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ABSTRACT OF THE DISSERTATION

Security and Privacy in Dynamical Systems

by

Mehrdad Showkatbakhsh

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Suhas N. Diggavi, Chair

Dynamical systems have found applications in many domains including control and optimiza-

tion, which have risen to great prominence. Physical processes in nature can be classified

as dynamical systems. Control theory tries to understand these systems, in order to design

certain mechanisms and to obtain desired behaviors. On the other hand, optimization algo-

rithms are inherently recursive and therefore can be modeled as dynamical systems. Such

systems give rise to an abundance of applications, therefore, addressing their unreliability is

important. In this dissertation, we focus on challenges arising from vulnerabilities of such

systems against (active) attacks on physical components and (passive) attacks to infer about

sensitive information. We take steps forward toward understanding these challenges and

toward making progress in building robust systems.

Many control systems have a cyber-physical nature, meaning there is a tight interaction

between cyber (computation and communication) and physical (sensing and actuation) com-

ponents of the system. Cyber-Physical Systems (CPS) have enabled numerous applications

in which decisions need to be taken depending on the environment and sensory information.

However, addressing the unreliability that may stem from communication, software security,

and physical vulnerabilities still remains a fundamental challenge. In the first part of this

dissertation, we focus on the physical vulnerabilities of sensing and actuation modules, in

which an adversary manipulates these components. Particularly, two problems of “state es-

timation” and “system identification” are analyzed in an adversarial environment. In order
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to make the system robust against such attacks, we propose several schemes to mitigate the

adversarial agents impact.

In recent years, personal data from health care, finance, and etc are becoming available

that enables learning high complexity models for applications ranging from medical diagnosis

and financial portfolio strategies among others. The common paradigm to learn such models

is to optimize a cost function involving the model parameters and the data. Acquiring data

from individuals and publishing models based on them compromises the privacy of users

against a passive adversary observing the training procedure. Addressing this vulnerability

is crucial in this increasingly common scenario where we build models based on sensitive

data. For instance, the privacy concern is a major roadblock in large scale use of sensitive

personal data in health care. In the second part of this dissertation, we investigate two

problems in this area: “private linear-regression” and “private distributed optimization”.

These methods develop and analyze private learning mechanisms which guarantee utility

while ensuring a given privacy level.
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CHAPTER 1

Introduction

1.1 Dynamical Systems

Dynamical systems have found applications in many domains including control and opti-

mization, which have risen to great prominence. Physical processes are dynamical systems

in essence and control theory tries to understand them. Optimization algorithms are in-

herently recursive and therefore can be classified as dynamical systems. Over the past few

decades, these systems have found numerous and growing applications in a variety of fields.

Consequently, there has been an increasing number of incidents targeting the integrity and

security of such systems. In this dissertation, we take steps forward toward addressing the

vulnerabilities of these systems against adversaries.

Many control systems have a cyber-physical nature, meaning there is a tight interaction

between cyber (computation and communication) and physical (sensing and actuation) com-

ponents. In the first part of this dissertation, we focus on the vulnerability of Cyber-Physical

Systems (CPS) against an active adversary disrupting the control loop. In the second part,

we turn to optimization systems. We focus on scenarios in which we optimize a cost function

to build an inference model based on sensitive data. We address privacy concerns in these

systems and build robust mechanism against passive adversaries overhearing the training

procedure.
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1.1.1 Cyber Physical Systems

CPS are characterized by a tight interconnection of its cyber and physical components, where

at its core, a dynamical system lies along with a network of sensing and control modules.

These systems find applications in many domains ranging from electricity grids and power

plants to modern cars. CPS are not only prone to actuator and sensor failures, but also to

adversarial attacks on the control and sensing modules. Therefore, the security of CPS is no

longer restricted to the cyber domain. Moreover, publicized incidents [Gre15, Kel16] moti-

vated the recent interest in the security of CPS, specially from the control community (see for

example, [CAS08, SPH+10, ASH13, MKB+12] and references therein). In this dissertation,

we study among others, the physical vulnerabilities, where a malicious agent can corrupt

sensing and actuation modules and thereby causing damages. Particularly we touch on two

problems in this domain: “secure state estimation” and “secure system identification”.

Erroneous state estimation could result in a serious disruption of the performance of the

CPS and may cause damages to the underlying infrastructure. We study the state estimation

when some of the sensing and actuation modules are manipulated by an adversarial agent

under the topic of secure state estimation. We formalize the redundancy we need despite at-

tacks on both sensors and actuators by introducing the notion of sparse-strong observability.

We further propose an estimator to harness the complexity of this intrinsically combinatorial

problem, by leveraging satisfiability modulo theory solving paradigm.

Identifying the underlying model of systems is of great importance in control theory and

is crucial for designing controllers. The second problem in the CPS domain that we study is

system identification in an environment where an adversarial agent alters some of the sensor

measurements. We show that we can still construct a model that is useful for stabilization,

and closely related to the correct model.
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1.1.2 Optimization

In recent years, personal data from health care, finance, and etc are becoming more and more

available, which by itself enables learning high complexity models for applications ranging

from medical diagnosis and financial portfolio strategies. The common paradigm to learn

such models is to optimize a cost function involving the model parameters and the data.

Acquiring data from individuals and publishing models based on them compromises the

privacy of users against a passive adversary observing the training procedure. Addressing

this vulnerability is crucial in this increasingly common scenario where we build models

based on sensitive data. For instance, the privacy concern is a major roadblock in large scale

use of sensitive personal data in health care.

Differential privacy is perhaps the most well-known notion for privacy [DR+14], and has

been applied to a variety of domains (see, for example, [SC13] and [DR+14] and references

therein). It assumes a strong adversary which has access to all data samples except one,

thereby ensuring robustness of the privacy guarantee to adversaries with side-information

about the database. By taking differential privacy as the rigorous and quantifiable privacy

metric, we take steps toward understanding the fundamental trade-off between the privacy

and utility for two problems: “private linear-regression” and “private distributed optimiza-

tion”. These methods develop and analyze private learning mechanisms which ensure utility

while giving privacy guarantees.

One possible way of fulfilling the learning task while preserving user privacy is to train

the model on a transformed, noisy version of the data, which does not reveal the data itself

directly to the training procedure. We analyze the privacy-utility trade-off of two such

schemes for the problem of linear regression: additive noise, and random projections.

In the second problem, we turn to the distributed setup which consists of a set of com-

putational nodes, arranged in a graph, each having a local objective that depends on their

sensitive data. Our proposed method is a modified version of the distributed gradient de-

scent algorithm [NO09, YLY16], in which nodes perturb their messages. We show that by

3



properly injecting noise at different steps, the algorithm converges to a neighborhood around

the optimal point while ensuring differential privacy.

1.2 Thesis Outline

This dissertation is composed of four research topics. The summary of the results is as

follows:

Chapter 2 addresses the problem of state estimation when some of sensors and actuators

are under attack. Our attack model is quite general and we impose no constraint on the

magnitude, statistical properties, or temporal characteristics of the signal injected. We

introduce the notion of sparse strong observability thereby characterizing systems for which

state estimation is possible despite attacks. In the second half of this work, we propose an

estimator to harness the complexity of this intrinsically combinatorial problem, by leveraging

satisfiability modulo theory solving paradigm.

In Chapter 3, we study system identification of linear time-invariant systems in the pres-

ence of an adversarial agent attacking sensors. The attacker is omniscient and we impose no

restrictions (statistical or otherwise) on how the adversary alters the sensor measurements.

Given a bound on the number of attacked sensors, and under a certain observability condi-

tion, we show that we can still construct a model that is useful for stabilization. Furthermore,

we show that this model is closely related to the original system through similarity modulo

outputs relation.

In Chapter 4, we turn to the privacy problem. One possible way of fulfilling the machine

learning task while preserving user privacy is to train the model on a transformed, noisy

version of the data, which does not reveal the data itself directly to the training procedure.

In this chapter, we analyze the privacy-utility trade-off of two such schemes for the problem

of linear regression: additive noise, and random projections. We observe that the random

projections scheme yields a substantially improved utility for a given privacy level, comparing

to the additive noise scheme.
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In Chapter 5, we focus on a distributed setup in which sensitive data is stored across

different nodes. We study the consensus-based distributed optimization algorithm which

consists of a set of computational nodes, arranged in a graph, each having a local objective

that depends on their local data. In each step, nodes take a new gradient step and a linear

combination of their neighbors’ messages. Since the algorithm requires exchanging messages

that depend on local data, private information gets leaked at every step. Our proposed

method is a modified version of the distributed gradient descent algorithm, in which nodes

perturb their messages by adding noise. We show that by properly injecting noise at different

steps, the algorithm converges to a neighborhood around the optimal point.

Chapter 6 concludes the dissertation with conclusion and future direction.

We point out that most of the material in this thesis has been published, or submitted for

publication as of this date. The preliminary result of Chapter 2 was partly published in 56th

IEEE conference on Decision and Control [SSC+17], and partly submitted for publication

in [SSDT18], those in Chapter 3 were published in 55th IEEE conference on Decision and

Control [STD16b] and 54th Annual Allerton Conference on Communication, Control, and

Computing [STD16a]. Chapter 4 was published in 2018 IEEE International Symposium on

Information Theory [SKD18]. Contents of Chapter 5 is submitted for publication [SKD19].
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CHAPTER 2

Secure State Estimation

2.1 Introduction

Cyber-Physical Systems (CPS) are characterized by the tight interconnection of cyber and

physical components. CPS are not only prone to actuator and sensor failures but also

to adversarial attacks on the control and sensing modules. Security of CPS is no longer

restricted to the cyber domain, and recent incidents such as the StuxNet malware [Lan11]

and the security flaws reported on modern cars [Gre15, Kel16] motivated the recent interest

in security of CPS, (see for example, [CAS08, SPH+10, ASH13, MKB+12] and references

therein). During the last decade, a number of security problems have been tackled by the

control community, e.g., denial-of-service [ZM14, DPT15, STDP16, GLB10], replay attacks

[MS09], man-in-the-middle attacks [Smi15], false data injection [MGCS10], etc.

This chapter addresses the problem of state estimation when several sensors and actuators

are under attack. We broadly refer to state estimation in the adversarial environment as

secure state estimation. Our attack model is quite general and we impose no constraints on

the magnitude, statistical properties, or temporal characteristics of the signals manipulated

by the adversary.

Secure state estimation has gained the attention of the control community over the past

decade [GUC+18]. In one line of work, the problem of state estimation and control under

sensor attacks is investigated and the authors derived necessary and sufficient conditions

under which estimation and stabilization are possible [FTD14a]. Shoukry et. al. [ST16b]

further refined this condition and called it sparse observability. Chong et. al. [CWH15a]
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found an equivalent condition for continuous-time systems and called it observability un-

der attack. Nakahira et. a. [NM15] investigated a similar problem while considering the

asymptotic correctness of state estimation. The authors relaxed the sparse observability

condition to sparse detectability and showed it is a necessary and sufficient condition for

asymptotic correctness. The noisy version of this problem has been investigated in the lit-

erature [BPG17, BGP17, MCS14, MS16, MSK+17]. Mishra et. al. [MSK+17] derived the

optimal solution for Gaussian noise. In this work, we solve the more general problem of

actuator and sensor attacks that includes, as a special case, sensors attacks.

Under the sparse attack model in which an adversary can only target a bounded number

of actuators and sensors, state estimation is intrinsically a combinatorial problem. Shoukry

et. al. [SNP+17] proposed a novel secure state estimator using the Satisfiability Modulo

Theory (SMT) paradigm, called Imhotep-SMT. The authors only considered attacks on

sensors. In this work we address the more general problem of sensor and actuator attacks

and build an SMT-based estimator that can correctly reconstruct the state under both types

of attacks.

In another line of work, the problem of secure state estimation has been studied when

the exact model of the system is not available [YFF16, PWB+14a]. Tiwari et. al. [TDJ+14]

proposed an online learning method by building so-called safety envelopes as it receives

attack-free data to detect abnormality in the data when the system is prone to attacks. In

[STD16b, STD16a] the authors considered system identification under sensors attacks. In

all of these works, the adversarial agent is restricted to only attacking sensors.

Pasqualetti et. al. [PDB13] investigated the problem of attack detection and identifica-

tion. The authors related the undetectable and unidentifiable attacks to the zero-dynamics of

the underlying system. The proposed attack identification mechanism consists of a number of

fault-monitor filters that provide formal guarantees for the existence of the attack. The num-

ber of filters, however, grows exponentially with the number of attacked sensors/actuators,

and therefore hinders scalability. In another work [ST16a], the authors investigated de-

tectibility and identifiability of attacks in the presence of disturbances and the concept of
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security index is generalized to dynamical systems. The proposed method is inherently com-

binatorial and does not scale well with the number of attacked sensors and actuators. In this

work, by leveraging the SMT paradigm, we design a state estimator that scales well with

the number of sensors and actuators.

Fault isolation and fault detection filters are classical control topics closely related to

secure state estimation. The traditional fault tolerant filters can detect faults on actuators

and sensors, however, they are not adequate for the purpose of security. Some of these

filters assume a priori knowledge (statistical or temporal) of the fault signals [BKL+06], an

assumption that does not hold in the security framework. The classical fault detection filters

[Jon73] do not guarantee identification of all possible adversarial signals and zero-dynamics

attacks remain stealthy. As an alternative approach, robustification has been used in order

to estimate the state despite sparse attacks by either deploying Kalman filters or principle

component analysis [MB10, FGA11]. The main drawback of these methods is the absence

of formal guarantees for the correctness of the state. In contrast, the method proposed

in this work is guaranteed to construct the state correctly in spite of attacks on sensors

and/or actuators if the number of attacked components is below a specified threshold that

depends on the system. In a recent work [HO16], Harirchi et. al. proposed a novel fault

detection approach using techniques from model invalidation. The authors pursued a worst-

case scenario approach and therefore their framework is suitable for security. However,

necessary and sufficient conditions for state estimation in a general adversarial setting were

not investigated in [HO16]. In this work, we precisely characterize the class of systems,

by providing necessary and sufficient conditions, for which state reconstruction is possible

despite sensor and/or actuator attacks.

The contributions of this work can be summarized as follows:

• We introduce the notion of sparse strong observability by drawing inspiration from

sparse observability [FTD14a, ST16b] and the classical notion of strong observability

[Hau83]. We show this is the relevant property when the adversarial agent not only

compromises sensor measurements but can also attack inputs.

8



• We develop an observer by leveraging the SMT approach to harness the exponential

complexity of the problem. Our observer consists of two blocks interacting iteratively

until the true state is found (see Section 2.4 for the detailed explanation of the ob-

server’s architecture).

• We propose two methods to further decrease the running time of the proposed algo-

rithm by reducing the number of iterations of the observer. The first method exploits

heuristics that can be efficiently computed at each iteration (see Section 2.4.3). The

second method is inspired by the QuickXplain algorithm [Jun01] that efficiently finds

an irreducibly inconsistent set (see Section 2.4.4). We demonstrate the scalability of

our proposed observer by several numerical simulations.

This chapter is organized as follows. Section 2.2 gives the attack model and the precise

problem formulation after establishing the notation. In Section 2.3, we introduce the notion

of sparse strong observability and relate this notion to the problem of state reconstruction

when some of the inputs and outputs are under adversarial attacks. This section concludes

with the main theoretical contribution of this work that is Theorem 2.1. Section 2.4 is

devoted to designing an observer by exploiting the SMT paradigm. Section 2.5 provides the

simulation results followed by Section 2.6 that concludes the chapter.

2.2 Problem Definition

Notation. We denote the sets of real, natural and binary numbers by R, N and B. We

represent vectors and real numbers by lowercase letters, such as u, x, y, and matrices with

capital letters, such as A. Given a vector x ∈ Rn and a set O ⊆ {1, . . . , n}, we use x|O to

denote the vector obtained from x by removing all elements except those indexed by the

set O. Similarly, for a matrix C ∈ Rn1×n2 we use C|(O1,O2) to denote the matrix obtained

from C by eliminating all rows and columns except the ones indexed by O1 and O2, re-

spectively, where Oi ⊆ {1, . . . , ni} with ni ∈ N for i ∈ {1, 2}. In order to simplify the

notation, we use C|(.,O2) := C|({1,...,n1},O2) and C|(O1,.) := C|(O1,{1,...,n2}). We denote the com-
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plement of O by O := {1, . . . , n} \O. We use the notation {x(t)}T−1
t=0 to denote the sequence

x(0), . . . , x(T − 1), and we drop the sub(super)scripts whenever it is clear from the context.

A Linear Time Invariant (LTI) system is described by the following equations:

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), (2.1)

where u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp are the input, state and output variables,

respectively, t ∈ N ∪ {0} denotes time, and A, B, C and D are system matrices with

appropriate dimensions. We use (A,B,C,D) to denote the system described by (2.1). The

order of an LTI system is defined as the dimension of its state space. A trajectory of a

system is defined as its input sequence along with the output sequence. For an LTI system,

O(A,C) :=
[
CT ATCT . . . (AT )n−1CT

]T
, (2.2)

N(A,B,C,D) :=


D 0 . . . 0

CB D . . . 0
...

. . .

CAn−2B CAn−3B . . . D

 , (2.3)

are the observability and invertibility matrices, respectively, where n is the order of the

system. In this paper, we often work with subsets of inputs and outputs. For a subset of

outputs Γy ⊆ {1, . . . , p}, we use the notation OΓy := O(A,C|(Γy,.)) to denote the observability

matrix of outputs in the set Γy. For a set of inputs Γu ⊆ {1, . . . ,m}, we use the notation

NΓu→Γy to denote N(A,B(.,Γu),C(Γy,.),D(Γy,Γu)). For x ∈ Rn, we define its support set as the set of

indices of its non-zero components, denoted by supp(x). Similarly we define the support of

the sequence {x(t)} as supp({x(t)}) := ∩t supp(x(t)). The observer proposed in this paper

uses batches of inputs and outputs in order to reconstruct the state. We reserve capital bold

letters to denote these batches,

Yτ (t) :=
[
y(t− τ + 1)T . . . y(t)T

]T
, (2.4)

Uτ (t) :=
[
u(t− τ + 1)T . . . u(t)T

]T
, (2.5)
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where τ ≤ n. Whenever τ is the order of the underlying system, we may drop the superscript

for ease of notation. For a subset of outputs (inputs), denoted by Γy ⊆ {1, . . . , p} (Γu ⊆
{1, . . . ,m}), we use the notation Yτ |Γy(t) (Uτ |Γu(t)) for the batches of length τ that only

consists of outputs (inputs) in the set Γy (Γu). For a vector x ∈ Rn, we denote a generic

norm, l2-norm and l1-norm of x by ‖x‖, ‖x‖2 and ‖x‖1.

2.2.1 System and Attack Model

This work is concerned with the problem of state reconstruction of LTI systems. We consider

the scenario in which sensors and actuators are both prone to adversarial attacks. The

ultimate goal is to reconstruct the state despite these attacks. In this part, we define the

attack model and conclude this section with the precise problem statement.

System S, is described by the following equations:

x(t+ 1) = Ax(t) +BuS(t),

yS(t) = Cx(t) +DuS(t). (2.6)

Without loss of generality we assume
[
BT DT

]T
to be of full column rank.

System

Control Center

yS(t)

a(t)

y(t)

uS(t)

w(t)

u(t)

Figure 2.1: The generic attack model considered in this paper.

Each actuator (sensor) corresponds to one input (output) and we use input/output ter-

minology instead of actuator/sensor in the rest of this paper. In this set up the adversary can

attack both inputs and outputs. We model these attacks by additive terms and by imposing
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a sparsity constraint on them, 
uS(t) = u(t) + w(t),

y(t) = yS(t) + a(t),

(2.7)

where u(t) ∈ Rm and y(t) ∈ Rp are the controller-designed input and the observed output,

respectively, and w(t) ∈ Rm and a(t) ∈ Rp are signals injected by the malicious agent. In the

rest of this paper, we refer to these signals (w (t) , a(t)) as the attack of the adversarial agent.

We use the subscript S for signals that directly come from/to the system. The controller

can only observe y(t) and compute the input u(t). This generic attack model is depicted in

Figure 2.1.

When the adversary attacks an input (output) it can change its value to any arbitrary

number without explicitly revealing its presence. The only limitation that we impose on

the power of the malicious agent is the maximal number of inputs and outputs that can be

attacked.

Assumption 2.1 (Bound on the number of attacks). The number of inputs and outputs

under attack are bounded by r and s, respectively.

Therefore, the malicious agent can attack a subset of inputs and outputs denoted by

Γu ⊆ {1, . . . ,m} and Γy ⊆ {1, . . . , p},1 respectively, with |Γu| ≤ r and |Γy| ≤ s, such that

supp({w(t)}) ⊆ Γu and supp({a(t)}) ⊆ Γy. Note that these sets are not known to the

controller and only upper bounds on their cardinality are given. Once the adversary chooses

these sets, inputs and outputs outside these sets remain attack-free. This assumption is

realistic when the time it takes for the adversarial agent to attack new inputs and outputs

is large compared to the time scale of the system.

We now precisely define the main problem we tackle in this paper.

1For ease of exposition, we use Γu to denote under-attack inputs while Γy is reserved for the set of attack-
free outputs, therefore, the set of under-attack outputs is represented by Γy := |{1, . . . , p} \Γy in this paper.
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Problem 2.1 (Secure state estimation). For the linear system defined by (2.6) under the

attack model defined by (2.7), what are necessary and sufficient conditions under which the

state of the compromised system (2.6) can be reconstructed with bounded delay?

It is well-known that the secure state estimation problem, when only outputs are under

adversarial attacks, is combinatorial and belongs to the class of NP-hard problems [SNP+17,

PDB13]. Therefore we are motivated to design an observer that harness the complexity of

this problem.

Problem 2.2 (Secure observer design). Assumming conditions in Problem 2.1 are satsified,

how can we design an observer that reconstructs the state of the compromised system?

2.3 Condition for Secure State Estimation

In this section, we solve Problem 2.1, i.e., we provide conditions on the system described by

(2.6) under which state reconstruction (with bounded delay) is possible. We first develop the

notion of sparse strong observability. This section concludes with Theorem 2.1 that relates

this notion to the solution of Problem 2.1.

In the absence of attacks, the problem of estimating the state of a system while some of the

inputs are unknown has been studied and the notion of strong observability was introduced

in the literature [Hau83]. For strongly observable systems, it is possible to estimate the

state of the system without the knowledge of inputs. The following definition formalizes this

concept.

Definition 2.1 (Strong observability). An LTI system is called strongly observable if for

any initial state x(0) ∈ Rn and any input sequence {u(t) ∈ Rm}∞t=0 there exists an integer

τ ∈ N ∪ {0} such that x(0) can be uniquely recovered from {y(t)}τt=0.

Note that τ is always upper-bounded by the order of the system. Linearity implies the

following lemma.
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Lemma 2.1. An LTI system is strongly observable if and only if y(t) = 0,∀t ∈ N ∪ {0}
implies that x(0) = 0.

Proof. See Appendix A.

It is straightforward to conclude the following corollary.

