pi log

(
T

pi
ρ2

11 + 1

)
(A.47)

= pi log
(
Tρ2

11 + pi
)
− pi log (pi) (A.48)

≤ pi log
(
Tρ2

11 + 1
)
− pi log (pi) , (A.49)

where (i) is because pi |ai|2 ≤ T due to the power constraint. Also |ai|2 > T , hence it follows

that

∣∣pi log
(
|ai|2 ρ2

11 + 1
)
− pi log

(
Tρ2

11 + 1
)∣∣ ≤ |pi log (pi)| (A.50)

≤ log (e)

e
. (A.51)

Following the same logic for other terms, it can be shown that adding the constraints |ai|2 ≤
T, |bi|2 ≤ T, |ci|2 ≤ T preserves gDoF (P5).

With the additional constraints |ai|2 ≤ T, |bi|2 ≤ T, |ci|2 ≤ T the existing constraints

pi |ai|2 ≤ T, pi |bi|2 ≤ T, pi |ci|2 ≤ T become redundant. Hence we have gDoF (P5) =

gDoF (P6) for P6 defined as

P6 :


maximize

∑2
i=1 pif

(
|ai|2 , |bi|2 , |ci|2

)
|ai|2 ≤ T, |bi|2 ≤ T, |ci|2 ≤ T,∑
pi = 1.

(A.52)

It is clear from the structure of P6 that the solution has
(
|a1|2 , |b1|2 , |c1|2

)
=(

|a2|2 , |b2|2 , |c2|2
)

hence it suffices to solve P7 defined as

P7 :


maximizef

(
|a|2 , |b|2 , |c|2

)
|a|2 ≤ T, |b|2 ≤ T, |c|2 ≤ T,

(A.53)

that is it suffices to consider one point mass distribution.
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A.3 Proof of Theorem 2.2: Decomposing into disjoint parts of

MIMO graph

Here we prove that for a MIMO whose graph can be decomposed into disjoint

parts, the capacity can be achieved by allocating power to the disjoint parts sep-

arately. Let the channel matrix G of the system be block diagonal as G =

diag (G1, . . . , GK), where Gi are the diagonal blocks corresponding to the disjoint parts

of the graph, then the capacity C (P, diag (G1, . . . , GK)) of the channel for a power P

can be achieved by splitting power across the blocks, i.e., C (P, diag (G1, . . . , GK)) =

maxP1+···+PK≤P (C (P1, G1) + · · ·+ C (PK , GK)). We just need to show that for

G = diag (G1, G2)

the capacity of the channel can be achieved by a power splitting across the two blocks of

channels G1, G2 i.e

C (P, diag (G1, G2)) = max
P1+P2≤P

(C (P1, G1) + C (P2, G2)) (A.54)

and the general result for multiple disjoint parts in MIMO graph will follow due to induction.

h (Y )
(ii)

≤ h (YG1) + h (YG2) (A.55)

h (Y |X) = h (YG1YG2|XG1XG2) (A.56)

= h (YG1|XG1XG2) + h (YG2|YG1XG1XG2) (A.57)

(ii)
= h (YG1|XG2) + h (YG2|XG2) , (A.58)

where (i) is because conditioning reduces entropy and (ii) is because XG2 −XG1 − YG1 and

(XG1, YG1)−XG2 − YG2 are Markov chains.

Hence

I (X;Y ) ≤ I (XG1;YG1) + I (XG2;YG2) (A.59)
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subject to E
[
‖XG1‖2 + ‖XG2‖2] ≤ P . The RHS can be achieved by treating the two blocks

of channels G1, G2 separately with a power allocation, hence

C (P, diag (G1, G2)) = max
P1+P2≤P

(C (P1, G1) + C (P2, G2)) . (A.60)

A.4 Inner bound for 2× 2 symmetric MIMO

Here we prove the achievability result from Theorem 2.7 for the 2 × 2 MIMO with ex-

ponents γD in the direct links and γCL in the crosslinks. We use the input distribution

X =

 a 0 0 . . 0

η c 0 . . 0

Q with constant a, c and η ∼ CN
(
0, |b|2

)
with

|a|2 = SNRγa , |b|2 = SNRγb , |c|2 = SNRγc , γa ≤ 0, γb ≤ 0, γc ≤ 0.

With this choice, we proceed to lower bound I (X;Y ).

I (X;Y ) = h (Y )− h (Y |X) (A.61)

h (Y ) = h (GX +W ) (A.62)

≥ h (GX) (A.63)

= h

 g11 g12

g21 g22

 a 0 0 . . 0

η c 0 . . 0

Q
 . (A.64)

Now

 g11 g12

g21 g22

 a 0 0 . . 0

η c 0 . . 0


=

 ag11 + ηg12 cg12 0 . . 0

ag21 + ηg22 cg22 0 . . 0

 (A.65)

=


√
|ag11 + ηg12|2 + |cg12|2 0 0 . . 0

(ag21+ηg22)(ag11+ηg12)∗+|c|2g22g∗12√
|ag11+ηg12|2+|cg12|2

(ag21+ηg22)cg12−cg22(ag11+ηg12)√
|ag11+ηg12|2+|cg12|2

0 . . 0

Φ, (A.66)
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where the last step performed an LQ transformation and Φ is unitary. Hence due to the

property of isotropic unitary matrices and steps similar to (2.48) to (2.51) in Section 2.4.4,

we get:

h (GX)

= h

(√
|ag11 + ηg12|2 + |cg12|2q1

(T )

)

+ h

(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g
∗
12√

|ag11 + ηg12|2 + |cg12|2
,
(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)√

|ag11 + ηg12|2 + |cg12|2
q

(T−1)
2

∣∣∣∣∣∣ ξ11


= h

(√
|ag11 + ηg12|2 + |cg12|2q1

(T )

)
− TE

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
+ h

([
(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g

∗
12, ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)) q

(T−1)
2

] ∣∣∣∣∣ ξ11

)
︸ ︷︷ ︸

α

,

(A.67)

where q1
(i) is i dimensional unitary isotropically distributed vector and ξ11 =√

|ag11 + ηg12|2 + |cg12|2. Now

α

= h

(
((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)) q

(T−1)
2

∣∣∣∣∣ ξ11

)

+ h

(
(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g

∗
12

∣∣∣∣∣ ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)) q
(T−1)
2 , ξ11

)
(A.68)

(i)

≥ (T − 2)E
[
log
(
|(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)|2

)]
+ log

(
πT−1

Γ (T − 1)

)
+ h

(
|(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)|2

∣∣∣∣∣ ξ11

)

+ h

(
(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g

∗
12

∣∣∣∣∣ ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)) , q
(T−1)
2 , ξ11

)
(A.69)

(ii)
= (T − 2)E

[
log
(
|(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)|2

)]
+ log

(
πT−1

Γ (T − 1)

)
+ h ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)| ξ11)− log (π)
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+ h

(
(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g

∗
12

∣∣∣∣∣ ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)) , ξ11

)
(A.70)

(iii)
= (T − 2)E

[
log
(
|acg12g21 − acg11g22|2

)]
+ log

(
πT−2

Γ (T − 1)

)
+ 2E

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
h

(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g
∗
12√

|ag11 + ηg12|2 + |cg12|2
,
(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)√

|ag11 + ηg12|2 + |cg12|2

∣∣∣∣∣∣ ξ11


(A.71)

(iv)
= (T − 2)E

[
log
(
|acg12g21 − acg11g22|2

)]
+ log

(
πT−2

Γ (T − 1)

)
+ 2E

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
h

(ag21 + ηg22) (ag11 + ηg12)∗ + |c|2 g22g
∗
12√

|ag11 + ηg12|2 + |cg12|2
,
(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)√

|ag11 + ηg12|2 + |cg12|2

∣∣∣∣∣∣ ag11 + ηg12, g12


(A.72)

(v)
= (T − 2)E

[
log
(
|acg12g21 − acg11g22|2

)]
+ log

(
πT−2

Γ (T − 1)

)
+ 2E

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
+ h

([
ag21 + ηg22 cg22

] ∣∣∣∣∣ ag11 + ηg12, g12

)
, (A.73)

where (i) is using Lemma 3.2 in the first term and conditioning reduces entropy in the

second term, (ii) is using Lemma 3.2 on h ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)| ξ11) (note

that with θ ∼ Unif [0, 2π] independent, ((ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)) eiθ
∣∣ ξ11 and

(ag21 + ηg22) cg12 − cg22 (ag11 + ηg12)| ξ11 have the same distribution; eiθ is the unitary

distribution in one dimension; hence Lemma 3.2 can be applied), (iii) is simply using

ξ11 =
√
|ag11 + ηg12|2 + |cg12|2 and rearranging terms, (iv) is because conditioning reduces

entropy and (v) is by a unitary transformation in the last term. Hence by substituting (A.73)

in (A.67) we have

h (GX)

≥ h

(√
|ag11 + ηg12|2 + |cg12|2q1

(T )

)
− (T − 2)E

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
+ log

(
πT−2

Γ (T − 1)

)
+ (T − 2)E

[
log
(
|acg12g21 − acg11g22|2

)]
+ h

([
ag21 + ηg22 cg22

] ∣∣∣∣∣ ag11 + ηg12, g12

)
(A.74)
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(i)
= h

(
|ag11 + ηg12|2 + |cg12|2

)
+ E

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
+ log

(
πT−2

Γ (T − 1)

)
+ log

(
πT

Γ (T )

)
+ (T − 2)E

[
log
(
|acg12g21 − acg11g22|2

)]
+ h

([
ag21 + ηg22 cg22

] ∣∣∣∣∣ ag11 + ηg12, g12

)
, (A.75)

where (i) is using Lemma 3.2 on h

(√
|ag11 + ηg12|2 + |cg12|2q1

(T )

)
. Also

h
([

ag21 + ηg22 cg22

] ∣∣∣ ag11 + ηg12, g12

)
= h (cg22) + h (ag21 + ηg22| ag11 + ηg12, g12, g22) .

(A.76)

Using η ∼ CN
(
0, |b|2

)
h

(
ag21 + ηg22

∣∣∣∣ ag11 + ηg12, g12, g22

)
= h

(
ag21 + ηg22, ag11 + ηg12

∣∣∣∣ g12, g22

)
− h

(
ag11 + ηg12

∣∣∣∣ g12, g22

)
(A.77)

= E

log

πe
∣∣∣∣∣∣ |a|

2 SNRγ21 + |b|2 |g22|2 |b|2 g22g
∗
12

|b|2 g∗22g12 |a|2 SNRγ11 + |b|2 |g12|2

∣∣∣∣∣∣


− E
[
log
(
|a|2 SNRγd + |b|2 |g12|2

)]
(A.78)

(i)

≥ log
(
|a|4 SNRγ11+γ21 + |a|2 |b|2 SNRγ12+γ21 + |a|2 |b|2 SNRγ11+γ22

)
− log

(
|a|2 SNRγ11 + |b|2 SNRγ12

)
− 2γE log (e) , (A.79)

where (i) is using Fact 5.1 from page 135 on |g22|2 and |g12|2. Now substituting (A.79) and

(A.76) in (A.75) we get

h (GX) ≥ h
(
|ag11 + ηg12|2 + |cg12|2

)
+ E

[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
+ log

(
πT−2

Γ (T − 1)

)
+ log

(
πT

Γ (T )

)
+ (T − 2)E

[
log
(
|acg12g21 − acg11g22|2

)]
+ h (cg22)− 2γE log (e)

+ log
(
|a|4 SNRγ11+γ21 + |a|2 |b|2 SNRγ12+γ21 + |a|2 |b|2 SNRγ11+γ22

)
− log

(
|a|2 SNRγ11 + |b|2 SNRγ12

)
. (A.80)
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Now we use our choice η ∼ CN
(
0, |b|2

)
|a|2 = SNRγa , |b|2 = SNRγb , |c|2 = SNRγc , γa ≤ 0, γb ≤

0, γc ≤ 0. We have

h
(
|ag11 + ηg12|2 + |cg12|2

)
(i)

≥ max
(
h
(
|ag11 + ηg12|2

)
, h
(
|cg12|2

))
(A.81)

≥ max

(
h

(
|ag11 + ηg12|2

∣∣∣∣ g12

)
, h
(
|cg12|2

))
(A.82)

(ii).
= max

(
E
[
log
(
SNRγa+γ11 + SNRγb |g12|2

)]
, log

(
SNRγc+γ12

))
(A.83)

.
= max

(
log
(
SNRγa+γ11 + SNRγb+γ12

)
, log

(
SNRγc+γ12

))
, (A.84)

where (i) was using conditioning reduces entropy, (ii) was using property of exponential

distributions and (iii) was using Fact 5.1. Hence

lim
SNR→∞

h
(
|ag11 + ηg12|2 + |cg12|2

)
/ log (SNR) ≥ max (γa + γ11, γb + γ12, γc + γ12) .

Now

E
[
log
(
|ag11 + ηg12|2 + |cg12|2

)]
≥ max

(
E
[
log
(
|ag11 + ηg12|2

)]
,E
[
log
(
|cg12|2

)])
(A.85)

(i).
= max

(
log
(
SNRγa+γ11 + SNRγb+γ12

)
, log

(
SNRγc+γ12

))
, (A.86)

where (i) was using Fact 5.1. Also

E
[
log
(
|acg12g21 − acg11g22|2

)] .
= log

(
SNRγa+γc+γ12+γ21 + SNRγa+γc+γ11+γ22

)
(A.87)

using Fact 5.1 repeatedly. Similarly evaluating other terms in A.80, we get

lim
SNR→∞

h (GX) / log (SNR)

≥ 2 max (γa + γ11, γb + γ12, γc + γ12)

+ (T − 2) (γa + γc + max (γ12 + γ21, γ11 + γ22)) + +γc + γ22

+ max (2γa + γ11 + γ21, γa + γb + γ12 + γ21, γa + γb + γ11 + γ22)

−max (γa + γ11, γb + γ12) . (A.88)
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Also using (3.50), (3.52) we have

h (Y |X)

= E
[
log
(
|a|2 ρ2

11 + |η|2 ρ2
12 + |c|2 ρ2

12 + |a|2 |c|2 ρ2
11ρ

2
12 + 1

)]
+ E

[
log
(
|a|2 ρ2

21 + |η|2 ρ2
22 + |c|2 ρ2

22 + |a|2 |c|2 ρ2
21ρ

2
22 + 1

)]
+ 2T log (πe) . (A.89)

Now since η ∼ CN
(
0, |b|2

)
and |a|2 = SNRγa , |b|2 = SNRγb , |c|2 = SNRγc and Fact 5.1, we get

h (Y |X)

.
= log

(
|a|2 ρ2

11 + |b|2 ρ2
12 + |c|2 ρ2

12 + |a|2 |c|2 ρ2
11ρ

2
12 + 1

)
+ log

(
|a|2 ρ2

21 + |b|2 ρ2
22 + |c|2 ρ2

22 + |a|2 |c|2 ρ2
21ρ

2
22 + 1

)
(A.90)

.
= max (γa + γ11, γb + γ12, γc + γ12, γa + γc + γ11 + γ12, 0)

+ max (γa + γ21, γb + γ22, γc + γ22, γa + γc + γ21 + γ22, 0) , (A.91)

and hence

lim
SNR→∞

h (Y |X) / log (SNR)

= max (γa + γ11, γb + γ12, γc + γ12, γa + γc + γ11 + γ12, 0)

+ max (γa + γ21, γb + γ22, γc + γ22, γa + γc + γ21 + γ22, 0) . (A.92)

Using (A.88),(A.92) with γa = 0, γc = 0, γb = 0γ11 = γ22 = γD > γCL = γ12 = γ21 we get

lim
SNR→∞

h (GX) / log (SNR) ≥ 2TγD, (A.93)

and

lim
SNR→∞

h (Y |X) / log (SNR) = 2 (γD + γCL) . (A.94)

Hence we have

lim
SNR→∞

(1/T ) I (X;Y ) / log (SNR) ≥ 2 ((1− 1/T ) γD − (1/T ) γCL) (A.95)

165



achievable. Also with γa = 0, γc = −γCL, γb = 0γ11 = γ22 = γD > γCL = γ12 = γ21 in

(A.88),(A.92) we get

lim
SNR→∞

h (GX) / log (SNR) ≥ 2γD + (T − 1) (2γD − γCL) (A.96)

and

lim
SNR→∞

h (Y |X) / log (SNR) = 2γD (A.97)

Hence for T = 2

lim
SNR→∞

(1/2) I (X;Y ) / log (SNR) ≥ (γD − (1/2) γCL) (A.98)

is achievable. Hence the outer bounds for all regimes of T from Table 2.3 are achievable.

A.5 Gaussian codebooks for asymmetric MIMO

Here we prove Theorem 2.8 for an M × M MIMO (Figure 2.5) with coherence time

T > M and with exponents γD in direct links and γCL in crosslinks (γD > γCL). We

consider i.i.d. Gaussian codebooks across antennas and time periods and prove that a

gDoF of M
((

1− 1
T

)
γD − M−1

T
γCL
)

is achievable. Using Gaussian codebooks, the rate

R ≥ I (GX +W ;X) is achievable, where

X =


X11 · · · X1T

...
...

XM1 · · · XMT

 =
[
X1 . . . XT

]
, (A.99)

Xi = Tran
[
X1i . . . XMi

]
(A.100)

with all of the elements of the M×T matrix X being i.i.d. CN (0, 1) and W being an M×T
matrix with i.i.d. CN (0, 1) noise elements. The channel matrix

G =


g11 g12 . g1M

g21 g22 . .

. . . .

gM1 . . gMM

 (A.101)
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has gii ∼ CN (0, SNRγD) and rest of the elements distributed according to CN (0, SNRγCL).

We will show that the mutual information satisfies

I (GX +W ;X)
.

≥M ((T − 1) γD − (M − 1) γCL) log (SNR) . (A.102)

We have

I (GX +W ;X) = h (GX +W )− h
(
GX +W

∣∣∣X) (A.103)

≥ h
(
GX +W

∣∣∣G)
− h

(
GX +W

∣∣∣X) . (A.104)

Now

h
(
GX +W

∣∣∣G)
(i)

≥ h (GX|G) (A.105)

(ii)
= T × h

(
GX1

∣∣G) (A.106)

(iii)
= TE

[
log
(
|det (πeG)|2

)]
(A.107)

(iv).
= TMγD log (SNR) , (A.108)

where (i) is using conditioning reduces entropy after conditioning on W , (ii) is using the

structure of X from A.99and the fact that elements Xij are i.i.d. Gaussian, (iii) is again using

the fact that Xij are i.i.d. Gaussian and (iv) is by repeated application of Fact 5.1, Tower

property of expectation on Gaussian distributed gij and the structure of the determinant

involved. Now we will show that

h
(
GX +W

∣∣∣X) .

≤M (γD log (SNR) + (M − 1) γCL log (SNR)) (A.109)

and will complete the proof.

h
(
GX +W

∣∣∣X)
(i)
.

≤
∑
i

h
([

gi1 gi2 . giM

]
X +Wi

∣∣∣X) (A.110)
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(ii)
= Mh

([
g11 g12 . g1M

]
X +W1

∣∣∣X) , (A.111)

where (i) is using conditioning reduces entropy and Wi is 1×T with i.i.d. CN (0, 1) elements,

(ii) is by symmetry of the channels (gii ∼ CN (0, SNRγD) and rest of the elements distributed

according to CN (0, SNRγCL)) and i.i.d. nature of Xij. Now we will show that

h
([

g11 g12 . g1M

]
X +W1

∣∣∣X) .

≤ γD log (SNR) + (M − 1) γCL log (SNR) (A.112)

and will complete the proof. Let us denote W1 =
[
w11 w12 . w1T

]
, g1 =[

g11 g12 . g1M

]
. We have

h
(
g1X +W1

∣∣X)
≤ h

(
g1X1 + w11

∣∣X)
+

M∑
i=2

h
(
g1Xi + w1i

∣∣X, g1X1 + w11

)
+

T∑
i=M+1

h
(
g1Xi + w1i

∣∣X {g1Xk + w1k

}M
k=1

)
. (A.113)

Now the first term in (A.113)

h
(
g1X1 + w11

∣∣X) = h

(
M∑
j=1

gj1Xj1 + w11

∣∣∣∣∣Xj1

)
.

≤ γD log (SNR) (A.114)

using maximum entropy results and since γD ≥ γCL. Now consider the second term in

(A.113), h
(
g1Xi + w1i

∣∣X, g1X1 + w11

)
. In g1 =

[
g11 g12 . g1M

]
, only g11 has SNR ex-

ponent γD and it can be removed due to the conditioning as follows:

h
(
g1Xi + w1i

∣∣X, g1X1 + w11

)

(i)

≤ h

g1


0

X11X2i −X1iX21

.