Corollary 2.1. An LTI system is not strongly observable if and only if there exist a non-zero

intial state and an input sequence such that y(t) = 0 for t ∈ N ∪ {0}.

Proof. Follows directly from Lemma 2.1.

It is well-understood that when the adversary is restricted to attacking outputs, state

reconstruction is possible only if there is enough redundancy in the outputs of the system.

This redundancy can be stated in terms of observability of the system while removing a

number of outputs. This property has been formalized in [FTD14a] and is called sparse

observability [ST16b]. By analogy with sparse observability, we define the notion of (r, s)-

sparse strong observability as follows:

Definition 2.2 ((r, s)-sparse strong observability). An LTI system (A,B,C,D) with m

inputs and p outputs is (r, s)-sparse strongly observable if for any Γu ⊆ {1, . . . ,m} and

Γy ⊆ {1, . . . , p} with |Γu| ≤ r and |Γy| ≥ p − s, the system (A,B(.,Γu), C(Γy ,.), D(Γy ,Γu)) is

strongly observable.

Note that in Definition 2.2, the value of r and s are upper bounded by the number of

inputs and outputs, respectively. This modified notion of strong observability is the key for

formalizing redundancy across inputs and outputs. We show that a necessary and sufficient

condition for secure state estimation can be stated using this property. Note that (0, s)-

sparse strong observability is equivalent to the notion of s-sparse observability that was

introduced before in the literature [FTD14a, ST16b, MSK+17]. The following theorem is

the main theoretical result in this paper.
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Theorem 2.1. Let the number of attacked inputs and outputs be bounded by r and s, re-

spectively. Under the attack model (2.7), the state can be reconstructed (possibly with delay)

if and only if the underlying system is (2r, 2s)-sparse strongly observable.

Remark 2.1. It is worth mentioning that the maximum number of attacked outputs, s,

cannot be greater than
⌊
p
2

⌋
, which is an inherent limitation of LTI systems with p outputs

[FTD14a]. However the maximum number of attacked inputs is not inherently restricted by⌊
m
2

⌋
and can take values up to m, depending on the specific system under the consideration.

Remark 2.2. Pasqualetti et. al. [PDB13] addressed the problem of attack detection and

identification in the presence of adversarial inputs and outputs for continuous-time LTI sys-

tems. They showed that attack identification is possible if and if for any Γu ⊆ {1, . . . ,m}
and Γy ⊆ {1, . . . , p} with |Γu| ≤ 2r and |Γy| ≥ p− 2s, the system (A,B(.,Γu), C(Γy ,.), D(Γy ,Γu))

does not have any invariant zeros.

It is clear that from the state and the dynamics of the system, the attack can be identi-

fied, therefore the attack identification comes free with the solution to the secure estimation

problem. Strongly observable LTI systems do not have any invariant zeros (see, for exam-

ple Theorem 1.8 in [Hau83]). Therefore this theorem shows that under this sparse-attack

model, the conditions for identifying the attack also enable one to reconstruct the state, i.e.,

characterizations of attack identifiability and secure state estimation are equivalent for LTI

systems. Putting these together, secure state estimation also comes with the solution to the

attack identification problem. However, we provide a direct proof that does not require this

machinery.

Proof. First we show that (2r, 2s)-sparse strong observability is a sufficient condition for

correctly estimating the state. For the sake of the contradiction, assume that the state cannot

be reconstructed, i.e., there exist two different (initial) states, denoted by x(1) and x(2), that

cannot be distinguished under this attack model. More precisely, there exist two attack

strategies that will lead to the same exact (observed) trajectories. We reserve superscripts

.(1) and .(2) for variables across those scenarios. Let us denote the adversarial additive
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terms by {w(1)(t)}, {a(1)(t)} and {w(2)(t)}, {a(2)(t)}. We represent the corresponding inputs

and outputs of the system by {u(1)
S (t)}, {y(1)

S (t)} and {u(2)
S (t)}, {y(2)

S (t)}, and the common

(corrupted) measured output and the controller input sequences are denoted by {y(t)} and

{u(t)}, respectively.

The attack model (2.7) implies that there exist Γ
(i)
u ,Γ

(i)

y for i ∈ {1, 2} with bounded

cardinality such that

supp({w(i)(t)}) ⊆ Γ(i)
u , supp({a(i)(t)}) ⊆ Γ

(i)

y , (2.8)

Recall from the attack model, 
u

(1)
S (t) = u(t) + w(1)(t)

u
(2)
S (t) = u(t) + w(2)(t)

, (2.9)

where u(t) is the controller designed input. Putting (2.8) and (2.9) together,

supp({u(1)
S (t)− u(2)

S (t)}) = supp({w(1)(t)− w(2)(t)})

⊆ Γ(1)
u ∪ Γ(2)

u . (2.10)

Similarly, it is straightforward to conclude that supp({y(1)
S (t) − y(2)

S (t)}) ⊆ Γ
(1)

y ∪ Γ
(2)

y . We

are ready to reach the contradiction. The underlying system is LTI, thus the input sequence

{u(1)
S (t) − u(2)

S (t)} with the initial state x(1) − x(2) generates the output sequence {y(1)
S (t) −

y
(2)
S (t)}. The underlying system is (2r, 2s)-sparse strongly observable so the sub-system

(A,B(.,Γu), C(Γy ,.), D(Γy ,Γu)) is strongly observable for any |Γu| = 2r and |Γy| = p− 2s. Let us

choose Γu and Γy as any set of 2r inputs and p− 2s outputs such that,

Γ(1)
u ∪ Γ(2)

u ⊆ Γu, Γy ⊆ Γ(1)
y ∩ Γ(2)

y . (2.11)

Note that {y(1)
S (t)|Γy − y(2)

S (t)|Γy} is a zero sequence, together with Lemma 2.1 we conclude

that the corresponding initial state (x(1)− x(2)) is zero, which contradicts the assumption of

x(1) 6= x(2) and therefore the proof is complete.

Now we prove that (2r, 2s)-sparse strongly observability is a necessary condition. For

the sake of contradiction, suppose that the system described by (2.6) is not (2r, 2s)-sparse
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strongly observable, however, reconstructing the state (possibly with delays) is still possible.

We construct two system trajectories with different (initial) states that have exactly the

same input and output sequences under suitable attack strategies (additive terms). This

implies that estimating the correct state is indeed impossible thereby establishing the desired

contradiction.

By the assumption of the contradiction, the underlying system is not (2r, 2s)-sparse

strongly observable, so there exist subsets of inputs and outputs denoted by Γu with |Γu| =
2r and Γy with |Γy| = p − 2s, respectively, such that (A,B(.,Γu), C(Γy ,.), D(Γy ,Γu)) is not

strongly observable. Corollary 2.1 implies that there exist an initial condition ∆x and an

input sequence {∆u(t)} (with its support lying inside Γu) that generates an output sequence

{∆y(t)} with supp({∆y(t)}) ⊆ Γy. One can rewrite ∆u(t) and ∆y(t) as sum of two sparse

signals, more precisely:

∆u(t) = ∆u(1)(t) + ∆u(2)(t), (2.12)

∆y(t) = ∆y(1)(t) + ∆y(2)(t), (2.13)

where cardinality of supp({∆u(i)(t)}) and supp({∆y(i)(t)}) are upper-bounded by r and s

for i ∈ {1, 2}, respectively. For example, we can rewrite Γy = Γ
(1)

y ∪ Γ
(2)

y where |Γ(i)

y | ≤ s for

i ∈ {1, 2}. Then we define
∆y(i)(t)|

Γ
(i)
y

:= ∆y(t)|
Γ

(i)

∆y(i)(t)|
Γ

(i)
y

:= 0

, for i ∈ {1, 2}.

Now consider the following two different trajectories of the system
u

(1)
S (t) = ∆u(t)

y
(1)
S (t) = ∆y(t)

,


u

(2)
S (t) = 0

y
(2)
S (t) = 0

(2.14)

with their initial states 
x(1)(0) = ∆x

x(2)(0) = 0

, (2.15)
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and their corresponding attack strategies,
w(1)(t) = ∆u(1)(t)

a(1)(t) = −∆y(1)(t)

,


w(2)(t) = −∆u(2)(t)

a(2)(t) = ∆y(2)(t)

. (2.16)

It is straightforward to verify that {y(1)(t)} = {y(2)(t)} and {u(1)(t)} = {u(2)(t)}, i.e., under

the attack model (2.7) the controlled inputs and the observed outputs are exactly the same

for both trajectories while having different (initial) states. We reached the contradiction and

the proof is complete.

2.4 Secure Observer Design

In this section, we seek solutions to Problem 2.2. In the first part, we explain the intuition

behind the proposed algorithm that estimates the state despite attacks on inputs and out-

puts. We give formal guarantees that the algorithm reconstructs the state correctly. In the

second part, we introduce the observer by leveraging the SMT paradigm followed by two

methods that enhance the run time of state estimation.

Based on the attack model (2.7), the input to the system is decomposed into two additive

terms, the controller-designed input u(t) and the adversarial input w(t). The underlying

system (2.6) is linear and therefore we can easily exclude the effect of the controller-designed

input from the output by subtracting its effect. Hence, without loss of generality we assume

that the true u(t) is zero.

The proposed algorithm is based on the following proposition.

Proposition 2.1. Suppose the underlying system is (2r, 2s)-sparse strongly observable, and

the number of attacked inputs and outputs are bounded by r and s, respectively. Given any

subset of inputs and outputs denoted by Γu and Γy with |Γu| ≤ r and |Γy| ≥ p − s, the first

statement below implies the second:

1. There exist Û ∈ Rn|T | and x̂ ∈ Rn such that

Y|Γy(t) = OΓy x̂+NΓu→ΓyÛ. (2.17)
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2. The estimated state x̂, is equal to the actual state of the system at time t − n + 1,

x(t− n+ 1), where n is the order of the underlying system.

Remark 2.3. The underlying system is (2r, 2s)-sparse strongly observable and therefore

(A,B(.,Γu), C(Γy ,.), D(Γy ,Γu)) is strongly observable. If (2.17) has a solution, then x̂ would be

the unique solution for x (see Section III-B of [YB75]).

Proof. Let us denote the set of attack-free outputs and under-attack inputs by Γ∗y and Γ∗u.

At most s outputs are under attack, therefore |Γy ∩ Γ∗y| ≥ p− 2s. Note that Y|Γy∩Γ∗y can be

written as follows:

Y|Γy∩Γ∗y =OΓy∩Γ∗yx(t− n+ 1) +NΓu→Γy∩Γ∗yW|Γu +NΓ∗u\Γu→Γy∩Γ∗yW|Γ∗u\Γu . (2.18)

On the other hand, we can rewrite (2.17) by taking only outputs in Γy ∩ Γ∗y,

Y|Γy∩Γ∗y = OΓy∩Γ∗y x̂+NΓu→Γy∩Γ∗yÛ +NΓ∗u\Γu→Γy∩Γ∗y0, (2.19)

where 0 is a zero vector with appropriate dimensions. The underlying system is (2r, 2s)-

sparse strongly observable, therefore we conclude that the sub-system consisting of inputs

Γu ∪ Γ∗u and outputs Γy ∩ Γ∗y denoted by Ŝ := (A,B(.,Γu∪Γ∗u), C(Γy∩Γ∗y ,.), D(Γy∩Γ∗y ,Γu∪Γ∗u)) is

strongly observable. One can reinterpret both equations as two (possibly different) valid

trajectories of the system Ŝ that share the same output sequence. Strong observability of Ŝ

implies that x̂ = x(t− n+ 1) which completes the proof.

The main algorithm in this paper builds upon this proposition. We search for a set of

inputs and outputs that satisfies equality (2.17), i.e., we check if there exist Û and x̂ that

make equality (2.17) hold. Based on Proposition 2.1, we define a consistency check as follows,

Test 2.1 (Consistency Check). Given subsets of inputs and outputs denoted by Γu and Γy,

TEST(Γu,Γy) returns true if

min
Û,x̂
‖Y|Γy −OΓy x̂−NΓu→ΓyÛ‖ ≤ ε, (2.20)
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where ε > 0 is the solver tolerance, due to numerical errors. However, for the sake of clarity,

we focus in this paper on the case when ε is negligible2.

Finding the right subset of inputs and outputs that satisfies this test is a combinatorial

problem in nature and requires exhaustive search. It is well-known that secure state estima-

tion under this attack model is in general NP-hard [SNP+17, PDB13]. This test is depicted

in Algorithm 2.

In the rest of this section, we introduce an architecture for our observer followed by

methods to improve its computational performance. For each input (output), we assign a

binary variable bi ∈ B (ci ∈ B) that indicates if the corresponding input (output) is under

attack or not, i.e., bi = 1 (ci = 1) means that the ith input (output) is under attack. In the

rest of this paper, we use the bold letters (b and c) to denote these Boolean variables and

we reserve non-bold type face (b and c) as instances of them. Finding the right assignment

of these Boolean variables is combinatorial in nature; to efficiently decide which set of inputs

and outputs satisfies the TEST in (2.20), we design an observer using the lazy SMT paradigm

[BSST09].

2.4.1 Overall Architecture

The observer consists of two blocks that interact with each other, a propositional satisfiability

(SAT) solver and a theory solver. The former reasons about the combination of Boolean and

pseudo-Boolean constraints and produces a feasible instance of b ∈ Bm and c ∈ Bp based

on its current state. The theory solver checks the consistency of Boolean variables using the

consistency test, and when the test fails, it encodes the inconsistency as a pseudo-Boolean

constraint and returns it to the SAT solver. The general architecture is depicted in Figure

2.2.

The initial pseudo-Boolean constraint only bounds the number of attacked inputs and

2Note that the minimum always exists for (2.20) as the cost function is a semi-definite quadratic function.
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Figure 2.2: The lazy SMT paradigm architecture.

outputs,

ΦB := (
m∑
i=1

bi ≤ r)
∧

(

p∑
j=1

ci ≤ s). (2.21)

The SAT solver generates instances of b and c that satisfy ΦB. The theory solver checks

whether Γu := supp(b) and Γy := supp(c) satisfies the consistency check. If the test is

satisfied, then the algorithm terminates and returns the (delayed) estimate of the state.

Otherwise, the theory solver outputs UNSAT and generates a reason for the conflict, a

certificate, or a counterexample that is denoted by Φcert. This counterexample encodes the

inconsistency among the chosen inputs and outputs. The following always constitutes a

naive certificate.

Φnaive-cert :=
∑

i∈supp(b)

bi +
∑

j∈supp(c)

cj ≥ 1. (2.22)

On the next iteration, the SAT solver updates the constraint by conjoining Φcert to ΦB,

and generates another feasible assignment for b and c. This procedure is repeated until the

theory solver returns SAT as illustrated in Algorithm 1.

Note that Proposition 2.1 implies that the SAT solver eventually produces an assignment

that satisfies the consistency test and therefore Algorithm 1 always terminates. The size

of the certificate plays an important role in the overall execution time of the algorithm

[SNP+17]. The attack model considered in [SNP+17] is restricted to outputs, and the major

contribution of our work is to handle both input and output attacks. In the next section,

we focus on constructing shorter counterexamples to improve the run time.
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Algorithm 1: Secure state estimator

input : A,B,C,D (system), Y (output), r, s (bounds);

1 status ← UNSAT ;

2 ΦB ← (
∑

i∈{1,...,m}
bi ≤ r)

∧
(
∑

i∈{1,...,p}
ci ≤ s) ;

3 while status == UNSAT do

4 (b, c)← SAT-solver(ΦB) ;

5 (status, x) ← T-solver.check(supp(b), supp(c));

6 Φcert ← T-solver.Certificate(supp(b), supp(c));

7 ΦB ← ΦB

∧
Φcert;

8 end

9 return (x, b, c);

Algorithm 2: T-solver.check

input : Γu,Γy;

1 Solve: (x̂, Û) = argminx,U‖Y|Γy −OΓyx−NΓu→ΓyU‖ ;

2 if ‖Y|Γy −OΓy x̂−NΓu→ΓyÛ‖ ≤ ε then

3 status ← SAT ;

4 else

5 status ← UNSAT ;

6 end

7 return (status, x̂)
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2.4.2 SAT Certificate

In this part, we improve the efficiency of Algorithm 1 by constructing a shorter certificate

(counter-example or conflicts). As it was discussed before, the naive certificate only excludes

the current assignment of b and c from the search space of the SAT solver, however, by

exploiting the structure of the underlying system, we show that we can further decrease the

size of the certificate and therefore prune the search space more efficiently.

One of the main results of this work is to show that we can always find a smaller conflicting

subset of inputs and outputs. We propose two methods for generating shorter certificates.

The first method reduces the size of the counterexample by at least s − 1, we explain this

method in Lemma 2.2 and give a formal proof of the existence of such shorter certificate. In

practice, however we observe the reduction in the length of conflicts is much larger than this

theoretical bound. The second method is inspired by the QuickXplain algorithm. This

method generates counter-examples that are irreducible, meaning that we cannot reduce the

size of the counter-example by removing some of its entries. We also note that by generating

multiple certificates at each iteration we can further enhance the execution time. At the

end of this section Lemma 2.3 states that for a generic LTI system the size of the certificate

cannot be smaller than m+ 1.

Let us assume that the SAT solver hypothesized ΓSAT
u := supp(b) and ΓSAT

y := supp(c)

as the set of compromised inputs and safe outputs, respectively. Recall that the certificate

consists of inputs in Γ
cert

u and outputs in Γcert
y . The main intuition behind both methods is

to look for Γcert
u ⊇ ΓSAT

u and Γcert
y ⊆ ΓSAT

y that would not satisfy the consistency test.

2.4.3 Method I: based on heuristics

Method I reduces the size of the certificate by increasing the size of (supposedly under

attack) inputs (Γcert
u ) followed by decreasing the size of (supposedly safe) outputs (Γcert

u ).

The summary of the above procedure of shortening certificates is illustrated in Algorithm

3. We begin by adding inputs to ΓSAT
u while making sure TEST still returns false and the
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number of inputs is bounded by 2r. Let us denote this new set of inputs by Γcert
u .

At the second step, we shrink the set of conflicting outputs in order to further shorten

the size of the counterexample. Let us denote a subset of ΓSAT
y of size p− 2s by Γtemp

y . The

following lemma shows we can reduce the size of conflicting outputs at least by s− 1.

Algorithm 3: T-solver.Certificate 1

input : ΓSAT
u ,ΓSAT

y ;

/* step 1: Conduct a linear search in the input set */

1 Sort Γ
SAT

u ;

2 status← UNSAT, j ← ∅,Γcert
u ← ΓSAT

u ;

3 while status == UNSAT and |Γcert
u | < 2r do

4 Γcert
u ← Γcert

u ∪ {j} ;

5 Pick another input j ∈ Γ
SAT

u ;

6 (status, x)← T-Solver.check(Γcert
u ∪ {j},ΓSAT

y ) ;

7 end

/* step 2: Conduct a linear search in the output set */

8 Sort ΓSAT
y ;

9 Pick a subset of size p− 2s: Γtemp
y ⊆ ΓSAT

y ;

10 status← SAT, i← ∅ ;

11 while status == SAT do

12 Γcert
y ← Γtemp

y ∪ {i} ;

13 (status, x)← T-Solver.check(Γcert
u ,Γcert

y ) ;

14 Pick another output i ∈ ΓSAT
y \ Γtemp

y ;

15 end

16 Φ1
cert ←

∑
j∈Γ

cert
u

bj +
∑

i∈Γcert
y

ci ≥ 1 ;

17 return Φ1
cert ;

Lemma 2.2. Assume that System S is (2r, 2s)-sparse strongly observable, and the number of
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attacked inputs and outputs are bounded by r and s, respectively. Pick any subset of inputs

and outputs denoted by Γcert
u and ΓSAT

y with |Γcert
u | ≤ 2r and |ΓSAT

y | ≥ p − s, that do not

satisfy the consistency check (2.20). Given any subset of at most p− 2s outputs denoted by

Γtemp
y ⊆ ΓSAT

y , one of the following is true:

1. TEST(Γcert
u ,Γtemp

y ) returns false.

2. There exists an output i ∈ ΓSAT
y \Γtemp

y such that TEST(Γcert
u ,Γtemp

y ∪{i}) returns false.

Proof. See Appendix A.

We denote this smaller set of conflicting outputs Γtemp
y (if TEST(Γcert

u ,Γtemp
y ) returns false,

otherwise Γtemp
y ∪{i}) by Γcert

y . Lemma 2.2 gives formal guarantee of the existence of shorter

certificates that holds no matter how the subsets of inputs and outputs (Γtemp
u and Γtemp

y )

are chosen. This lemma shows that Method I reduces the size of the certificate by at least

s− 1.

In practice, we choose these subsets based on heuristics that have for objective a de-

crease in the overall running time. We assign slack variables to inputs and outputs similarly

to [SNP+17] and [SSC+17], and sort them based on the structure of the system. Recall that

Algorithm 3 shortens the certificate by reducing the number of inputs followed by the re-

duction in the number of outputs, i.e., we simultaneously reducing both inputs and outputs

in the certificate. We observe that by generating two counterexamples, we can prune the

search space of the SAT solver more efficiently. Similarly to Algorithm 5, we can find two

counterexamples by reducing the number of inputs following a reduction in the number of

outputs and vice-verse.

Sorting Γ
SAT

u and ΓSAT
y . Assuming TEST(ΓSAT

u ,ΓSAT
y ) returns false, we assign slack vari-

ables to inputs in Γ
SAT

u and outputs in ΓSAT
y , denoted by slacku(j) and slacky(i), respectively.

Let us denote a solution to the optimization (2.20) inside TEST(ΓSAT
u ,ΓSAT

y ) by x̂ and Û.
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We define slacku(j) for j ∈ Γ
SAT

u as the norm of the projection of Y|ΓSAT
y
− OΓSAT

y
x̂ −

NΓSAT
u →ΓSAT

y
Û onto the column space of Nj→ΓSAT

y
,

slacku(j) := ‖Nj→ΓSAT
y
N †
j→ΓSAT

y

(
Y|ΓSAT

y
−OΓSAT

y
x̂−NΓSAT

u →ΓSAT
y

Û
)
‖.

This slack variable measures how much of the residual can be justified by considering j

in addition to ΓSAT
u . Recall that we want to append inputs to ΓSAT

u while having a false

TEST. We proceed by normalizing these slack variables by the norm of the corresponding

invertibility matrix, and Γ
SAT

u is obtained by sorting slack variables in ascending order.

We define slacky(i) as the residual of each output:

slacky(i) := ‖Y|i −Oix̂−NΓSAT
u →{i}U‖, i ∈ ΓSAT

y . (2.23)

Note that,

∑
i∈ΓSAT

u

slacky(i) = min
Û,x̂
‖Y|ΓSAT

y
−OΓSAT

y
x̂−NΓSAT

u →ΓSAT
y

Û‖. (2.24)

We normalize each slack variable by the norm of the corresponding observabality matrix.

Recall that we aim to find a smaller subset of ΓSAT
u while ensuring TEST returns false. We

pick the output with the highest slack variable as the first element of ΓSAT
u . We sort the rest

based on the dimension of the kernel of each observability matrix, following the intuition

provided in [SNP+17].