X11XMi −X1iXM1

+X11w1i −X1iw11

∣∣∣∣∣∣∣∣∣∣∣∣
X

− E [log (|X11|)] (A.115)
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= E

[
log

(
πe

(
ρ2
CL

M∑
j=2

|X11Xji −X1iXj1|2 + |X11|2 + |X1i|2
))]

− E [log (|X11|)] (A.116)

(ii).
= γCL log (SNR) , (A.117)

where (i) is by multiplying g1Xi + w1i with X11 and subtracting X1i

(
g1X1 + w11

)
from it

and using conditioning reduces entropy, and (ii) is by repeated application of Fact 5.1 and

Tower property of expectation on Gaussian distributed Xij.

Now consider the last term in (A.113)

h

(
g1Xi + w1i

∣∣∣∣X,{g1Xk + w1k

}M
k=1

)
.

This term would not have any gDoF since all the SNR exponents from g1 =[
g11 g12 . g1M

]
can be canceled due to availability of M linear equations in the condi-

tioning. Let

XM×M =


X11 . . . X1M

...
...

XM1 . . . XMM

 , w1 =
[
w11 . . . w1M

]
.

In the conditioning g1XM×M + w1 and XM×M are available. Let Adj (XM×M) be the

adjoint of XM×M and det (XM×M) be the determinant of XM×M . Hence the term

g1det (XM×M)Xi + w1Adj (XM×M)Xi is available in the conditioning. The M linear equa-

tions in the conditioning can cancel off the gDoF contribution from g1 =
[
g11 g12 . g1M

]
only if det (XM×M) is non-zero. Since X is Gaussian i.i.d., this is true almost surely. We

handle this more precisely in the following steps:

h

(
g1Xi + w1i

∣∣∣∣X,{g1Xk + w1k

}M
k=1

)
(A.118)

(i)

≤ h

(
g1Xi + w1i

∣∣∣∣X, g1det (XM×M)Xi + w1Adj (XM×M)Xi

)
(A.119)

(ii)
= h

(
g1det (XM×M)Xi + det (XM×M)w1i

∣∣∣∣X, g1det (XM×M)Xi + w1Adj (XM×M)Xi

)
− E [log (|det (XM×M)|)] (A.120)
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(iii)

≤ h

(
w1idet (XM×M)− w1Adj (XM×M)Xi

∣∣∣∣X)
− E [log (det (XM×M))] (A.121)

(iv)
.

≤ h

(
w1idet (XM×M)− w1Adj (XM×M)Xi

∣∣∣∣X) (A.122)

(v)
= log

(
E
[
|det (XM×M)|2 +

∥∥Adj (XM×M)Xi

∥∥2
])

+ log (πe) (A.123)

(vi)
.

≤ 0, (A.124)

where (i) is using the availability of g1det (XM×M)Xi + w1Adj (XM×M)Xi in conditioning

and using the fact conditioning reduces entropy, (ii) is by multiplying with det (XM×M)

and compensating with −E [log (|det (XM×M)|)] since det (XM×M) is known from the values

in conditioning, (iii) is by subtracting the term available from conditioning and using the

fact conditioning reduces entropy, (iv) is because E [log (|det (XM×M)|)] is finite by repeated

application of Fact 5.1 and Tower property of expectation on Gaussian distributed Xij, (v)

is because w1k ∼ CN (0, 1) i.i.d. and (vi) is because Xij ∼ CN (0, 1) i.i.d.

Now by substituting (A.124), (A.117) and (A.114) in (A.113) we get the desired result.

A.6 Outer bound for MISO with T < M

Here we prove the gDoF outer bound given in Theorem 3.10 for the M × 1 MISO system

with 1 < T < M . The steps follow similar to the case with T ≥ M , given in (2.4.3). We

have the structure of input distribution as X = LQ with

L =



x11 0 0

. . 0 0

. . . 0

. . . xTT

. . . .

xM1 . . xMT


. (A.125)
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For the channel we have, G =
[
g11 . . g1M

]
, g1i ∼ CN (0, ρ2

1i), ρ
2
1i = SNRγ1i , Y =

GX +W , where W is 1× T with i.i.d. CN (0, 1) components. We assume ρ2
11 ≥ ρ2

1i without

loss of generality. Now note that WQ has the same distribution as W and is independent of

Q (using the fact that W is isotropically distributed). Hence

Y = (GL+W )Q (A.126)

=
[ (

w11 +
∑M

i=1 xi1g1i

) (
w12 +

∑M
i=2 xi2g1i

)
. .

(
w1T +

∑M
i=T xi2g1i

) ]
Q.

(A.127)

Now using Lemma 3.2 on 66, we get

h (Y ) = h

 T∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2


+ (T − 1)E

log

 T∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2
+ log

(
πT

Γ (T )

)
(A.128)

(i)

≤ h

 T∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2


+ (T − 1)E

[
log

(
T∑
j=1

(
1 +

M∑
i=j

|xij|2 ρ2
ij

))]
+ log

(
πT

Γ (T )

)
(A.129)

(ii)

≤ h

 T∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2


+ (T − 1)E

log

 M∑
i=1

ρ2
1i

min(i,T )∑
j=1

|xij|2
+ T

+ log

(
πT

Γ (T )

)
, (A.130)

where (i) was using Tower property of expectation and Jensen’s inequality and (ii) was using∑T
j=1

∑M
i=j |xij|

2 ρ2
1i =

∑M
i=1

∑min(i,T )
j=1 |xij|2 ρ2

1i. Now using (3.52), we have

h (Y |X) = E
[
log
(
det
(
L†diag

(
ρ2

11, . . . , ρ
2
1M

)
L+ IT

))]
+ (T ) log (πe) (A.131)

= E

[
log

(
M∏
i=1

(1 + ωi)

)]
+ (T ) log (πe) , (A.132)
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where ωi are the eigenvalues of L†diag (ρ2
11, . . . , ρ

2
1M)L. Hence

h (Y |X) = E

[
log

(
M∏
i=1

(1 + ωi)

)]
+ (T ) log (πe) (A.133)

≥ E
[
log
(

1 +
∑

ωi

)]
+ (T ) log (πe) . (A.134)

The last step is true because ωi ≥ 0. Now∑
ωi = Trace

(
L†diag

(
ρ2

11, . . . , ρ
2
1M

)
L
)

= Trace
(
diag

(
ρ2

11, . . . , ρ
2
1M

)
LL†

)
=

M∑
i=1

ρ2
1i

min(i,T )∑
j=1

|xij|2
 . (A.135)

Hence

h (Y |X) ≥ E

log

1 +
M∑
i=1

ρ2
1i

min(i,T )∑
j=1

|xij|2
+ (T ) log (πe) . (A.136)

Hence

I (X;Y ) ≤ h

 M∑
j=1

∣∣∣∣∣w1j +
M∑
i=j

xijg1i

∣∣∣∣∣
2

+
T∑

i=M+1

|w1i|2


+ (T − 2)E

[
log

(
M∑
i=1

ρ2
1i

(
i∑

j=1

|xij|2
)

+ T

)]

+ log

(
πT

Γ (T )

)
− T log (πe) (A.137)

.

≤ (T − 1) log

(
M∑
i=1

ρ2
1iMT + T

)
, (A.138)

where the last step was using maximum entropy result and Jensen’s inequality. Hence

limsup
SNR→∞

I (X;Y )

log (SNR)
≤ (T − 1) γ11. (A.139)

A.7 Proof of Lemma 3.3

Here we prove that h
(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

)
and

E
[
log
(
|a|2 ρ2

11 +
(
|b|2 + |c|2

)
ρ2

12 + 1
)]
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have the same gDoF. For this, consider the point to point channel

C1 : V = |ag11 + bg12 + w11|2 + |cg12 + w12|2 +
T∑
i=3

|w1i|2 (A.140)

with inputs a, b, c and power constraint T . Its capacity is given by

C1 = max
p(a,b,c);E[|a|2+|b|2+|c|2]≤T

{
h

((
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
))

−h
(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
∣∣∣∣∣ a, b, c

)}
(A.141)

From [LM03, (32)] we have

I (U ;V ) ≤ E [log (V )]− h (V |U) + log (Γ (α))

+ α (1 + log (E [V ])− E [log (V )])− α log (α) (A.142)

for any α > 0 for channels whose output V takes values in R+. We will use this result to

bound I (U ;V ) for any input distribution p (a, b, c) ;E
[
|a|2 + |b|2 + |c|2

]
≤ T for the channel

C1 with U = (a, b, c) as input. Now

h (V |U)

= h

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
∣∣∣∣∣ a, b, c

)
(A.143)

(i)

≤ E

[
log

(
eE

[
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
∣∣∣∣∣ a, b, c

])]
(A.144)

(ii)
= E

[
log
(
e
((
ρ2

11 |a|2 + ρ2
12 |b|2 + 1

)
+
(
ρ2

12 |c|2 + 1
)

+ (T − 2)
))]

(A.145)

= E
[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
)]

+ log (e) , (A.146)

where (i) was using the definition of conditional entropy and the fact that exponential

distribution has the maximum entropy among positive random variable with a given mean,

(ii) is using the fact that given (a, b, c), ag11 + bg12 +w11, cg12 +w12 are sums of independent

Gaussians. Note

E [log (V )] = E

[
E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
∣∣∣∣∣ a, b, c

)]]
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≤ E
[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
)]

(A.147)

using Jensen’s inequality. Also

E [log (V )] = E

[
E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
∣∣∣∣∣ a, b, c

)]]
≥ E

[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
)]
− 3γ log (e) (A.148)

by using using Fact 5.1 on page 135 for exponentially distributed |agrd2 + bgrd1 + wd1|2 ,
|cgrd1 + wd2|2 (for given a, b, c) and Fact 3.3 for chi-squared distributed

∑T
i=3 |wdi|

2.

Claim A.2. E [log (V )]− h (V |U) ≤ log (3 + T ) + 7
2

log (e) independent of SNR

Proof. It suffices to show that for any constant (a′, b′, c′), E
[

log (V )

∣∣∣∣U = (a′, b′, c′)

]
−

h

(
V

∣∣∣∣U = (a′, b′, c′)

)
≤ log (3 + T ) + 7

2
log (e) independent of a′, b′, c′ and SNR

E
[

log (V )

∣∣∣∣U = (a′, b′, c′)

]
− h

(
V

∣∣∣∣U = (a′, b′, c′)

)

= E

[
log

(
|a′g11 + b′g12 + w11|2 + |c′g12 + w12|2 +

T∑
i=3

|w1i|2
)]

− h
(
|a′g11 + b′g12 + w11|2 + |c′g12 + w12|2 +

T∑
i=3

|w1i|2
)

(A.149)

(i)

≤ log

(
E

[
|a′g11 + b′g12 + w11|2 + |c′g12 + w12|2 +

T∑
i=3

|w1i|2
])

− h
(
|a′g11 + b′g12 + w11|2 + |c′g12 + w12|2

)
(A.150)

(ii)
= log

(
ρ2

11 |a′|2 + ρ2
12 |b′|2 + ρ2

12 |c′|2 + T
)

− h
(
|a′ρ11η11 + b′ρ12η12 + w11|2 + |c′ρ12η12 + w12|2

)
, (A.151)

where (i) is using Jensen’s inequality and conditioning reduces entropy to remove
∑T

i=3 |wdi|
2

in the negative term; (ii) is using the fact that a′g11 + b′g12 + w11, c
′g12 + w12 are sums of

independent Gaussians. We introduced ηij ∼ CN (0, 1) so that gij = ρijηij.

174



Consider the case when 1 ≤ max (|a′ρ11| , |b′ρ12| , |c′ρ12|). Assume 1 ≤ |bρ12| =

max (|a′ρ11| , |b′ρ12| , |c′ρ12|)

E
[

log (V )

∣∣∣∣U = (a′, b′, c′)

]
− h

(
V

∣∣∣∣U = (a′, b′, c′)

)

≤ log
(
ρ2

11 |a′|2 + ρ2
12 |b′|2 + ρ2

12 |c′|2 + T
)
− log

(
ρ2

12 |b′|2
)

− h
(∣∣∣∣a′ρ11

b′ρ12

η11 + η12 +
w11

b′ρ12

∣∣∣∣2 +

∣∣∣∣c′b′η12 +
w12

b′ρ12

∣∣∣∣2
)
. (A.152)

Now now using the result from Appendix A.9 to lower bound entropy of sum of norm-squared

of Gaussian vectors, we have

h

(∣∣∣∣a′ρ11

b′ρ12

η11 + η12 +
w11

b′ρ12

∣∣∣∣2 +

∣∣∣∣c′b′η12 +
w12

b′ρ12

∣∣∣∣2
)

≥ h

(∣∣∣∣a′ρ11

b′ρ12

η11 + η12 +
w11

b′ρ12

∣∣∣∣2 +

∣∣∣∣c′b′η12 +
w12

b′ρ12

∣∣∣∣2
∣∣∣∣∣ η11

)
≥ −7

2
log (e) . (A.153)

Hence we get

E
[

log (V )

∣∣∣∣U = (a′, b′, c′)

]
− h

(
V

∣∣∣∣U = (a′, b′, c′)

)

≤ log
(
ρ2

11 |a′|2 + ρ2
12 |b′|2 + ρ2

12 |c′|2 + T
)
− log

(
ρ2

12 |b′|2
)

+
7

2
log (e) (A.154)

(i)

≤ log (3 + T ) +
7

2
log (e) , (A.155)

where in step (i) we used 1 ≤ |bρ12| ≤ max (|a′ρ11| , |b′ρ12| , |c′ρ12|).

Similarly for other cases 1 ≤ |a′ρ11| = max (|a′ρ11| , |b′ρ12| , |c′ρ12|) and 1 ≤
|c′ρ12| = max (|a′ρ11| , |b′ρ12| , |c′ρ12|), we can show that E

[
log (V )

∣∣∣∣U = (a′, b′, c′)

]
−

h

(
V

∣∣∣∣U = (a′, b′, c′)

)
is upper bounded by log (3 + T ) + 7

2
log (e).
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Now if 1 > max (|a′ρ11| , |b′ρ12| , |c′ρ12|)

E
[

log (V )

∣∣∣∣U = (a′, b′, c′)

]
− h

(
V

∣∣∣∣U = (a′, b′, c′)

)

≤ log
(
ρ2

11 |a′|2 + ρ2
12 |b′|2 + ρ2

12 |c′|2 + T
)

− h
(
|a′ρ11η11 + b′ρ12η12 + w11|2 + |c′ρ12η12 + w12|2

)
(A.156)

(i)

≤ log (3 + T )− h
(
|a′ρ11η11 + b′ρ12η12 + w11|2 + |c′ρ12η12 + w12|2

∣∣∣∣∣ η11, η12, w12

)
(A.157)

= log (3 + T )− h
(
|a′ρ11η11 + b′ρ12η12 + w11|2

∣∣∣ η11, η12

)
(A.158)

(ii)

≤ log (3 + T ) +
7

2
log (e) , (A.159)

where in step (i) we used the fact 1 > max (|a′ρ11| , |b′ρ12| , |c′ρ12|) and conditioning

reduces entropy, in step (ii) we used the result from Appendix A.9 to lower bound

h
(
|a′ρ11η11 + b′ρ12η12 + w11|2

∣∣ η11, η12

)
.

Using (A.146), (A.147), (A.148) and using the Claim A.2 we get

E [log (V )]
.
= E

[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
)]

.
= h

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
∣∣∣∣∣ a, b, c

)
= h

(
V
∣∣∣U) (A.160)

and the above approximation is tight within a constant independent of SNR. Hence it follows

that

C1
.
= max

p(a,b,c);E[|a|2+|b|2+|c|2]≤T

{
h

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)

−E
[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
)]}

(A.161)

and the above inequality is tight within a constant independent of SNR. Now we shall prove

that

limsup
SNR→∞

C1 (SNR)− log (log (SNR)) <∞ (A.162)
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and hence it will prove our claim that h
(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

)
and E

[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
)]

have the same gDoF.

Now looking at (A.142) again, if the term log (E [V ]) − E [log (V )] does not approach

infinity with the SNR then the result follows directly by choosing any fixed α > 0. When

log (E [V ])− E [log (V )] does tend to infinity with SNR, we choose

α∗ = (1 + log (E [V ])− E [log (V )])−1 (A.163)

with α∗ ↓ 0 with the SNR and we have log (Γ (α∗)) = log
(

1
α∗

)
+ o (1) and α∗ log (α∗) = o (1)

where o (1) tends to zero as α∗ tends to zero, following [LM03, (337)]. Hence we have

C1 ≤ r (T ) + 1 + log

(
1

α∗

)
+ o (1) (A.164)

1

α∗
= 1 + log (E [V ])− E [log (V )] (A.165)

= 1 + log

(
E

[
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
])

− E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)]

(A.166)

(i)
= 1 + log

(
E
[
ρ2

11 |a|2 + ρ2
12 |b|2 + ρ2

12 |c|2 + T
])

− E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)]

(A.167)

(ii)

≤ 1 + log
(
ρ2

11T + ρ2
12T + T

)
(A.168)

− E

[
log

(
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

T∑
i=3

|w1i|2
)]

(A.169)

(iii)

≤ 1 + log
(
ρ2

11 + ρ2
12 + 1

)
+ log (T )− E

[
E
[
log
(
|ag11 + bg12 + w11|2 + 0

)∣∣ a, b]]
(A.170)

(iv)

≤ 1 + log
(
ρ2

11 + ρ2
12 + 1

)
+ log (T )− E

[
log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + 1

)]
+ γ log (e) (A.171)

(v)

≤ 1 + log
(
ρ2

11 + ρ2
12 + 1

)
+ log (T )− 0 + γ log (e) , (A.172)
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where (i) is using tower property of expectation and that given (a, b, c), ag11+bg12+w11, cg12+

w12 are sums of independent Gaussians, (ii) is using power constraints on a, b, c, (iii) is

because |cg12 + w12|2 +
∑T

i=3 |w1i|2 > 0 , (iv) is using Fact 5.1 on page 135 and (v) is because

log
(
ρ2

11 |a|2 + ρ2
12 |b|2 + 1

)
> 0. Hence

C1 ≤ r (T ) + 1 + log
(
1 + log

(
ρ2

11 + ρ2
12 + ρ2

12 + 1
)

+ log (T ) + γ log (e)
)

+ o (1) (A.173)

and the proof is complete.

A.8 Proof of Lemma 2.5

Here we prove that h
(
|ξ22|2

∣∣∣ |ξ11|2
)
.
= h

(
|ξ22|2

∣∣∣ |ξ11|2 , a, b, c
)

with |ξ11|2 , |ξ22|2 defined in

(2.44),2.46. For this proof, we just need to show that I
(
|ξ22|2 ; a, b, c

∣∣∣ |ξ11|2
)

has zero gDoF.

Now

I

(
|ξ22|2 ; a, b, c

∣∣∣∣ |ξ11|2
)
≤ I

(
|ξ22|2 ; a, b, c, |ξ11|2

)
.

We will show that I
(
|ξ22|2 ; a, b, c, |ξ11|2

)
has no gDoF. From [LM03, (32)] we have

I (U ;V ) ≤ E [log (V )]− h (V |U) + log (Γ (α))

+ α (1 + log (E [V ])− E [log (V )])− α log (α) (A.174)

for any α > 0 for channels whose output V takes values in R+. We will use this re-

sult to bound I
(
|ξ22|2 ; a, b, c, |ξ11|2

)
with U =

(
a, b, c, |ξ11|2

)
, V = |ξ22|2 for any distribu-

tion of a, b, c with the power constraint E
[
|a|2 + |b|2 + |c|2

]
≤ T . The result from [LM03]

can be applied assuming the channel induced by p
(
|ξ22|2

∣∣∣ a, b, c, |ξ11|2
)

satisfies the Borel

measurability conditions in [LM03, (Theorem 5.1)], i.e for any given Borel set B ⊂ R+,

fB (v) = p
(
B
∣∣∣ v =

(
a, b, c, |ξ11|2

))
is a Borel measurable function.

Recall that from (2.44) and (2.46), we have

|ξ11|2 = |ag11 + bg12 + w11|2 + |cg12 + w12|2 +
T∑
i=3

|w1i|2 ,

|ξ22|2 = |ag21 + bg22 + w21|2 + |cg22 + w22|2 +
T∑
i=3

|w2i|2
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−

∣∣∣(ag21 + bg22 + w21) (ag11 + bg12 + w11)∗ + (cg22 + w22) (cg12 + w12)∗ +
∑T

i=3 w2iw
∗
1i

∣∣∣2
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

.