2.4.4 Method II: based on QuickXplain

The second method (Algorithm 5) is inspired by QuickXplain and generates a counter-

example by pruning the naive-certificate (2.22) to make it irreducible. We formally define

this property as follows,

Definition 2.3 (Irreducible certificate). A certificate consisting of inputs Γu and outputs Γy

is irreducible, if no other subset of it can generate a conflict, i.e., for all subsets denoted by

Γ
′
u ⊆ Γu and Γ′y ⊆ Γy the following are equivalent for an irreducible certificate:
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1. Γ
′
u and Γ′y generate a conflict.

2. Γ
′
u = Γu and Γ′y = Γy.

One cannot prune irreducible certificates and each element is necessary for the set to

remain a counter-example. Let ∆SAT be the elements (consisting of inputs Γ
SAT

u and outputs

ΓSAT
y ) of the naive certificate. For ease of exposition we slightly abuse notation to denote

TEST(ΓSAT
u ,ΓSAT

y ) by TEST(∆SAT). We denote the output of this algorithm by ∆cert which

consists of inputs Γ
cert

u and outputs Γcert
y .

This method consists of an exploration phase in which it finds an element (input or

output) that belongs to an irreducible certificate. Let us denote an enumeration of ∆SAT

by e1, · · · , ek, and the internal state of the algorithm by ∆temp ← ∅. This method begins

by adding step-by-step elements of ∆SAT to ∆temp. The first element (ei ∈ ∆SAT) that fails

TEST(∆temp) is part of an irreducible certificate, and therefore is added to ∆cert.

In order to find further elements of this certificate, we keep ei in the background and

repeat the procedure by adding elements one-by-one. The first element that fails the consis-

tency check is added to ∆cert. We continue until TEST(∆cert) returns false. It is clear that

∆cert is an irreducible certificate based on the construction. This repeated process can be

implemented efficiently by using the divide and conquer paradigm as depicted in Algorithm

4. When an element ei of ∆SAT is detected we divide the the remaining elements into two

disjoint subsets ∆1 := {e1, · · · , ej} and ∆2 := {ej+1, · · · , ei−1}. We can now recursively ap-

ply the algorithm to find a conflict ∆2
cert among ∆2 by keeping the set ∆1 in the background

and a conflict ∆1
cert among ∆1 by keeping the set ∆2

cert in the background. This method of

finding an irreducible subset is depicted in Algorithm 4.

Note that the resulting counter-example depends on the initial enumeration of elements

in ∆SAT. If the all the inputs (outputs) are ahead of outputs (inputs), then the resulting

counter-example mostly consists of inputs (outputs). In order to have the maximal reduction

in the search space of the SAT solver at each iteration, we produce three certificate using

this method, putting inputs first, outputs first and mixing both inputs and outputs.
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In the last part of this section, we look at the certificate size for a generic LTI system.

We observe that the certificate size cannot be smaller that the number of inputs which is

stated formally in the following lemma.

Algorithm 4: T-solver.QuickXplain

input : ∆0
cert,∆

0 ;

1 if T− solver.check(∆0
cert) == UNSAT or ∆0 == ∅ then

2 return ∅ ;

3 end

Let e1, · · · , ek be an enumeration of ∆0 ;

4 i← 0, ∆temp ← ∆0
cert, ;

5 while T− solver.check(∆temp) == SAT and i ≤ k do

6 i← i+ 1 ;

7 ∆temp ← ∆temp ∪ ei ;

8 end

9 ∆cert ← ei, j ← b i2c ;

10 ∆1 ← {e1, · · · , ej} ;

11 ∆2 ← {ej+1, · · · , ei−1} ;

12 ∆cert ← ∆cert∪ T-solver.QuickXplain(∆1 ∪∆cert,∆
2) ;

13 ∆cert ← ∆cert∪ T-solver.QuickXplain(∆cert,∆
1) ;

14 return ∆cert ;

Lemma 2.3. For a generic LTI system the size of the certificate is always lower bounded by

m+ 1, where m is the number of inputs.

Proof. See Appendix A.
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Algorithm 5: T-solver.Certificate 2

input : ΓSAT
u ,ΓSAT

y ;

1 ∆cert ← T-solver.QuickXplain(∅,ΓSAT

u ∪ ΓSAT
y ) ;

2 Divide ∆cert to inputs Γ
cert

u and outputs Γcert
y ;

3 Φ2
cert ←

∑
j∈Γ

cert
u

bj +
∑

i∈Γcert
y

ci ≥ 1 ;

4 return Φ2
cert ;

2.5 Simulation Results

We implemented our SMT-based estimator in Matlab while interfacing with the SAT solver

SAT4J [LBP10] and assessed its performance in two case studies, randomly generated LTI

systems and a chemical plant. We report the overall running time by using the two proposed

methods, Algorithm 3 and Algorithm 5.

2.5.1 Random Systems

We randomly generate systems with a fixed state dimension (n = 40) and increase the

number of inputs and outputs. Each system is generated by drawing entries of (A,B,C,D)

according to uniform distribution, when necessary we scale A to ensure that the spectral

radius is close to one. In each experiment, twenty percent of inputs and outputs are under

adversarial attacks, and we generate the support set for the adversarial signals uniformly

at random. Attack signals and the initial states are drawn according to independent and

normally distributed random variables with zero mean and unit variance. All the systems

under experiment satisfy a suitable sparse strong observability condition as described in

Section 2.3.

Figures 2.3 and 2.4 report the results of the simulations, each point represents the average

of 20 experiments. All the experiments run on an Intel Core i5 2.7GHz processor with 16GB

of RAM. We verify the run-time improvement resulting from using the shorter certificates,
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Figure 2.3: Number of calls to the SAT solver in Algorithm 1 using Φ1
cert, Φ2

cert vs. the

number of outputs (p) for a fixed number of inputs (m). Green dotted and green dashed

lines represent upper-bounds for the number of the SAT solver calls when using the naive

certificate for m = 5 and m = 10, respectively.

Φ1
cert and Φ2

cert, compared to the theoretical upper-bound of the brute-force approach in

Figure 2.3. For instance, consider the scenario with p = 24 and m = 10 in Figures 2.3 and

2.4. In the brute-force approach, we require to check all
(

24
4

)
×
(

10
2

)
≈ 4.8 ∗ 105 different

combinations of inputs and outputs, however, by exploiting either Φ1
cert or Φ2

cert we observe a

substantial improvement. We observe that although Φ2
cert gives a worse run time for systems

with smaller number of outputs, it scales better compared to Φ1
cert when the number of inputs

and outputs grow.

2.5.2 Chemical Plant

In this part, we use the proposed observer to detect attacks on inputs and outputs of a

simplified version of the Tennessee Eastman control challenge problem [DV93]. Ricker [Ric93]

derived a continuous time LTI model of the plant interaction in its steady state. This system
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Figure 2.4: Execution time of Algorithm 1 using Φ1
cert, Φ2

cert vs. the number of outputs (p)

for a fixed number of inputs (m).

consists of 4 control inputs and 10 measured outputs and the linearized model has 8 state

variables. The structure of the continuous-time dynamics is reported below.

dx

dt
=



∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ 0 ∗ 0

∗ ∗ ∗ ∗ ∗ 0 ∗ 0

∗ ∗ ∗ ∗ 0 0 0 ∗

0 0 0 0 ∗ 0 0 0

0 0 0 0 0 ∗ 0 0

0 0 0 0 0 0 ∗ 0

0 0 0 ∗ 0 0 0 ∗

x+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗

u,

y =



0 0 0 0 ∗ 0 0 0

0 0 0 0 0 ∗ 0 0

∗ ∗ ∗ ∗ 0 0 ∗ 0

∗ ∗ ∗ ∗ 0 0 0 ∗

∗ ∗ ∗ ∗ 0 0 0 0

0 0 0 ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 ∗ ∗


x,

where ∗ represents a non-zero entry3, and x ∈ R8, u ∈ R4 and y ∈ R10 are state, input and

output variables, respectively. The only known limitation of this LTI model is the system

should operate close to its steady-state. We obtain a discrete-time model by discretizing the

3For the exact dynamics of the LTI model, see [Ric93].
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Table 2.1: Average performance of the proposed observers.

Overall execution time
Number of calls to

the SAT solver

Φ1
cert 0.22s 20.05

Φ2
cert 0.21s 7.95

continuous-time model assuming a zero-order hold for the input u, with a time-step of 5s.

The attacker can read all the inputs and outputs and manipulate one control input and two

measured outputs. The linearized system is (2, 4)-sparse strongly observable, therefore our

observer can correctly reconstruct the state under this attack model.

We randomly generate attack signals and the initial state according to independent and

normally distributed random variables. The support set of attacks are drawn uniformly at

random, and in each experiment one input and two outputs are under adversarial attacks.

The proposed observer in this paper can correctly reconstruct the (delayed) state after 8

samples, and the average performance of 20 experiments, by using Φ1
cert and Φ2

cert is reported

in Table 2.1. The overall execution time is the run time of the observer after receiving all

the required samples from the plant, and it does not take the sampling time of the plant into

account. We observe that the execution time of the observer to reconstruct the state and to

detect attacks is much smaller compared to the sampling time of the plant.

2.6 Conclusion

In this chapter, we considered the problem of secure state estimation when inputs and/or

outputs are under adversarial attacks. In this set-up, there is no restriction on how the

adversary manipulates inputs and outputs. By introducing the notion of sparse strong

observability, we derived necessary and sufficient conditions under which state estimation

is possible given bounds on the number of attacked outputs and inputs. Furthermore, we

proposed an estimator to harness the complexity of this intrinsically combinatorial problem,
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by leveraging satisfiability modulo theory solving. We demonstrated the scalability and

effectiveness of the proposed estimator with numerical simulations.
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CHAPTER 3

Secure System Identification

3.1 Introduction

The recent spate of publicized attacks on cyber-physical systems ranging from cars [Gre15]

to infrastructure [Lan11] has led to significant research on security of cyber-physical systems,

(see for example, [CAS08, SPH+10, ASH13, MKB+12] and references therein). One mech-

anism advocated in several recent works is to use the properties of the system dynamics to

defend against sensor attacks (see for example[FTD14b, MGCS10, TSSJ15, MHS14, PDB13]

and references therein). The basic assumption in these works is that the system model is

accurately known to all parties.

In this chapter we ask the question of whether one can identify the system despite attacks

on sensor measurements. Clearly this can be an ill-posed problem. For instance, consider the

system in Figure 3.1 labeled “attack free” and its attacked version labeled “under attack”.

The attack consists of changing the output of the pth sensor from cpx to c′px. Since the

resulting system is still LTI, we cannot expect to distinguish the attacked system from the

un-attacked system in the bottom of Figure 3.1 solely based on the (corrupted) measured

data. Therefore, we seek to characterize the class of systems that cannot be distinguished

in the presence of attacks. Moreover, we want to demonstrate a meaningful use of such an

identification for a control task, e.g., stabilization.

The main result in this chapter is a characterization of this equivalence class, for given

bounds on the number of attacked sensors as well as a certain observability condition on the

system (see Sections 3.2 and 3.3 for more details). We also demonstrate that identification
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c1x
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u

c1x

c2x

cpx+ ep = c′px

Attack free Under attack

x+ = ax+ bu
u

c1x
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...
...
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x+ = ax+ bu
LTI system 1

LTI system 2

Figure 3.1: An example that illustrates the impossibility of exact system identification under

adversarial attacks. Consider the system labeled “attack free” and its attacked version

labeled “under attack”. The attack consists in changing the output of the pth sensor from cpx

to c′px. Since the resulting system is still LTI, it is impossible to distinguish under-attacked

LTI system 1 from un-attacked LTI system 2 solely based on the (corrupted) measured data.

up to this class is indeed useful, as we can use it to stabilize the underlying system. These

results generalize the classical results in (attack-free) system identification, where there is a

characterization of such an equivalence class (of “similar state-space representations”), see

for example [AM06].

Related work. Among the several different security problems reported in the literature,

e.g., denial-of-service [ZM14, DPT15, STDP16, GLB10], man-in-the-middle [Smi15], etc, our

results are closest to the line of research on the secure state estimation problem, [FTD14b,

TSSJ15, CWH15b, SCW+15, PWB+14b, MS15] and [ST16b]. The problem of secure and

resilient state estimation in the presence of malicious agents has recently gained attention,

[MGCS10, MHS14, PDB13, PWB+14b] and [YZF15]. Fawzi et. al. [FTD14b] considered

the problem of control and estimation of LTI systems under adversarial attacks. The authors

exploit the dynamics of the system for the identification of attacks. As mentioned, in this

work we study the problem of identifying attacks when the plant is not known. Using
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a coding theoretic approach, Fawzi [FTD14b] investigated conditions under which attack

detection is possible and showed this problem to be closely related to observability under

the absence of several sensors. This notion was further refined by Shoukry et. al. [ST16b]

and called sparse-observability. Independently, Chong et. al. [CWH15b] investigated same

problem for continuous-time LTI systems and introduced the notion of observability under

attacks. Mishra et. al. [MSK+17] analyzed the noisy version of this problem and identified

its optimal solution for Gaussian noise. Secure state estimation for a class of non-linear

plants has been explored recently e.g., [TSSJ15, SCW+15, YZF15] and [SNB+15].

In another line of work, Tiwari et. al. [TDJ+14] considered the problem of determining

sensor spoofing attacks. Their proposed two-step method does not rely on the dynamics of

the system. In the first step, they construct a safety envelope to be used for attack detection.

This method relies on the attack-free stream of data for the first step. Our method can be

applied directly to the corrupted data and does not rely on the existence of attack-free data.

This chapter is organized as follows. In Section 3.2 we give the precise formulation after

establishing the notation and a brief review of the behavioural approach to system theory.

We introduce the notion of “similarity modulo outputs” in this section. Section 3.3 gives

the main result. The proof outlines are given in Section 3.4. In Section 3.5 we develop a

computational method for our result. Section 3.6 studies the problem in the noisy scenario

where in addition to the attacks, the sensor measurements are affected by additive noise.

This chapter concludes with a discussion in Section 3.7.

3.2 Preliminaries and Problem Definition

Notation. We represent vectors and real numbers by lower case letters, such as u, x, y, and

matrices with capital letters, such as A. For a vector x ∈ Rn and O ⊆ {1, . . . , n}, we denote

the vector obtained from x by removing all the elements except those indexed by O by x|O.

We denote the size of O by |O|. For a given vector space Y ⊆ Rn, we use the notation

Y|O = ∪y∈Y{y|O}. A time series is a map w : {0, . . . , T − 1} → Rd where T is the length

36



of time series and d is the dimension of the signal space. We represent time series by lower

case bold letters, such as w, and the restriction of w to the i-th component with wi. For a

set O ⊆ {1, . . . , d}, we define w|O(t) := w(t)|O. We use the terms “sequence”, “time series”

and “trajectory” interchangeably. We may represent time series w as {w(t)}T−1
t=0 . For times

series u and y, we represent their Cartesian product by (u,y). We denote the Hankel matrix

of time series u by

Hi,j(u) :=


u(0) u(1) . . . u(j − 1)

u(1) u(2)
... u(j)

...
...

...
...

u(i− 1) u(i) . . . u(i+ j − 2)

 , (3.1)

where i and j are the number of rows and columns of the Hankel matrix, respectively. We also

denote a Hankel matrix by Hi(u) whenever j takes the maximal possible value j = T − i+1.

3.2.1 Behavioural System Theory

In this work we use many ideas from the behavioral approach to system theory introduced

by Willems, see, e.g., [WP13] and [MWVHDM06]. Since all we have access to is data

generated by a system, i.e., behaviors, the behavioral framework provides a natural setting

to investigate what can be inferred from data even in the presence of attacks. In the rest of

this part, we briefly review concepts and terminology in the behavioural approach.

Definition 3.1 (Discrete-time dynamical system). A discrete-time dynamical system S is

defined as a 3-tuple S = (T,W,B), with T ⊆ N0 the time axis, W the signal space, and

B ⊆ WT collection of time series called its behavior. In the context of control systems the

signal space is often decomposed into input and output spaces, i.e., W := U× Y, where U

and Y denote the input and the output spaces, respectively.

In the remainder of this chapter, we refer to discrete-time dynamical systems simply as

systems. We say that a system S = (T,W,B) explains a time series w when w ∈ B|[0,T ],

where B|[0,T−1] is the restriction of the behavior to [0, T−1], i.e., B|[0,T−1] := {Π[0,T−1]w|w ∈ B},
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and Π[0,T−1] : WN0 →WT is the natural projection mapping onto the first T components. The

notion of system in this definition is quite general. In this prospectus we focus on systems

that are linear and time-invariant.

Definition 3.2 (LTI system). A system S = (T,W,B) is linear when the signal space W is a

vector space and B is a linear subspace of WT. System S is time invariant if B ⊆ σB, where σ

is the backward shift operator on the time series (σw)(t) := w(t+1) and σB := {σw|w ∈ B}.
We say S is Linear Time-Invariant (LTI) if it is both linear and time-invariant.

Consider the difference equation

R0w(t) +R1w(t+ 1) + . . .+Rlw(t+ l) = 0, (3.2)

where Rτ ∈ Rg×d, τ ∈ {0, · · · , l}. This difference equation (3.2) induces a dynamical system

via the representation

B = {w ∈
(
Rd
)N0| (3.2) holds}. (3.3)

We call (3.2) a kernel representation of the behavior (3.3). For a given behavior the kernel

representation exists1 but it is not unique, however they are all related by an equivalence

relation. We define the lag of a behavior, B as the maximum lag of its shortest lag kernel

representation2 and denote it by l(B). We represent the state dimension of its minimal

state-space realization by n(B).

In order to address resiliency of a system to adversarial attacks, we need to define a

notion that formalizes redundancy in the outputs. Observability in the behavioral framework

formalizes this concept.

Definition 3.3 (Observability). Let (T,W1 ×W2,B) be a time-invariant dynamical sys-

tem. Trajectories in B are partitioned as (w1,w2). We say w2 is observable from w1 if

(w1,w2), (w1,w
′
2) ∈ B implies w2 = w′2.

1Under the assumption of completeness of the behaviour, see Chapter 7 in [MWVHDM06]

2See chapter 7 in [MWVHDM06] for the detailed explanation of characterization of the shortest lag kernel
representation.
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State-space observability (see Chapter 3 in [AM06]) and observability in the behavioral

framework are different notions. However, in the special case when we have a minimal real-

ization of the system S = (T,U×Y1×Y2,B) denoted by (A,B,
[
CT

1 , C
T
2

]T
, D), observability

of y2 from (u, y1) essentially means that (A,C1) is an observable pair.

We often work with different subsets of sensors and use the traditional identification

algorithms for each subsystem to defend against potential attacks. We formally define this

notion as a quotient system.

Definition 3.4 (Quotient system). We say SQ = (T,U × YQ,BQ) is a quotient of S =

(T,U × Y,B) if both have the same input space and there exists a linear projection denoted

by Π : U× Y→ U× YQ such that BQ = ΠB := {w|∃w0 ∈ B s.t. w(t) = Πw0(t),∀t ∈ T}.

When Y ⊆ Rp, O ⊆ {1, . . . , p}, and Π is the natural projection mapping from U× Y to

U × Y|O, we represent this specific quotient subsystem (T,U × Y|O,ΠB) by S|O. We say a

map Π : M→ N is a linear projection if it is linear and surjective.

3.2.2 Preliminaries

In the rest of this section, we develop the machinery to introduce the notion of “similarity

modulo outputs” as well as “s-sparse observability” and “Hamming distance”. These notions

are required to state and understand the main results.

We define the notion of s-sparse observability in the behavioral setting by adapting the

state-space notion introduced in [ST16b].

Definition 3.5 (s-sparse observability). System S is s-sparse observable if any s outputs

are observable from the input and the remaining outputs.

Given any minimal state-space realization of the system, this definition is equivalent to

Definition 3.1 in [ST16b].

Proposition 3.1. System S is s-sparse observable if for any minimal realization (A,B,C,D),
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(A,B,C|O, D|O) is observable for any subset O of indices with |O| = p − s, where p is the

number of outputs.

Proof. By definition of the observability.

Following concept will be used to characterize identifiability subject to attacks.

Definition 3.6 (Parallel composition). Consider systems Si = (T,U × Yi,Bi) for i ∈
{1, 2} with the same input space. The parallel composition of S1 with S2 is the system

(T,U× Y1 × Y2,B), where B is defined by

{(u,y1,y2) ∈
(
U× Y1 × Y2

)T|(u,y1) ∈ B1, (u,y2) ∈ B2} (3.4)

Now we are ready to introduce the notion of similarity modulo outputs which is a core

concept in secure system identification.

Definition 3.7 (Similar modulo outputs). Two LTI systems, S1 and S2, with the same

input spaces are called similar modulo outputs, if both of them have the same order n, and

there exists an n-dimensional subspace which is invariant under the dynamics of the parallel

composition of S1 with S2. Throughout this chapter, we denote this relation by ∼.

Proposition 3.2. Similarity modulo outputs is an equivalence relation and divides Lm+p,n
m

into equivalence classes.

Proof. See Appendix B.

We now define the Hamming distance between two time series similarly to classical coding

theory. We can think of each time series, such as w, as a code and its components wi for

i ∈ {1, . . . , d} as symbols.

Definition 3.8 (Hamming distance). For two time series y and z the Hamming distance

between y and z is the maximum number of indices, i, such that yi 6= zi.

Note that yi is a time series. Hence, the equality yi = zi is to be understood as yi(t) =

zi(t) for all t ∈ {0, . . . , T − 1}.
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3.2.3 Problem Definition

We consider the problem of system identification of LTI systems when sensors measurements

are subject to adversarial attacks. The adversary is omniscient and can arbitrarily alter

sensor measurements. We impose no assumptions on the signals injected by the adversary.

However, we assume that an upper bound on the number of attacked sensors is known.

Assumption 3.1 (Bound on the number of attacked sensors). We assume that an upper

bound s on the number of attacked sensors is given.

The following assumption is required, otherwise even the identification of the system in

the absence of attacks becomes an ill-posed problem.

Assumption 3.2 (Identifiablity given the input sequence). The behavior of the underlying

system is identifiable from the input sequence3.

We are ready to precisely state the problem we study. The underlying LTI system is

denoted by S = (N0,U× Y,B) with U = Rm and Y = Rp. System S is identifiable given the

input sequence and upper bounds on the lag and order of its behavior are given by lmax and

nmax, respectively. The available data is the time series (u,y), where u is the input sequence

and y is the corrupted output sequence.

The sensor measurements are given by, y = yS + yattack, where yattack is the signals

injected by the adversary, which can attack a set K ⊆ {1, . . . , p} with |K| ≤ s, i.e.,

yattack|{1,··· ,p}\K = 0. We do not impose any further restrictions on yattack, and yattack|K
can be any arbitrary sequence.

Problem statement: Given the sequence (u,y), we seek answers to the following problems:

1. Identify a model that explains the input-output behavior of the unattacked sensor

measurements (u,y|{1,...,p}\K). Note that such a model is not unique.

3See Appendix B Proposition B.1 and the explanation followed for such conditions
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2. Characterize the equivalence class of models that can explain this sequence.

3. Stabilize the true underlying system using the identified model.

3.3 Main Result

In this section, we present our main theoretical results followed by implications and expla-

nations. In Section 3.4 we prove our results using tools we developed.

Theorem 3.1. The Hamming distance between output trajectories of two 2s-sparse observ-

able systems is at least 2s+ 1, provided that

1. Systems are not similar modulo outputs.

2. The same input sequence excites both systems.

3. The input sequence is sufficiently rich to identify the systems.

Remark 3.1. Theorem 3.1 essentially states that the output trajectories of 2s-sparse ob-

servable systems that are not similar modulo outputs are distinguishable despite attacks on

s sensors. In the introduction, we argued that one can only identify the system up to an

equivalence class, using the corrupted data. Theorem 3.1 states that under a 2s-sparse ob-

servability assumption, it is possible to find a model which is closely related to the underlying

system via similarity modulo outputs relation.

Now we are ready to present our main contribution, we show that under a 2s-sparse

observability assumption, it is possible to construct a model that can be used for stabilization

of system S.

Theorem 3.2. Let us denote the system that explains (u,y|O) by S ′, where O is any subset

of at least p − s sensors that (u,y|O) can be explained by an s-sparse observable system.

System S is similar modulo outputs to S ′ and any controller that stabilizes S ′ also stabilizes

S, provided that S is an 2s-sparse observable system and Assumptions 3.1 and 3.2 hold.
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Remark 3.2. Note that this set, O may contain some of the under-attack sensors, however,

they are ineffective in misleading us and we still have the same guarantee. We can further

consider other subsets that result in an s-sparse observable system and take the union of all

such subsets for identification. Clearly one subset corresponds to p − s attack-free sensors

which satisfies the test, i.e., our method captures all the attack-free sensors.

3.4 Proof Outlines

The Following lemmas have been used for proving our main theorems. Lemma 3.1 gives

an equivalent condition for similarity modulo output based on the specific realization of the

system. Intuitively speaking, two systems are similar modulo outputs if they share the same

internal dynamical structure. Lemma 3.2 characterizes the relation between a system and

its quotient systems for observable LTI systems.

Lemma 3.1. Two systems S1 and S2 are similar modulo outputs if and only if for any

minimal realizations of S1 and S2, denoted by (A,B,C,D) and (A′, B′, C ′, D′), respectively,

there exists a linear change of coordinates, P , such that

A′ = PAP−1,

B′ = PB. (3.5)

Proof. See Appendix B.

Lemma 3.2. The following are equivalent for any system S = (N0,U× Y1 × Y2,B):

1. y2 is observable from (u, y1).

2. S and SQ = (N0,U × Y1,BQ) are similar modulo outputs, where BQ = ΠB and Π is

the natural projection mapping from U× Y1 × Y2 to U× Y1.

Proof. See Appendix B.
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3.4.1 Theorem 3.1

Suppose not the Hamming distance between output trajectories of S1 and S2 is at least 2s+1.

We show that S1 and S2 are similar modulo outputs and the claim follows by contradiction.

There exist at least p− 2s sensors in each system identical output sequences. Now we show

these p−2s sensors to be enough to conclude that both systems are similar modulo outputs.

Without loss of generality we assume these p − 2s sensors to be indexed from 1 to p − 2s

in both systems, we denote the restriction of the outputs to these indices by Y1. Therefore

the output space can be decomposed as Y1 × Y2, where Y2 represents the space of the

remaining 2s outputs. Consider systems Si = (T,U × Y1 × Y2,Bi) for i ∈ {1, 2} and their

corresponding quotient systems Qi = (T,U × Y1,BQi ) for i ∈ {1, 2}, where BQi = Π1Bi and

Π1 is the projection map onto the first p− 2s coordinates. Lemma 3.2 implies that Si ∼ Qi

for i ∈ {1, 2}. Since the input is sufficiently rich for identification, so the quotient systems

should have the same behavior, i.e., Q1 = Q2 and therefore Q1 ∼ Q2. Similarity modulo

outputs is an equivalence relation and it divides the set of all LTI systems into equivalence

classes, therefore we conclude that S1 ∼ Q1 ∼ Q2 ∼ S2.

3.4.2 Theorem 3.2

Such a set exists since at most s sensors are under attacks. Furthermore, there exists a subset

of O, denoted by Oclean that corresponds to p − 2s attack-free sensors. Note that assump-

tion 3.2 implies that S ′|Oclean
= S|Oclean

. Clearly S ′ and S are both s-observable therefore

y|{1,...,p−s}\Oclean
are observable from (u, y|Oclean

) for both systems. Lemma 3.2 implies that

S ′ ∼ S ′|Oclean
and S|Oclean

∼ S, therefore S ∼ S ′.

Pick any arbitrary minimal state-space realizations of S and S ′ denoted by (A,B,C,D)

and (A′, B′, C ′, D′), respectively. Lemma 3.1 implies that there exists a linear change of

coordinates, P , such that A′ = PAP−1 and B = PB′. Let us denote the state sequences

corresponding to these realizations by x and x′, respectively. According to the definition

of similarity modulo outputs and given the fact that both systems have same input se-
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quences, we know that x′(t) = Px(t). The controller makes S ′ asymptotically stable, i.e.,

lim
t→∞
‖x′(t)‖ = 0. Note that ‖x(t)‖ ≤ ‖P−1‖‖x′(t)‖, so lim

t→∞
‖x(t)‖ = 0. We conclude that the

same control input makes S asymptotically stable.

3.5 Implementation

In this section we analyze the computational part of our method. In the first part of this

section, we develop an algorithm for (deterministic) LTI systems and we illustrate the effec-

tiveness of it by simulation results.

Recall from Section 3.3 that the main idea is to find a subset of sensors O such that

(u,y|O) can be explained by an s-sparse observable system. An straightforward approach

is to construct a realization of this model, such as the state-space realization, and check

whether it is an s-sparse observable system. This approach is summarized in Algorithm 6.

Instead, we proceed by directly checking the behavioral definition of observability. Let us

consider an LTI system (N0,U×Y1×Y2,B), we aim to check if y2 is observable from (u,y1).

According to Definition 3.3, we need to check the existence of a map from (U×Y1)N0 to YN0
2

that maps (u,y1) to y2. Since the underlying system is LTI, this map should be linear and

causal. We know the lag of the underlying behavior is upper bounded by lmax, therefore we

need to check the existence of linear mappings Lu : Ulmax+1 → Y2 and Ly1 : Ylmax+1
1 → Y2

such that:

y2(t) = Lu(u(t), . . . , u(t− lmax)) + Ly1(y2(t), . . . , y2(t− lmax)), ∀t ∈ {lmax, . . . , T − 1},
(3.6)

where T is the length of time series.

Lemma 3.3. Linear mappings Lu : Ulmax+1 → Y2 and Ly1 : Ylmax+1
1 :→ Y2 satisfying (3.6)

exist if and only if [y2(lmax), . . . , y2(T − 1)] lies in the row space of Hlmax+1(u,y1).

Proof. See Appendix B.
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Algorithm 7 summarizes the proposed method, in which for each subset we check the

condition in Lemma 3.3. This algorithm returns a subset of outputs, O that we can use to

identify a system using any off-the-shelf identification algorithms.

Algorithm 6: The secure identification algorithm.

/* Let {Oi, i = 1, . . . , imax} be an enumeration of subsets of size p− s of

{1, . . . , p} */

input : {u(t)}T−1
t=0 , {y(t)}T−1

t=0 , Identify() (a system identification algorithm);

output: S ′;

1 S ′ ← ∅ ;

2 for i = 1, . . . , imax do

3 Stemp ← Identify
(
{u(t)}T−1

t=0 , {y(t)|Oi}T−1
t=0

)
;

4 if Stemp is s-sparse observable then

5 S ′ ← Stemp;

6 break;

7 end

8 i← i+ 1;

9 end

10 return S ′

3.5.1 Simulation

In this section, we illustrate the effectiveness of our algorithm with a numerically simulated

example. We consider a simple physical model of a locomotive that pulls a car, the connection

is modeled by a spring in parallel with a damper. The dynamics of this system can be

described by the following differential equations,

d

dt


x1

x2

x3

 =


0 1 −1

− k
m1
− b+c

m1

b
m1

k
m2

b
m2

− b
m2



x1

x2

x3

+


0

1
m1

0

 v, (3.7)
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Algorithm 7: The secure system identification algorithm for deterministic LTI sys-

tems.

/* Let {Oi, i = 1, . . . , imax} be an enumeration of subsets of size p− s of

{1, . . . , p} */

/* Let {Oi,j, j = 1, . . . , jmax} be an enumeration of subsets of size p− s of

Oi */

input : {u(t)}T−1
t=0 , {y(t)}T−1

t=0 , nmax, lmax, s ;

output: O ⊆ {1, 2, . . . , p} ;

1 O ← ∅ ;

2 for i ← 1 to imax do

3 flag← rank
(
Hlmax+1

(
(u,y|Oi)

))
;

4 j ← 1;

5 while flag == rank
(
Hlmax+1

(
(u,y|O′i,j)

))
do

6 if j = jmax then

7 O ← Oi ∪O ;

8 break;

9 end

10 increment j;

11 end

12 end

13 return O
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Table 3.1: Rank of Hankel matrices corresponding to different subsets of outputs.

Subset of Outputs {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Rank of Hankel matrix 12 9 9 15 15 9 15

where x1 is the distance between the locomotive and the car, x2 and x3 are the veloci-

ties of the locomotive and the car, respectively, c = 160Ns/m represents the aerodynamic

friction coefficient. Damping and restitution coefficients of the spring are represented by

b = 1100Ns/m and k = 7874N/m. The parameters m1 = 176580Kg and m2 = 100698Kg

denote the mass of the locomotive and the mass of the car, respectively. The input to the

system is the force applied by the locomotive and is denoted by v.

The car is equipped with a radar that reports its distance from the locomotive, and two

encoders that measure the velocities of the car and the locomotive. Therefore the output

can be written as:

y =


yGPS

yENC1

yENC2

 =


1 0 0

0 1 0

0 0 1



x1

x2

x3

 . (3.8)

We obtain a discrete-time model by discretizing the continuous-time model assuming

zero-order hold for the input v, with the time-step 0.1s.

For testing the proposed method, the input sequence has been generated randomly, it

satisfies Assumption 3.2 (persistency of excitation), and the sensors are assumed to be noise-

less. It is straightforward to verify the system is 2-sparse observable. In this example, the

adversary injects signals into the first sensor, i.e., y′1 = y1 + e1. We run Algorithm 7 for this

corrupted time series with lmax = 6 and nmax = 10. Rank of Hankel matrices for different

groups are given in Table 3.1. We observe that {2, 3} is the only subset that satisfies the

test in algorithm 7 while for other subsets the the rank of the Hankel matrices are different.
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3.6 Extension to Noisy Measurements

In this section, we study the noisy scenario in which the sensor measurements, in addition

to adversarial attacks, are affected by additive noise. It is worth mentioning that Algorithm

6 can resist against attacks under the Assumptions 3.1 and 3.2 and 2s-sparse observability

for any class of systems, not only LTI systems. However, Assumption 3.2 and the notion

of s-sparse observability are only well-understood for exact deterministic LTI systems. We

would like to emphasize the “deterministic LTI system” terminology to differentiate it from

the case where the sensor measurements are not exact due to e.g., the measurement noise.

In this scenario, the output of any off-the-shelf system identification tools is probabilistic

and we need to develop a machinery to address challenges arising from that.

Assume System S can be described by the following equations:

x(t+ 1) = Ax(t) +Bu(t),

yS(t) = Cx(t) +Du(t) + ε(t), (3.9)

the random variable ε(t) represents additive noise, which is assumed to be Independent and

Identically Distributed (i.i.d.) with zero mean. When the sensor measurements are corrupted

by additive noise, (attack-free) identification task becomes more challenging and requires

further consideration in order to remove the effect of noise. We would like to emphasize that

Assumption 3.2 cannot be satisfied for this scenario and instead we consider the following

assumption.

Assumption 3.3 (Identifiablity given the input sequence). The underlying system is asymp-

totically identifiable from the input sequence. Formally speaking, the identified model con-

verges to the true model with probability approaching one as the number of measurements

tends to infinity.

In the literature of system identification, there exist several methods that guarantee exact

identification when the length of the training sequence tends to infinity (see for example

[VODM12, Lju87]). Subspace identification algorithms are one of the most prominent such
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methods. It is known that under mild conditions on the input sequence and an upper-

bound on the order of system, it is still possible to identify the system asymptotically, see

Appendix C and Theorem C.1 therein. Our approach does not rely on a specific identification

algorithm, instead we transform the secure system identification problem to a problem that

can be solved with any of the off-the-shelf identification algorithms. In the rest of this

section, we develop a machinery to tackle the probabilistic setup. We show that even for the

noisy scenario, Algorithm 6 could identify a useful model.

As we elaborated in the introduction, two LTI systems that are similar to each other

will have the exact same input-output characteristics, and in the context of system identi-

fication they are equivalent. We use the notation L to denote the set of equivalence classes

of this relation.4 In the rest of this section, with a slight abuse of notation we use S as its

corresponding equivalence class of similarity transformation. We reserve [S] for the equiv-

alence class of similarity-modulo outputs. In order to formalize our convergence argument,

we define the notion of ε-similarity modulo outputs.

Definition 3.9 (ε-similarity modulo outputs). Two LTI systems S1 and S2 are ε-similar

modulo outputs if d([S1], [S2]) < ε, where d is the metric on the space of equivalence classes

of similarity modulo outputs that makes the quotient map (L, d0) → (L/ ∼, d) continuous,

and d0 is the metric5 on the space of equivalence classes of similarity.6

Theorem 3.3. Let us denote the output of Algorithm 6 by S ′. For any ε > 0 the probability

that S ′ is not ε-similar modulo outputs to the underlying LTI system S, approaches zero

when the number of data points tends to infinity, provided that S is 2s-sparse observable and

4Similar systems are similar modulo outputs, i.e., similarity modulo outputs induces an equivalence
relation on L, with a slight abuse of notation we also denote this relation by ∼.

5Note that d0 should make the quotient map (L, dS) → (L, d0) continuous, where L is the set of LTI
systems (matrices (A,B,C,D)) equipped with the metric dS.

6These metrics exist. One can always endow the quotient space of a metric space with a (pseudo)metric.
The only difference between pseudometrics and metrics is topological, and for T0 topological spaces, a pseu-
dometric is also a metric [How12]. In this case, with a properly defined distance dS on L, quotient spaces
(L and L/ ∼) are T0, therefore d and d0 can be constructed.
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Assumptions 3.1 and 3.3 hold. Furthermore any feedback controller that stabilizes S ′ also

stabilizes S with probability approaching one.

Proof. First we argue that the probability of S ′ = ∅ converges to zero as the number of

measurements, T goes to infinity. Recall that there always exists a set O ⊆ {1, . . . , p} with

|O| = p− s that {(u(t), y(t)|O)}T−1
t=0 can be explained by an s-sparse observable system since

at most s sensors are under attack and S is 2s-sparse observable. By Assumption 3.3 the

identify() subroutine guarantees the exact model when the number of measurements tends

to infinity. Note that s-sparse observability is a robust property, i.e., an s-sparse observable

system remains s-sparse observable by a small enough perturbation of the system dynamics.

Therefore, with probability approaching one the identified model for this subset O is s-sparse

observable. We conclude that Algorithm 6 does not return ∅ with high probability. However,

such a subset and model are not unique.

Let us assume that the output of Algorithm 6 is not ∅, and we denote the corresponding

subset by O′. We prove S ′ is ε-similar modulo outputs to S with high probability. Note

that S ′ is not necessarily the true model of the corresponding subset of sensors, s sensors

are under attack therefore there exists a subset of O denoted by Oclean that corresponds to

p− 2s attack-free sensors. Assumption 3.3 implies that for any ε′ > 0 we have

lim
T→∞

Pr(d0(S ′|Oclean
, S|Oclean

) < ε′) = 1, (3.10)

where d0 is the metric on the space of equivalence classes of similarity transformation.

The rest of the argument consists of two steps. The quotient map S 7→ [S] is continuous,

and (3.10) holds for any ε′ > 0. Putting this together with 3.10,

lim
T→∞

Pr(d([S ′|Oclean
], [S|Oclean

]) < ε) = 1, (3.11)

where d is the metric on the space of equivalence classes of similarity modulo outputs that

makes the map S 7→ [S] continuous.

Following the same lines of the proof of Theorem 3.2, S ∼ S|Oclean
and S ′ ∼ S ′|Oclean

.

Similarity modulo outputs is an equivalence relation, hence S ′ ∼ S. Together with (3.11) we
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conclude

lim
T→∞

Pr(d([S ′], [S]) < ε) = 1, (3.12)

or equivalently S ′ is ε-similar modulo outputs to S with probability approaching one.

We showed that with high probability the identified model is ε-similar modulo outputs

to S. Now we are ready to prove the stability result. It is a standard result in control theory

that a small enough perturbation on system dynamics does not affect the stabilization for

feedback controllers. Therefore any feedback controller that stabilizes S ′ also stabilizes S|O’

with probability approaching one. Following the argument in the proof of Theorem 3.2

we conclude that the same feedback controller makes S asymptotically stable with high

probability.

3.7 Conclusion

We considered the problem of system identification of LTI systems under adversarial attacks.

We imposed no restriction on the sensors attacked by the adversary. Given a bound on the

number of attacked sensors, and under a suitable sparse-observability assumption, we showed

that it is possible to construct a meaningful model that enables stabilization of the unknown

system. Although such a model is not unique we provided a precise characterization of which

models can be distinguished by sensor measurements under attack. We defined the notion of

similarity modulo outputs and showed that all of such models are similar modulo outputs.

This generalizes the ideas of equivalent systems in classical linear systems theory to the case

when there are sensor attacks. Moreover, we showed that the secure identification algorithm

produces a useful model even in a noisy scenario in which sensor measurements are corrupted

by additive noise in addition to the adversarial attack.

52



CHAPTER 4

Private Linear Regression

4.1 Introduction

High-complexity models are needed to solve modern learning problems, which require large

amounts of data to achieve low generalization error. However, acquiring such data from users

directly compromises the user privacy. Training useful machine learning models without

compromising user privacy is an important and challenging research problem. One natural

way to tackle this problem is to keep the data itself private, and reveal only a processed,

noisy version of the data to the training procedure. Ideally, such processing would completely

hide the content of the data samples, while still providing useful information to the training

objective. In this work, we analyze the privacy-utility trade-off of two such schemes for the

linear regression problem: additive noise, where training is performed on the data samples

with additive Gaussian noise; and random projections, where each data sample is randomly

projected to a lower-dimensional subspace through Johnson-Lindenstrauss Transform (JLT)

[Vem05] before adding Gaussian noise. We explore guarantees for a model that is trained on

such transformed data for a given privacy constraint.

Differential Privacy (DP) is perhaps the most well-known notion for privacy [DR+14], and

has been applied to a variety of domains (we refer reader to [SC13] and [DR+14] and refer-

ences therein). It assumes a strong adversary which has access to all data samples except one,

thereby ensuring robustness of the privacy guarantee to adversaries with side-information

about the database. Moreover differential privacy makes no distributional assumption on

the data.
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In this work we use the recently proposed notion of Mutual Information-Differential

Privacy (MI-DP) to analyze the privacy performance of the schemes. This connects to the

natural information-theoretic notion of privacy, as well as enabling the use of more standard

tools for analysis. Moreover it is shown in [CY16] that MI-DP directly implies (ε, δ)-DP.

Our contributions are as follows: First, we derive closed-form expressions on the rel-

ative objective error achievable by additive noise (Theorem 4.1) and random projection

schemes (Theorem 4.2), under a privacy constraint, and show that in general random projec-

tions achieve better privacy-utility trade-off. We use results from randomized linear algebra

[PW15] to prove the utility guarantees. Second, using the MI-DP measure, and using the

fact that the random projection matrix is private, we make a connection between the MI-

DP and SIMO channel, and show that non-coherent SIMO bounds do not give a stronger

scaling guarantee than their coherent counterparts. Third, we present numerical results

demonstrating the performance of the two schemes.

Related work. The works in [BST14a, CMS11, KST12] propose perturbing the objective to

provide privacy guarantees on the trained model, where the training procedure is trusted and

has access to the full database, and the adversary can only access the resulting trained model.

In contrast, we assume that the training procedure itself may be adversarial, and is not given

access to the raw data samples. In the context of linear regression and related problems,

the works in [ZLW09, PW15] propose random projections to provide privacy, by showing

that the mutual information between the raw and projected data samples grows sublinearly

with dimensions. However, this does not necessarily translate to a formal differential privacy

guarantee on the data samples. Random projection as a tool to provide differential privacy

has also been considered in [KKMM13] and [KJ16]. The main difference of these works

with ours is that they project each data vector individually to a lower-dimensional subspace,

whereas we consider mixing samples across the database, such that the effective number of

“mixed” samples is fewer than original.

In terms of motivation and techniques, the works in [BBDS12, She17] are the most closely

related to ours. These works consider JLT in the context of linear regression, and prove that
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it guarantees differential privacy for well-conditioned data matrices. However, no explicit

guarantee on the achievable empirical risk is given. In contrast, we directly analyze the

privacy-utility trade-off of additive noise and random projections, where utility is measured

by the objective value achieved by the trained model under the privacy scheme, normalized

by the true minimum of the objective. We also use the stronger MI-DP privacy1, instead of

the traditional (ε, δ)-differential privacy. We emphasize that the main novelty of our work

lies in the analysis of the algorithms and the resulting theoretical guarantees, and not in the

algorithms themselves.

This chapter is organized as follows. In Section 4.2 we give a brief overview on different

privacy metrics followed by the precise problem formulation. Section 4.3 includes the main

theoretical results of this work. The proof outlines are given in Section 4.4. Section 4.5 gives

the numerical results followed by Section 4.6 that concludes this chapter.

4.2 Formulation and Background

In this paper we consider the quadratic optimization

min
θ
g(θ) := min

θ
‖Xθ − y‖2

2, (4.1)

where X ∈ Rn×d is the data matrix in which each row corresponds to one user and y ∈ Rn

are the response variables. We denote a solution of this optimization problem as θ?. We use

Xi,j to denote the j-th feature of the i-th user data point for i ∈ {1. · · · , n}, j ∈ {1, · · · , d}.
We assume the number of data points is greater than the number of features and X is full

column rank. We assume that |Xi,j| ≤ 1. Throughout this paper, we use bold letters for

random variables to distinguish them from deterministic quantities.

Consider a database DN := (D1, · · · , DN) along with a query according to a randomized

mechanism q(.). Let D−i denote the set of database entries excluding Di.

1In [CY16], it is shown that for discrete alphabets, the two notions are equivalent; however MI-DP is
strictly stronger for continuous alphabets.
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Definition 4.1 (ε-mutual information-differential privacy). A randomized mechanism q(.)

satisfies ε-Mutual Information-Differential Privacy (MI-DP) if

sup
i,P (DN )

I(Di; q(D
N)|D−i) ≤ ε bits, (4.2)

where the supremum is taken over all distribution on DN .