We first consider log (E [V ])−E [log (V )] = E
[
log
(
|ξ22|2

)]
−h

(
|ξ22|2

∣∣∣ a, b, c, |ξ11|2
)

and show

that it is bounded independent of SNR. Note that we can manipulate |ξ22|2 as

|ξ22|2

=

(
|ag21 + bg22 + w21|2 + |cg22 + w22|2 +

T∑
i=3

|w2i|2
)

−
∣∣∣∣∣(ag21 + bg22 + w21)u∗1 + (cg22 + w22)u∗2 +

T∑
i=3

w2iu
∗
i

∣∣∣∣∣
2

(A.175)

=

∥∥∥∥∥∥∥∥∥∥
[ag21 + bg22 + w21, cg22 + w22, w23, . . . , w2T ]

− [ag21 + bg22 + w21, cg22 + w22, w23, . . . , w2T ]



u∗1

u∗2

.

.

u∗T


[u1, . . . , uT ]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

, (A.176)

where ‖·‖ indicates 2-norm for a vector and (ui) forms a unit norm complex vector

[u1, . . . , uT ] =

[
ag11 + bg12 + w11, cg12 + w12, w13, . . . , w1T

]
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

, (A.177)

|ξ22|2 =

∣∣∣∣∣ag21 + bg22 + w21 −
(

(ag21 + bg22 + w21)u∗1 + (cg22 + w22)u∗2 +
T∑
i=3

w2iu
∗
i

)
u1

∣∣∣∣∣
2

+

∣∣∣∣∣cg22 + w22 −
(

(ag21 + bg22 + w21)u∗1 + (cg22 + w22)u∗2 +
T∑
i=3

w2iu
∗
i

)
u2

∣∣∣∣∣
+

∣∣∣∣∣w23 −
(

(ag21 + bg22 + w21)u∗1 + (cg22 + w22)u∗2 +
T∑
i=3

w2iu
∗
i

)
u3

∣∣∣∣∣
2
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+ . . .

+

∣∣∣∣∣w2T −
(

(ag21 + bg22 + w21)u∗1 + (cg22 + w22)u∗2 +
T∑
i=3

w2iu
∗
i

)
uT

∣∣∣∣∣
2

(A.178)

(i)
=

T∑
i=1

∣∣∣∣∣η21κ1i + η22κ2i +
T∑
j=1

w2jκ(j+2)i

∣∣∣∣∣
2

, (A.179)

where in step (i) ηij are independent CN (0, 1) after the substitution gij = ρijηij, (κij)

are functions of a, b, c, ρij, ui obtained after collecting the coefficients of ηij, w2j; Note that

maxi,j (|κij|) ≥ 1. Now

E
[
log
(
|ξ22|2

)]
− h

(
|ξ22|2

∣∣∣∣ a, b, c, |ξ11|2
)

= E

log

 T∑
i=1

∣∣∣∣∣η21κ1i + η22κ2i +
T∑
j=1

w2jκ(j+2)i

∣∣∣∣∣
2


− h

 T∑
i=1

∣∣∣∣∣η21κ1i + η22κ2i +
T∑
j=1

w2jκ(j+2)i

∣∣∣∣∣
2
∣∣∣∣∣∣ a, b, c, |ξ11|2

 (A.180)

≤ E

log

 T∑
i=1

∣∣∣∣∣η21κ1i + η22κ2i +
T∑
j=1

w2jκ(j+2)i

∣∣∣∣∣
2


− h

 T∑
i=1

∣∣∣∣∣η21κ1i + η22κ2i +
T∑
j=1

w2jκ(j+2)i

∣∣∣∣∣
2
∣∣∣∣∣∣ {κij}i,j≤T

 , (A.181)

where the last step uses the fact that conditioning reduces entropy and Markovity(
a, b, c, |ξ11|2

) (
{κij}i,j≤T

) (∑T
i=1

∣∣∣η21κ1i + η22κ2i +
∑T

j=1w2jκ(j+2)i

∣∣∣2). Note that

η21, η22, w2j are independent of κij. Now it suffices to show that for any given set of constant

κ′ij the difference

E

log

 T∑
i=1

∣∣∣∣∣η21κ
′
1i + η22κ

′
2i +

T∑
j=1

w2jκ
′
(j+2)i

∣∣∣∣∣
2
−h

 T∑
i=1

∣∣∣∣∣η21κ
′
1i + η22κ

′
2i +

T∑
j=1

w2jκ
′
(j+2)i

∣∣∣∣∣
2


is uniformly bounded independent of κ′ij. We will show this by assuming |κ′11| =

maxi,j
(∣∣κ′ij∣∣). This is without loss of generality since ηij, wij are all i.i.d. CN (0, 1). Now

E

log

 T∑
i=1

∣∣∣∣∣η21κ
′
1i + η22κ

′
2i +

T∑
j=1

w2jκ
′
(j+2)i

∣∣∣∣∣
2
− h

 T∑
i=1

∣∣∣∣∣η21κ
′
1i + η22κ

′
2i +

T∑
j=1

w2jκ
′
(j+2)i

∣∣∣∣∣
2
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= E

log

 T∑
i=1

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2


− h

 T∑
i=1

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2
 (A.182)

(i)

≤ log

 T∑
i=1

E

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2


− h

 T∑
i=1

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2
 (A.183)

(ii)
= log

 T∑
i=1

∣∣∣∣κ′1iκ′11

∣∣∣∣2 +

∣∣∣∣κ′2iκ′11

∣∣∣∣2 +
T∑
j=1

∣∣∣∣∣κ
′
(j+2)i

κ′11

∣∣∣∣∣
2


− h

 T∑
i=1

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2
 (A.184)

(iii)

≤ log (T (T + 2))− h

 T∑
i=1

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2
 (A.185)

(iv)

≤ log (T (T + 2))− h

 T∑
i=1

∣∣∣∣∣η21
κ′1i
κ′11

+ η22
κ′2i
κ′11

+
T∑
j=1

w2j

κ′(j+2)i

κ′11

∣∣∣∣∣
2
∣∣∣∣∣∣ η22, w2j

 (A.186)

(v)

≤ log (T (T + 2)) +
7

2
log (e) , (A.187)

where (i) is using Jensen’s inequality, (ii) is using the fact that η21
κ′1i
κ′11

+η22
κ′2i
κ′11

+
∑T

j=1w2j

κ′
(j+2)i

κ′11

is Complex Gaussian, (iii) is because
|κ′ij|
|κ′11| ≤ 1 since |κ′11| = maxi,j

(∣∣κ′ij∣∣) (note that

maxi,j (|κ′ij|) ≥ 1 for a valid set of κ′ij, due to the way κij is defined), (iv) is because

conditioning reduces entropy and (v) is by invoking the result from Appendix A.9.

Now if the term log (E [V ])−E [log (V )] does not approach infinity with the SNR then the

desired result follows directly by choosing any fixed α > 0. When log (E [V ]) − E [log (V )]

does tend to infinity with SNR, following [LM03, (336)] we choose

α∗ = (1 + log (E [V ])− E [log (V )])−1 (A.188)

with α∗ ↓ 0 with the SNR and we have log (Γ (α∗)) = log
(

1
α∗

)
+ o (1) and α∗ log (α∗) = o (1)
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where o (1) tends to zero as α∗ tends to zero, following [LM03, (337)]. Hence we have

I
(
|ξ22|2 ; a, b, c, |ξ11|2

)
≤
(

log (T (T + 2)) +
7

2
log (e)

)
+ 1 + log

(
1

α∗

)
+ o (1) , (A.189)

1

α∗
= 1 + log

(
E
[
|ξ22|2

])
− E

[
log
(
|ξ22|2

)]
. (A.190)

Now

|ξ22|2 ≤ |ag21 + bg22 + w21|2 + |cg22 + w22|2 +
T∑
i=3

|w2i|2 . (A.191)

Hence

E
[
|ξ22|2

] (i)

≤ E
[(
ρ2

21 |a|2 + ρ2
22

(
|b|2 + |c|2

)
+ T

)]
, (A.192)

log
(
E
[
|ξ22|2

]) (ii)

≤ log
(
ρ2

21 + ρ2
22 + 1

)
+ log (T ) , (A.193)

where (i) is using the fact that given (a, b, c), ag21 + bg22 + w21,cg22 + w22 are sums of

independent Gaussians and (ii) is using the power constraint on a, b, c. Hence we have

1

α∗
≤ 1 + log

(
ρ2

21 + ρ2
22 + 1

)
+ log (T )− E

[
log
(
|ξ22|2

)]
. (A.194)

Now we lower bound E
[
log
(
|ξ22|2

)]
. Note that

|ξ22|2 = |ag21 + bg22 + w21|2 + |cg22 + w22|2 +
T∑
i=3

|w2i|2 (A.195)

−

∣∣∣(ag21 + bg22 + w21) (ag11 + bg12 + w11)∗ + (cg22 + w22) (cg12 + w12)∗ +
∑T

i=3w2iw
∗
1i

∣∣∣2
|ag11 + bg12 + w11|2 + |cg12 + w12|2 +

∑T
i=3 |w1i|2

(A.196)

is the magnitude squared of the projection of the Complex vector[
(ag21 + bg22 + w21) , (cg22 + w22) , w23, . . . , w2T

]
onto the subspace orthogonal to the Complex vector[

(ag11 + bg12 + w11) , (cg12 + w12) , w13, . . . , w1T

]
.
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Note that [(cg12 + w12)∗ ,− (ag11 + bg12 + w11)∗ , 0, . . . , 0] is orthogonal to[
(ag11 + bg12 + w11) , (cg12 + w12) , w13, . . . , w1T

]
.

Hence

|ξ22|2 ≥

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
ag21 + bg22 + w21, cg22 + w22, w23, . . . , w2T

]


cg12 + w12

− (ag11 + bg12 + w11)

0
...

0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

|ag11 + bg12 + w11|2 + |cg12 + w12|2

(A.197)

=
|(ag21 + bg22 + w21) (cg12 + w12)− (cg22 + w22) (ag11 + bg12 + w11)|2

|ag11 + bg12 + w11|2 + |cg12 + w12|2
(A.198)

and hence

E
[
log
(
|ξ22|2

)]
(A.199)

≥ E

[
log

(
|(ag21 + bg22 + w21) (cg12 + w12)− (cg22 + w22) (ag11 + bg12 + w11)|2

|ag11 + bg12 + w11|2 + |cg12 + w12|2

)]
= E

[
log
(
|(ag21 + bg22 + w21)u1 − (cg22 + w22)u2|2

)]
, (A.200)

where (u1, u2) is a unit norm complex vector independent of g2i, w2i. Hence

E
[
log
(
|ξ22|2

)]
(i)

≥ E
[
log
(
|au1|2 ρ2

21 + |bu1 − cu2|2 ρ2
22 + |u1|2 + |u2|2

)]
− γ log (e) (A.201)

(ii)

≥ E
[
log
(
|au1|2 ρ2

21 + |bu1 − cu2|2 ρ2
22 + 1

)]
− γ log (e) (A.202)

≥ −γ log (e) , (A.203)

where (i) is using the facts that given (a, b, c, u1, u2), (ag21 + bg22 + w21)u1− (cg22 + w22)u2

is Complex Gaussian distributed with variance |au1|2 ρ2
21 + |bu1 − cu2|2 ρ2

22 + |u1|2 + |u2|2 and

applying Fact 5.1 on page 135 together with Tower property of expectation. The step (ii) is

because (u1, u2) is a unit norm vector.
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Substituting (A.203) in (A.194) we get

1

α∗
≤ log

(
ρ2

21 + ρ2
22 + 1

)
+ 1 + log (T ) + γ log (e) (A.204)

= log
(
ρ2

21 + ρ2
22 + 1

)
+ r2 (T ) (A.205)

and hence by substituting the above in (A.189), we get

I
(
|ξ22|2 ; a, b, c, |ξ11|2

)
≤
(

log (T (T + 2)) +
7

2
log (e)

)
+ 1

+ log
(
log
(
ρ2

21 + ρ2
22 + 1

)
+ r2 (T )

)
+ o (1) , (A.206)

where r2 (T ) = 1 + log (T ) + γ log (e) is a function of T alone. Hence I
(
|ξ22|2 ; a, b, c, |ξ11|2

)
has zero gDoF. Now since

I

(
|ξ22|2 ; a, b, c

∣∣∣∣ |ξ11|2
)
≤ I

(
|ξ22|2 ; a, b, c, |ξ11|2

)
it follows that h

(
|ξ22|2

∣∣∣∣ |ξ11|2
)
.
= h

(
|ξ22|2

∣∣∣∣ |ξ11|2 , a, b, c
)

.

Also h

(
|ξ22|2

∣∣∣∣ |ξ11|2 , a, b, c
)
≤ E

[
log

(
eE
[
|ξ22|2

∣∣∣∣ a, b, c])] using the maximum en-

tropy result for positive random variables with given mean.

A.9 A lower bound on entropy of squared 2-norm of a Gaussian

vector

For complex li, ki, l for finite number of i’s with |ki| ≤ 1 and η ∼ CN (0, 1) we will show that

h

(
|η + l|2 +

∑
i

|kiη + li|2
)
≥ −7

2
log (e) . (A.207)

We have

h

(
|η + l|2 +

∑
i

|kiη + li|2
)

= h

(
|l|2 + 2Re

((
l∗ +

∑
i

l∗i ki

)
η

)
+ |η|2

(
1 +

∑
i

|ki|2
))

(A.208)
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= h

∣∣∣∣∣∣η
√

1 +
∑
i

|ki|2 +
l +
∑

i lik
∗
i√

1 +
∑

i |ki|
2

∣∣∣∣∣∣
2 . (A.209)

Now it suffices to show that h
(
|ηk′ + l′|2

)
> − (7/2) log (e) for |k′| ≥ 1. Now,

h
(
|ηk′ + l′|2

)
= h

(
|ηk′|2 + 2 |η| |k′| |l′| cos θ + |l′|2

)
, (A.210)

where θ is uniformly distributed in [0, 2π] and is independent of |η| since η is circularly

symmetric Gaussian.

h
(
|ηk′ + l′|2

)
≥ h

(
|ηk′|2 + 2 |η| |k′| |l′| cos θ + |l′|2

∣∣∣ θ) (A.211)

= h

((
|ηk′|+ |l′| cos θ

)2
∣∣∣∣ θ) (A.212)

Consider S = ||η| |k′|+ |l′| cos θ′| for a constant θ′. It suffices to show that h (S2) ≥
− (7/2) log (e) to complete the proof. Now η′ = |η| |k′| is Rayleigh distributed with prob-

ability density function pη′ (x) =
(
x/ |k′|2

)
exp

(
−x2/

(
2 |k′|2

))
and it easily follows that

pη′ (x) ≤ (1/ |k′|) exp (−1/2) ≤ exp (−1/2) since |k′| ≥ 1. Hence the probability density

function of S has ps (x) ≤ 2 exp (−1/2). Hence

h (S) = −E [log (ps (S))] (A.213)

≥ − log
(

2e−
1
2

)
(A.214)

Using [LM03, (316)] for rates in bits, we have

h
(
S2
)

= h (S) + E [log (S)] + 1 (A.215)

≥ − log
(

2e−
1
2

)
+ E

[
log

(∣∣∣∣∣|η| |k′|+ |l′| cos θ′

∣∣∣∣∣
)]

+ 1 (A.216)

=
1

2
log (e) + E

[
log

(∣∣∣∣∣|η| |k′|+ |l′| cos θ′

∣∣∣∣∣
)]

(A.217)

Now it suffices to show that E
[
log

(∣∣∣∣|η| |k′|+ |l′| cos θ′
∣∣∣∣)] is lower bounded by −4 log (e) to complete

the proof. For a random variable X we define h− (X) =
∫
p(x)>1

p (x) log (p (x)) dx. We have

h− (|η| |k′|) =

∫
pη′ (x)>1

pη′ (x) log (pη′ (x)) dx (A.218)
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= 0 (A.219)

since pη′ (x) ≤ (1/ |k′|) exp (−1/2) ≤ exp (−1/2). Using [LM03, (257)] to bound the expected

logarithm (E [log (|X|)] ≥ − 1
(1−α)2

log (e)− 1
α
h− (X) with h− (X) =

∫
p(x)>1

p (x) log (p (x)) dx

for any 0 < α < 1 ), we have

E [log (|X|)] ≥ − 1

(1− α)2 log (e)− 1

α
h− (X) , 0 < α < 1, (A.220)

E

[
log

(∣∣∣∣∣|η| |k′|+ |l′| cos θ′

∣∣∣∣∣
)]

(i)

≥ − 1(
1− 1

2

)2 log (e)− 2h− (|η| |k′|+ |l′| cos θ′) (A.221)

= −2h− (|η| |k′|)− 4 log (e) (A.222)

(ii)
= 0− 4 log (e) , (A.223)

where (i) is using [LM03, (257)] with α = 1
2

and (ii) is using (A.219). Now using (A.223) in

(A.217) the proof is complete.
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APPENDIX B

Proofs for Chapter 3

B.1 Proof of the modified cut set outer bound for the 2-relay

diamond network

Consider the cut in Figure B.1. We consider 1 × T vectors XS,YRi ,XRi ,YD as explained in

Section 5.2.

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure B.1: The cut to be analyzed.

Considering message M ∈
[
1, 2nTR

]
drawn uniformly, we have

nTR ≤ H (M) (B.1)

= I
(
Y n

D , Y
n

R2
;M
)

+H
(
M |Y n

D , Y
n

R2

)
. (B.2)

Now, H
(
W |Y n

D , Y
n

R2

)
→ nεn due to Fano’s inequality since M can be decoded from(

Y n
D , Y

n
R2

)
. Hence

nTR− nεn ≤ h
(
Y n

D , Y
n

R2

)
− h

(
Y n

D , Y
n

R2

∣∣M) , (B.3)

h
(
Y n

D , Y
n

R2

)
= h

(
Y n

R2

)
+ h

(
Y n

D |Y n
R2

)
(B.4)

187



(i)

≤
∑(

h (YR2k) + h
(
YDk|Y n

R2

))
(B.5)

(ii)
=
∑(

h (YR2k) + h
(
YDk|Y n

R2
, XR2k

))
(B.6)

(iii)

≤
∑

(h (YR2k) + h (YDk|XR2k)) , (B.7)

where (i) is using the fact that conditioning reduces entropy, (ii) is because XR2k is a function

of Y k
R2

which is within Y n
R2

; this step is different from the coherent case, where the transmitted

symbols at the relays are dependent only on previously received symbols. Here we are dealing

with vector symbols of size T for the noncoherent case, hence XR2k is a function of Y k
R2

, the

transmitted block can depend on the current received block (see Figure 3.3 on page 50 ).

The last step (iii) is using the fact that conditioning reduces entropy. Now,

h
(
Y n

DY
n

R2

∣∣M) =
∑(

h
(
YDk, YR2k|M,Y k−1

D , Y k−1
R2

))
(B.8)

=
∑(

h
(
YR2k|M,Y k−1

D , Y k−1
R2

)
+ h

(
YDk|M,Y k−1

D , Y k
R2

))
(B.9)

(i)

≥
∑(

h
(
YR2k|XSk,M, Y k−1

D , Y k−1
R2

))
+ h

(
YDk|XR1k, XR2k,M, Y k−1

D , Y k
R2

)
(B.10)

(ii)
=
∑

(h (YR2k|XSk) + h (YDk|XR1k, XR2k)) , (B.11)

where (i) is using the fact that conditioning reduces entropy and (ii) is due to the Markov

chains YR2k −XSk −
(
M,Y k−1

D , Y k−1
R2

)
and YDk − (XR1k, XR2k) −

(
M,Y k−1

D , Y k
R2

)
. Note that

YDk− (XR1k, XR2k)−
(
M,Y k−1

D , Y k
R2

)
is a Markov chain because given (XR1k, XR2k), the only

randomness in

YDk =
[
grd1k grd2k

] XR1k

XR2k

+WDk

is through (grd1k, grd2k,WDk) which is independent of
(
M,Y k−1

D , Y k
R2

)
. Similarly the Markovity

YR2k −XSk −
(
M,Y k−1

D , Y k−1
R2

)
can be verified. Hence we get

nTR− nεn ≤
∑

(h (YR2k) + h (YDk|XR2k)− h (YR2k|XSk)− h (YDk|XR1k, XR2k)) (B.12)

=
∑

(I (XSk;YR2k) + I (XR1k;YDk|XR2k)) . (B.13)

Due to symmetry, it follows for the second cut (Figure B.2) that

nTR− nεn ≤
∑

(I (XSk;YR1k) + I (XR2k;YDk|XR1k)) . (B.14)
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γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure B.2: The second cut.

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure B.3: The SIMO cut.

γsr1

γsr2

γrd1

γrd2

S D

R1

R2

Figure B.4: The MISO cut.