We aim to preserve the privacy of each entry of X, therefore, in the context of our work,

D := (X1,1, · · · , X1,d, X2,1, · · · , X2,d, · · · , Xn,d).

The notion of ε-MI-DP is closely related to (ε, δ)-differential privacy [DRV10]. We first

define the notion of neighbor in databases:

Definition 4.2 (Neighbor). Two databases DN and D̄N are called neighbor if they differ

only in one entry.

In the context of our problem, two data matrices are neighbors if they only differ in one

entry. Now we are ready to define (ε, δ) differential privacy.

Definition 4.3 ((ε, δ)-differential privacy). A randomized mechanism q(.) satisfies (ε, δ) dif-

ferential privacy (DP) if for all neighboring databases DN and D̄N and all S ⊆ Range(q(.)),

Pr(q(DN) ∈ S) ≤ eε Pr(q(D̄N) ∈ S) + δ. (4.3)

We say q(.) satisfies (δ)-DP if it satisfies (0, δ)-differential privacy.

Note that neither of MI-DP nor DP impose distributional assumptions on the database

and the probabilities arise completely from the randomization of the mechanism.

Proposition 4.1 (Theorem 1 in [CY16]). ε-MI-DP is stronger than (ε, δ)-DP in the sense

that for all ε > 0 if a mechanism is ε-MI-DP, there exists ε′, δ′ such that the mechanism

satisfies (ε′, δ′)-DP. We denote this relation with ε-MI-DP � (ε, δ)-DP. Furthermore, we

have the following relation:

ε-MI-DP
(a)

� (δ)-DP
(b)≡ (ε, δ)-DP, (4.4)
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where � is interpreted as being stronger and (b) means (δ)-DP � (ε, δ)-DP and (ε, δ)-DP �
(δ)-DP.

Proposition 4.2 (See Lemma 2 in [CY16]). If a mechanism is ε-MI-DP then it also satisfies

(0,
√

2
log(e)

ε)-DP.

Let us denote a solution to the original problem (4.1) with θ?. Let us denote the the cost

function of the transformed problem with ĝ(θ) with a minimum of θ̂ ∈ arg minθ ĝ(θ). We

define the relative error of this transformed problem as the smallest η ≥ 1 such that,

g(θ̂) ≤ ηg(θ?). (4.5)

In this chapter we consider the achievable relative error for linear regression given ε-MI-

DP requirement. We analyze two methods for answering this question in Section 4.3 and

find the privacy-utility trade off. In the rest of this section we define some variables that

will be used in the subsequent sections.

Notation. We denote the condition number of X with

κ(X) := ‖X‖2‖X†‖2 =
σmax(X)

σmin(X)
, (4.6)

where X† is the Moore-Penrose pseudoinverse of X and ‖X‖2 is the spectral norm of X. We

denote the ratio of l2 norm of the projection of y onto the column space of X over the l2

norm of the residual with:

r(y) :=
‖Xθ?‖2

‖Xθ? − y‖2

. (4.7)

where ‖Xθ?‖2 is the l2 norm of the vectorXθ?. We define fi(X) :=

√
n∑
j=1

1
n
|X2

i,j| −maxj
1
n
|X2

i,j|

for i ∈ {1. · · · , d} which can be roughly seen as the square root of the empirical second mo-

ment of the ith feature across the dataset, and f(X) := mini fi(X). In order to give guar-

antees on the privacy of the projection method the amount of additional noise is expressed

in terms of f(X).
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4.3 Privacy-Utility Trade off

In this section we analyze two randomized mechanism in terms of utility-privacy trade off.

First we investigate the naive scheme of adding noise to the data matrix, we derive the

amount of noise needed to satisfy ε-MI-DP and we give the utility guarantees. In the second

scheme, we first encode the data matrix using random projections and we add noise, if

necessary, to satisfy ε-MI-DP requirement. We derive the utility bound for the second

approach and compare it to the additive noise. Throughout this section, we fix the privacy

parameter to be ε > 0 and we derive bounds for the relative error based on that.

4.3.1 Additive Gaussian Noise

In order to satisfy privacy, we add Gaussian noise directly to the data,

XAN(X) := X + σANN, (4.8)

where N ∈ Rn×d with i.i.d. entries drawn from N (0, 1) and

σ2
AN(ε) :=

1

22ε − 1
, (4.9)

is the variance of the noise.

θAN := arg min
θ
‖XANθ − y‖2

2︸ ︷︷ ︸
gAN (θ)

, (4.10)

Theorem 4.1 (Privacy-Utility for Additive Noise). Given a data set X and the randomized

mechanism XAN(X) with ε-MI-DP constraint, with probability at least 1− 2e
−σmax(X)2

2σ2
AN

(ε)
δ2

we

have the following bound on the relative error of the transformed problem:

ηAN ≤
(

1 +
κ(X)(∆(X, ε) + δ)

1− κ(X)(∆(X, ε) + δ)
(κ(X) + r(y))

)2

, (4.11)

if κ(X)∆(ε,X) < 1, where ∆(X, ε) = σAN (ε)
σmax(X)

(√
n+
√
d
)

and δ > 0 is a free parameter2.

Note that if σ2
max(X) scales linearly with n then ∆(X, ε) converges to a constant term.

Based on Proposition 4.2, additive noise also satisfies (δ)-DP.

2Note that support of δ is restricted to the set where κ(X)(∆ + δ) ≤ 1.
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4.3.2 Gaussian Random Projections

We encode the data matrix using JLT to a lower dimensional space n′ and we add Gaussian

noise, when necessary, to guarantee ε-MI-DP. We denote the encoded data by XRP ∈ Rn′×d

and yRP ∈ Rn′ :

XRP (X) :=
1√
n′

SX + σRPN, yRP :=
1√
n′

Sy, (4.12)

where S ∈ Rn′×n represents a random projection with i.i.d. entries drawn according to

N (0, 1) and N ∈ Rn′×d is the noise added to ensure the privacy with i.i.d. elements N (0, 1),

and

σ2
RP (X, ε) :=

( 1

22ε − 1
− n

n′
f 2(X)

)
+
, (4.13)

is the variance of the additive noise3.

We solve the following problem to estimate the model:

θRP := arg min
θ
‖XRP θ − yRP‖2

2︸ ︷︷ ︸
gRP (θ)

, (4.14)

Theorem 4.2 (Privacy-Utility for Random Projection). Given a dataset X and the ran-

domized mechanism XRP (X) with ε-MI-DP constraint and a projection dimension of n′ < n,

with probability at least 1 − c1e
−c2n′δ2

, we have the following bound on the relative error of

the transformed problem:

ηRP ≤ (1 + δ)2(1 + l1(X, ε))(1 + l2(X, ε))2, (4.15)

where l1(X, ε) := n′σ2
RP (X, ε)

(
maxi

σi(X)

σ2
i (X)+n′σ2

RP (X,ε)

)2

r2(y), l2(X, ε) :=
n′σ2

RP (X,ε)

σ2
min(X)+n′σ2

RP (X,ε)
r(y),

δ ≥
√
c0

d
n′

is a free parameter, and c0, c1 and c2 are constants.

Corollary 4.1. The random projection methods also satisfies (δ)-DP for δ :=
√

2
log(e)

ε.

3Note that our algorithm does not reveal this quantity explicitly avoiding an extra privacy leakage.
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Corollary 4.2. Note that the amount of noise added to the projected data is σ2
RP (ε,X) =(

1
22ε−1

− n
n′
f 2(X)

)
+

. If f 2 does not vanish as n grows and n′ = o(n), asymptotically the noise

variance goes to zero, i.e., random projection itself guarantees the privacy. Furthermore, for

a given δ, ηRP ≤ (1 + δ)2 asymptotically as two other terms in (4.15) vanish.

Remark 4.1. In the proof of Theorem 4.2 in order to derive an upper bound for (4.2) we

make a connection to the SIMO non-coherent channel. We used the coherent SIMO bound

for upper bounding this quantity. One may ask if we can get a tighter bound by using the

tighter non-coherent bounds (see for example [LM03]). The known non coherent bound,

C ≤ n′

2
log(1 +

1

n′σ2
RP + nf 2(X)

). (4.16)

does not give any improvement. This bound (4.16) is known to be tight for the low-SNR

regime [LM03]. Therefore when f 2 = Ω(n) asymptotically both bounds yield the same result.

Remark 4.2. Putting (4.13) and (4.9) together we observe that the noise needed in the

random projection method is strictly less than of the additive noise, by at most n
n′
f 2(X).

σ2
RP (X, ε) =

(
σ2
AN(X, ε)− n

n′
f 2(X)

)
+
. (4.17)

4.4 Proof Outlines

We gives proof outlines for Theorems 4.1 and 4.2. The complete proofs are provided in

Appendix D.

4.4.1 Theorem 4.1

Proof Outline. The proof consists of two steps. First we derive the minimum amount of noise

needed to ensure ε-MI-DP for XAN with respect to any feature of users, which is stated in

the following lemma:

Lemma 4.1 (Privacy Guarantee for the additive noise). If σ2
AN = 1

22ε−1
then XAN(.) is

ε-MI-DP with respect to any entry of X.
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Proof. We show that (4.2) is bounded by ε for this choice of σ2
AN and q(.) := XAN(.). Due to

the symmetry of the problem, we fix Di to be the first feature of the first data point without

loss of generality. Note that

I(X1,1; XAN |X−(1,1)) = I(X1,1; X1,1 + σANN1,1|X−(1,1)). (4.18)

By expanding the mutual information:

I(X1,1; X1,1 + σANN1,1|X−(1,1)) = h(X1,1 + σANN1,1|X−(1,1))− h(X1,1 + σANN1,1|X)

(a)
= h(X1,1 + σANN1,1|X−(1,1))− h(σANN1,1), (4.19)

where (a) holds because the noise is independent of the data. Now we need to take the

maximization over all possible distribution on X. Note that the absolute value of each entry

is bounded by 1 therefore we need to take the supremum over all distribution inside this

ball. The absolute value constraint implies the second moment constraint for all distribution

defined on it, therefore by using the maximum entropy bound the result follows:

sup
P (X)

I(X1,1; XAN |X−(1,1)) ≤ 1

2
log(1 +

1

σ2
AN

) = ε. (4.20)

The second step bounds the relative error. We use perturbation theory in the least square

setup (see Theorem 5.1 in [Wed73]) and probabilistic bounds on the maximum singular value

of an i.i.d. Gaussian to derive the result [RV10].

4.4.2 Theorem 4.2

Proof Outline. The proof consists of two steps. First we find the variance of noise needed to

add to satisfy ε-MI-DP that results to ε-MI-DP model, θRP . Following lemma characterizes

the amount of noise sufficient to make the mechanism ε-MI-DP.

Lemma 4.2. If σ2
RP := ( 1

22ε−1
− n

n′
f 2(X))+ then XRP (.) is ε-MI-DP with respect to any entry

of X.
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Proof. We show that the conditional mutual information (4.2) is bounded by ε for this choice

of σ2
RP . Due to the symmetry of the problem, we fix Di to be the first feature of the first

data point.

max
P (X)∈P

I(X1,1; XRP |X−(1,1)) (4.21)

= max
P (X−(1,1))p(X1,1|X−(1,1))

EX−(1,1) [I(X1,1; XRP |X−(1,1) = X−(1,1))],

(a)

≤ max
P (X−(1,1))

EX−(1,1) [ max
P (X1,1|X−(1,1))

I(X1,1; XRP |X−(1,1) = X−(1,1))],

where P is the set of distributions which assign non-zero measure to X only if the absolute

value of each entry is upper bounded by 1 and f(X) is lower bounded by the f(.) evaluated for

the original database, (a) follows from the Jensen’s inequality and the fact that maximization

over the conditional distribution is a convex function. Now we find upper bounds for the

term inside of the expectation, note that columns of XRP rather than first one does not

have any term associated with X1,1 and they are conditionally independent, therefore we

can write

max
P (X1,1|X−(1,1))

I(X1,1; XRP |X−(1,1) = X−(1,1))

= max
P (X1,1|X−(1,1))

I(
1√
n′

SX(:,1) + σRPN(:,1); X1,1|X−(1,1) = X−(1,1))︸ ︷︷ ︸
(?)

,

where X(:,1) denotes the first column of X. We find an upper bound on (?) for a fixed set

of X−(1,1) We observe that (?) is same as the capacity of the following non-coherent SIMO

channel with Rayleigh fading and a unit power constraint:

z =
1√
n′

S(:,1)X1,1 +
∑
i 6=1

1√
n′

S(:,i)Xi,1 + σRPN(:,1)

︸ ︷︷ ︸
ν

, (4.22)

where z ∈ Rn′ is the first column of XRP which we treat here as the output of the channel.

Note that Xi,1 ( i 6= 1 ) are treated as constants for this channel and therefore ν is effectively

a zero mean i.i.d. Gaussian noise with the covariance of

E[ννT ] = (σ2
RP +

1

n′

∑
i 6=1

(Xi,1)2)In′ = σ2
νIn′ . (4.23)
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Now we bound the capacity of this channel, We use the coherent upper bound for the capacity

of this channel:

max
P (X1,1)

I(X1,1; z) ≤ max
P (X1

1,1)
I(X1,1; z,S(:,i))

(a)

≤ ES(:,i) [
1

2
log(1 +

1
n′
‖S(:,i)‖2

σ2
ν

)]

(b)

≤ 1

2
log(1 + ES(:,i) [

1
n′
‖S(:,i)‖2

n
n′
f(X)2 + σ2

RP

])
(c)

≤ ε. (4.24)

Note that the absolute value constraint implies the second moment constraint for all distri-

bution defined on it and (a) follows from the maximum entropy bound, (b) follows directly

from the Jensen’s Inequality, (c) comes from the fact that the outer maximization is over

distributions that assign non-zero measure to X only if f(X) ≥ f(X).

Now we derive the utility guarantee for this method. Note that by rewriting XRP =

1√
n′

[
S N

] X
√
n′σRP I

 = S̃

 X
√
n′σRP I

 we observe that adding direct noise to the pro-

jected data can be interpreted as the random projection of the l2 regularized least square

problem (Ridge Regression), i.e.,

θRP = arg min
θ
‖XRP θ − yRP‖2

2 (4.25)

= arg min
θ
‖S̃
( X
√
n′σRP I

 θ −
y

0

)
︸ ︷︷ ︸

RR

‖2
2. (4.26)

Therefore we can split the utility analysis into two parts,

1. What is the utility loss for the l2 regularized least square?

2. What is the utility loss for the randomized sketching (JLT)?

We use the standard SVD argument to bound the Ridge Regression relative error and by

following Pilanci et. al. [PW15] (see Corollary 2) we give guarantees on the sketching step.

The details of the proof are provided in Appendix D.
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Figure 4.1: Relative error of additive noise and random projection schemes vs. the number

of data points, n for ε = 0.5 when data generated randomly and for various values of the

projected dimension, n′.

4.5 Numerical Results

We numerically evaluate the relative error η achieved by the schemes in Section III subject

to an ε-MI-DP constraint.

4.5.1 Random Data

We generate the elements Xi,j i.i.d. uniformly in the interval [−1, 1], where X ∈ Rn×800,

and n = 1000k with k ∈ {1, 2, . . . , 20}. For each case, the additive noise parameter σAN

is computed according to (4.9). Similarly, the additive noise σRP is computed according to

(4.13). Given k, we evaluate three choices of n′: logarithmic (n′1 := 1000 (log (k) + 1)), linear

(n′2 := 1000k+1
2

), and full (n′ = n = 1000k). The resulting relative error curves are given in

Figure 4.1 for ε = 0.5, averaged over 5 trials. We note that random projection results in a

uniformly better privacy-utility trade-off compared to additive noise. Further, at this regime

of ε, lower projection dimensions result in significantly better trade-off. Figure 4.2 plots the
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Figure 4.2: Relative error of additive noise and random projection schemes vs. ε, for n =

10000, when data generated randomly and for various values of the projected dimension, n′.

achieved relative error as a function of ε, for n = 10000. We observe that the relative error

decreases linearly until it saturates for all schemes, and for stricter privacy constraints (small

ε), lower projection dimension achieves smaller relative error. As ε tends higher, the privacy

constraint becomes less restrictive, and schemes with higher projection dimension perform

better because of the additional rows of information.

4.5.2 MNIST Handwritten Digits Dataset

We consider a reduced version of the MNIST hand-written digits dataset [LCB94], where

we only take the digits 4 and 9, leading to 11791 data samples, and only consider the

300 pixels that contain the most energy across these data samples. Mapping the digit

labels to +1 and −1, and vectorizing each data image, we solve the corresponding linear

problem, which generates a model that classifies 4’s versus 9’s. Figure 4.3 gives the resulting

test error (subject to a 80%/20% training/test set partition) for the logarithmic (n′1 :=

500 (log (k) + 1)), linear (n′2 := 500k+1
2

), and full (n′ = n = 1000k) random projections, as

well as additive noise. To evaluate values of n smaller than 11791, we randomly sample the
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Figure 4.3: Test error of additive noise and random projection schemes for ε = 0.2, for

MNIST data set.

dataset. The results are averaged over 10 trials. Similar to the random case, we observe

that random projection with logarithmic dimensions result in the best performance, while

preserving MI-DP with ε = 0.2.

4.6 Conclusion

One possible way of fulfilling the machine learning task while preserving user privacy is to

train the model on a transformed, noisy version of the data, which does not reveal the data

itself directly to the training procedure. In this chapter, we analyzed the privacy-utility

trade-off of two such schemes for the problem of linear regression: additive noise, and ran-

dom projections. In contrast to previous work, we considered a recently proposed notion of

differential privacy that is based on conditional mutual information, which is stronger than

the conventional (ε, δ)-differential privacy, and used relative objective error as the utility met-

ric. We found that projecting the data to a lower-dimensional subspace before adding noise

attains a better trade-off in general. We also made a connection between privacy problem
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and (non-coherent) SIMO, which has been extensively studied in wireless communication,

and use tools from there for the analysis.
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CHAPTER 5

Private Distributed Optimization

5.1 Introduction

Data privacy is a central concern in statistics and machine learning when utilizing sensi-

tive databases such as financial accounts and health-care. Thus, it is important to design

machine learning algorithms which protect users’ privacy while maintaining acceptable level

of accuracy. In this paper, we consider a distributed framework in which N nodes aim to

minimize a global cost function f(x) =
∑

i∈[N ] fi(x), x ∈ X where fi is only available to

the i-th node and contains sensitive information about individuals trusting this node. We

study the consensus-based gradient distributed algorithm in which nodes broadcasts their

local estimates and update them accordingly based on what they received from the neigh-

bors. However, revealing the local estimate may expose privacy of individual data points

and cares must be taken into account to protect the sensitive information from an adversary

that oversees all messages among nodes.

Differential Privacy (DP) is a well-known notion of privacy [DR+14] and found appli-

cation in many domains (we refer readers to [DR+14] and [SC13] ). DP assumes a strong

adversary that has access to all data points except one and rigorously limits inferences of

an adversary about each individual, thereby ensuring robustness of the privacy guarantee

to side information. Furthermore, it does not assume any distribution on the underlying

data and guarantees it gives do not depend on such assumptions. In this framework, there

has been a long line of work studying differentialy private machine learning algorithms, see

[SC13] and references therein. Empirical Risk Minimization (ERM) plays an important role
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in the supervised learning setup and our work is tied to private ERM in distributed setup.

The algorithm in this work is not new and is a small modification of the (sub)-distributed

gradient descent (DGD) algorithm [NO09, YLY16] which has been analyzed before in the

literature of differential privacy [HMV15]. The main novelty of our work lies in the new

analysis that leads to a stronger convergence results. Contribution of this work is as follows:

• We determine the variance of the noise needed to ensure DP privacy in this iterative and

distributed setup (Theorem 5.1) from basic calculations, instead of using composition

theorems [DR+14]. This approach gives a tighter bound for the noise variances and let

us increase the accuracy by optimizing over the variances.

• We derive the non-ergodic convergence behavior in this setup, thereby showing that

by suitably choosing the noise variance the parameter converges to a ball around the

optimal point. We further characterize the radius of the ball as a function of privacy

parameters, i.e., ε and δ (Theorem 5.2).

Related work. There is long line of research devoted to differentially private ERM in the

centralized set-up, in which a trusted party has access to a private and sensitive database

while the adversary observes only the final end model [CMS11, BST14b]. A number of

approaches exist for this set up with the convex loss function, which can be roughly classified

into three categories. The first type of approaches is to inject properly scaled additive noise

to the output of a non-DP algorithm which was first proposed by [CM09] for this problem

and later on is extended by [ZZMW17] and [WLK+17]. The second type of approaches is

to perturb the objective function which is again introduced in [CM09]. The third approach

delves into the first order optimization algorithms and perturbs gradients at each step to

maintain the DP, [BST14b] was one of the earliest work in this domain.

In our work, there does not exist a central trusted entity and data is distributed among

N nodes that motivates the use of the distributed optimization algorithms. Differentially

private distributed optimization has been explored before in [HMV15], where authors consid-

ered the similar problem under ε-DP constraint. It is well-known that ε-DP is too stringent
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condition and often rises to non-acceptable accuracy. The convergence bound of [HMV15]

does not diminish as the privacy requirement weakens, i.e., the convergence is not exact even

without any privacy requirement. We emphasize that the main novelty of our work lies in

the analysis of the algorithms and the resulting theoretical guarantees.

Paper organization. In section 5.2, we give a brief overview of differential privacy followed

by introducing the problem. Section 5.3 introduces the main results in which we establish the

condition under which the distributed algorithm is differentially private and the convergence

results. In section 5.4, we give the proof outline of Theorems 5.1 and 5.2. We demonstrate

our numerical experiments in Section 5.5. Section 5.6 concludes the paper.

5.2 Background and Problem Formulation

In this section, we review the notion of differential privacy and the Gaussian mechanism

which are building block of our algorithm. In the second part, we give the precise prob-

lem formulation along with the overview of the algorithm which we consider in this work.

Differential Privacy. Let D := {d1, · · · , dN} be a database containing N points in the

universe D. Two databases D and D′ are called neighbors when they differ in at most one

data point, we use the notation D′ ∼ D to denote this relation.

A randomized mechanism M is differentially private if evaluated on D and D′ produces

outputs that have similar statistical distributions. Formally speaking,

Definition 5.1 ((ε, δ)-Differential Privacy). A randomized mechanismM is (ε, δ)-differentially

private, if for any S ⊆ Range(M),

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ. (5.1)

An equivalent characterization of (ε, δ)-DP can be stated based on the tail bound on the

privacy loss random variable that is the log ratio of the probability density functions1 of

1In this work, we assume the induced measures are absolutely cts wrt to the Lebesgue so pdf always
exists.
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M(D) and M(D′).

Proposition 5.1 (See Lemma 3.17 in [DR+14]). A randomized mechanism M is (ε, δ)-

differentially private if the log-likelihood ratio when evaluating on two neighboring databases

remains bounded with probability at least 1− δ, i.e.,

P
(
| log

pdfD(o)

pdfD′(o)
| ≤ ε

)
≥ 1− δ, (5.2)

where pdfD (pdfD′) is the pdf of M(D) (M(D′)) and o is drawn according to pdfD.