For MISO and SIMO cuts it easily follows that

nTR− nεn ≤
∑

I (XSk;YR1k, YR2k) , (B.15)

nTR− nεn ≤
∑

I (XR1k, XR2k;YD) . (B.16)

Using equations (B.13), (B.14), (B.15) and (B.16) and a time-sharing argument as used for

the usual cut-set outer bounds [CT12, (Theorem 15.10.1)], we get the outer bound

TC̄ = sup
p(XS,XR1

,XR2)
min

{
I (XS;YR) , I (XS;YR2) + I (XR1 ;YD|XR2) ,

I (XS;YR1) + I (XR2 ;YD|XR1) , I (XR;YD)
}
. (B.17)
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B.2 A generalization of the cut set outer bound for acyclic non-

coherent networks

Consider an acyclic noncoherent wireless network with coherence time T and independent

fading in the links and additive white Gaussian noise. We consider the transmitted vector

symbols Xi (transmitted from node i) and received vector symbols Yi (received at node i)

of length T . The fading is constant within each vector symbol but independent across the

different vector symbols.

Source Destination

A cut in an acyclic network

ΩcΩ

Figure B.5: A source-destination cut described by Ω in a general acyclic network. The set

Ω has the nodes in the source side of the cut, the set Ωc has the nodes in the destination

side of the cut.

Let L = |Ωc|, let (1) , (2) , . . . , (L) be the nodes in the set Ωc, the labeling of nodes is

done with a partial ordering; any transmit symbols goes ONLY from a node with smaller

numbering to larger numbering. Such a labeling exists since the network is acyclic. Let Xin(i)

denote all the transmit signals incoming to the node (i) and let XΩc denote all the transmit

signals in the destination side of the cut. We claim the following:

TR ≤
∑
i

(
h
(
Y(i)

∣∣Y(1), . . . , Y(i−1)

(
Xin(i)

⋂
XΩc

))
− h

(
Y(i)

∣∣Xin(i)

))
(B.18)
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and

TR ≤
∑
i

(
h
(
Y(i)

∣∣Y(1), . . . , Y(i−1), X(1), . . . , X(i−1)

)
− h

(
Y(i)

∣∣Xin(i)

))
(B.19)

for some joint distribution on X ′is and corresponding Y ′i s induced by the noncoherent chan-

nel. The proof is as follows.

Due to Fano’s inequality, we have

nTR− nεn ≤ I
(
Y n

(1), Y
n

(2), . . . , Y
n

(L);M
)

= h
(
Y n

(1), Y
n

(2), . . . , Y
n

(L)

)
− h

(
Y n

(1), Y
n

(2), . . . , Y
n

(L)

∣∣M)
h
(
Y n

(1), Y
n

(2), . . . , Y
n

(L)

)
=
∑
i

h
(
Y n

(i)

∣∣Y n
(1), . . . , Y

n
(i−1)

)
(B.20)

(i)

≤
∑
i

∑
k

h
(
Y(i)k

∣∣Y n
(1), . . . , Y

n
(i−1)

)
(B.21)

(ii)
=
∑
i

∑
k

h
(
Y(i)k

∣∣Y n
(1), . . . , Y

n
(i−1),

(
Xin(i)

⋂
XΩc

)
k

)
(B.22)

≤
∑
i

∑
k

h
(
Y(i)k

∣∣Y(1)k, . . . , Y(i−1)k,
(
Xin(i)

⋂
XΩc

)
k

)
, (B.23)

where (i) is because conditioning reduces entropy, (ii) is since
(
Xin(i)

⋂
XΩc

)
k

is a func-

tion of Y n
(1), . . . , Y

n
(i−1) because of the nature of labeling (instead we could have also used

X(1)k, . . . , X(i−1)k in the conditioning, which is also a function of Y n
(1), . . . , Y

n
(i−1))

Remark B.1. Note that IF we expanded

h
(
Y n

(1), Y
n

(2), . . . , Y
n

(L)

)
=
∑
k

h
(
Y(1)k, . . . , Y(L)k

∣∣Y k−1
(1) , . . . , Y k−1

(L)

)
as in the usual cut-set outer bound, then Xk

(1), . . . , X
k
(L) is NOT a function of Y k−1

(1) , . . . , Y k−1
(L) .

Due to the block structure, Xk
(1), . . . , X

k
(L) is a function of Y k

(1), . . . , Y
k

(L). This is similar to

that we explain in the derivation for the diamond network in (B.6) on page 188.

Now,

h
(
Y n

(1), Y
n

(2), . . . , Y
n

(L)

∣∣M) =
∑
i

h
(
Y n

(i)

∣∣M,Y n
(1), . . . , Y

n
(i−1)

)
(B.24)
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=
∑
i

∑
k

h
(
Y(i)k

∣∣M,Y n
(1), . . . , Y

n
(i−1), Y

k−1
(i)

)
(B.25)

(i)

≥
∑
i

∑
k

h
(
Y(i)k

∣∣Xin(i)k,M, Y n
(1), . . . , Y

n
(i−1), Y

k−1
(i)

)
(B.26)

(ii)
=
∑
i

∑
k

h
(
Y(i)k

∣∣Xin(i)k

)
, (B.27)

where (i) is because conditioning reduces entropy and (ii) is because of the Markov Chain

Y(i),k−Xin(i)k−
(
M,Y n

(1) . . . Y
n

(i−1), Y
k−1

(i)

)
. The Markovity holds because given Xin(i)k, Y(i)k is

dependent only on the additive Gaussian noise and the fading in the incoming links which are

independent of
(
M,Y n

(1), . . . , Y
n

(i−1), Y
k−1

(i)

)
. Using a time-sharing argument as in the usual

cut-set outer bound we get

TR ≤
∑
i

(
h
(
Y(i)

∣∣Y(1), . . . , Y(i−1),
(
Xin(i)

⋂
XΩc

))
− h

(
Y(i)

∣∣Xin(i)

))
(B.28)

for some joint distribution on X ′is and corresponding Y ′i s induced by the noncoherent chan-

nel. Similarly, if we had used X(1)k, . . . , X(i−1)k in (B.22) instead of
(
Xin(i)

⋂
XΩc

)
k
, we would

have obtained

TR ≤
∑
i

(
h
(
Y(i)

∣∣Y(1), . . . , Y(i−1), X(1), . . . , X(i−1)

)
− h

(
Y(i)

∣∣Xin(i)

))
. (B.29)

Remark B.2. The outer bound of the form

TR ≤ sup
p(X)

min
Ω
{r (p (X) ,Ω)} (B.30)

with min taken over all cuts and the sup taken over all probability distributions can be ob-

tained, with rate expression r (p (X) ,Ω) of the form taken from the RHS of (B.28) or (B.29).

Note that this would require different labeling of nodes depending on the cut, since to derive

(B.28) and (B.29), the nodes are labeled depending on the cut.
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B.3 Proof of Theorem 3.3: structure of the optimizing distribu-

tion

The cut-set outer bound from (3.7), can be rewritten as

TC̄ = sup
p(X)

Iout (p (X)) , (B.31)

where

Iout (p (X)) = min
{
I (XS;YR) , I (XS;YR2) + I (XR1 ;YD|XR2) ,

I (XS;YR1) + I (XR2 ;YD|XR1) , I (XR;YD)
}

(B.32)

Lemma B.1. (Invariance of Iout (p (X)) to post-rotations of X). Suppose that X has a

probability distribution p0 (X) that generates some Iout (p (X)). Then, for any unitary matrix

Φ, the “post-rotated” probability distribution, p1 (X) = p0

(
XΦ†

)
also generates Iout (p (X)).

Proof. This is an adaptation of the existing results for MIMO from [MH99, Lemma 1] to the

network case. We prove this by taking each term of Iout (p (X)) from (B.31). We give the

sample proof showing I (X1R1 ;Y1D|X1R2) = I (X0R1 ;Y0D|X0R2), where (X1R1 , X1R2 , X1S) in-

dicate a post-rotated version of (X0R1 , X0R2 , X0S) with a given unitary Φ†. Other terms follow

the same arguments for proof. Let grd =
[
grd1 grd2

]
and X0R = Transpose ([X0R1 , X0R2 ]),

then Y1D = grdX0RΦ† +WD. Hence we have

I (X1R1 ;Y1D|X1R2) = h
(
grdX0RΦ† +WD

∣∣X0R2Φ
†)− h (grdX0RΦ† +WD

∣∣X0RΦ†
)

(B.33)

(i)
= h

(
grdX0R +WDΦ

∣∣X0R2Φ
†)− h (grdX0R +WDΦ

∣∣X0RΦ†
)

(B.34)

(ii)
= h

(
grdX0R +WD

∣∣X0R2Φ
†)− h (grdX0R +WD

∣∣X0RΦ†
)

(B.35)

(iii)
= h

(
grdX0R +WD

∣∣X0R2

)
− h

(
grdX0R +WD

∣∣X0R

)
(B.36)

= I (X0R1 ;Y0D|X0R2) , (B.37)

where (i) is because unitary transformation preserves entropy, (ii) is because WD, WDΦ have

same distribution since WD has i.i.d. CN (0, 1) elements and Φ is unitary and (iii) is because

Φ is a given unitary matrix and can be removed from conditioning.
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Now, we show that he signal of the form X = LQ with L being a lower triangular random

matrix and Q being an isotropically distributed unitary matrix independent of L, achieves

the outer bound in (B.31). This is also an adaptation of the existing results, we follow the

techniques from [MH99, Theorem 2]. Let X0 be a random variable which is optimal for

the outer bound and I0 be the corresponding mutual information achieved. Now X0 can be

decomposed as X0 = LΦ′ using LQ decomposition with L upper diagonal and Φ′ unitary,

but they could be jointly distributed and Φ′ may not be isotropically unitary distributed.

Let Θ be an isotropically distributed unitary matrix that is statistically independent of L

and Φ′. Now, use X1 = X0Θ for signaling and let Y1 be the corresponding received signal.

Now,

I (X1R1 ,Θ;Y1D|X1R2) = I (X1R1 ,Θ;Y1D|X1R2) (B.38)

I (X1R1 ;Y1D|X1R2) + I (Θ;Y1D|X1R2X1R1) = I (Θ;Y1D|X1R2) + I (X1R1 ;Y1D|X1R2 ,Θ)

(B.39)

I (X1R1 ;Y1D|X1R2) + 0
(i)
= I (Θ;Y1D|X1R2) + I (X1R1 ;Y1D|X1R2 ,Θ)

(B.40)

I (X1R1 ;Y1D|X1R2)
(ii)

≥ I (X1R1 ;Y1D|X1R2 ,Θ) (B.41)

= I (X0R1Θ;Y1D|X0R2Θ,Θ) (B.42)

(iii)
= I (X0R1 ;Y0D|X0R2) , (B.43)

where (i) is because Y1D− (X1R2 , X1R1)−Θ forms a Markov chain, (ii) is due to the nonneg-

ativity of mutual information and (iii) is using Lemma B.1. Similarly it can be shown that

each term of Iout (p (X)) from (B.31) increases by choosing X1 = X0Θ for signaling instead

of X0. Hence without loss of generality, the signal of the form LQ = LΦ′Θ with Q = Φ′Θ

is optimal for the outer bound. Now, Q = Φ′Θ is also an isotropically distributed unitary

matrix and independent of Φ′ by the property of isotropically distributed matrices.
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B.4 Proof of Discretization Lemma (Lemma 3.1)

We have

ψ1 =TE
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + T
)]

− E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + ρ2
rd1ρ

2
rd2 |c|2 |a|2 + 1

)]
(B.44)

=E
[
f1

(
|a|2 , |b|2 , |c|2

)]
, (B.45)

ψ2 = (T − 1) log
(
ρ2

sr2

)
+ E

[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + 1

)]
+ (T − 1)E

[
log
(
ρ2

rd1 |c|2 + T − 1
)]

− E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2 + ρ2
rd1ρ

2
rd2 |c|2 |a|2 + 1

)]
(B.46)

= (T − 1) log
(
ρ2

sr2

)
+ E

[
f2

(
|a|2 , |b|2 , |c|2

)]
, (B.47)

where we also included the straight-forward definition of f1 (·) , f2 (·) in the previous equa-

tions.

Note that∣∣∣∣ ∂f2

∂ |a|2
∣∣∣∣ ≤ ρ2

rd2

ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + 1

+
ρ2

rd2

(
1 + ρ2

rd2 |c|2
)

ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + ρ2

rd1ρ
2
rd2 |c|2 |a|2 + 1

(B.48)

≤ρ2
rd2 +

ρ2
rd2

(
1 + ρ2

rd2 |c|2
)

ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + ρ2

rd1ρ
2
rd2 |c|2 |a|2 + 1

(B.49)

=ρ2
rd2 +

ρ2
rd2

1 + ρ2
rd2 |a|2 +

ρ2rd1|b|
2

1+ρ2rd2|c|
2

(B.50)

≤2ρ2
rd2, (B.51)

∣∣∣∣ ∂f2

∂ |b|2
∣∣∣∣ ≤ ρ2

rd1

ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + 1

+
ρ2

rd1

ρ2
rd2 |a|2 + ρ2

rd1 |b|2 + ρ2
rd1 |c|2 + ρ2

rd1ρ
2
rd2 |c|2 |a|2 + 1

(B.52)

≤2ρ2
rd1 (B.53)

≤2ρ2
rd2, (B.54)
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∣∣∣∣ ∂f2

∂ |c|2
∣∣∣∣ ≤ (T − 1) ρ2

rd1

ρ2
rd1 |c|2 + T − 1

+
ρ2

rd1

1 + ρ2
rd1 |c|2 +

ρ2rd1|b|
2

1+ρ2rd2|a|
2

(B.55)

≤ 2ρ2
rd1 (B.56)

≤ 2ρ2
rd2. (B.57)

Hence for
∣∣∣∣(|a|2 , |b|2 , |c|2)− (|a′|2 , |b′|2 , |c′|2)∣∣∣∣

2
≤
√

3/ρ2
rd2,

∣∣∣f2

(
|a|2 , |b|2 , |c|2

)
− f2

(
|a′|2 , |b′|2 , |c′|2

)∣∣∣ ≤ ∣∣∣∣(2ρ2
rd2, 2ρ

2
rd2, 2ρ

2
rd2

)∣∣∣∣
2

(√
3

ρ2
rd2

)
(B.58)

= 6 (B.59)

and in a similar manner as above, it can be shown that∣∣∣f1

(
|a|2 , |b|2 , |c|2

)
− f1

(
|a′|2 , |b′|2 , |c′|2

)∣∣∣ ≤ 6. (B.60)

Hence by considering a discrete version of the problem as

P2 :


maximize

E[|a|2]≤T,E[|b|2+|c|2]≤T
min {ψ1, ψ2}

Support
(
|a|2 , |b|2 , |c|2

)
=
{

0, 1
ρ2rd2

, 2
ρ2rd2

, . . . ,∞
}3

,

(B.61)

the optimum value achieved is within 6 of the optimum value of P1 (refer to Theorem 3.4 on

page 53 for definition of P1). Hence for an outer bound on degrees of freedom it is sufficient

to solve P2.

gDoF (P1) = gDoF (P2) (B.62)

Claim B.1. The new optimization problem

P3 :


maximize

E[|a|2]≤T,E[|b|2+|c|2]≤T
min {ψ1, ψ2}

Support
(
|a|2 , |b|2 , |c|2

)
=

{
0, 1

ρ2rd2
, 2
ρ2rd2

, . . . ,
bρ4rd2c
ρ2rd2

}3

= S1

(B.63)

achieves the same degrees of freedom as P2.

Proof. Here we show that it is sufficient to restrict

Support
(
|a|2 , |b|2 , |c|2

)
={0, 1/ρ2

rd2, 2/ρ
2
rd2, . . . , bρ4

rd2c /ρ2
rd2}

3
, for a tight outer bound
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on gDoF. The main idea behind this claim is that outside this support, the points have

very high power and hence due to the power constraints only very low probability can be

assigned to those points. The probabilities assigned is low enough, so that the terms of the

form E
[
log
(
ρ2

rd2 |a|2 + ρ2
rd1 |b|2 + ρ2

rd1 |c|2
)]

do not contribute much from those points.

Let the optimum value of P2 be achieved by a probability distribution {p∗i } at the points

{(l∗1i/ρ2
rd2, l

∗
2i/ρ

2
rd2, l

∗
3i/ρ

2
rd2)}with l∗ji ∈ Z. Let

S1 =

{
i : max

{
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

}
≤ ρ2

rd2

}
(B.64)

S2 =

{
i : max

{
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

}
> ρ2

rd2

}
(B.65)

and let max {l∗1i/ρ2
rd2, l

∗
2i/ρ

2
rd2, l

∗
3i/ρ

2
rd2} = l∗Mi/ρ

2
rd2 for labeling. Now,

ψ∗2 = (T − 1) log
(
ρ2

sr2

)
+
∑
i∈S1

p∗i f2

(
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

)
+
∑
i∈S2

p∗i f2

(
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

)
(B.66)

and ∑
i∈S2

p∗i f2

(
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

)
(i)

≤
∑
i∈S2

p∗i

(
log

(
2ρ2

rd2

l∗Mi

ρ2
rd2

+ 1

)
+ (T − 1) log

(
ρ2

rd2

l∗Mi

ρ2
rd2

+ T − 1

))
(B.67)

≤ T
∑
i∈S2

p∗i log (2l∗Mi + T ) , (B.68)

where (i) is because max {l∗1i/ρ2
rd2, l

∗
2i/ρ

2
rd2, l

∗
3i/ρ

2
rd2} = l∗Mi/ρ

2
rd2 for i ∈ S2 and using the

structure of the function f2 (·). Hence∑
i∈S2

p∗i f2

(
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

)
≤ T

∑
i∈S2

p∗i log (2l∗Mi + T ) (B.69)

(i)

≤ T
∑
i∈S2

p∗i log

(
2

∑
i∈S2

p∗i l
∗
Mi∑

j∈S2
p∗j

+ T

)
(B.70)

(ii)

≤ T
∑
i∈S2

p∗i log

(
4

Tρ2
rd2∑

j∈S2
p∗j

+ T

)
(B.71)

197



= T
∑
i∈S2

p∗i log

(
4Tρ2

rd2 + T
∑
j∈S2

p∗j

)
− T

∑
i∈S2

p∗i log

(∑
j∈S2

p∗j

)
(B.72)

(iii)

≤ T
∑
i∈S2

p∗i log
(
4Tρ2

rd2 + T
)

+ T
log (e)

e
(B.73)

(iv)

≤ T
2T

ρ2
rd2

log
(
4Tρ2

rd2 + T
)

+ T
log (e)

e
(B.74)

= T
2T

ρ2
rd2

×
(
log (T ) + log

(
4ρ2

rd2 + 1
))

+ T
log (e)

e
(B.75)

(v)

≤ T
2T

ρ2
rd2

×
(

log (T ) +
(
4ρ2

rd2 + 1
) log (e)

e

)
+ T

log (e)

e
(B.76)

(vi)

≤ 2T 2 ×
(

log (T ) + 5
log (e)

e

)
+ T

log (e)

e
(B.77)

(vii)
= r2 (T ) , (B.78)

where (i) is due to Jensen’s inequality, (ii) is due to the power constraint∑
i∈S2

p∗i (l∗Mi/ρ
2
rd2) ≤ 2T ⇒∑

i∈S2
p∗i l
∗
Mi ≤ 2Tρ2

rd2, (iii) is due to the fact 0 ≤∑i∈S2
p∗i ≤ 1

and −x log (x) ≥ log (e) /e for x ∈ [0, 1], (iv) is due to the fact
∑

i∈S2
p∗i (l∗Mi/ρ

2
rd2) ≤ 2T

(power constraint) and ρ2
rd2 < (l∗Mi/ρ

2
rd2)in S2 and hence

∑
i∈S2

p∗i ρ
2
rd2 ≤ 2T and

∑
i∈S2

p∗i ≤
2T/ρ2

rd2, (v) is due to the fact (1/x) log (x) ≤ log (e) /e for x ∈ [1,+∞), (vi) is assuming

ρ2
rd2 > 1 (otherwise Relay R2 does not contribute to gDoF and can be removed from the

network), (vii) is by defining r2 (T ) = 2T 2 × (log (T ) + 5 log (e) /e) + T log (e) /e.

Hence it follows that

ψ∗2 = (T − 1) log
(
ρ2

sr2

)
+
∑
i∈S1

p∗i f1

(
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

)
+ r2 (T ) (B.79)

and similarly it can be shown

ψ∗1 =
∑
i∈S1

p∗i f2

(
l∗1i
ρ2

rd2

,
l∗2i
ρ2

rd2

,
l∗3i
ρ2

rd2

)
+ r1 (T ) (B.80)

for some r1 (T ) independent of SNR. Hence it follows that

P3 :


maximize

E[|a|2]≤T,E[|b|2+|c|2]≤T
min {ψ1, ψ2}

Support
(
|a|2 , |b|2 , |c|2

)
=

{
0, 1

ρ2rd2
, 2
ρ2rd2

, . . . ,
bρ4rd2c
ρ2rd2

}3

= S1

(B.81)
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achieves the same degrees of freedom as P2, because any nonzero probability outside S1 in P2

can be assigned to (0, 0, 0) in P3, changing the value of objective function only by a constant

independent of SNR.

Hence

gDoF (P1) = gDoF (P2) = gDoF (P3) . (B.82)

Now, for

P4 :


maximize

E[|a|2+|b|2+|c|2]≤2T

min {ψ1, ψ2}

Support
(
|a|2 , |b|2 , |c|2

)
=

{
0, 1

ρ2rd2
, 2
ρ2rd2

, . . . ,
bρ4rd2c
ρ2rd2

}3

,

(B.83)

we have

gDoF (P3) ≤ gDoF (P4) . (B.84)

In fact it can be easily shown that

gDoF (P3) = gDoF (P4) (B.85)

by considering a new optimization problem with E
[
|a|2 + |b|2 + |c|2

]
≤ T and using the fact

that a constant scaling in a, b, c can be absorbed into SNR and using the behavior of log ()

under constant scaling. The detailed proof is omitted. We then will have

gDoF (P1) = gDoF (P2) = gDoF (P3) = gDoF (P4) . (B.86)

Now P4 is a linear program with finite number of variables and constraints (with a finite

optimum value because of Jensen’s inequality). The variables are {pi} and the maximum

number of nontrivial active constraints on {pi} is 3, derived from

ψ1 = ψ2 (B.87)

E
[
|a|2 + |b|2 + |c|2

]
= 2T (B.88)∑

pi = 1. (B.89)
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Trivial constraints are pi ≥ 0. Hence using the theory of linear programming there exists

an optimal {p∗i } with at most 3 nonzero values. Hence it follows that

P5 :



maximize∑3
i=1 pi(|ai|

2+|bi|+|ci|2)≤2T

min

{∑3
i=1 pif1

(
|ai|2 , |bi|2 , |ci|2

)
(T − 1) log (ρ2

sr2) +
∑3

i=1 pif2

(
|ai|2 , |bi|2 , |ci|2

)}
|ai|2 , |bi|2 , |ci|2 ≥ 0

(B.90)

has (P5) ≥ (P4). Note that we have allowed
(
|ai|2 , |bi|2 , |ci|2

)3
i=1

to be real positive variables

to be optimized, instead of the discrete values. But it is also clear that (P5) ≤ (P1). Now,

since gDoF (P1) = gDoF (P4) it follows that

gDoF (P1) = gDoF (P2) = gDoF (P3) = gDoF (P4) = gDoF (P5) . (B.91)

Now, we consider solving P5. We have

f1

(
|a|2 , |b|2 , |c|2

)
= T log

(
ρ2

rd2 |ai|2 + ρ2
rd1 |bi|2 + ρ2

rd1 |ci|2 + T
)

(B.92)

− log
(
ρ2

rd2 |ai|2 + ρ2
rd1 |bi|2 + ρ2

rd1 |ci|2 + ρ2
rd1ρ

2
rd2 |ci|2 |ai|2 + 1

)
(B.93)

f2

(
|ai|2 , |bi|2 , |ci|2

)
(B.94)

= log
(
ρ2

rd2 |ai|2 + ρ2
rd1 |bi|2 + 1

)
+ (T − 1) log

(
ρ2

rd1 |ci|2 + T − 1
)

− log
(
ρ2

rd2 |ai|2 + ρ2
rd1 |bi|2 + ρ2

rd1 |ci|2 + ρ2
rd1ρ

2
rd2 |ci|2 |ai|2 + 1

)
. (B.95)

If ρ2
rd2 |a|2 ≥ max

(
ρ2

rd1 |bi|2 , ρ2
rd1 |ci|2

)
, then it can be easily seen that setting |b′i|2 = 0

decreases f1 and f2 by at most a constant independent of SNR and then we get

f1

(
|ai|2 , |b′i|2 , |ci|2

)
.
=T log

(
ρ2

rd2 |ai|2 + T
)

− log
(
ρ2

rd2 |ai|2 + ρ2
rd1 |ci|2 + ρ2

rd1ρ
2
rd2 |ci|2 |ai|2 + 1

)
(B.96)

.
= (T − 1) log

(
ρ2

rd2 |ai|2 + 1
)
− log

(
ρ2

rd1 |ci|2 + 1
)

(B.97)

f2

(
|ai|2 , |b′i|2 , |ci|2

)
.
= log

(
ρ2

rd2 |ai|2 + 1
)

+ (T − 1) log
(
ρ2

rd1 |ci|2 + T − 1
)
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− log
(
ρ2

rd2 |ai|2 + ρ2
rd1 |ci|2 + ρ2

rd1ρ
2
rd2 |ci|2 |ai|2 + 1

)
(B.98)

.
= (T − 2) log

(
ρ2

rd1 |ci|2 + 1
)
. (B.99)

If ρ2
rd2 |a|2 < max

(
ρ2

rd1 |bi|2 , ρ2
rd1 |ci|2

)
, then setting |b′i|2 = |c′i|2 =

(
|bi|2 + |ci|2

)
/2 = |di|2

, |ai|2 = 0 decreases f1 and f2 by at most a constant independent of SNR and in this case

f1

(
|a′i|2 = 0, |b′i|2 = |di|2 , |c′i|2 = |di|2

)
.
= T log

(
ρ2

rd1 |di|2 + 1
)

− log
(
ρ2

rd1 |di|2 + 1
)

(B.100)

.
= (T − 1) log

(
ρ2

rd1 |di|2 + 1
)

(B.101)

f2

(
|a′i|2 = 0, |b′i|2 = |di|2 , |c′i|2 = |di|2

)
(B.102)

.
= log

(
ρ2

rd1 |di|2 + 1
)

+ (T − 1) log
(
ρ2

rd1 |di|2 + T − 1
)

− log
(
ρ2

rd1 |di|2 + 1
)

(B.103)

.
= (T − 1) log

(
ρ2

rd1 |di|2 + 1
)
. (B.104)

Hence for the following optimization problem P6 with mass points
(
|ai|2 , 0, |ci|2

)
with prob-

ability p1i and mass points
(
0, |di|2 , |di|2

)
with probability p2i,

P6 :



maximize min

{ 3∑
i=1

p1i

(
(T − 1) log

(
ρ2

rd2 |a1i|2 + 1
)
− log

(
ρ2

rd1 |c1i|2 + 1
))

+
3∑
i=1

p2i

(
(T − 1) log

(
ρ2

rd1 |d2i|2 + 1
))
,

(T − 1) log
(
ρ2

sr2

)
+

3∑
i=1

p1i

(
(T − 2) log

(
ρ2

rd1 |c1i|2 + 1
))

+
3∑
i=1

p2i

(
(T − 1) log

(
ρ2

rd1 |d2i|2 + 1
))}

∑3
i=1 p1i

(
|a1i|2 + |c1i|2

)
+
∑3

i=1 2p2i |d2i|2 ≤ 2T

|a1i|2 , |c1i|2 , |d2i|2 ≥ 0

(B.105)
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we have

gDoF (P1) = gDoF (P2) = gDoF (P3) = gDoF (P4) = gDoF (P5) = gDoF (P6) . (B.106)

Now, we claim that multiple mass points of the form
(
|a1i|2 , 0, |c1i|2

)
with probability p1i

can be replaced by a single point
(
|a1|2 , 0, |c1|2

)
.

Claim B.2. There exists c1 such that
∑

i p1i log
(
ρ2
rd1 |c1|2 + 1

)
=
∑

i p1i log
(
ρ2
rd1 |c1i|2 + 1

)
with

∑
i p1i |c1|2 ≤

∑
i p1i |c1i|2.

Proof. We have by Jensen’s inequality

∑
i

p1i log

(
ρ2

rd1

∑
j p1j |c1j|2∑

j p1j

+ 1

)
≥
∑
i

p1i log
(
ρ2

rd1 |c1i|2 + 1
)
. (B.107)

Hence there exists c1 with

|c1|2 ≤
∑

j p1j |c1j|2∑
j p1j

(B.108)

such that ∑
i

p1i log
(
ρ2

rd1 |c1|2 + 1
)

=
∑
i

p1i log
(
ρ2

rd1 |c1i|2 + 1
)
. (B.109)

Also, due to |c1|2 ≤
(∑

j p1j |c1j|2
)
/
(∑

j p1j

)
, we have

∑
j p1j |c1|2 ≤

∑
j p1j |c1j|2, hence

the power constraint is not violated.

Hence we reduce {c1i}3
i=1 to a single point c1. Similar procedure can be carried out with

a1i and d2i and we get

P7 :



maximize min

{
p1

(
(T − 1) log

(
ρ2

rd2 |a1|2 + 1
)
− log

(
ρ2

rd1 |c1|2 + 1
))

+ (T − 1) p2 log
(
ρ2

rd1 |d2|2 + 1
)
, (T − 1) log (ρ2

sr2)

+ (T − 2) p1 log
(
ρ2

rd1 |c1|2 + 1
)

+ (T − 1) p2 log
(
ρ2

rd1 |d2|2 + 1
)}

p1

(
|a1|2 + |c1|2

)
+ 2p2 |d2|2 ≤ 2T

|a1|2 , |c1|2 , |d2|2 ≥ 0,

(B.110)
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gDoF (P1) = gDoF (P2) = · · · = gDoF (P6) = gDoF (P7) . (B.111)

P7 has
(
|a1|2 , 0, |c1|2

)
with probability p1 and

(
0, |d2|2 , |d2|2

)
with probability p2. Since a

constant power scaling does not affect gDoF for the problem, with P8 defined as

P8 :



maximize min

{
p1

(
(T − 1) log

(
ρ2

rd2 |a1|2 + 1
)
− log

(
ρ2

rd1 |c1|2 + 1
))

+ (T − 1) p2 log
(
ρ2

rd1 |d2|2 + 1
)
, (T − 1) log (ρ2

sr2)

+ (T − 2) p1 log
(
ρ2

rd1 |c1|2 + 1
)

+ (T − 1) p2 log
(
ρ2

rd1 |d2|2 + 1
)}

p1 |a1|2 ≤ T, p1 |c1|2 ≤ T, p2 |d1|2 ≤ T/2

|a1|2 , |c1|2 , |d2|2 ≥ 0,

(B.112)

we can show that

gDoF (P1) = gDoF (P2) = · · · = gDoF (P7) = gDoF (P8) . (B.113)

Now, with p1 |a1|2 ≤ T ,

p1 (T − 1) log
(
ρ2

rd2 |a1|2 + 1
)
≤ p1 (T − 1) log

(
ρ2

rd2

T

p1

+ 1

)
= p1 (T − 1) log

(
ρ2

rd2T + p1

)
− p1 (T − 1) log (p1)

(i)

≤ p1 (T − 1) log
(
ρ2

rd2T + 1
)

+ (T − 1)
log (e)

e
, (B.114)

where (i) is using −p1 log (p1) ≤ log (e) /e. Hence it suffices to use |a1|2 ≤ T for the optimal

value without losing gDoF. Choosing a larger value does not improve gDoF due to (B.114).

Similarly keeping |c1|2 ≤ T , |d1|2 ≤ T/2 is sufficient to achieve the gDoF. Note that for P8

the objective function is increasing in |a1|2, |d2|2. Hence by choosing |a1|2 = T , |d2|2 = T/2,

we get a gDoF-optimal solution. Hence by choosing |a1|2 = T , |d2|2 = T/2 and including

the extra constraint |c1|2 ≤ T (which makes the constraint p1 |c1|2 ≤ T inactive), and also
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ρ2
rdi = SNRγrdi , ρ2

sri = SNRγsri , we obtain an equivalent optimization problem:

P9 :



maximize min

{
p1

(
(T − 1) γrd2 log (SNR)− log

(
SNRγrd1 |c1|2 + 1

))
+ (T − 1) p2γrd1 log (SNR) , (T − 1) γsr2 log (SNR)

+ (T − 2) p1 log
(
SNRγrd1 |c1|2 + 1

)
+ (T − 1) p2γrd1 log (SNR)

}
|c1|2 ≤ T, p1 + p2 = 1, |c1|2 ≥ 0.

(B.115)

We relabel p1 = pλ, p2 = 1− pλ and complete the proof.

B.5 Proof of Theorem 3.14

Following the notation from the statement of Theorem 3.14 on page 80, we can equivalently

use

X =

 [ α1 0 0 . . 0
]
Q1[

α2 0 0 . . 0
]
Q2

 (B.116)

where Q1, Q2 are independent T × T isotropically distributed unitary matrices and α1, α2

are chosen independently as

α1 ∼ a1

√
1

2
χ2 (2T ), (B.117)

α1 ∼ a2

√
1

2
χ2 (2T ), (B.118)

where χ2 (k) is chi-squared distributed. This choice will induce
[
αi 0 0 . . 0

]
Qi =

αiqi to be T dimensional random vectors with i.i.d. aiCN (0, 1) components, where qi are

T dimensional unitary isotropic distributed row vectors (see Section 3.4.1.1 on page 67 for

details on chi-squared distribution).

With this choice we have

E
[
Y †Y

∣∣X1, X2

] (i)
= Q†1K1Q1 +Q†2K2Q2 + IT×T (B.119)
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h (Y |X)
.
= E

[
log
(

det
(
Q†1K1Q1 +Q†2K2Q2 + IT×T

))]
(B.120)

(ii)
= E

[
log
(

det
(
K1 +Q†2K2Q2 + IT×T

))]
, (B.121)

where in step (i) we have

K1 =


ρ2

11 |α1|2 0 0 . . 0

0 0 .

. . .

0 . . . 0

 , K2 =


ρ2

12 |α2|2 0 0 . . 0

0 0 .

. . .

0 . . . 0


and in step (ii) Q1 is absorbed using properties of determinants and unitary matrices. Now,

∆ = det
(
K1 +Q†2K2Q2 + IT×T

)
(B.122)

(i)
=ρ2

11 |α1|2 det
(

Cofactor
(
Q†2K2Q2 + IT×T , 1, 1

))
+ det

(
Q†2K2Q2 + IT×T

)
(B.123)

=ρ2
11 |α1|2 det

(
Cofactor

(
Q†2K2Q2 + IT×T , 1, 1

))
+ ρ2

12 |α2|2 + 1, (B.124)

where (i) is due of the structure of K1 and the property of determinants. Now, with q2 being

the first row of Q2 (q2 will be an isotropically distributed unit vector), we get

Q†2K2Q2 = q†2
(
ρ2

12 |α2|2 q2

)
. (B.125)

Hence

Cofactor
(
Q†2K2Q2 + IT×T , 1, 1

)
= η†2

(
ρ2

12 |α2|2 η2

)
+ I(T−1)×(T−1), (B.126)

where η1 is the row vector formed with the last T − 1 components of q2. And hence

det
(

Cofactor
(
Q†2K2Q2 + IT×T , 1, 1

))
= det

(
η†2
(
ρ2

12 |α2|2 η2

)
+ I(T−1)×(T−1)

)
(B.127)

= ρ2
12 |α2|2 η2η

†
2 + 1, (B.128)
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where the last step followed due to matrix theory results on determinants of matrices of the

form (identity+column·row). Hence

∆ = ρ2
11 |α1|2 + ρ2

21 |α2|2 + ρ2
11 |α1|2 ρ2

21 |α2|2 η2η
†
2 + 1 (B.129)

h (Y |X)
.
= E

[
log
(
ρ2

11 |α1|2 + ρ2
21 |α2|2 + ρ2

11 |α1|2 ρ2
21 |α2|2 η2η

†
2 + 1

)]
(B.130)

(i)

≤ E
[
log
(
ρ2

11 |α1|2 + ρ2
21 |α2|2 + ρ2

11 |α1|2 ρ2
21 |α2|2 + 1

)]
(B.131)

= E
[
log
((

1 + ρ2
11 |α1|2

) (
1 + ρ2

21 |α2|2
))]

(B.132)

(ii).
= log

((
1 + ρ2

11 |a1|2
) (

1 + ρ2
21 |a2|2

))
, (B.133)

where (i) followed since η2η
†
2 ≤ 1 because η2 was a subvector of a unit vector, (ii) is because

αi ∼ ai

√
1
2
χ2 (2T ) and using Fact 3.3 for chi-squared distributed random variables. Hence

h (Y |X)
.

≤ log
((

1 + ρ2
11 |a1|2

) (
1 + ρ2

21 |a2|2
))
. (B.134)

B.6 Proof of Lemma 3.4

In this appendix, we prove that log
(
E
[
|w|2 /

(
1 + |g + w|2

)]) .

≤ log (1/ρ2). We have

E

[
|w|2

1 + |g + w|2

]
(i)
= E

[
|w|2

1 + |w|2 + |g|2 + 2 |w| |g| cos (θ)

]
(B.135)

(ii)
= E

 2π |w|2√
1 + 2

(
|w|2 + |g|2

)
+
(
|w|2 − |g|2

)2

 (B.136)

≤ E

 2π |w|2√
1 +

(
|w|2 − |g|2

)2

 , (B.137)

where (i) is using the property of independent circularly symmetric Gaussians w, g to in-

troduce θ uniformly distributed in [0, 2π] independent of |w| , |g| and (ii) is using the Tower

property of expectation and by integrating over θ (integration can be easily verified in Math-

ematica).
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Hence

E

[
1

2π

|w|2

1 + |g + w|2

]
≤E

 |w|2√
1 +

(
|w|2 − |g|2

)2

 (B.138)

≤E
[

|w|2

|g|2 − |w|2
1{|g|2>|w|2+1}

]

+ E

[
|w|2

|w|2 − |g|2
1{|w|2>|g|2+1}

]
+ E

[
|w|2 1{||w|2−|g|2|≤1}

]
(B.139)

(i)
=
ρ2 · Γ

(
0, 1

ρ2

)
(ρ2 + 1)2

+ E

[
|w|2

|w|2 − |g|2
1{|w|2>|g|2+1}

]

+
−e−1/ρ2ρ4 + ρ4 − 3ρ2

e
+ 2ρ2 − 2

e
+ 1

(ρ2 + 1)2
(B.140)

(ii)

≤ ρ
2e
− 1
ρ2 ln (1 + ρ2)

(ρ2 + 1)2
+ E

[
|w|2

|w|2 − |g|2
1{|w|2>|g|2+1}

]

+
−e−

1
ρ2 ρ4 + ρ4 − 3ρ2

e
+ 2ρ2 − 2

e
+ 1

(ρ2 + 1)2
, (B.141)

where (i) is obtained by evaluating E
[
|w|2

|g|2−|w|2 1{|g|2>|w|2+1}
]

and E
[
|w|2 1{||w|2−|g|2|<1}

]
(integration

can be easily verified in Mathematica). Also, Γ (0, x) is the incomplete gamma function, (ii)

is using the inequality Γ (0, x) = E1 (x) ≤ e−x ln (1 + 1/x), where E1 (x) =
∫∞
x

e−t

t
dt is the

exponential integral.

Now,

E

[
|w|2

|w|2 − |g|2
1{|w|2>|g|2+1}

]
=

∫ ∞
s=0

(∫ ∞
r=s+1

r

r − se
−r 1

ρ2
e
− s
ρ2 dr

)
ds (B.142)

=

∫ ∞
s=0

1

ρ2
e
− s
ρ2

(∫ ∞
r=s+1

e−rdr +

∫ ∞
r=s+1

s

r − se
−rdr

)
ds

(B.143)

=

∫ ∞
s=0

1

ρ2
e
− s
ρ2

(
e−s−1 +

∫ ∞
r=s+1

se−s

r − se
−r+sdr

)
ds (B.144)

(i)
=

∫ ∞
s=0

1

ρ2
e
− s
ρ2
(
e−s−1 + se−sE1 (1)

)
ds (B.145)
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=
1

1 + ρ2
− ρ2E1 (1)

(ρ2 + 1)2
, (B.146)

where (i) is using change of variables and the formula for Exponential integral E1 (x) =∫∞
x

e−t

t
dt. Also, E1 (1) ≈ 0.219384.

Hence it follows that

E

[
|w|2

1 + |g + w|2

]
≤ρ

2e
− 1
ρ2 ln (1 + ρ2)

(ρ2 + 1)2
+

1

1 + ρ2
− ρ2E1 (1)

(ρ2 + 1)2

+
−e−

1
ρ2 ρ4 + ρ4 − 3ρ2

e
+ 2ρ2 − 2

e
+ 1

(ρ2 + 1)2
(B.147)

and hence

log

(
E

[
|w|2

1 + |g + w|2

])
.

≤ log

(
1

ρ2

)
. (B.148)
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APPENDIX C

Proofs for Chapter 4

C.1 Proof of achievability for non-feedback case

We evaluate the term in the first inner bound inequality (5.5a). The other terms can be

similarly evaluated.