A common design paradigm to approximate a deterministic function q : D|D| → Rp with a

differentailly private mechanism is by adding a properly scaled Gaussian noise to the output

of q. The scale of the noise depends on how far that query maps two neighboring databases

which is formalized through the notion of sensitivity.

Definition 5.2 (L2 sensitivity). Let q be a deterministic function that maps a database to

a vector in Rp. The L2 sensitivity of q is defined as

∆2(q) = max
D′∼D

‖q(D)− q(D′)‖2. (5.3)

We can define the L1 sensitivity similarly.

Throughout this work, we focus on Gaussian Mechanism to ensure differential privacy.

Definition 5.3 (Gaussian mechanism). Given any (deterministic) function q : D|D| → Rp,

the Gaussian Mechanism is defined as:

M(D, q, σ) = q(D) + n, (5.4)

where n is a Gaussian random variable with a zero mean and the variance of σ.

It is well known [DR+14] that for the proper value of the noise variance, Gaussian Mech-

anism preserves (ε, δ)-DP.

Proposition 5.2 (See for example Theorem 3.22 in [DR+14]). For a deterministic function

q : D|D| → Rp, Gaussian mechanism M(D, q, σ) preserves (ε, δ)-DP for ε < 1 if σ2 ≥
2log(1.25/δ)∆2(q)/ε2, where ∆2(q) is the L2-sensitivity of the function q.
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5.2.1 Problem Formulation

We consider a distributed optimization set-up where N nodes aim to collaboratively minimize

an additive cost function f(x) =
∑

i∈[N ] fi(x), x ∈ X where X is the domain of the problem

and [N ]
4
= {1, . . . , N}. In this problem, nodes want to minimize f(x) while keeping each

data point private. We adopt the (ε, δ)-differential privacy (DP) as a measure of the privacy.

Assumption 5.1 (Domain). The domain of the optimization X ⊆ Rp is a closed compact

and convex set and x∗ ∈ X where x∗ ∈ arg minx∈Rp f(x).

In this setup, N nodes communicate over a connected and undirected graph G := (V , E)

where V := {1, · · · , N} is the set of vertices and E ⊆ V × V denotes the set of edges. Nodes

can only communicate with their neighbors, which we denote neighbors of node i with Ni
for i ∈ [N ]. We assume that each node has access to one of the summands of the global

objective function, fi(x). Throughout this paper, the following assumption holds for the

local objective functions2.

Assumption 5.2 (Bounded Gradient). fi(x) for i ∈ [N ] are G-Lipschitz for x ∈ X ,

‖fi(x)− fi(y)‖2 ≤ G‖x− y‖2, ∀x, y ∈ X , i ∈ [N ]. (5.5)

Assumption 5.3 (Smoothness). fi(x) for i ∈ [N ] are L-smooth over an open set containing

X ,

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ X , i ∈ [N ]. (5.6)

In order to have convergence of the parameter itself, it is well-known that the strong

convexity of the cost functions are needed.

Assumption 5.4 (Strong convexity). fi(x) for i ∈ [N ] are µ-strongly convex over an open

set containing X ,

〈fi(x)− fi(y), x− y〉 ≥ µ‖x− y‖2
2, ∀x, y ∈ X , i ∈ [N ]. (5.7)

2Assumption 5.3 and 5.4 inherently state that the smoothness and strong convexity parameters should be
the same, however, without loss of generality we can take the maximum L and minimum µ across all nodes.
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In the context of empirical risk minimization local cost functions are the empirical risk

associated with data points stored in nodes, i.e.,

fi(x) :=
∑
d∈Di

l(x; d),

where Di ⊆ D is the set of sensitive data points stored in the i-th node and l(x, d) is the loss

function.

Adversary model. In this problem, the adversary can overhear all the messages between

nodes without any computational assumption. Nodes aim to preserve DP with respect to

the sensitive data points ∪i∈[N ]Di .

5.2.2 Overview of the Algorithm

We study the consensus-based distributed optimization algorithm where nodes update their

local estimate by combining the information received from the neighbors. As opposed to

the standard Distributed Gradient Descent (DGD), our proposed algorithm consists of two

phases.

Stage I. In the first stage of the algorithm, similarly to the distributed gradient descent,

nodes iteratively perform the consensus step followed by a local Gradient Descent (GD) step.

Let us denote the local estimate of the i-th node with xi(t).

xi(t) = ProjX (zi(t)− ηt∇fi(zi(t))) , t ≤ T (5.8)

where

zi(t) = ProjX

(∑
j∈Ni

wijyj(t)

)
, (5.9)

here yj(t) is the message sent by node j ∈ Ni to its neighbors, and

ProjX (x)
4
= arg min

y∈X
‖x− y‖2 (5.10)

is the Euclidean projection onto the set X . The update (5.8) shows that node i updates

it’s local estimate by taking a proper average of the messages sent by its neighbors and
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descending it through ∇fi(zi(t)), wij is the weight associated to neighbors of node i and it’s

zero for j /∈ Ni, and T ∈ N is the number of steps in Stage II.

Assumption 5.5 (Doubly Stochastic Weight Matrix). The weight matrix, W := [wij] is a

doubly stochastic matrix with non-negative entries. We denote the second largest eigenvalue

of W in absolute value with β := max{|λ2(W )|, |λN(W )|}, where 1 = λ1(W ) ≥ λ2(W ) . . . ≥
λN(W ) > −1 are eigenvalues of W sorted in a descending order.

It is well-known that using a fixed step size the classical DGD converges to a neighborhood

of the optimal point with the size proportional to the step-size [NO09, YLY16]. Convergence

to the exact point can be derived by using a diminishing step size (see [YLY16] and references

therein). Therefore throughout this work, step-size ηt is chosen Θ(1
t
).

As opposed to the classical DGD, nodes do not send their local estimate directly since

each step of GD may reveal information about the underlying sensitive data points. Nodes

perturb their local estimate by a Gaussian mechanism to control the privacy leakage. In

particular, nodes broadcast

yi(t+ 1) = xi(t) + ni(t), i ∈ {1, · · · , N}, t ≤ T, (5.11)

where ni(t) is a zero mean additive Gaussian noise with the variance of M2
t , and xi(t) is the

local estimate of node i at t.

Each step of GD exposes the sensitive data points to the adversary. Hence to ensure the

same level of privacy additional noise needed as the number of GD steps increases. Noise

added to each stage of GD avoids the local estimates to converge to a common value therefore

in our proposed method nodes apply GD only for T steps, and afterwards nodes switch to a

purely consensus mode to agree on a common value.

Stage II. After T steps of Gradient descent, nodes iterates only though the consensus steps.

Note that ∇fi in (5.8) is the only source in which the privacy of sensitive data points may

leak. Therefore in the second stage of the algorithm, nodes broadcast their local estimate
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precisely and update their local estimate according to:

yi(t) = xi(t− 1), i ∈ [N ], t > T

xi(t) =
∑
j∈[N ]

wijyj(t), (5.12)

.

Note that projection operator is not needed in (5.12) due to the convexity of the op-

timization domain (Assumption 5.1). Nodes update their local estimates until a stopping

criterion is met. One common stopping criterion is the relative change in the value of each

node.

Algorithm 8: Steps at Node i for the proposed private distributed algorithm.

1 Set yi(1) = 0;

2 for t = 1, · · · , T do

3 Update yi(t) according to (5.11) and broadcast yi(t);

4 Receive yj(t) from j ∈ Nj ;

5 Update xi(t) according to (5.8) ;

6 end

7 for t = T + 1, · · · do

8 Broadcast yi(t) := xi(t− 1) ;

9 Receive yj(t) from j ∈ Nj ;

10 Update xi(t) according to (5.12) ;

11 end

Notation. We represent set of natural and real numbers with N and R respectively.

Throughout this work, we reserve the lowercase bold letters for the aggregated parame-

ters of nodes at a given time t, i.e., we use the notation x(t) = [x1(t); · · · ;xN(t)], y(t) =

[y1(t); · · · ; yN(t)], z(t) = [z1(t); · · · ; zN(t)] and n(t) = [n1(t); · · · ;nN(t)]. The identity ma-

trix is denoted with Ip ∈ Rp and we use 1N to represent a vector of length N of ones. We

use ‖a‖ to denote l2-norm of a vector a while ‖A‖ represents the operator norm of a matrix
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A, ‖A‖ 4= sup‖x‖=1 ‖Ax‖, and ⊗ denotes the Kronecker product. In this paper we reserve

the notation [N ] to represent {1, · · · , N} for any N ∈ N.

5.3 Main results

In this section, we give the main results of this work. First we derive conditions on the

noise variances under which the distributed problem is (ε, δ)-differentially private against

an adversary that oversees all the communications among nodes. We emphasize that one

of the main contribution of this work is to relate the noise variances at different steps to

the privacy parameters (ε and δ) directly rather than using basic or advanced composition

theorems. Afterward we state the convergence result.

The variance of the noise to ensure (ε, δ)-DP depends on the L2 sensitivity of the al-

gorithm. In the context of distributed optimization, we need to make sure DP is satisfied

despite multiple rounds of communications in this iterative scheme.

Definition 5.4 (Conditional L2-sensitivity). Conditional L2-sensitivity at round t, ∆(t)

defined to be the maximum L2-norm difference of xi(t) evaluated on two neighboring databases

D and D′ while having the same set of messages {y(k)}tk=1 up until round t, i.e.,

∆(t) := sup
D∼D′

sup
i∈[N ]

sup
{y(t)}tt=1

‖xDi (t)− xD′i (t)‖2, (5.13)

where xD
′

i (t) corresponds to the local parameter of node i of the neighboring instance of the

problem.

Proposition 5.3. The conditional L2-sensitivity of Algorithm 8 at round t ≤ T is bounded

by 2ηtG, provided that Assumption 5.2 holds.

Proof. See Appendix.

Now we have the machinery to state the main theorem of this section.
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Theorem 5.1. The distributed algorithm is (ε, δ)-DP if nodes perturb their local estimates

by adding independent Gaussian noise (5.11) and the following holds,

T∑
t=1

∆2(t)

M2
t

≤ ε2

ε+ 2 log 2
δ

, (5.14)

where Mt is the scale of noise added in round t ≤ T .

Corollary 5.1. If Assumption 5.2 holds and

T∑
t=1

η2
t

M2
t

≤ ε2

4G2
(
ε+ 2 log 2

δ

) 4= κ(ε, δ). (5.15)

then the distributed algorithm is (ε, δ)-DP.

Remark 5.1. A common practice to ensure differential privacy in an iterative mechanism

is to make each step differentially private (with a stronger privacy guarantees) and combine

the privacy leakage using the basic or advanced composition theorems [DR+14]. Composition

theorems do not take into account the specific noise distribution and they often give loose

results for a given distribution while Theorem 5.1 takes the noise distribution into account

thereby giving a tighter result, i.e., smaller noise variances and therefore ensure a better

utility.

Remark 5.2. In the literature of DP for iterative processes, it is common that in order

to ensure (ε, δ)-DP we make each step (ε′, δ′)-DP, where ε′ and δ′ are computed using a

composition theorem. It implicitly assumes that we need to have the same privacy requirement

at each step, which is not necessary needed. Theorem 5.1 connects the noise variances across

time to the privacy parameters ε and δ directly and allows for a meaningful assignment of

privacy budget to different steps.

Remark 5.3. In the regime where ε � 1 and δ � 1
N

, the bound in Theorem 5.1 can be

written as,

T∑
t=1

∆2(t)

M2
t

≤ ε2

2 log 2
δ

. (5.16)
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Theorem 5.1 extends Lemma 2 the result of [HMV15] to (ε, δ)-DP. It gives us the condition

under which the distributed algorithm is (ε, δ)-DP. Working with (ε, δ)-DP as opposed to

ε-DP in [HMV15], enables us to derive a convergence result with a diminishing regret bound

when the privacy requirement weakens.

In the rest of this section, we state the convergence result. Let us denote the average

of the local estimates with x̄(t)
4
= 1

N

∑
i∈[N ] xi(t). Theorem 5.2 summarizes the convergence

result for the mean parameter x̄(t).

Theorem 5.2. Under Assumptions 5.2, 5.3 and 5.4 with the step size ηt = µ+L
2µL

1
t

and noise

scales M2
t = 2

κ(ε,δ)

(
µ+L
2µL

)2 √
T

t
√
t
, the distributed algorithm 8 is differentially private and the

following bound holds on E[‖x̄(T )− x∗‖2
2]:

E[‖x̄(T )− x∗‖2
2] ≤ CT

1

T
+ Clog T

log T

T
+ C 4√T

1
4
√
T

+ C(ε,δ)

where x∗ minimizes, CT , Clog T , C 4√T and C(ε,δ) are constants:

CT =
S(0)

N

Clog T = G2

(
1 +

1

1− β

)(
µ+ L

2µL

)2

C 4√T =
2
√

2pG√
κ(ε, δ)

(
4 +

3

1− β

)(
µ+ L

2µL

)2

C(ε,δ) =
2p

κ(ε, δ)

(
µ+ L

2µL

)2

κ(ε, δ) =
ε2

4G2
(
ε+ 2 log 2

δ

)

Theorem 5.2 states that the average parameter converges to a neighborhood of the op-

timal point with the rate of O( 1
4√T

). The neighborhood scales with the privacy parameters

(ε, δ) which is O(
log 1

δ

ε2
). Recall the second stage of the distributed algorithm only consists of

the consensus steps in which local parameters converge to a common value in a linear rate.

Corollary 5.2. Under Assumptions 5.2, 5.3 and 5.4 with the step size ηt = µ+L
2µL

1
t

and noise

scales M2
t = 2

κ(ε,δ)

(
µ+L
2µL

)2 √
T

t
√
t
, the distributed algorithm 8 is deferentially private and the
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following bound holds on the local parameters in the second stage of the algorithm, t > T :

E[‖xi(t)− x∗‖2
2] ≤ (5.17)

2Cexpβ
2t−2T + 2CT

1

T
+ 2Clog T

log T

T
+ 2C 4√T

1
4
√
T

+ 2C(ε,δ)

where CT , Clog T , C 4√T and C(ε,δ) defined in Theorem 5.2 and Cexp = 2‖x(T )‖2.

Proof. We observe that in Stage II, the mean parameter x̄(t) remains constant since

x̄(t+ 1)
(a)
=

1

N

(
1TN ⊗ IP

)
x(t+ 1)

(b)
=

1

N

(
1TN ⊗ IP

)
(W ⊗ Ip) x(t)

(c)
=

1

N

(
1TN ⊗ IP

)
x(t) = x̄(t), (5.18)

where we rewrote the mean parameter using the Kronecker product in (a), (b) follows directly

from (5.12) and we used double stochasity of W in (c). Now we are ready to conclude the

result,

E[‖xi(t)− x∗‖2
2]

(a)
= E[‖xi(t)− x̄(t) + x̄(T )− x∗‖2

2] (5.19)

(b)

≤ 2E[‖xi(t)− x̄(t)‖2
2] + 2E[‖x̄(T )− x∗‖2

2],

where (a) follows from (5.18), and we used the inequality ‖a + b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2 in (b).

Using Theorem 5.2 and Lemma 5.1 it is straightforward to conclude the result.

5.4 Privacy and Convergence Analysis

In this section we outline the proofs for Theorems 5.1 and 5.2 followed by explanation and

intuition.

5.4.1 Theorem 5.1

In the context of differential privacy, the corresponding mechanism for the distributed algo-

rithm maps D := ∪i∈[N ]Di to a sequence of messages {y(t)}t=1. In order to satisfy (ε, δ)-DP,
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the output of the mechanism should satisfy the condition (5.2) in Proposition 5.1. We pro-

ceed by writing the privacy loss random and bounding it using the concentration inequalities.

The complete proof is included in Appendix.

5.4.2 Theorem 5.2

It is straightforward to verify this choice of ηt and Mt satisfy (5.2) and therefore the dis-

tributed algorithm is deferentially private. The proof of convergence consists of two parts.

First we show that the local parameters are bounded away from mean in expectation, which

is depicted in Lemma 5.1. The proof proceeds by bounding deviation of the mean parameter

to the optimal point. Putting these together, the result follows.

Lemma 5.1. Under Assumption 5.2, at round t, the following bound holds on the distance

of local parameters to the mean for t < T ,

‖z(t)− 1N ⊗ z̄(t)‖ ≤ ‖n(t)‖+ 2
t−1∑
s=1

βt−s‖n(s)‖ (5.20)

+
√
NG

t−1∑
s=1

ηsβ
t−s,

where z̄(t)
4
= 1

N

∑
i∈[N ] zi(t). And the following holds for t ≥ T ,

‖x(t)− 1N ⊗ x̄(t)‖ ≤ βt−T‖x(T )‖. (5.21)

where ⊗ denotes the Kronecker product.

Proof. See Appendix.

Let us define S(t)
4
=
∑

i∈[N ] E[‖xi(t) − x∗‖2] where x∗ is the global minimum of f(x).

Observe that,

E[‖x̄(t)− x∗‖2] ≤ 1

N
S(t),

where we used
(∑

i∈[N ] ‖ai‖
)2

≤ N
∑

i∈[N ] ‖ai‖2. Therefore we proceed by bounding E[‖xi(t)−
x∗‖2] for i ∈ [N ] in order to bound E[‖x̄(t)− x∗‖2].
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Using the standard techniques, we bound terms ‖xi(t)− x∗‖2 one by one (for the clarity

of the presentation, the time index dropped wherever it is clear from the context). It is well

known that the projection operator is non-expansive, i.e., ‖ProjX (x)−ProjX (y)‖ ≤ ‖x− y‖
for x, y ∈ Rp. Putting this together with Assumption 5.1 (x∗ ∈ X ) we have,

‖xi(t)− x∗‖2 = ‖ProjX (zi − ηt∇fi(zi))− ProjX (x∗) ‖2

≤ ‖zi(t)− ηt∇fi(zi)− x∗‖2 (5.22)

In order to bound RHS of (5.22) we first present a lemma.

Lemma 5.2 (see for example Theorem 2.1.12 in [Nes07]). Suppose that f is L-smooth and

µ-strongly over an open set containing X , then we have,

〈x− y,∇f(x)−∇f(y)〉 ≥ c1‖x− y‖2 + c2‖∇f(x)−∇f(y)‖2, (5.23)

where c1 = µL
µ+L

and c2 = 1
µ+L

.

We proceed by expanding (5.22) and by adding and subtracting ∇fi(x∗),

‖xi(t)− x∗‖2

≤ ‖zi − x∗‖2 − 2ηt〈zi − x∗,∇fi(zi)−∇fi(x∗) +∇fi(x∗)〉

+ η2
t ‖∇fi(zi)‖2

(a)

≤ (1− 2µL

µ+ L
ηt)‖zi − x∗‖2 − 2ηt

µ+ L
‖∇fi(zi)−∇fi(x∗)‖2

2

+ 2ηt〈∇fi(x∗), x∗ − zi〉+ η2
t ‖∇fi(zi)‖2

(b)

≤ (1− 2µL

µ+ L
ηt)‖zi − x∗‖2 + η2

tG
2 + 2ηt〈∇fi(x∗), x∗ − zi〉

(c)

≤ (1− 2µL

µ+ L
ηt)‖zi − x∗‖2 + η2

tG
2 + 2ηt〈∇fi(x∗), x∗ − z̄〉

− 2ηt〈∇fi(x∗), zi − z̄〉 (5.24)

where (a) follows from Lemma 5.2. We used Assumption 5.2 for (b), and (c) comes from

adding and subtracting z̄. The following lemma is useful in order to connect (5.24) to S(t).
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Lemma 5.3. For any (fixed) x ∈ X the following holds,∑
i∈[N ]

E[‖zi(t)− x‖2] ≤
∑
i∈[N ]

E[‖xi(t− 1)− x‖2] + dNM2
t−1. (5.25)

Proof. See Appendix.

By summing up both sides of (5.24) across all nodes and Lemma 5.3 we have:

S(t) ≤ (1− 2µL

µ+ L
ηt)S(t− 1) + dN(1− 2µL

µ+ L
ηt)M

2
t−1 (5.26)

+Nη2
tG

2 + 2ηt
∑
i∈[N ]

E[∇〈∇fi(x∗), z̄ − zi〉],

where we used the fact that x∗ is the global minimum and therefore
∑

i∈[N ]∇fi(x∗) = 0. It

remains to bound the last term in RHS of (5.26). Note that,∑
i∈[N ]

〈∇fi(x∗), z̄ − zi〉
(a)

≤ G
∑
i∈[N ]

‖z̄(t)− zi(t)‖

(b)

≤ G
√
N‖z(t)− 1N ⊗ z̄(t)‖, (5.27)

where (a) follows from Cauchy-Schwartz inequality along with Assumption 5.2 and we used(∑
i∈[N ] ‖ai‖

)2

≤ N
∑

i∈[N ] ‖ai‖2 in (b). By applying Lemma 5.1 and taking expectation

from both sides of (5.27) we have,∑
i∈[N ]

E[∇〈∇fi(x∗), z̄ − zi〉] (5.28)

≤
√
pNMt + 2

√
p
√
N

t−1∑
s=1

Msβ
t−s +G

√
N

t−1∑
s=1

ηs.

Together with (5.26) we have the following recursion for S(t),

S(t) ≤ (1− 2µL

µ+ L
ηt)S(t− 1) + pN(1− 2µL

µ+ L
ηt)M

2
t−1 (5.29)

+Nη2
tG

2

+G
√
pNMt + 2G

√
pN

t−1∑
s=1

Msβ
t−s +G2N

t−1∑
s=1

ηsβ
t−s.
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By taking step size of ηt = µ+L
2µL

1
t
, we bound the cumulative effect of each term in (5.29) for

S(T ), where T is the number of steps we are evaluating the gradient.