I
(
X1;Y1, g1|U2

) (a)
= I

(
X1;Y1|U2, g1

)
(C.1)

= h
(
Y1|U2, g1

)
− h

(
Y1|X1, U2, g1

)
, (C.2)

h
(
Y1|U2, g1

)
= h

(
g11X1 + g21X2 + Z1|U2, g1

)
(C.3)

= h
(
g11X1 + g21Xp2 + Z1| g1

)
, (C.4)

variance
(
g11X1 + g21Xp2 + Z1| g1

)
= |g11|2 + λp2 |g21|2 + 1,

∴ h
(
Y1|U2, g1

)
= E

[
log
(
|g11|2 + λp2 |g21|2 + 1

)]
+ log (2πe) , (C.5)

h
(
Y1|X1, U2, g1

)
= h

(
g11X1 + g21X2 + Z1|X1, U2, g1

)
(C.6)

= h
(
g21Xp2 + Z1| g1

)
(C.7)

= E
[
log
(

1 + λp2 |g21|2
)]

+ log (2πe)

(b)

≤ E
[
log
(

1 + |g21|2 /INR2

)]
+ log (2πe) (C.8)

(c)

≤ log (2) + log (2πe) (C.9)
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∴ I
(
X1;Y1, g1|U2

)
≥ E

[
log
(
|g11|2 + λp2 |g21|2 + 1

)]
− 1,

where (a) uses independence, (b) is because λpi ≤ 1
INRi

, and (c) follows from Jensen’s in-

equality.

C.2 Proof of outer bounds for non-feedback case

Note that we have the notation g = [g11, g21, g22, g12], S1 = g12X1 +Z2, and S2 = g21X2 +Z1.

Our outer bounding steps are valid while allowing X1i to be a function of
(
W1, g

n
)
, thus

letting transmitters have instantaneous and future CSIT. On choosing a uniform distribution

of messages we get

n(R1 + 2R2 − εn)

≤ I
(
W1;Y n

1 , S
n
1 , g

n
)

+ I
(
W2;Y n

2 , g
n
)

+ I
(
W2;Y n

2 , S
n
2 , X

n
1 , g

n
)

(C.10)

= I
(
W1;Y n

1 , S
n
1 | gn

)
+ I

(
W2;Y n

2 | gn
)

+ I
(
W2;Y n

2 , S
n
2 |Xn

1 , g
n
)

(C.11)

= I
(
W1;Sn1 | gn

)
+ I

(
W1;Y n

1 |Sn1 , gn
)

+ I
(
W2;Y n

2 | gn
)

+ I
(
W2;Sn2 |Xn

1 , g
n
)

+ I
(
W2;Y n

2 |Xn
1 , S

n
2 , g

n
)

= h
(
Sn1 | gn

)
− h

(
Sn1 |W1, g

n
)

+ h
(
Y n

1 |Sn1 , gn
)

− h
(
Y n

1 |W1, S
n
1 , g

n
)

+ h
(
Y n

2 | gn
)
− h

(
Y n

2 |W2, g
n
)

+ h
(
Sn2 |Xn

1 , g
n
)
− h

(
Sn2 |Xn

1 ,W2, g
n
)

+ h
(
Y n

2 |Xn
1 , S

n
2 , g

n
)
− h

(
Y n

2 |Xn
1 ,W2, S

n
2 , g

n
)

(C.12)

= h
(
Sn1 | gn

)
− h (Zn2 ) + h

(
Y n

1 |Sn1 , gn
)
− h

(
Sn2 | gn

)
+ h

(
Y n

2 | gn
)
− h

(
Sn1 | gn

)
+ h

(
Sn2 | gn

)
− h (Zn1 ) + h

(
Y n

2 |Xn
1 , S

n
2 , g

n
)
− h (Zn2 ) (C.13)

= h
(
Y n

1 |Sn1 , gn
)

+ h
(
Y n

2 | gn
)

+ h
(
Y n

2 |Xn
1 , S

n
2 , g

n
)
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− h (Zn1 )− 2h (Zn2 ) (C.14)

(a)

≤
∑[

h
(
Y1i|S1i, g

n
)
− h (Z1i)

]
+
∑[

h
(
Y2i|gn

)
− h (Z2i)

]
+
∑[

h
(
Y2i|X1i, S2i, g

n
)
− h (Z2i)

]
(C.15)

= Egn
[∑(

h
(
Y1i|S1i, g

n
)
− h (Z1i)

)]
+ Egn

[∑(
h
(
Y2i|gn

)
− h (Z2i)

)]
+ Egn

[∑(
h
(
Y2i|X1i, S2i, g

n
)
− h (Z2i)

)]
(C.16)

(b)

≤ nE
[
log
(

1 + |g21|2 + |g11|2 /
(

1 + |g12|2
))]

+ nE
[
log
(

1 + |g12|2 + |g22|2
)]

+ nE
[
log
(

1 + |g22|2 /
(

1 + |g21|2
))]

, (C.17)

where (a) is due to the fact that conditioning reduces entropy and (b) follows from Equations

[ETW08, (50)] , [ETW08, (51)] and [ETW08, (52)]. Note that in the calculation of step (b)

we allow the symbols X1i, X2i to depend on gn, but since gn is available in conditioning the

calculation proceeds similar to that in [ETW08].

n(R1 +R2 − εn) (C.18)

≤ I
(
W1;Y n

1 , g
n
)

+ I
(
W2;Y n

2 , S
n
2 , X

n
1 , g

n
)

(C.19)

= I
(
W1;Y n

1 | gn
)

+ I
(
W2;Y n

2 , S
n
2 |Xn

1 , g
n
)

(C.20)

= I
(
W1;Y n

1 | gn
)

+ I
(
W2;Sn2 |Xn

1 , g
n
)

+ I
(
W2;Y n

2 |Xn
1 , S

n
2 , g

n
)

(C.21)

= h
(
Y n

1 | gn
)
− h

(
Y n

1 |W1, g
n
)

+ h
(
Sn2 |Xn

1 , g
n
)
− h

(
Sn2 |Xn

1 ,W2, g
n
)

+ h
(
Y n

2 |Xn
1 , S

n
2 , g

n
)
− h

(
Y n

2 |Xn
1 ,W2, S

n
2 , g

n
)

(C.22)

= h
(
Y n

1 | gn
)
− h

(
Sn2 | gn

)
+ h

(
Sn2 | gn

)
− h (Zn1 ) + h

(
Y n

2 |Xn
1 , S

n
2 , g

n
)
− h (Zn2 ) (C.23)

= h
(
Y n

1 | gn
)

+ h
(
Y n

2 |Xn
1 , S

n
2 , g

n
)
− h (Zn1 )− h (Zn2 ) (C.24)

(a)

≤
∑[

h
(
Y1i|gn

)
− h (Z1i)

]
+
∑[

h
(
Y2i|X1i, S2i, g

n
)
− h (Z2i)

]
(C.25)
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= Egn
[∑(

h
(
Y1i|gn

)
− h (Z1i)

)]
+ Egn

[∑(
h
(
Y2i|X1i, S2i, g

n
)
− h (Z2i)

)]
(C.26)

(b)

≤ nE
[
log
(

1 + |g21|2 + |g11|2
)]

+ nE
[
log
(

1 + |g22|2 /
(

1 + |g21|2
))]

, (C.27)

where (a) is due to the fact that conditioning reduces entropy and (b) again follows from

Equations [ETW08, (51)] and [ETW08, (52)].

C.3 Proof of Lemma 4.2

We have F (w) ≤ awb for w ∈ [0, ε], where a ≥ 0, b > 0, 1 ≥ ε > 0. Now using integration by

parts we get

E [ln (W )] ≥
∫ 1

0

f (w) ln (w) dw (C.28)

=

∫ ε

0

f (w) ln (w) dw +

∫ 1

ε

f (w) ln (w) dw (C.29)

= [F (w) ln (w)]ε0 −
∫ ε

0

F (w)
1

w
dw +

∫ 1

ε

f (w) ln (w) dw (C.30)

≥
[
awb ln (w)

]ε
0
−
∫ ε

0

awb
1

w
dw + ln (ε) (C.31)

≥ aεb ln (ε)− aεb

b
+ ln (ε) . (C.32)

Note that ln (w) is negative in the range [0, 1), thus we get the desired inequalities in the

last two steps.

C.4 Proof of Corollary 4.9

The rate region of non-feedback case in given in Equation (4.13) can be reduced to the rate

region for a channel without fading. LetR′NFB be the approximately optimal Han-Kobayashi

rate region of IC [ETW08] with equivalent channel strengths SNRi := E
[
|gii|2

]
for i = 1, 2,
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and INRi := E
[
|gij|2

]
for i 6= j. Then for a constant c′ we have

R′NFB ⊇ RNFB ⊇ R′NFB − c′. (C.33)

This can be verified by proceeding through each inner bound equation. For example, con-

sider the first inner bound Equation (4.13a) R1 ≤ E
[
log
(
1 + |g11|2 + λp2 |g21|2

)]
− 1. The

corresponding equation in R′NFB is R1 ≤ log (1 + SNR1 + λp2INR1)− 1. Now

log (1 + SNR1 + λp2INR1)− 1
(a)

≥ E
[
log
(
1 + |g11|2 + λp2 |g21|2

)]
− 1 (C.34)

(b)

≥ (log (1 + SNR1 + λp2INR1)− 1)− 2cJG, (C.35)

where (a) is due to Jensen’s inequality and (b) is using logarithmic Jensen’s gap result twice.

Due to (C.34), (C.35) it follows that the first inner bound equation for fading case is in

constant gap with that of static case. Similarly, by proceeding through each inner bound

equation, it follows that R′NFB ⊇ RNFB ⊇ R′NFB − c′ for a constant c′.

C.5 Proof of Theorem 4.10 (Fast fading interference multiple ac-

cess channel)

We have the following achievable rate region for from fast fading interference multiple access

channel, by using the scheme from [PDT09] by considering
(
Y1, g1

)
,
(
Y2, g2

)
as the outputs

at the receivers.

R1 ≤ I
(
X1;Y1, g1|X2

)
(C.36)

R2 ≤ I
(
X2;Y2, g2|U1

)
(C.37)

R2 ≤ I
(
X2;Y1, g2|X1

)
(C.38)

R1 +R2 ≤ I
(
X1X2;Y1, g1

)
(C.39)

R1 +R2 ≤ I
(
X2, U1;Y2, g2

)
+ I

(
X1;Y1, g1|U1, X2

)
(C.40)

R1 + 2R2 ≤ I
(
X2, U1;Y2, g2

)
+ I

(
X1, X2;Y1, g1|U1

)
(C.41)

with mutually independent Gaussian input distributions U1, Xp1, X2

U1 ∼ CN (0, λc1) , Xp1 ∼ CN (0, λp1) , (C.42)
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X1 = U1 +Xp1, X2 ∼ CN (0, 1) , (C.43)

where λc1 + λp1 = 1 and λp1 = min
(

1
INR1

, 1
)

. Evaluating the achievable region we obtain

R1 ≤ E
[
log
(
1 + |g11|2

)]
(C.44)

R2 ≤ E
[
log
(
1 + |g22|2 + λp1 |g12|2

)]
− 1 (C.45)

R2 ≤ E
[
log
(
1 + |g21|2

)]
(C.46)

R1 +R2 ≤ E
[
log
(
1 + |g11|2 + |g21|2

)]
(C.47)

R1 +R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2

)]
− 1 (C.48)

R1 + 2R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + |g21|2

)]
− 1. (C.49)

The calculations are similar to that of FF-IC (subsection 4.4.2 on page 107 ). Now we claim

the following outer bounds.

R1 ≤ E
[
log
(
1 + |g11|2

)]
(C.50)

R2 ≤ E
[
log
(
1 + |g22|2

)]
(C.51)

R2 ≤ E
[
log
(
1 + |g21|2

)]
(C.52)

R1 +R2 ≤ E
[
log
(
1 + |g11|2 + |g21|2

)]
(C.53)

R1 +R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log

(
1 +

|g11|2

1 + |g12|2

)]
(C.54)

R1 + 2R2 ≤ E
[
log
(
1 + |g22|2 + |g12|2

)]
+ E

[
log

(
1 +

|g11|2

1 + |g12|2
+ |g21|2

)]
. (C.55)

With the above outer bounds it can be shown that the capacity region can be achieved

within 1 + 1
2
cJG bits per channel use. The computations are similar to that of FF-IC (claim

4.2 on page 4.2).

The outer bound (C.50) can be derived by giving side information W2 at Rx1 and requir-

ing W1 to be decoded, outer bound (C.51) can be derived by giving side information W1 at

Rx2 and requiring W2 to be decoded, outer bound (C.52) can be derived by giving side in-

formation W1 at Rx1 and requiring W2 to be decoded, outer bound (C.53) can be derived by

giving side information requiring W1,W2 to be decoded at Rx1 with no side information. We
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derive (C.54) below. Note that we have the notation g = [g11, g21, g22, g12], S1 = g12X1 +Z2,

and S2 = g21X2 + Z1.

n(R2 +R1 − εn) (C.56)

≤ I
(
W2;Y n

2 , g
n
)

+ I
(
W1;Y n

1 , S
n
1 , X

n
2 , g

n
)

(C.57)

= I
(
W2;Y n

2 | gn
)

+ I
(
W1;Y n

1 , S
n
1 |Xn

2 , g
n
)

(C.58)

= I
(
W2;Y n

2 | gn
)

+ I
(
W1;Sn1 |Xn

2 , g
n
)

+ I
(
W1;Y n

1 |Xn
2 , S

n
1 , g

n
)

(C.59)

= h
(
Y n

2 | gn
)
− h

(
Y n

2 |W2, g
n
)

+ h
(
Sn1 |Xn

2 , g
n
)
− h

(
Sn1 |Xn

2 ,W1, g
n
)

+ h
(
Y n

1 |Xn
2 , S

n
1 , g

n
)
− h

(
Y n

1 |Xn
2 ,W1, S

n
1 , g

n
)

(C.60)

= h
(
Y n

2 | gn
)
− h

(
Sn1 | gn

)
+ h

(
Sn1 | gn

)
− h (Zn

2 ) + h
(
Y n

1 |Xn
2 , S

n
1 , g

n
)
− h (Zn

1 ) (C.61)

= h
(
Y n

2 | gn
)

+ h
(
Y n

1 |Xn
2 , S

n
1 , g

n
)
− h (Zn

2 )− h (Zn
1 ) (C.62)

(b)

≤
∑[

h
(
Y2i|gn

)
− h (Z2i)

]
+
∑[

h
(
Y1i|X2i, S1i, g

n
)
− h (Z1i)

]
(C.63)

= Egn
[∑(

h
(
Y2i|gn

)
− h (Z2i)

)]
+ Egn

[∑(
h
(
Y1i|X2i, S1i, g

n
)
− h (Z1i)

)]
(C.64)

(c)

≤ nE
[
log
(
1 + |g12|2 + |g22|2

)]
+ nE

[
log

(
1 +

|g11|2

1 + |g12|2

)]
, (C.65)

where (a) is because
(
Xn

2 , g
n
)

is independent of W1, (b) is due to the fact that conditioning

reduces entropy and (c) follows from Equations [ETW08, (51)] and [ETW08, (52)]. Now we

derive (C.55) below using the fact that W2 has to be decoded at both receivers:

n(R1 + 2R2 − εn)

≤ I
(
W1;Y n

1 , S
n
1 , g

n
)

+ I
(
W2;Y n

2 , g
n
)

+ I
(
W2;Y n

1 , S
n
2 , g

n
)

(C.66)

= I
(
W1;Y n

1 , S
n
1 | gn

)
+ I

(
W2;Y n

2 | gn
)

+ I
(
W2;Y n

1 , S
n
2 | gn

)
(C.67)

= I
(
W1;Sn1 | gn

)
+ I

(
W1;Y n

1 |Sn1 , gn
)

+ I
(
W2;Y n

2 | gn
)

+ I
(
W2;Sn2 | gn

)
+ I

(
W2;Y n

1 |Sn2 , gn
)︸ ︷︷ ︸

=0

(C.68)

= h
(
Sn1 | gn

)
− h

(
Sn1 |W1, g

n
)

+ h
(
Y n

1 |Sn1 , gn
)
− h

(
Y n

1 |W1, S
n
1 , g

n
)

+ h
(
Y n

2 | gn
)
− h

(
Y n

2 |W2, g
n
)

+ h
(
Sn2 | gn

)
− h

(
Sn2 |W2, g

n
)

(C.69)

= h
(
Sn1 | gn

)
− h (Zn

2 ) + h
(
Y n

1 |Sn1 , gn
)
− h

(
Sn2 | gn

)
+ h

(
Y n

2 | gn
)
− h

(
Sn1 | gn

)
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+ h
(
Sn2 | gn

)
− h (Zn

1 ) (C.70)

= h
(
Y n

1 |Sn1 , gn
)

+ h
(
Y n

2 | gn
)
− h (Zn

1 )− h (Zn
2 ) (C.71)

(a)

≤
∑[

h
(
Y1i|S1i, g

n
)
− h (Z1i)

]
+
∑[

h
(
Y2i|gn

)
− h (Z2i)

]
(C.72)

= Egn
[∑(

h
(
Y1i|S1i, g

n
)
− h (Z1i)

)]
+ Egn

[∑(
h
(
Y2i|gn

)
− h (Z2i)

)]
(C.73)

(b)

≤ nE

[
log

(
1 + |g21|2 +

|g11|2

1 + |g12|2

)]
+ nE

[
log
(
1 + |g12|2 + |g22|2

)]
, (C.74)

where (a) is due to the fact that conditioning reduces entropy and (b) follows from Equations

[ETW08, (50)] , [ETW08, (51)] and [ETW08, (52)]. Note that in the calculation of step (b)

we allow the symbols X1i, X2i to depend on gn, but since gn is available in conditioning the

calculation proceeds similar to that in [ETW08].

C.6 Proof of Corollary 4.13

Let R′NFB be the approximately optimal Han-Kobayashi rate region of feedback IC [ST11]

with equivalent channel strengths SNRi := E
[
|gii|2

]
for i = 1, 2, and INRi := E

[
|gij|2

]
for

i 6= j. Then for a constant c′′ we have

R′FB ⊇ RFB ⊇ R′FB − c′′. (C.75)

This can be verified by proceeding through each inner bound equa-

tion. For example, consider the first inner bound Equation (4.23a) R1 ≤
E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re (g11g

∗
21) + 1

)]
− 1. The corresponding equation in R′NFB is

R1 ≤ log
(
1 + SNR1 + INR2 + 2 |ρ|2√SNR1 · INR2 + 1

)
− 1. Now

E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re (g11g

∗
21) + 1

)]
(a)

≤ log (1 + SNR1 + INR2) (C.76)

≤ log
(

1 + SNR1 + INR2 + 2 |ρ|2
√
SNR1 · INR2 + 1

)
, (C.77)

where (a) is due to Jensen’s inequality and independence of g11, g21. Also

E
[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re (g11g

∗
21) + 1

)]
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(a)
= E

[
log
(
|g11|2 + |g21|2 + 2 |g11| |g21| |ρ| cos (θ) + 1

)]
(C.78)

(b)

≥ E
[
log
(
|g11|2 + |g21|2 + 1

)]
− 1 (C.79)

(c)

≥ log (SNR1 + INR2 + 1)− 1− 2cJG (C.80)

(d)

≥ log
(
SNR1 + INR2 + 2 |ρ|2

√
SNR1 · INR2 + 1

)
− 2− 2cJG, (C.81)

where (a) is because phases of g11, g12 are independently uniformly distributed in [0, 2π] yield-

ing Re (g11g
∗
21) = |g11| |g21| cos (θ) with an independent θ ∼ Unif [0, 2π], (b) is using the fact

that for p > q 1
2π

∫ 2π

0
log (p+ q cos (θ)) dθ = log

(
p+
√
p2−q2
2

)
≥ log (p)− 1, (c) is using loga-

rithmic Jensen’s gap result twice and (d) is because SNR1 + INR2 ≥ 2 |ρ|2√SNR1 · INR2.

It follows from Equations (C.77) and (C.81), that the first inner bound for fading case is

within constant gap with the first inner bound of the static case.

Now consider the second inner bound Equation (4.23b)

R1 ≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
− 2 (C.82)

and the corresponding equation

R1 ≤ log
(
1 +

(
1− |ρ|2

)
INR1

)
+ log (1 + λp1SNR1 + λp2INR2)− 3cJG − 2 (C.83)

from R′FB. We have

E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
≤ log

(
1 +

(
1− |ρ|2

)
INR1

)
+ log (1 + λp1SNR1 + λp2INR2) (C.84)

due to Jensen’s inequality. And

E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log
(
1 + λp1 |g11|2 + λp2 |g21|2

)]
≥ log

(
1 +

(
1− |ρ|2

)
INR1

)
+ log (1 + λp1SNR1 + λp2INR2)− 3cJG (C.85)

using logarithmic Jensen’s gap result thrice. It follows from Equations (C.84) and (C.85),

that the second inner bound for fading case is within constant gap with the second inner
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bound of the static case. Similarly, by proceeding through each inner bound equation, it

follows that

R′FB ⊇ RFB ⊇ R′FB − c′′

for a constant c′′.

C.7 Proof of achievability for feedback case

We evaluate the term in the first inner bound inequality (5.14a) . The other terms can be

similarly evaluated.

I
(
U,U2, X1;Y1, g1

) (a)
= I

(
U,U2, X1;Y1| g1

)
(C.86)

= h
(
Y1|g1

)
− h

(
Y1|g1, U, U2, X1

)
, (C.87)

variance
(
Y1|g1

)
= variance (g11X1 + g21X2 + Z1| g11, g21) (C.88)

= |g11|2 + |g21|2 + g∗11g21E [X∗1X2] + g11g
∗
21E [X1X

∗
2 ] + 1 (C.89)

= |g11|2 + |g21|2 + 2 |ρ|2 Re (g11g
∗
21) + 1, (C.90)

h
(
Y1|g1, U, U2, X1

)
= h

(
g11X1 + g21X2 + Z1| g1, U, U2, X1

)
(C.91)

= h
(
g21Xp2 + Z1| g1

)
(C.92)

= E
[
log
(
1 + λp2 |g21|2

)]
+ log (2πe) (C.93)

(b)

≤ E
[
log

(
1 +

1

INR2

|g21|2
)]

+ log (2πe) (C.94)

(c)

≤ log (2) + log (2πe) (C.95)

= 1 + log (2πe) , (C.96)

∴ I
(
U,U2, X1;Y1, g1

)
≥ E

[
log
(
|g11|2 + |g21|2 + 2 |ρ|2 Re (g11g

∗
21) + 1

)]
− 1, (C.97)

where (a) uses independence, (b) is because λpi ≤ 1
INRi

, and (c) follows from Jensen’s in-

equality.
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C.8 Proof of outer bounds for feedback case

Following the methods in [ST11], we let E [X1X
∗
2 ] = ρ. We have the notation g1 = [g11, g21]

, g2 = [g22, g12], g = [g11, g21, g22, g12], S1 = g12X1 + Z2, and S2 = g21X2 + Z1. We let

E [X1X
∗
2 ] = ρ = |ρ| eiθ. All of our outer bounding steps are valid while allowing X1i to be

a function of
(
W1, Y

i−1
1 , gn1

)
, thus letting transmitters have full CSIT along with feedback.

On choosing a uniform distribution of messages we get

n(R1 − εn)
(a)

≤ I
(
W1;Y n

1 | gn1
)

(C.98)

(b)

≤
∑(

h
(
Y1i|g1i

)
− h (Z1i)

)
(C.99)

=
∑(

Eg̃1i
[
h
(
Y1i|g1i = g̃1i

)
− h (Z1i)

])
(C.100)

(c)
= Eg̃1

[∑(
h
(
Y1i|g1i = g̃1

)
− h (Z1i)

)]
(C.101)

∴ R1 ≤ E
[
log
(
|g11|2 + |g21|2 + (ρ∗g∗11g21 + ρg11g

∗
21) + 1

)]
, (C.102)

where (a) follows from Fano’s inequality, (b) follows from the fact that conditioning reduces

entropy, and (c) follows from the fact that g̃1i are i.i.d. Now we bound R1 in a second way

as done in [ST11]:

n(R1 − εn) ≤ I
(
W1;Y n

1 , g
n
1

)
(C.103)

≤ I
(
W1;Y n

1 , g
n
1 , Y

n
2 , g

n
2 ,W2

)
(C.104)

= I
(
W1; gn,W2

)
+ I

(
W1;Y n

1 , Y
n

2 |gn,W2

)
(C.105)

= 0 + I
(
W1;Y n

1 , Y
n

2 |gn,W2

)
(C.106)

= h
(
Y n

1 , Y
n

2 |gn,W2

)
− h

(
Y n

1 , Y
n

2 |gn,W1,W2

)
(C.107)

=
∑[

h
(
Y1i, Y2i|gn,W2, Y

i−1
1 , Y i−1

2

)]
−
∑

[h (Z1i) + h (Z2i)] (C.108)

=
∑[

h
(
Y2i|gn,W2, Y

i−1
1 , Y i−1

2

)]
+
∑[

h
(
Y1i|gn,W2, Y

i−1
1 , Y i

2

)]
−
∑

[h (Z1i) + h (Z2i)] (C.109)

(a)
=
∑[

h
(
Y2i|gn,W2, Y

i−1
1 , Y i−1

2 , X i
2

)]
+
∑[

h
(
Y1i|gn,W2, Y

i−1
1 , Y i

2 , S1i, X
i
2

)]
−
∑

[h (Z1i) + h (Z2i)] (C.110)
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(b)

≤
∑[

h
(
Y2i|gi, X2i

)
− h (Z2i)

]
+
∑[

h
(
Y1i|gi, S1i, X2i

)
− h (Z1i)

]
(C.111)

(c)
= Eg̃

[∑(
h
(
Y2i|X2i, gi = g̃

)
− h (Z2i)

)]
+ Eg̃

[∑(
h
(
Y1i|S1i, X2i, gi = g̃

)
− h (Z1i)

)]
, (C.112)

∴ R1

(d)

≤ E
[
log
(
1 +

(
1− |ρ|2

)
|g12|2

)]
+ E

[
log

(
1 +

(
1− |ρ|2

)
|g11|2

1 +
(
1− |ρ|2

)
|g12|2

)]
, (C.113)

where (a) follows from the fact that X i
2 is a function of

(
W2, Y

i−1
2 , gn

)
and S1i is a function

of
(
Y i

2 , X
i
2, g

n
)
, (b) follows from the fact that conditioning reduces entropy, (c) follows from

the fact that g̃i are i.i.d., and (d) follows from [ST11, (43)]. The other outer bounds can be

derived similarly following [ST11] and making suitable changes to account for fading as we

illustrated in the previous two derivations.

C.9 Fading matrix

The calculations are given in Equations (C.114),(C.115).

E [log (|KY1(n)|)]

= E

[
log

((
|g11 (n)|2 + |g21 (n)|2

(
|g12 (n− 1)|2 + 1

1 + INR

)
+ 1

)
|KY1(n− 1)|

−|g11 (n− 1)|2 |g21 (n)|2 |g12 (n− 1)|2
1 + INR

|KY1(n− 2)|
)]

(C.114)

≥ E [log ((1 + INR + SNR) |KY1(n− 1)|

−INR · INR |g11 (n− 1)|2
1 + INR

|KY1(n− 2)|
)]
− 3cJG. (C.115)

The first step (C.114), is by expanding the determinant. We use the logarithmic Jensen’s

gap property thrice in the second step (C.115). This is justified because the coefficients

of
{
|g11 (n)|2 , |g12 (n− 1)|2 , |g21 (n)|2

}
from Equation (C.114) are non-negative (due to the

fact that all the matrices involved are covariance matrices), and the coefficients themselves

are independent of
{
|g11 (n)|2 , |g12 (n− 1)|2 , |g21 (n)|2

}
. (Note that |KY1(n− 1)| depend on
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|g12 (n− 2)|2 but not on |g12 (n− 1)|2). This procedure can be carried out n times and it

follows that:

lim
n→∞

1

n
E [log (|KY1(n)|)] ≥ lim

n→∞

1

n
log
(∣∣∣K̂Y1(n)

∣∣∣)− 3cJG, (C.116)

where K̂Y1(n) is obtained from KY1(n) by replacing g12 (i)’s, g21 (i)’s with
√
INR and

g11 (i)’s with
√
SNR.

C.10 Matrix determinant: asymptotic behavior

The following recursion easily follows:

|An| = |a| |An−1| − |b|2 |An−2| (C.117)

with |A1| = |a| , |A2| = |a|2 − |b|2. Also |A0| can be consistently defined to be 1. The

characteristic equation for this recursive relation is given by: λ2 − |a|λ + |b|2 = 0 and the

characteristic roots are given by:

λ1 =
|a|+

√
|a|2 − 4 |b|2

2
, λ2 =

|a| −
√
|a|2 − 4 |b|2

2
. (C.118)

Now the solution of the recursive system is given by |An| = c1λ
n
1 + c2λ

n
2 with the boundary

conditions 1 = c1 + c2, |a| = c1λ1 + c2λ2. It can be easily seen that c1 > 0, λ1 > λ2 > 0

since |a|2 > 4 |b|2 by assumption of Lemma 4.4. Now

lim
n→∞

1

n
log (|An|) = lim

n→∞

1

n
log (c1λ

n
1 + c2λ

n
2 ) (C.119)

(a)
= log (λ1) (C.120)

= log

(
|a|+

√
|a|2 − 4 |b|2

)
− 1. (C.121)

The step (a) follows because λ1 > λ2 > 0 and c1 > 0.
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C.11 Approximate capacity using n phase schemes

We have the following outer bounds from Theorem 4.11.

R1, R2 ≤ E
[
log
(
|gd|2 + |gc|2 + 1

)]
(C.122)

R1 +R2 ≤ E

[
log

(
1 +

|gd|2

1 + |gc|2

)]
+ E

[
log
(
|gd|2 + |gc|2 + 2 |gd| |gc|+ 1

)]
. (C.123)

The above outer bound region is a polytope with the following two non-trivial corner points:

 R1 = E
[
log
(
|gd|2 + |gc|2 + 1

)]
R2 = E

[
log
(

1 + |gd|2

1+|gc|2

)]
+ E

[
log
(

1 + 2|gd||gc|
1+|gd|2+|gc|2

)]


 R1 = E
[
log
(

1 + |gd|2

1+|gc|2

)]
+ E

[
log
(

1 + 2|gd||gc|
1+|gd|2+|gc|2

)]
R2 = E

[
log
(
|gd|2 + |gc|2 + 1

)]
 .

We can achieve these rate points within 2 + 3cJG bits per channel use for each user using

the n-phase schemes since

(R1, R2) =

(
log (1 + SNR + INR)− 2− 3cJG,E

[
log+

[
|gd|2

1 + INR

]])
(C.124)

(R1, R2) =

(
E

[
log+

[
|gd|2

1 + INR

]]
, log (1 + SNR + INR)− 2− 3cJG

)
. (C.125)

are achievable and since using Jensen’s inequality

E
[
log
(
|gd|2 + |gc|2 + 1

)]
≤ log (1 + SNR + INR) . (C.126)

The only important point left to verify is in the following claim.

Claim C.1. E
[
log
(

1 + |gd|2

1+|gc|2

)]
+ E

[
log
(

1 + 2|gd||gc|
1+|gd|2+|gc|2

)]
− E

[
log+

[
|gd|2

1+INR

]]
≤ 2 + cJG

Proof. We have 2|gd||gc|
|gd|2+|gc|2

≤ 1 due to AM-GM inequality. Hence,

E
[
log

(
1 +

2 |gd| |gc|
1 + |gd|2 + |gc|2

)]
≤ 1. (C.127)
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Also

E

[
log

(
1 +

|gd|2

1 + |gc|2

)]
≤ E

[
log

(
1 +

|gd|2
1 + INR

)]
+ cJG (C.128)

using logarithmic Jensen’s gap property. Hence, it only remains to show log
(

1 + |gd|2
1+INR

)
−

log+
[
|gd|2

1+INR

]
≤ 1 to complete the proof.

If log+
[
|gd|2

1+INR

]
= 0 then |gd|2

1+INR
≤ 1 and Hence, log

(
1 + |gd|2

1+INR

)
≤ log (2) = 1.

If log+
[
|gd|2

1+INR

]
> 0 then |gd|2

1+INR
> 1 and Hence, again

log

(
1 +

|gd|2
1 + INR

)
− log+

[
|gd|2

1 + INR

]
= log

(
1 +

1 + INR

|gd|2
)
< 1. (C.129)

C.12 Analysis for the 2-tap fading ISI channel

We have for the outer bound

n (R− εn) ≤ I (Y n, gnd , g
n
c ;W ) (C.130)

= I (Y n;W | gnd , gnc ) (C.131)

= h (Y n| gnd , gnc )− h (Zn) (C.132)

≤
∑

h (Yi| gd,i, gc,i)− h (Zn) (C.133)

(a)

≤
∑

E
[
log
(

1 + Pi |gd|2 + Pi−1 |gc|2 + 2 |gd| |gc|
√
PiPi−1

)]
(C.134)

≤
∑(

E
[
log
(
1 + Pi |gd|2 + Pi−1 |gc|2

)]
+ 1
)
, (C.135)

where (a) is using Pi as the power for ith symbol and using Cauchy Schwarz inequality to

bound |E [XiXi−1]| ≤ √PiPi−1. Now using Jensen’s inequality it follows that

R− εn ≤ E
[
log
(
1 + |gd|2 + |gc|2

)]
+ 1 (C.136)

≤ log (1 + SNR + INR) + 1. (C.137)

For the inner bound similar to the scheme in subsection (4.6), using Gaussian codebooks

and n phases we obtain that
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R = lim
n→∞

1

n
E

[
log

(
|KY(n)|∣∣KY|X(n)

∣∣
)]

(C.138)

is achievable, where X(n) is n-length Gaussian vector with i.i.d CN (0, 1) elements and

Y (n) is generated from X(n) by the ISI channel (from Equation (4.68)). Here
∣∣KY|X(n)

∣∣ =

|KZ(n)| = 1 because Z is AWGN. Hence,

R = lim
n→∞

1

n
E [log (|KY(n)|)] (C.139)

is achievable. Hence, it follows that

R ≥ log (1 + SNR + INR)− 1− 3cJG (C.140)

is achievable due to Lemma 4.3 and Lemma 4.4.
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APPENDIX D

Proofs for Chapter 5

D.1 Proof of Claim 5.1

I (X1;Y1|U2) = h (Y1|U2)− h (Y1|U2, X1)

= h
(
g11X1 + g21X2 + Z1

∣∣U2

)
− h

(
g11X1 + g21X2 + Z1

∣∣U2, X1

)
(D.1)

h (g11X1 + g21X2 + Z1|U2) =
T∑
i=1

h
(
g11X1i + g21X2i + Z1i

∣∣ {g11X1j + g21X2j + Z1j}i−1
j=1 , U2

)
(i)
.

≥h
(
g11X11 + g21X21 + Z11

∣∣X11, X21, U2

)
+

T∑
i=2

h
(
g11X1i + g21X2i + Z1i

∣∣U2i, g21, g11

)
(ii)
.

≥ log (1 + SNR + INR) + (T − 1) log (1 + SNR) (D.2)

where (i) is due to the fact that conditioning reduces entropy and Markovity

(g11X1i + g21X2i + Z1i) − (U2i, g21, g11) −
(
{g11X1j + g21X2j + Z1j}i−1

j=1 , U2

)
and

(ii) is using Gaussianity for terms h
(
g11X11 + g21X21 + Z11

∣∣X11, X21, U2

)
and

h
(
g11X1i + g21X2i + Z1i

∣∣U2i, g21, g11

)
. Now we will show that

h
(
g11X1 + g21X2 + Z1

∣∣U2, X1

) .

≤ log (1 + SNR + INR) + log (1 + INR) (D.3)

and this will complete our proof for I (X1;Y1|U2)
.

≥ (T − 1) log (1 + SNR) − log (1 + INR) .

For (D.3), we have

h (g11X1 + g21X2 + Z1|U2, X1)
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≤ h
(
g11X11 + g21X21 + Z11

∣∣U21, X11

)
+ h

(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
(D.4)

+
T∑
i=3

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

)
.

≤ log (1 + SNR + INR) + h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
+

T∑
i=3

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

)
,

(D.5)

Considering the second term in the above expression,

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
= h

(
g11X11X12 + g21X11X22 +X11Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
− E [log (|X11|)]

(i)

≤ h (g11X11X12 + g21X11X22 +X11Z12 −X12 (g11X11 + g21X21 + Z11))− E [log (|X11|)]

= h (g21X11X22 +X11Z12 −X12 (g21X21 + Z11))− E [log (|X11|)]

= h (g21 (X11X22 −X21X12) +X11Z12 −X12Z11)− E [log (|X11|)] (D.6)

.

≤ log
(
E
[
|g21 (X11X22 −X21X12) +X11Z12 −X12Z11|2

])
− 1

2
E
[
log
(
|X11|2

)]
(ii).
= log (1 + INR) , (D.7)

where (i) is by subtracting X12 (g11X11 + g21X21 + Z11) which is available from conditioning

and then using the fact that conditioning reduces entropy, (ii) is by using property of Gaus-

sians for i.i.d. g21, X11, X22, X21, X12, Z12, Z11 and Fact 5.1 for E
[
log
(
|X11|2

)]
since |X11|2 is

exponentially distributed with mean 1. Now for i ≥ 3 we will show that

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

) .

≤ 0. (D.8)

Using (D.8) and (D.7) in (D.5) yields us (D.3) and will complete the proof. For (D.8), we

have

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

)
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≤ h
(
g21 (X11X2i −X21X1i) +X11Z1i −X1iZ11

∣∣ |g21 (X11X22 −X21X12) +X11Z12 −X12Z11, U2, X1

)
− E [log (|X11|)] . (D.9)

Now we have

g21 (X11X2i −X21X1i) +X11Z1i −X1iZ11

= g21 (X11U2i − U21X1i) + (g21 (X11X2pi −X2p1X1i) +X11Z1i −X1iZ11)

in the entropy expression. And in the conditioning the term

g21 (X11U22 − U21X12) + (g21 (X11X2p2 −X2p1X12) +X11Z12 −X12Z11)

and U2, X1 are available. Hence by elimination we can get

ξ = (X11U22 − U21X12) (g21 (X11X2pi −X2p1X1i) +X11Z1i −X1iZ11)

− (X11U2i − U21X1i) (g21 (X11X2p2 −X2p1X12) +X11Z12 −X12Z11) (D.10)

in the entropy expression. Let ξ be expanded into a sum of product form

ξ =
L∑
i=1

ξi (D.11)

= X11U22g21X11X2pi + (−X11U22g21X2p1X1i) + · · · (D.12)

where ξi is in a simple product form. Now due to generalized mean inequality, we have∣∣∣∣∣
L∑
i=1

ξi

∣∣∣∣∣
2

≤ L

(
L∑
i=1

|ξi|2
)
. (D.13)

Hence

E
[
|ξ|2
]

= E

∣∣∣∣∣
L∑
i=1

ξi

∣∣∣∣∣
2
 (D.14)

≤ L

(
L∑
i=1

E
[
|ξi|2

])
. (D.15)

Now for example consider the term E
[
|X11U22g21X11X2pi|2

]
in the last equation

E
[
|X11U22g21X11X2pi|2

]
= E

[
|X11|4

]
E
[
|U22|2

]
E
[
|g21|2

]
E
[
|X2pi|2

]
(D.16)
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= 2×
(

1− 1

INR

)
× INR× 1

INR
(D.17)

≤ 2 (D.18)

Each of E
[
|ξi|2

]
will be bounded by a constant since g21 always appears coupled with X2pi.

Hence the power scaling E
[
|g21|2

]
= INR gets canceled with the scaling E

[
|X2pi|2

]
= 1/INR.

Hence, by analyzing each of E
[
|ξi|2

]
together with maximum entropy results it can be shown

that E
[
|ξi|2

] .

≤ 0 and hence, h (ξ)
.

≤ 0. Thus (D.8) is proved and it completes our proof for

the main result.

D.2 Proof of Claim 5.3

We have

I (X1;Y1|U1, U2) = h (Y1|U1, U2)− h (Y1|X1, U1, U2) , (D.19)

h (Y1|U1, U2) =h
(
g11X1 + g21X2 + Z1

∣∣U1, U2

)
(D.20)

=
∑
i

h
(
g11X1i + g21X2i +

∣∣ {g11X1j + g21X2j + Z1j}i−1
j=1 , U1, U2

)
(D.21)

(i)
.

≥h
(
g11X11 + g21X21 + Z11

∣∣X11, X21, U1, U2

)
+ h

(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2

)
(D.22)

+
T∑
i=3

h
(
g11X1i + g21X2i + Z1i

∣∣U1i, U2i, g21, g11

)
(D.23)

(ii)
.