S(T ) ≤
T∏
t=2

(1− 1

t
)S(0) (5.30)

+ pN

T∑
t=1

M2
t−1

T∏
s=t

(1− 1

s
)

+G2N

T∑
t=1

η2
t

T∏
s=t+1

(1− 1

s
)

+ 2G
√
pN

T∑
t=1

ηtMt

T∏
s=t+1

(1− 1

s
)

+ 2G
√
pN

T∑
t=2

ηt

(
t−1∑
s=1

Msβ
t−s

)
T∏

s=t+1

(1− 1

s
) (*1)

+G2N

T∑
t=2

ηt

(
t−1∑
s=1

ηsβ
t−s

)
T∏

s=t+1

(1− 1

s
) (*2)

The second term (5.30) is dominant in terms of the noise variance, and the noise scales

M2
t = 2

κ(ε,δ)

(
µ+L
2µL

)2 √
T

t
√
t

are found by minimizing this term while taking condition (5.15) in

Theorem 5.1 as the constraint. Therefore,

S(T ) ≤S(0)

T
+

4pN

κ(ε, δ)

(
µ+ L

2µL

)2

(5.31)

+G2N

(
µ+ L

2µL

)2
log T

T
(5.32)

+
8
√

2pGN√
κ(ε, δ)

(
µ+ L

2µL

)2
1

4
√
T

(5.33)

+
2
√

2pGN√
κ(ε, δ)

(
µ+ L

2µL

)2(
3

1− β

)
1

4
√
T

(5.34)

+G2N

(
µ+ L

2µL

)2(
1

1− β

)
log T

T
, (5.35)

where we used
∑T

t=1
1
t
≤ log(T ) and

∑T
t=1

1
tα
≤ 1

α+1
Tα+1 for α > −1 to derive (5.31), (5.32)
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and (5.33). Going from (∗1) to (5.34) follows from

T∑
t=2

1

t

(
t−1∑
s=1

t√
s 4
√
s
βt−s

)
=

T−1∑
s=1

1

s3/4

(
T∑

t=s+1

βt−s

)

≤ 1

1− β
T−1∑
s=1

1

s1/2+c/4

≤ 4

1− β
4
√
T . (5.36)

And we used the following inequality to go from (∗2) to (5.35),

T∑
t=2

1

t

(
t−1∑
s=1

1

s
βt−s

)
=

T−1∑
s=1

1

s

(
T∑

t=s+1

βt−s

)

≤ 1

1− β
T−1∑
s=1

1

s
≤ 1

1− β log T. (5.37)

The result follows immediately by E[‖x̄(T )− x∗‖2
2] ≤ 1

N
S(T ).

5.5 Numerical Experiments

In this section, we assess the performance of our method on decentralized mean estimation

and we demonstrate the effect of privacy parameters, number of gradient evaluation and

graph topology on the error. For the simulations, the communication graph is a connected

Erdos-Renyi with edge probability of pc = 0.6 and the weight matrix is W = I − 2
3λmax(L)

L

where L is the Laplacian of the graph.

5.5.1 Distributed Mean Estimation

Distributed mean estimation is one of the classical problems in the domain of differential

privacy. Suppose data points lie in a cube, X := [−R,R]p, where p is the dimension of the

points and R is the length of each side. In this setup, each node has several data points

and they aim to collaboratively find the mean while keeping each data private and preserve

(ε, δ)-DP against an adversary that oversees all the messages. We can write down this as

the following distributed problem:
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d̄ = min
x∈X

f(x) :=
1

2

∑
d∈∪i∈[N ]Di

‖x− d‖2
2, (5.38)

where Di is the set of points stored in node i, and fi(x) = 1
2

∑
d∈Di ‖x − d‖2

2 for i ∈ [N ].

We generate data randomly according to a truncated Gaussian distribution with mean of

0.7R and the unit variance. Sensitive data points are distributed among 10 nodes each of

which has 100 data points i.e., |Di| = 100. The conditional l2 sensitivity of the distributed

algorithm

∆(t)
4
= sup

i∈[N ]

sup
D∼D′

‖xDi (t)− xD′i (t)‖2

≤ sup
d,d′∈D

ηt‖d− d′‖2 ≤ 2R
√
pηt,

and we generate Gaussian noise accordingly.

In order to demonstrate the convergence rate of the algorithm, we run the distributed

algorithm for different values of T , number of gradient descent steps. Figure 5.1 illustrates

the effect of T on the normalized error
‖x̄(T )−d̄‖22
‖d̄‖22

. It shows that the error reduces until

reaching a neighborhood of x∗, which agrees with intuition provided by Theorem 5.2.

Figure 5.2 demonstrates the normalized error versus ε for different values of δ ∈ {1/(N ∗
Ni), 1/(N ∗Ni)

2, 1/(N ∗Ni)
3} where Ni denotes the number of data points in each node, and

T = 1000. We observe that for a fixed value of δ by strengthening the privacy guarantee the

error increases O( 1
ε2

).

To observe the effect of the graph topology, we fix the privacy parameters and vary the

connectivity probability of the underlying graph by choosing pc ∈ {0.1, 0.3, 0.6, 1}. Figure

5.3 illustrates the effect of connectivity on error of an individual node
‖xi(T )−d̄‖22
‖d̄‖22

.

Figure 5.4 illustrates the regret bound when the number of data points per each node is

increasing. We observe a gain in the utility bound that is inline with Theorem 5.2. Increasing

the number of data points doesn’t increase the conditional sensitivity while making the

Gradient bigger hence the effective added noise is reduced.
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Figure 5.1: The normalized error vs. the number of gradient descent steps, T for ε = 4 and

δ = 1/(N ∗Ni).
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Figure 5.2: The normalized error of the distributed mean estimation vs. ε for a fixed number

of nodes (N = 10) and data points per node (Ni = 100) with T = 1000.
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Figure 5.3: The normalized error of the first node vs. the edge probability pc, for ε = 4,

δ = 1/(N ∗ Ni), and T = 1000. As the connectivity of the graph increases, we observe a

decrease in the error of the first node.
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Figure 5.4: The normalized error vs. the number of data points per each node for T = 1000,

ε = 4 and δ = 1/(N ∗Ni).
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5.6 Conclusion

In this work, we studied the consensus-based distributed optimization algorithm when the

data points are distributed across several trusted nodes and the privacy of each data point

is important against an adversary that oversees communications across nodes. In order to

protect the privacy of users, each node perturbs it’s local state with an additive noise before

sending it out to its neighbors. Differential privacy is a rigorous privacy criterion for data

analysis that provides meaningful guarantees regardless of what an adversary knows ahead

of time about individuals’ data. We considered (ε, δ)-DP as the privacy measure and we

derived the amount of noise needed in order to guarantee privacy of each data point. We

further showed that the parameters converge to a neighborhood of the optimal point, and

the size of the neighborhood is proportional to the privacy metrics.
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CHAPTER 6

Conclusions and Future Work

In the first part this dissertation, we addressed two problems concerning cyber-physical sys-

tems: secure state estimation and secure system identification. In Chapter 2, we studied the

state estimation problem while both inputs and outputs are subject to adversarial attacks.

We introduced the notion of sparse-strong observability and we showed this is the key prop-

erty that systems should have in order to be resilient against such attacks. In Chapter 3 we

studied the problem of system identification of linear time invariant systems under adversar-

ial attacks on sensors. Given a bound on the number of attacked sensors, and under certain

sparse-observability assumption, we showed that it is still possible to construct a meaningful

model that enables stabilization of this system. We defined the notion of similarity mod-

ulo outputs and showed that all of such models are similar modulo outputs. This notion

generalized the idea of equivalent systems in classical linear system theory.

Although we analyzed the problem only for linear time invariant systems, it is an straight-

forward task to generalize these notion for non-linear system, however, verifying these prop-

erties for this broader class of systems can be quite challenging. Specifically, an interesting

research direction would be to gain a more comprehensive understanding of these properties

for non-linear systems.

Data privacy is an important concern in machine learning, and is fundamentally at odds

with the task of training useful learning models. The second part of this dissertation is

devoted to privacy concerns in learning algorithms by considering differential privacy as the

privacy metric. We studied two problems in private data analysis: private linear regression

and private distributed optimization. One possible way of fulfilling the machine learning
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task while preserving user privacy is to train the model on a transformed, noisy version

of the data, which does not reveal the data itself directly to the training procedure. In

Chapter 4 we analyzed the privacy-utility trade-off of two such schemes for the problem of

linear regression: additive noise, and random projections. We illustrated that projecting

the data to a lower-dimensional subspace before adding noise attains a better trade-off in

linear model. Extending the idea of random projections to more sophisticated models is one

possible future direction.

In Chapter 5 we turned to the distributed setup in which there are several trusted nodes

that collaboratively aim to learn a model. Each node has a local objective that depends

on their sensitive data. Particularly, we modified the vanilla distributed gradient descent

algorithm to ensure the privacy of users against an adversary that overhears communications

among nodes. In order to protect the privacy of users, each node perturbs its local state with

an additive Gaussian noise before sending it out to its neighbors. We showed the parameter

converges to a ball around the optimal point, and the size of the neighborhood scales with the

privacy metrics. There are many exciting and interesting future directions in understanding

how to design and implement private learning algorithms in distributed setup.

The private optimization framework we developed in this thesis assumes convex loss

function across nodes. Given a recent rise of deep learning models, it is indeed interesting

to extend the ideas to non-convex models. We hope that this thesis contributes to the

development of the foundational ideas for privacy.
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APPENDIX A

Proofs for Chapter 2

A.1 Proof of Lemma 2.1

We first prove the sufficiency part. For the sake of contradiction, suppose that the underlying

system is not strongly observable but the property of Corollary 2.1 is true. If the underlying

system (2.6) is not strongly observable, it means there exist two initial conditions, denoted by

x(1)(0) and x(2)(0) possibly with different input sequences denoted by {u(1)(t)} and {u(2)(t)},
respectively, that correspond to the same output sequence {y(t)}. The underlying system

is linear, therefore the nonzero initial condition of x(1)(0)− x(2)(0) with the input sequence

{u(1)(t) − u(2)(t)} produces the zero output sequence which contradicts the property given

in Corollary 2.1. The necessity can be concluded using the similar argument. For the sake

of contradiction let us assume this property does not hold, i.e., there exists a non zero initial

state x(0) 6= 0 that corresponds to the zero output sequence. This contradicts the strong

observability since the zero output sequence can be generated from both zero and x(0) 6= 0

as initial conditions under (possibly different) input sequences.

A.2 Proof of Lemma 2.2

We prove this lemma with contradiction. We show that if TEST(Γcert
u ,Γtemp

y ∪ {i}) returns

true for all i ∈ ΓSAT
y \Γtemp

y then TEST(Γcert
u ,ΓSAT

y ) would also return true, which contradicts

the assumption of the lemma. By applying the following lemma successively, the result

follows directly.
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Lemma A.1. Assume that the system S is (2r, 2s)-sparse strongly observable. Pick any

subset of inputs and outputs denoted by Γcert
u and Γtemp

y with |Γcert
u | ≤ 2r and |Γtemp

y | ≥ p−2s.

Then for any subsets of outputs denoted by Γ1
y and Γ2

y, the first statement implies the second:

1. TEST(Γcert
u ,Γtemp

y ∪ Γ1
y) and TEST(Γcert

u ,Γtemp
y ∪ Γ2

y) return true.

2. TEST(Γcert
u ,Γtemp

y ∪ Γ1
y ∪ Γ2

y) returns true.

Proof. Without loss and generality we can assume Γ1
y, Γ2

y and Γtemp
y are all disjoint sets.

Since TEST(Γcert
u ,Γtemp

y ∪ Γiy) returns true for i ∈ {1, 2}, therefore we haveY|Γtemp
y

Y|Γ1
y

 =

OΓtemp
y

OΓ1
y

 x̂1 +

NΓcert
u →Γtemp

y

NΓcert
u →Γ1

y

 Û1, (A.1)

Y|Γtemp
y

Y|Γ2
y

 =

OΓtemp
y

OΓ2
y

 x̂2 +

NΓcert
u →Γtemp

y

NΓcert
u →Γ2

y

 Û2, (A.2)

where x̂1, x̂2 ∈ Rn are states that T-solver.check returns, Û1, Û2 are matrices with appropri-

ate dimensions that satisfy TEST. Note that the underlying system is (2r, 2s)-sparse strongly

observable, |Γcert
u | ≤ 2r and |Γtemp

y | ≥ p− s therefore Ŝ := (A,B(.,Γcert
u ), C(Γtemp

y ,.), D(Γtemp
y ,Γcert

u ))

is strongly observable. One can reinterpret (Û1,Y|Γtemp
y

) and (Û2,Y|Γtemp
y

) as two (possibly

different) valid trajectories of a strongly observable system Ŝ with identical output sequences.

Strong observability implies that the state can be uniquely determined from the output with

a delay bounded by n, therefore x̂1 = x̂2. Furthermore, the equality of right hand sides of

(A.1) and (A.2) implies that,

NΓcert
u →Γtemp

y
(Û2 − Û1) = 0, (A.3)

i.e., Û2 − Û1 is a zero dynamic of Ŝ. By (2r, 2s)-sparse strongly observablity of S, we

conclude that Û2 − Û1 is also a zero dynamic of S, and therefore,

NΓcert
u →Γ1

y
(Û2 − Û1) = 0, NΓcert

u →Γ2
y
(Û2 − Û1) = 0. (A.4)

92



Putting (A.1), (A.2) and (A.4) together with x̂1 = x̂2, we conclude that:
Y|Γtemp

y

Y|Γ1
y

Y|Γ2
y

 =


OΓtemp

y

OΓ1
y

OΓ2
y

 x̂1 +


NΓcert

u →Γtemp
y

NΓcert
u →Γ1

y

NΓcert
u →Γ2

y

 Û1, (A.5)

i.e., TEST(Γcert
u ,Γtemp

y ∪ Γ1
y ∪ Γ2

y) returns false.

A.3 Proof of Lemma 2.3

Let us revisit the optimization (2.20) inside the consistency check TEST(Γu,Γy),

min
x̂,Û

∥∥∥∥∥∥Y|Γy−
[
OΓy ,NΓu→Γy

] x̂
Û

∥∥∥∥∥∥ (A.6)

For a generic LTI system, the matrix
[
OΓy ,NΓu→Γy

]
∈ Rn|Γy |×n(1+|Γu|) is of full rank, where

n is the order of the LTI system. If
[
OΓy ,NΓu→Γy

]
∈ Rn|Γy |×n(1+|Γu|) is of full row rank,

then TEST(Γu,Γy) is satisfied irrespectively of the actual values of Y|Γy . Therefore in

order to have a certificate constructed by inputs in Γu and outputs in Γy,
[
OΓy ,NΓu→Γy

]
∈

Rn|Γy |×n(1+|Γu|) should be a full column rank matrix, therefore

n|Γy| ≥ n(1 + |Γu|). (A.7)

The certificate consists of inputs in Γu and outputs in Γy, therefore the length of certificate

is:

|Γu|+ |Γy| = m− |Γu|+ |Γy| ≥ m+ 1. (A.8)
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APPENDIX B

Proofs for Chapter 3

B.1 Proposition B.1

Not all behaviors can be identified solely based on input and output trajectories. In order to

identify a behavior, notion of controllability is necessary, see Chapter 8 in [MWVHDM06].

Definition B.1 (Controllablity). The system B is controllable if for any two trajectories

w1,w2 ∈ B, there is a third trajectory w ∈ B and t1 ≥ 0, such that w1(t) = w(t), for all

t < 0, and w2(t) = w(t), for all t ≥ t1.

Proposition B.1 (See Theorem 8.16 in [MWVHDM06]). The behavior B ∈ Lw is identifiable

from the exact data w := (u,y) ∈ B if B is controllable and Hl(B)+n(B)+1(u) is of full row

rank.

Note that applying Proposition B.1 requires the knowledge of l(B) and n(B) a priori. One

should not expect to know these parameters exactly, however, upper bounds assumed to be

known, denoted by lmax and nmax, respectively. We can then use these bounds in proposition

B.1 rather than using the exact values, see chapter 7 in [MWVHDM06].

Putting these together, Assumption 3.2 can be further simplified to the following condi-

tions for LTI systems,

1. The underlying behavior, B, is identifiable, which follows from controllability in the

LTI case. See chapter 8, section 8.4 of [MWVHDM06].

2. The complexity of the underlying system is bounded, i.e., l(B) and n(B) are bounded

by lmax and nmax, respectively.
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3. (Persistency of excitation) The input sequence is sufficiently rich to enable the iden-

tification of the plant in the absence of attacks, i.e., Hlmax+nmax+1(u) is of full row

rank.

B.2 Proof of Lemma 3.1

Given that condition (3.5) holds, there exists an n dimensional subspace defined by X :=

{(x, x′) ∈ Rn × Rn|x′ = Px} which is clearly invariant under the dynamics of the parallel

system. For the other direction, let us denote the n dimensional subspace by X ⊂ Rn ×Rn.

We need to show that there exists a linear change of coordinates, denoted by P ∈ Rn×n

and satisfying condition (3.5). First, we show that Π1X = Rn and Π2X = Rn, where

Πi : Rn × Rn → Rn, i ∈ {1, 2} is the projection onto the coordinates corresponding to the

i-th system. Let us pick an arbitrary point x ∈ Rn. We show there exists x′ ∈ Rn such

that (x, x′) ∈ X . Note that (A,B,C,D) is a minimal realization therefore the pair (A,B) is

reachable. This implies there exists an input sequence that can drive the state of the first

system from 0 to x. This input sequence drives the state of S2 to some state x′. Given that

(0, 0) ∈ X and X is an invariant subspace, we conclude that (x, x′) ∈ X and Π(x, x′) = x.

Note that x was an arbitrary point so it directly follows Π1X = Rn. The same exact

argument applies to S2, i.e., Π2X = Rn.

Let {u1, . . . , un} be a basis for the subspace X . Since the projections Π1 and Π2 are

surjective, {v1, . . . , vn} := Π1{u1, . . . , un} and {w1, . . . , wn} := Π2{u1, . . . , un} are basis for

Π1X = Rn and Π2X = Rn, respectively. Define P as the linear transformation sending

{v1, . . . , vn} to {w1, . . . , wn}. Since {v1, . . . , vn} and {w1, . . . , wn} are basis, P is well defined

and we can represent X as {(x, x′) ∈ Rn × Rn|x′ = Px}. Given any initial condition in X
denoted by (x, Px), the trajectory should remain in X even with the zero input sequence.

Therefore A′Px = PAx should hold for any x ∈ Rn, i.e., A′ = PAP−1. A similar argument

applies for the input vector fields starting from the zero initial condition which results in

B′ = PB. We conclude that condition (3.5) holds.
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B.3 Proof of Lemma 3.2

• 1 =⇒ 2:

Pick an arbitrary minimal realization of S, denoted by (A,B, [CT
1 , C

T
2 ]T , [DT

1 , D
T
2 ]T ).

Observability of y2 from (u, y1) implies that (A,B,C1, D1) is observable. Clearly

(A,B,C1, D1) is a state-space realization of the system SQ. Since (A,B,C1, D1) is

observable and controllable, it is a minimal realization of SQ. By considering the

change of coordinates, P = I, Lemma 3.1 implies that S and SQ are similar modulo

outputs.

• 2 =⇒ 1:

Pick arbitrary minimal realizations of S and SQ, denoted by (A,B, [CT
1 , C

T
2 ]T , [DT

1 , D
T
2 ]T )

and (AQ, BQ, CQ, DQ), respectively. We need to show that (A,B,C1, D1) is an observ-

able realization of SQ, from which directly follows that y2 is observable from (u, y1).

Lemma 3.1 implies that there exists a linear change of coordinates denoted by P such

that AQ = PAP−1 and BQ = PB. SQ is a quotient of S therefore if both systems

start at the zero initial condition, then for any input sequence we haveySQ(t)

u(t)

 = Π

yS(t)

u(t)

 , (B.1)

Using the closed-form expression for the output of a linear system, we can rewrite the

previous equality as follow:

k−1∑
n=0

CQA
k−1−n
Q BQu(n) +DQu(k) =

k−1∑
n=0

C1A
k−1−nBu(n) +D1u(k),∀k ∈ N. (B.2)

Equation (B.2) holds for all possible input sequences, thereforeD1 = DQ and CQA
n
QBQ =

C1A
nB for all n ∈ N0, lemma 3.1 implies that CQPA

nB = C1A
nB hence for any k ∈ N

we have

CQP [AkB,Ak−1B, . . . , B] = C1[AkB,Ak−1B, . . . , B]. (B.3)

Controllability of the pair (A,B) and (B.3) imply that C1 = CQP . Note that (A,C1) =

(P−1AQP,CQP ) and (AQ, CQ) is observable, therefore (A,C1) is an observable pair.
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B.4 Proof of Proposition 3.2

Clearly, reflexivity and symmetry hold based on the definition. We only need to show that

transitivity holds, i.e., we need to prove that if S1 ∼ S2 and S2 ∼ S3 then S1 ∼ S3. Corollary

3.1 implies that there exist invertible matrices, P1 and P2 such that:

S1 ∼ S2 ⇒


A2 = P1A1P

−1
1 ,

B2 = P1B1

(B.4)

S2 ∼ S3 →


A3 = P2A2P

−1
2 ,

B3 = P2B2

(B.5)

Combining (B.4) and (B.5) it is easy to verify that the linear change of coordinates P2P1

makes S1 and S3 similar modulo outputs.

B.5 Proof of Lemma 3.3

Note that Ulmax+1, Ylmax+1
1 and Y2 are all finite dimensional spaces, therefore existence of

these linear mappings is equivalent to the existence of matrices Lu and Ly1 such that

y2(t) =
[
Lu Ly1

]


u(t− lmax)
...

u(t)

y1(t− lmax)
...

y1(t)


, ∀t ∈ {lmax, . . . , T − 1}.
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We can represent these linear constraints as:

[
y2(lmax), . . . , y2(T − 1)

]
=
[
Lu Ly1

]
×



u(0) u(1) . . . u(T − lmax − 1)
...

...
...

...

u(lmax) u(lmax + 1) . . . u(T − 1)

y1(0) y1(1) . . . y1(T − lmax)
...

...
...

...

y1(lmax) y1(lmax + 1) . . . y1(T − 1)


︸ ︷︷ ︸

Hlmax+1(u,y1)

,

(B.6)

therefore we conclude that Lu and Ly1 exist if and only if[
y2(lmax − 1), . . . , y2(T − 1)

]
∈ Row Space

(
Hlmax(u,y)

)
. (B.7)
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APPENDIX C

Subspace Identification

In this appendix, we briefly review subspace identification methods. In the literature of

system identification, there exist several methods that guarantee exact identification when

the length of the training sequence tends to infinity (see for example [VODM12, Lju87]).

Subspace identification algorithms are one of the most prominent such methods. We briefly

review the preliminaries followed by statement of the main results in this line of work.

Projections. Assume that matrices A ∈ Rp×j, B ∈ Rq×j and C ∈ Rr×j are given. One can

think of the rows of each matrix as the coordinates of a vector in the j-dimensional ambient

space, therefore rows of each of A,B and C can be considered as a basis for a linear vector

space in this ambient space. Now we can define the orthogonal projection of row space of

one matrix onto other one,

A/B := A.ΠB,

ΠB := BT .(BBT )†.B (C.1)

where (.)† denotes the Moore-Penrose pseudo-inverse of the matrix (.). The operator ΠB

projects the row space of A onto the row space of B. It can be shown that,

A = A/B + A/B⊥, (C.2)

where A/B⊥ denotes the orthogonal projection of row space of A onto the orthogonal com-

plement of the row space of matrix B.

Instead of decomposing A as linear combinations of two orthogonal matrices (B and B⊥),

one can think of decomposing A as a linear combination of non-orthogonal matrices B and
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C and of the orthogonal complement of B and C. In the same way, we can define the oblique

projection of the row space of A along the row space of C on the row space of B by,

A/CB := A
[
BT CT

]
.
(BBT BCT

CBT CCT

† )
first j colmuns

.B. (C.3)

It can be shown that A/CB = (A/

B

C

)/B. Figure C.1 gives an interpretation of these

projection operators for 2-dimensional ambient space.

A

B

A/B⊥

A/B

(a) Interpretation of Orthogonal projection

in the j- dimensional space (j = 2).