≥ log (1 + SNR + INR) + h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2

)
+ (T − 2) log

(
1 +

SNR

INR

)
, (D.24)

where (i) is due to the fact that conditioning reduces entropy and Markovity

(g11X1i + g21X2i + Z1i) − (U1i, U2i, g21, g11) −
(
{g11X1j + g21X2j + Z1j}i−1

j=1 , U1, U2

)
and (ii) is using Gaussianity for terms h

(
g11X11 + g21X21 + Z11

∣∣X11, X21

)
and
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h
(
g11X1i + g21X2i + Z1i

∣∣U1i, U2i, g21, g11

)
. Now,

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2

)
(D.25)

≥ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, X1, X2, U1, U2

)
(D.26)

= h
(
g11X12 + g21X22 + Z12, g11X11 + g21X21 + Z11

∣∣X1, X2, U1, U2

)
(D.27)

− h
(
g11X11 + g21X21 + Z11

∣∣X1, X2, U1, U2

)
(D.28)

(i).
= E

log

∣∣∣∣∣∣ SNR |X12|2 + INR |X22|2 + 1 SNRX12X
†
11 + INRX22X

†
21(

SNRX12X
†
11 + INRX22X

†
21

)†
SNR |X11|2 + INR |X21|2 + 1

∣∣∣∣∣∣


− log (1 + INR + SNR) (D.29)

≥ E
[
log
(
SNR · INR

(
|X11|2 |X22|2 + |X12|2 |X21|2 − 2Re

(
X12X

†
11X

†
22X21

)))]
− log (1 + INR + SNR) (D.30)

= E
[
log
(
SNR · INR |X11X22 −X12X21|2

)]
− log (1 + INR + SNR) (D.31)

.
= log

(
SNR · INR

1 + INR + SNR

)
+ E

[
log
(
SNR · INR |X11X22 −X12X21|2

)]
(D.32)

(ii).
= log

(
SNR · INR

1 + INR + SNR

)
(D.33)

(iii).
= log (INR) , (D.34)

where (i) is using property of Gaussians, (ii) is using Fact 5.1 and Tower property of Ex-

pectation for E
[
log
(
|X11X22 −X12X21|2

)]
, (iii) is because INR ≤ SNR. Also

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2

)
(i)

≥ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, g11, g21

)
(D.35)

(ii).
= h

(
g11X12 + g21X22 + Z12

∣∣U1, U2, g11, g21

)
(D.36)

(iii).
= h

(
g11Xp12 + g21Xp22 + Z12

∣∣ g11, g21

)
(D.37)

= E
[
log

(
2πe

(
1 +

1

INR
|g11|2 +

1

INR
|g21|2

))]
(D.38)

(iv)
.

≥ log

(
1 +

SNR

INR

)
, (D.39)
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where (i) is using the fact that conditioning reduces entropy, (ii) is due to the Markov chain

(g11X12 + g21X22 + Z12)−(U12, U22, g21, g11)−(g11X11 + g21X21 + Z11, U1, U2), (iii) is because

the private message parts Xp12, Xp22 are independent of the common message parts U1, U2,

(iv) is using Fact 5.1. Now combining (D.34), (D.39), we get

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2

) .

≥ log

(
1 +

SNR

INR
+ INR

)
. (D.40)

Hence substituting the above in D.24, we get

h (Y1|U1, U2)
.

≥ log (1 + SNR + INR) + log

(
1 +

SNR

INR
+ INR

)
+ (T − 2) log

(
1 +

SNR

INR

)
. (D.41)

Also from (D.3) for h (Y1|X1, U2) in Appendix D.1 on page 225, we have

h (Y1|X1, U1, U2) ≤ h (Y1|X1, U2) (D.42)

.

≤ log (1 + SNR + INR) + log (1 + INR) . (D.43)

Hence using the above two equations we get,

I (X1;Y1|U1, U2)
.

≥ (T − 2) log

(
1 +

SNR

INR

)
+ log

(
1 +

SNR

INR
+ INR

)
− log (INR) . (D.44)

D.3 Proof of Claim 5.5

I (X1;Y1|U2) = h (Y1|U2)− h (Y1|U2, X1) ,

= h
(
g11X1 + g21X2 + Z1

∣∣U2

)
− h

(
g11X1 + g21X2 + Z1

∣∣U2, X1

)
.

We have

h (g11X1 + g21X2 + Z1|U2)
.

≥ log (1 + SNR + INR) + (T − 1) log (1 + SNR)

following (D.2) in Appendix D.1 on page 225. Now we will show that

h
(
g11X1 + g21X2 + Z1

∣∣U2, X1

) .

≤ log (1 + SNR + INR) + log (1 + SNR) (D.45)
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and this will complete the proof for

I (X1;Y1|U2)
.

≥ (T − 1) log (1 + SNR)− log (1 + SNR)
.
= (T − 2) log (1 + SNR) .

We have

h (g11X1 + g21X2 + Z1|U2, X1)

(i)

≤ h
(
g11X11 + g21X21 + Z11

∣∣U21, X11

)
+ h

(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
+
∑

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

)
.
= log (1 + SNR + INR) + h

(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
+

T∑
i=3

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

)
,

(D.46)

where (i) was using the fact that conditioning reduces entropy.

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
= h

(
g11U21X12 + g21U21X22 + U21Z12

∣∣ g11X11 + g21X21 + Z11, U2, X1

)
− E [log (|U21|)]

(i)

≤ h (g11U21X12 + g21U21X22 + U21Z12 − U22 (g11X11 + g21X21 + Z11))− E [log (|U21|)]

= h (g11 (U21X12 −X11U22) + g21 (U21Xp22 − U22Xp21) + U21Z12 − U22Z11)

− E [log (|U21|)] (D.47)

.

≤ log
(
E
[
|g11 (U21X12 −X11U22) + g21 (U21Xp22 − U22Xp21) + U21Z12 − U22Z11|2

])
− 1

2
E
[
log
(
|U21|2

)]
(ii).
= log (1 + SNR) , (D.48)

where (i) is by subtracting X12 (g11X11 + g21X21 + Z11) which is available from conditioning

and then using the fact that conditioning reduces entropy, (ii) is by using properties of i.i.d.

Gaussians to evaluate the second moments and Fact 5.1 for E
[
log
(
|U21|2

)]
since |U21|2 is

exponentially distributed with mean 1− 1/INR. Now for i ≥ 3 we claim that

h
(
g11X1i + g21X2i + Z1i

∣∣ g11X11 + g21X21 + Z11, g11X12 + g21X22 + Z12, U2, X1

) .

≤ 0.

(D.49)
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This follows with the same steps as for the low interference case as in (D.8) on page 226.

Using (D.49) and (D.48) in (D.46) yields (D.45) and completes the proof.

D.4 Proof of Claim 5.10

We have

h (Y1|U1, U2, U) =h
(
g11X1 + g21X2 + Z1

∣∣U1, U2, U
)

=
∑
i

h
(
g11X1i + g21X2i + Z1i

∣∣ {g11X1j + g21X2j + Z1j}i−1
j=1 , U1, U2, U

)
(i)
.

≥h
(
g11X11 + g21X21 + Z11

∣∣X21, X1, U1, U2, U
)

+ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U
)

+
T∑
i=3

h
(
g11X1i + g21X2i + Z1i

∣∣U1, U2, U, g21, g11

)
(ii)
.

≥ log (1 + SNR + INR)

+ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U
)

+ (T − 2)E
[
log
(
1 + λp2 |g22|2 + λp1 |g12|2

)]
,

(iii).
= log (1 + SNR + INR)

+ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U
)

+ (T − 2) log

(
1 +

SNR

INR

)
, (D.50)

where (i) is due to the fact that conditioning reduces entropy and Markovity

(g11X1i + g21X2i + Z1i) − (U1, U2, U, g21, g11) −
(
{g11X1j + g21X2j + Z1j}i−1

j=1 , U1, U2, U
)

and

(ii) is using Gaussianity for terms h
(
g11X11 + g21X21 + Z11

∣∣X21, X1, U1, U2, U
)

and

h
(
g11X1i + g21X2i + Z1i

∣∣U1, U2, U, g21, g11

)
. The step (iii) is using Fact 5.1. Now

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U
)

≥ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U,X1, X2

)
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(i).
= log

(
SNR · INR

1 + SNR + INR

)
.
= log (1 + min (SNR, INR)) , (D.51)

where (i) is using similar calculations as (D.33) on page 229. Also

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U
)

.

≥ h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U, g11, g21

)
= E

[
log
(
1 + λp2 |g22|2 + λp1 |g12|2

)]
.
= log (1 + λp2SNR + λp1INR)

.

≥ log (1 + λp2SNR)

.
= log

(
1 +

SNR

INR

)
. (D.52)

Using (D.51), (D.52) we get

h
(
g11X12 + g21X22 + Z12

∣∣ g11X11 + g21X21 + Z11, U1, U2, U
)

.

≥ log

(
1 +

SNR

INR
+ min (SNR, INR)

)
.

Using the above equation in (D.50), we get

h (Y1|U1, U2, U)
.

≥ log (1 + SNR + INR)

+ log

(
1 +

SNR

INR
+ min (SNR, INR)

)
+ (T − 2) log

(
1 +

SNR

INR

)
,

Also

h (Y1|U,U1, U2, X1) ≤ h (Y1|U,U2, X1)

.

≤ log (1 + SNR + INR) + log (1 + min (SNR, INR))

from (5.18) on page 143. Using the above two equations, we get

I (X1;Y1|U1, U2, U)
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.

≥ log

(
1 +

SNR

INR
+ min (SNR, INR)

)
+ (T − 2) log

(
1 +

SNR

INR

)
− log (1 + min (SNR, INR)) .
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APPENDIX E

Details of Schemes for Backscatter Systems

E.1 Backscatter system with ISI taps

We consider the backscatter communication system in which Emitter and Reader can col-

laborate (Figure 6.3). We focus on the 2-tap ISI channel, but all the concepts extend to

arbitrary number of ISI taps. Let {gt1, gt2} be the taps from Emitter to Tag and {gr1, gr2}
be the taps from Tag to Reader. Emitter is assumed to have an average power constraint of

P . Tag is assumed to use ON-OFF keying for data transmission. For simplicity of design,

we assume that Emitter sends a periodic sequence {s1, . . . , sN} and Tag sends cyclic-suffixed

symbols of the form {xj1, . . . , xjN , xj1} with j being the block index. For every block, the

first symbol received at Reader is ignored to remove ISI. We have for each block j and

i ∈ [2 : N ] that

yji = gr1xji (gt1si + gt2si−1)

+ gr2xji−1 (gt1si−1 + gt2si−2) + wji (E.1)

with xji ∈ {0, 1} drawn equiprobably. The choice of xji ∈ {0, 1} corresponds to ON-OFF

keying, this is commonly used in backscatter communications, since Tag can choose to not

reflect the carrier, or to reflect the carrier, by adjusting its impedence, thus creating the

ON and OFF states. Adjusting the impedence in more levels can lead xji to take discrete

values from a larger set. The noise wij is circularly symmetric complex Gaussian distributed

and independent across i, j. We use the notation CN (µ, σ2) for circularly symmetric com-

plex Gaussian distribution with mean µ and variance σ2. We assume the power constraint

1
N

∑N
i=1 |si|

2 ≤ P on the carrier sequence. Note that we can scale gr2, gt2, P to assume with-
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out loss of generality, that gr1 = gt1 = 1 and wji ∼ CN (0, 1). For a given power P , the

problem is to design the sequence {s1, . . . , sN} to maximize the mutual information rate

achievable. Alternately for a fixed rate, we can optimize the sequence {s1, . . . , sN} to use

minimal power. We also investigate the use of channel codes and the performance in terms

of bit-error rate.

Now we derive the form of the effective channel between Tag and Reader for our pro-

posed model and formulate the optimization problem for maximizing the mutual information

between Tag and Reader. We also deal with the issue of channel training to obtain the nec-

essary parameters for optimization and formulate approximate optimization techniques. We

assume N = 5 for simplicity of analysis, but it can be easily extended to arbitrary N case.

Emitter sends the sequence s1, s2, s3, s4, s5, s1, s2, s3, s4, s5, s1, s2, s3, s4, s5, . . . and thus Tag

receives a periodic version of

u1

u2

u3

u4

u5


=



gt1 0 0 0 gt2

gt2 gt1 0 0 0

0 gt2 gt1 0 0

0 0 gt2 gt1 0

0 0 0 gt2 gt1





s1

s2

s3

s4

s5


. (E.2)

Tag sends blocks of cyclic-suffixed symbols of the form xj1, xj2, xj3, xj4, xj1 and every first

symbol received at Reader is ignored to remove the ISI from the previous block. Hence

Yj =


gr2 gr1 0 0 0

0 gr2 gr1 0 0

0 0 gr2 gr1 0

0 0 0 gr2 gr1





u1xj1

u2xj2

u3xj3

u4xj4

u5xj1


+Wj

=


gr2u1 gr1u2 0 0 0

0 gr2u2 gr1u3 0 0

0 0 gr2u3 gr1u4 0

0 0 0 gr2u4 gr1u5
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×



xj1

xj2

xj3

xj4

xj1


+Wj

=


gr2u1 gr1u2 0 0

0 gr2u2 gr1u3 0

0 0 gr2u3 gr1u4

gr1u5 0 0 gr2u4




xj1

xj2

xj3

xj4


+Wj

= GXj +Wj , (E.3)

where

G =


g4s5 + g3s1 g2s1 + g1s2 0 0

0 g4s1 + g3s2 g2s2 + g1s3 0

0 0 g4s2 + g3s3 g2s3 + g1s4

g2s4 + g1s5 0 0 g4s3 + g3s4

 ,

Xj =


xj1

xj2

xj3

xj4


with g1 = gr1gt1, g2 = gr1gt2, g3 = gr2gt1 and g4 = gr2gt2. Here Xj has i.i.d. elements equiprob-

ably drawn from {0, 1} i.e., ON-OFF keying is used. The noise Wj has i.i.d. CN (0, 1)

elements. Now the optimization problem is

maximize
si|5i=1

1

4
I (X;Y ) . (E.4)

The {Xi}’s are taken from the corners of 4-dimensional hypercube {0, 1}4, we have

h (GX +W )

= −
∫ ∑

i

1

24

1

π4
exp

(
− (Y −GXi)

† (Y −GXi)
)
×

log

∑
j

1

24

1

π4
exp

(
− (Y −GXj)

† (Y −GXj)
) dY
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= −
∑
i

∫
1

24

1

π4
exp

(
− (Y −GXi)

† (Y −GXi)
)
×

log

∑
j

1

24

1

π4
exp

(
− (Y −GXj)

† (Y −GXj)
) dY

= −
∑
i

Ii (E.5)

as a sum of integrals Ii and h
(
Y
∣∣X) = h (W ) = 4× log (πe) .

E.1.1 Approximate optimization techniques

We now deal with approximation techniques for the optimization problem, since we do not

have a closed form expression for the integrals in (E.5). We first obtain an approximation

for h (GX +W ) = −∑i Ii from (E.5). In order to evaluate Ii, we use Taylor expansion on

log
(∑

j

(
1/24

) (
1/π4

)
exp

(
− (Y −GXj)

† (Y −GXj)
))

around Xi (up to order 2) and perform

the integral Ii. Thus we need 24 different Taylor expansions. With this approximation for

h (GX +W ), we can optimize it over si|5i=1. As a proxy we propose the following simpler

optimization problems:

maximize
si|5i=1

log
(
det
(
G†G+ I

))
(E.6)

or

maximize
si|5i=1

log
(
det
(
G†G

))
. (E.7)

After solving the simper optimization problems, we can substitute the approximate solutions

into the actual function to be optimized (we evaluate the performance numerically in the

next section). Note that det
(
G†G

)
= det

(
G†
)

det (G). We have

det (G)

= (g4s5 + g3s1) (g4s1 + g3s2) (g4s2 + g3s3) (g4s3 + g3s4)

− (g2s1 + g1s2) (g2s2 + g1s3) (g2s3 + g1s4) (g2s4 + g1s5) .

We now try to evaluate the gradient of G†G for simulations (we do not

have a simple closed form expression for det
(
G†G+ I

)
). Looking at the term
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(g4s5 + g3s1) (g4s1 + g3s2) (g4s2 + g3s3) (g4s3 + g3s4), we define

t̄1 = (g4s1 + g3s2) (g4s2 + g3s3) (g4s3 + g3s4)

t̄2 = (g4s5 + g3s1) s2 (g4s2 + g3s3) (g4s3 + g3s4)

...
...

etc and looking at the term (g4s5 + g3s1) (g4s1 + g3s2) (g4s2 + g3s3) (g4s3 + g3s4), we define

t1 = (g2s2 + g1s3) (g2s3 + g1s4) (g2s4 + g1s5)

t2 = (g2s1 + g1s2) (g2s3 + g1s4) (g2s4 + g1s5)

...
...

Then we have

∇sdet (G) =



g3t̄1 + g4t̄2 − g2t1

g3t̄2 + g4t̄3 − g1t1 − g2t2

g3t̄3 + g44̄− g1t2 − g2t3

g3t̄4 − g1t3 − g2t4

g4t̄1 − g1t4


= G∇.

Hence we have

∇Re(s)

(
det (G)† det (G)

)
= G†∇det (G) + det (G)†G∇

= 2× Real
(
G†∇det (G)

)
∇Im(s)

(
det (G)† det (G)

)
= −1iG†∇det (G) + 1i× det (G)†G∇

= 2× Real
(
−1iG†∇det (G)

)
.

E.1.2 Observations on non-optimality of constant carrier

We provide two examples when a constant carrier sequence can be shown to be not optimal.

We have

det (G)
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Table E.1: Training scheme

Time slot 1 2 3 4

Emitter signal
√
P

√
P 0 0

Tag state ON OFF ON OFF

Reflected signal gt1
√
P 0 gt2

√
P 0

Signal received at reader gr1gt1
√
P + w1 gr2gt1

√
P + w2 gr1gt2

√
P + w3 gr2gt2

√
P + w4

= (g4s5 + g3s1) (g4s1 + g3s2) (g4s2 + g3s3) (g4s3 + g3s4)

− (g2s1 + g1s2) (g2s2 + g1s3) (g2s3 + g1s4) (g2s4 + g1s5)

1. Suppose gr1 = gr2, since g1 = gr1gt1, g2 = gr1gt2, g3 = gr2gt1, g4 = gr2gt2. This implies

that g4 = g2, g3 = g1. Then

det (G) = (g4 + g3) (s1 + s2) (s2 + s3) (s3 + s4) (s1 − s4) .

Then it is clear that setting s1 = −s4, s5 = 0 is better than setting s1 = s4 = s5 for

maximizing det (G).

2. Suppose gt1 = −gt2. Then g4 = −g3 and g2 = −g1. Then it is clear that setting all si’s

to be zero yields G to be a zero matrix.

E.1.3 Simulation with the channel training

We need {gr1gt1, gr2gt1, gr1gt2, gr2gt2} for the optimization problem. This is

obtained by training as follows: let Emitter send a sequence
√
P ,
√
P , 0, 0

and Tag follow the sequence {ON,OFF,ON,OFF}, then Reader receives{
gr1gt1

√
P + w1, gr2gt1

√
P + w2, gr1gt2

√
P + w3, gr2gt2

√
P + w4

}
. The training scheme is

illustrated in Table E.1. The training can be repeated K times to refine the coefficients to{
gr1gt1

√
P + 1

K
w1, gr2gt1

√
P + 1

K
w2, gr1gt2

√
P + 1

K
w3, gr2gt2

√
P + 1

K
w4

}
.

With this training scheme, only the approximate coefficients are known to the collabo-

rating Emitter and Reader. Hence the carrier sequence is designed using the approximate
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coefficients substituted to the optimization problems. Also the decoder uses the approximate

channel coefficients to decode the data.

E.1.4 Simulation details

We obtain the results averaging over {gt1, gt2} =
{

1, 1
2
CN (0, 1)

}
and {gr1, gr2} ={

1, 1
2
CN (0, 1)

}
and block length N = 5. We obtain the results for optimizing the mu-

tual information in Figure 6.4. Note that the maximum rate achievable is 1 since we use

ON-OFF keying. Compared to using a constant carrier, we have a gain of 3.51 dB at rate

0.8 using the actual optimization problem (E.4), and we have a gain of 3.36 dB at rate 0.8,

when we use det
(
G†G+ I

)
to approximate mutual information. Also we have a gain of 3.47

dB at rate 0.8, when we use det
(
G†G

)
to approximate mutual information. This suggests

that using det
(
G†G

)
for optimization can give most of the gain and since it is numerically

simpler, we use it in the subsequent bit error rate (BER) simulations.

For the figures 6.5 and 6.6, we send 10,000 packets per channel over 100 randomly gener-

ated channels. Each packet is of size 57 bits and is encoded using a (57,63) Hamming code.

In Figure 6.5 we use ON-OFF keying for modulation and a zero-forcing (ZF) channel matrix

equalizer. The channel is assumed to be known perfectly at the receiver and the transmitter.

At BER of 10−3, we observe a gain of about 5 dB.

In Figure 6.6 we use the same setup as above, except that the channel is assumed to be

obtained by training once, with additive CN (0, 1) noise as described in Section E.1.3. At

BER of 10−3, we still observe a gain of about 5 dB, thus the robustness of our optimization

technique is demonstrated.
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