A

BA/CB

C

(b) Interpretation of Oblique projection

in the j- dimensional space (j = 2).

Figure C.1: An illustration of the Orthogonal and Oblique projections in 2-dimensional

ambient space.

In subspace identification methods we typically assume that a long sequence of data

is available and that the data is ergodic. Consider input and noise sequences denoted by

{uk}jk=0 ∈ Rn and {ek}jk=0 ∈ Rp, respectively. Noise sequence {ek} is a zero-mean sequence

and independent of {uk}, i.e.,

E[ek] = 0, (C.4)

E[uke
T
k ] = 0.

Due to ergodicity and long sequence of data points, we can replace the expectation operator

with different operator Ej[.] which essentially is the average over time for only one experiment

(sample path of the processes),

Ej[.] := lim
j→∞

1

j
[.]. (C.5)
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Ergodicity implies that E[uke
T
k ] = lim

j→∞
1
j

∑j
i=0[aie

T
i ] = Ej[u.eT ], where u and e are row-

vectors representing sequences {uk}jk=0 and {ek}jk=0, respectively. In subspace identification,

we use this implication to overcome the effect of noise, Ej[u.eT ] = 0 i.e., the row space of

input is orthogonal to the row space of noise with respect to this operator. This property

lies at the heart of subspace identification methods for the noisy scenario to get rid of the

effect of disturbances.

Now we are ready to relate statistical assumptions to geometric properties. In the statis-

tical framework we define the projection using the operator Ej[.]. We define the covariance

between two matrices as:

Φ[A,B] := Ej[A.BT ] (C.6)

We can extend the geometric tools introduced for deterministic matrices to stochastic ones

by replacing the inner product A.BT by the Φ[A,B] in (C.1) and (C.3), i.e.,

A/B = Φ[A,B].Φ
†
[A,B].B, (C.7)

A/CB =
[
Φ[A,B] Φ[A,C]

]
.
(Φ[B,B] Φ[B,C]

Φ[C,B] Φ[C,C]

† )
first j colmuns

.B. (C.8)

Now we formally introduce conditions under which Subspace identification methods are

guaranteed to identify the underlying LTI system. As it was discussed in the Assumption

3.2, we say the time-series u is persistently exciting of order i if Hi(u) is of full row rank,

i.e., rank(Hi(u)) = m.i, where m is the dimension of the signal space.

Definition C.1 (Quasi stationary, see page 27 of [Lju87]). For a deterministic sequence u,

quasi-stationary means that it is a bounded sequence such that the limits,

Ru(τ) = lim
N→∞

1

N

N∑
t=τ

u(t)u(t− τ) (C.9)

exist.

The following theorem states the main result for subspace identification algorithms.
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Theorem C.1. (See Theorem 2 in Ch. 2 and Theorem 12 in Ch. 4 [VODM12]) Let {uk}jk=0

and {yk}jk=0 denote the input and output sequences. We partition the input (output) Hankel

matrix into Future Input, Uf (Future Output, Yf) and Past Input, Up (Past Output, Uf),

i.e.,

H2i(u) =

Up
Uf

 , H2i(y) =

Yp
Yf

 . (C.10)

Under the assumptions that:

1. The deterministic input is uncorrelated with measurement noise and is quasi stationary.

2. The input sequence is persistently exciting of order 2i.

3. The length of available data points goes to infinity, i.e., j →∞

4. Row space of future inputs (Uf) does not intersect with the row space of the past states.

5. The user-defined square weighting matrices W1 and W2 are such that W1 is of full

rank and W2 obeys: rank(Wp) = rank(WpW2), where Wp is the block Hankel matrix

containing the Up and Yf .

And with Oi defined as the oblique projection:

Oi := Yf/UfWp, (C.11)

and the singular value decomposition:

Oi =
[
U1 U2

]S1 0

0 0

[V T
1 V T

2

]
, (C.12)

Then we have:

1. The matrix Oi is equal to the product of extended observability matrix and the Kalman
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filter state sequence X̃:

Oi = ΓiX̃i, Γi :=


C

CA
...

CAi−1

 , (C.13)

2. The order of the underlying system is equal to the rank of Oi.

3. The extended observability matrix Γi is equal to:

Γi = W−1
1 U1S

1/2
1 .T, (C.14)

where T ∈ Rn×n is an arbitrary similarity transformation.

4. The state sequence X̃ is equal to:

X̃ = Γ†iOi. (C.15)

It can be shown that three subspace algorithms of the literature (N4SID, MOESP and

CVA) are special cases of Theorem C.1 depending on the specific weighting matrices W1 and

W2 [VODM95]. Note that, for the secure system identification, any of the above algorithms

would work and the user can choose any of the aforementioned methods.

It is worth mentioning that Theorem C.1 requires an infinite amount of data, however

in practical applications such a sequence is not available and we need to approximate the

operator Ej by a finite average over the available data points.
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APPENDIX D

Proofs for Chapter 4

D.1 Proof of Theorem 4.1

In order to derive bounds for the utility performance of additive noise, we use the perturba-

tion theory in the least square setup [Wed73]. For a given N and σAN we have the following

deterministic bound on the utility,

Lemma D.1 (See Theorem 5.1 in [Wed73]). Assuming rank(X) = rank(X + σANN) = d

and κ(X)∆(ε,N,X) < 1:

‖XθAN − y‖2

‖Xθ? − y‖2

≤ 1 +
κ(X)∆(ε,N,X)

1− κ(X)∆(ε,N,X)
(κ(X) + r(y)), (D.1)

where ∆(ε,N,X) = σAN
‖N‖2
‖X‖2 .

It is well-known that the maximum singular value of N ∈ Rn×d converges almost surely

to
√
n+
√
d asymptotically. For the non-asymptotic bounds, we use the following lemma:

Proposition D.1 (See [RV10]). If N ∈ Rn×d is a Gaussian random matrix with entries

drawn from N (0, 1), then

P (σmax(N) ≤ √n+
√
d+ t) ≥ 1− 2e−

t2

2 , t ≥ 0. (D.2)

By combining Lemma D.1 and Proposition D.1 and the choice of σAN (D.1), Theorem

4.1 directly follows.
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D.2 Proof of Theorem 4.2

In this section, we derive utility guarantee on the performance of random projection for the

given value of σRP . Note that by rewriting XRP = 1√
n′

[
S N

] X
√
n′σRP I

 = S̃

 X
√
n′σRP I


we observe that adding direct noise to the projected data can be interpreted as the random

projection of the l2 regularized least square problem (Ridge Regression), i.e.,

θRP = arg min
θ
‖XRP θ − yRP‖2

2 (D.3)

= arg min
θ
‖S̃
( X
√
n′σRP I

 θ −
y

0

)
︸ ︷︷ ︸

RR

‖2
2, (D.4)

Let us denote the solution to the Ridge Regression problem with θRR = arg minθ ‖Xθ−y‖2 +

n′σ2
RP‖θ‖2, therefore we can write:

‖XθRP − y‖2
2

‖Xθ? − y‖2
2

=
‖XθRR − y‖2

2

‖Xθ? − y‖2
2︸ ︷︷ ︸

η1

× ‖XθRR − y‖
2
2 + n′σ2

RP‖θRR‖2
2

‖XθRR − y‖2
2︸ ︷︷ ︸

η2

× ‖XθRP − y‖
2
2 + n′σ2

RP‖θRP‖2
2

‖XθRR − y‖2
2 + n′σ2

RP‖θRR‖2
2︸ ︷︷ ︸

η3

× ‖XθRP − y‖2
2

‖XθRP − y‖2
2 + n′σ2

RP‖θRP‖2
2︸ ︷︷ ︸

η4

. (D.5)

It is clear that η4 < 1, therefore we find bounds for each of η1, η2 and η3.

Using the following Lemma, η1 ≤
(

1 +
n′σ2

RP

σ2
min+n′σ2

RP
r(y)

)2

.

Lemma D.2. Let us denote the solution to the l2 regularized least square problem with

θRR(λ) := arg minθ ‖Xθ − y‖2
2 + λ‖θ‖2

2 and θ? = arg minθ ‖Xθ − y‖2
2, then we have the

following bound on the empirical risk loss given that X is full rank:

‖XθRR(λ)− y‖2

‖Xθ? − y‖2

≤ 1 +
λ

σ2
min + λ

r(y). (D.6)
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Proof. Using triangle inequality we can write the LHS of (D.6):

‖Xθ? − y +X(θRR(λ)− θ?)‖2

‖Xθ? − y‖2

≤ 1 +
‖X(θRR(λ)− θ?)‖2

‖Xθ? − y‖2

. (D.7)

Let us denote the SVD decomposition of X by X = UΣV T , where U ∈ Rn×d spans the

column space, Σ ∈ Rd×d is the diagonal matrix of the singular values and V ∈ Rd×d spans

the row space of X. We use the close form solution for θ? and θRR to derive bounds for

‖X(θRR(λ)− w?)‖2.

θ? = (XTX)−1XTy = V Σ−1UTy (D.8)

θRR = (XTX + λI)−1XTy = V (Σ2 + λI)−1ΣUTy, (D.9)

therefore

‖X(θRR(λ)− θ?)‖2 = ‖U Σ[(Σ2 + λI)−1 − Σ−2]Σ︸ ︷︷ ︸
−D

UTy‖2

≤ ‖UDUTy‖2

(a)

≤ σmax(D)‖UTy‖2

(b)
=

(
λ

σ2
min + λ

)
‖Xθ?‖2. (D.10)

(a) and (b) follow directly since D is a diagonal matrix with i-th entry of λ
σ2
i+λ

, where σi is

i-th singular value of X so σmax(D) ≤ λ
σ2

min+λ
. By combining (D.7) and (D.10), (D.6) follows

directly.

Corollary D.1. Let us denote the solution to the l2 regularized least square problem with

θRR(λ) := arg minθ ‖Xθ − y‖2
2 + λ‖θ‖2

2 and θ? = arg minθ ‖Xθ − y‖2
2, we have the following

bound on the norm of the θRR:

‖θRR‖2 ≤
(

max
i

σi
σ2
i + λ

)
‖Xθ? − y‖2, (D.11)
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Proof. Proof directly follows by using the closed form solution for θRR,

‖θRR‖ = ‖V (Σ2 + λI)−1ΣUTy‖2

= ‖ (Σ2 + λI)−1︸ ︷︷ ︸
D′

ΣUTy‖2,

≤ σmax(D′)‖UTy‖2 (D.12)

=

(
max
i

σi
σ2
i + λ

)
‖Xθ?‖2. (D.13)

By Corollary D.1 we have the following bound on η2:

η2 ≤ 1 + n′σ2
RP

(
max
i

σi
σ2
i + n′σ2

RP

)2

r2(y), (D.14)

We use results of Pilanci et. al. [PW15] for η3:

Proposition D.2 (See Corollary 2 in [PW15]). Suppose θRP = arg minθ ‖S̃
( X
√
n′σRP I

 θ −
y

0

)‖2
2

and θRR := arg minθ ‖Xθ − y‖2
2 + n′σ2

RP‖θ‖2
2 where S̃ ∈ Rn′×n is a random Gaussian matrix

with entries drawn from N (0, 1). With probability at least 1− c1e
−c2n′δ2

for δ ≥
√
c0

d
n′

:

‖XθRP − y‖2
2 + n′σ2

RP‖θRP‖2
2

‖XθRR − y‖2
2 + n′σ2

RP‖θRR‖2
2

≤ (1 + δ)2, (D.15)

where c0, c1 and c2 are constants.

Result of Theorem 4.2 follows directly by using bounds on η1, η2 and η3.
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APPENDIX E

Proofs for Chapter 5

E.1 Proof of Proposition 5.3

Recall from (5.8) that zi(t) is a function of {y(t)}tt=1, therefore conditioned on the same set

of messages {y(t)}tt=1 we have the following ,

‖xDi (t)− xD′i (t)‖2 (E.1)

= ‖ProjX
(
zDi (t)− ηt∇fDi (zDi (t))

)
− ProjX

(
zD
′

i (t)− ηt∇fD
′

i (zD
′

i (t))
)
‖

(a)

≤ ηt‖∇fDi (zDi (t))−∇fD′i (zD
′

i (t))‖
(b)

≤ 2ηtG,

where (a) follows from non-expansiveness of the projection operator and Assumption 5.2

implies (b). Taking the supermom from both sides of (E.1) implies the result directly.

E.2 Proof of Theorem 5.1

In order to prove Algorithm 8 satisfies (ε, δ)-DP, we check condition (5.14) in Proposition

5.1. Recall that the adversary can only observe messages among nodes and the privacy loss

random variable is a function of these observations. We derive an analytical expression for

the privacy loss random variable and bound it using concentration inequalities.

Note that we can write the pdf of y(1), · · · ,y(T ) as follows:

pdfD(y(1), · · · ,y(T )) =
∏
t

pdfD(y(t+ 1)|y(1), · · · ,y(t))
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(a)
=
∏
t

pdfD(y(t+ 1)|y(t))

(b)
=
∏
t

∏
k∈[N ]

pdfD(yk(t+ 1)|y(t))

(c)
=
∏
t

∏
k∈[N ]

pMt(yk(t+ 1)− xk(t))),

where (a) follows since the randomness comes from the additive noise (5.11) and y(t + 1)

conditioned on n(t) (and therefore y(t)) is independent of all the previous coin tosses of the

algorithm. Noise injected independently across nodes which implies (b). In (c), we wrote the

conditional pdf of yk(t+ 1) in terms of density function of a Gaussian, pMt .

Let us denote the privacy loss random variable for T stages with c(y(1), · · · ,y(T )). We

distinguish the variables associated with neighboring database D′ with ′. In the context of

this problem, neighboring databases differ in at most one data point, i.e., at most one node

may have a different function. We denote this node with k∗ ∈ [N ].

c(y(1), · · · ,y(T )) = log
pdfD(y(1), · · · ,y(T ))

pdfD′(y(1), · · · ,y(T ))
(E.2)

=
∑
t

∑
k∈[N ]

−‖yk(t+ 1)− xk(t)‖2

2M2
t

+
‖yk(t+ 1)− x′k(t)‖2

2M2
t

=
∑
t

∑
k∈[N ]

‖xk(t)− x′k(t)‖2

2M2
t

+
2〈yk(t+ 1)− xk(t), xk(t)− x′k(t)〉

2M2
t

=
∑
t

∑
k∈[N ]

‖xk(t)− x′k(t)‖2

2M2
t

+
∑
t

∑
k∈[N ]

〈nk(t),
(xk(t)− x′k(t))

M2
t

〉

(a)
=
∑
t

‖xk∗(t)− x′k∗(t)‖2

2M2
t

+
∑
t

〈nk∗(t),
(xk∗(t)− x′k∗(t))

M2
t

〉,

where (a) follows because only one of the cost functions is different among neighboring

databases, therefore at most one of the these terms is non-zero (note that we are conditioning

on the same observations {y(t)} across two neighboring problems).

Recall from the definition of ∆2(t) (5.13),∑
t

‖xk(t)− x′k(t)‖2

M2(t)
≤
∑
t

∆2(t)

M2(t)

4
= α, (E.3)
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therefore by putting (E.2) and (E.3) together,

c(y(1), · · · ,y(T )) ≤ α

2
+

T∑
t=1

〈nk∗(t),
(xk∗(t)− x′k∗(t))

M2
t

〉. (E.4)

In order to bound c we first show the second term in (E.4) CT
4
=
∑T

t=1〈nk∗(t),
(xk∗ (t)−x′

k∗ (t))

M2
t

〉
is sub-Gaussian.

Definition E.1 (sub-Gaussian). A zero mean random variable X is sub-Gaussian1 if for

some σ > 0,

EeλX ≤ eσ
2λ2/2,∀λ ∈ R. (E.5)

Lemma E.1. The second term in (E.4), CT is sub-Gaussian with the parameter bounded by
√
α, where α is defined in (E.3).

Proof. Recall the definition of CT and let us define wt as follows:

CT
4
=

T∑
t=1

〈nk∗(t),
(xk∗(t)− x′k∗(t))

M2
t

〉,

wt
4
= E[CT |Ft]− E[CT |Ft−1] = 〈nk∗(t),

(xk∗(t)− x′k∗(t))
M2

t

〉,

where Ft is the sigma algebra generated by nk(1), · · · , nk(t). Note that wt is conditionally

sub-Gaussian with σt ≤ ∆(t)/Mt since:

E[eλwt |nk(1), · · · , nk(t− 1)]
(a)
= e

‖xk(t)−x′k(t)‖2

M2
t

λ2/2

(b)

≤ e
∆2(t)

M2
t
λ2/2

, ∀λ ∈ R (E.6)

here (a) follows since nk(t) is an i.i.d. zero mean random Gaussian vector with variance of

M2
t and it’s independent of Ft−1, and definition of ∆2(t) implies (b). Taking the conditional

expectation of CT with respect to Ft−1 implies,

E[eλCT |FT−1] = eλ
∑T−1
t=1 wtE[eλwT |FT−1]

1There exists several equivalent definitions of sub-Gaussianity in the literature, see for example [Ver18]
Proposition 2.5.2
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(a)

≤ eλ
∑T−1
t=1 wte

∆2(T )

M2
T

λ2/2
,∀λ ∈ R (E.7)

where (a) follows from (E.6). By repeating the same argument and taking the conditional

expectation with respect to FT−1, FT−2 up until F1 we conclude that,

E[eλCT ] ≤ e
∑T
t=1

∆2(t)

M2
t
λ2/2

≤ eαλ
2/2, ∀λ ∈ R.

In order to bound the privacy random variable, we use the following tail bound for sub-

Gaussian random variables.

Proposition E.1. Assume X is a random variable satisfying (E.5). Then we have

P (X > t) ≤ e−
t2

2σ2 ,∀t ≥ 0, (E.8)

Proof. Proof follows directly by applying Chernoff bound along with condition in (E.5).

Now we are ready to prove the claim. We show that P (|c| ≥ ε) ≤ δ where c
4
= c(y(1), · · · ,y(T ))

as in (E.2). Note that,

P (c ≥ +ε)
(a)

≤ P
(α

2
+ CT ≥ ε

) (b)

≤ e−(ε−α
2

)2/2α, (E.9)

P (c ≤ −ε)
(c)

≤ P (CT ≤ −ε)
(d)

≤ e−
ε2

2α , (E.10)

where (a) follows from inequality (E.4), (b) is the direct consequence of Proposition E.1, (c)

comes from c ≥ CT and we use the fact that −CT is a sub-Gaussian random variable along

with Proposition 5.3 in (d). Therefore,

P (|c| ≥ ε) = P (c ≥ ε) + P (c ≤ −ε) ≤ 2e−
(ε−α2 )2

2α

(a)

≤ δ. (E.11)
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It is straightforward to verify that (a) holds for

0 ≤ α ≤ 2ε+ 4 log
2

δ
− 2

√(
ε+ 2 log

2

δ

)2

− ε2 (*)

By using the inequality a/2 ≤ 1−
√

1− a for |a| ≤ 1 we conclude that an specific choice of

α = ε2

ε+2 log 2
δ

in the statement of Theorem 5.1 lies in (∗).

E.3 Proof of Lemma 5.1

Compared to the classical DGD (see for example [YLY16, NO09]) we have an additional

projection operator that we need to take into account. In this case, with a minor modification

we can still bound the distance of individual’s zi to the average parameter. Let us rewrite

xi(t) as follows:

xi(t) = ProjX (zi(t)− ηt∇fi(zi(t))) = zi(t) + vi(t) (E.12)

= ẑt(t) + ui(t) + vi(t),

where ẑi(t)
4
=
∑

j∈Ni wijyj(t) and ui(t) and vi(t) are defined as

vi(t)
4
= ProjX (zi(t)− ηt∇fi(zi(t)))− zi(t), (E.13)

ui(t)
4
= zi(t)− ẑi(t). (E.14)

We use the notation ẑ(t) = [ẑ1(t); · · · , ẑN(t)], u(t) = [u1(t); · · · ;uN(t)] and v(t) = [v1(t); · · · ; vN(t)].

In the rest of proof, we rewrite the mean parameter using Kronecker product z̄(t) = 1
N

(
1TN ⊗ IP

)
z(t).

In order to bound ‖z(t) − 1
N

(
1N1TN ⊗ Ip

)
z(t)‖, we first present a lemma that bounds

‖ẑ(t)− 1
N

(
1N1TN ⊗ Ip

)
ẑ(t)‖.

Lemma E.2. Under Assumption 5.2, at any time t ≤ T , the following holds:

‖ẑ(t)− 1

N

(
1N1TN ⊗ Ip

)
ẑ(t)‖ (E.15)

≤ 2
t−1∑
s=1

βt−s‖n(s)‖+
√
NG

t−1∑
s=1

ηsβ
t−s.
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Proof. Observer that plugging (E.12) into (5.9) we can write:

ẑ(t) = (W ⊗ Ip) (ẑ(t− 1)+u(t− 1) + v(t− 1))

+ (W ⊗ Ip) n(t− 1), (E.16)

where u and v are defined according to (E.14) and (E.13) respectively.

We proceed by bounding each of u(t) and v(t) for t ≤ T . It is clear that both terms are

zero in Stage II of the algorithm. Bounding u: Note that

‖vi(t)‖2 = ‖ProjX (zi(t)− ηt∇fi(zi(t)))− zi(t)‖
(a)
= ‖ProjX (zi(t)− ηt∇fi(zi(t)))− ProjX zi(t)‖
(b)

≤ ‖ηt∇fi(zi(t))‖2

(c)

≤ Gηt,

where (a) holds since zi(t) ∈ X , (b) follows from non-expansiveness property of the Euclidean

projection and Assumption 5.2 implies (c). Therefore,

‖v(t)‖2 =

√√√√ N∑
i

‖vi(t)‖2
2 ≤ G

√
Nηt. (E.17)

In order to bound u(t),

‖ui(t)‖2 = ‖zi − ẑi‖2 = ‖ProjX ẑi − ẑi‖2

(a)

≤ ‖ (Wi ⊗ Ip) n(t)‖2,

where (a) follows from ‖ProjXa− b‖ ≤ ‖c− b‖, ∀c ∈ X 2 and the fact that
∑

j wi,jxj(t) ∈ X ,

Wi is the ith row of the weight matrix. Therefore, we have the following bound on ‖u‖2:

‖u‖2 = ‖ (W ⊗ Ip) n(t)‖2 ≤ ‖n(t)‖2. (E.18)

2This property follows directly from the definition of projection (5.10)
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The rest follows from the classical case [NO09, YLY16], by bounding the deviation of ẑi from

1
N

∑N
i=1 ẑi assuming zero initial states3 by expanding (E.16),

‖ẑ(t)− 1

N

(
1N1TN ⊗ Ip

)
ẑ(t)‖

(a)
= ‖

t−1∑
s=0

(
W t−s ⊗ Ip −

1

N
1N1TN ⊗ Ip

)
n(s)

+
t−1∑
s=1

(
W t−s ⊗ Ip −

1

N
1N1TN ⊗ Ip

)
(u(s) + v(s)) ‖

(b)

≤
t−1∑
s=0

‖W t−s ⊗ Ip −
1

N
1N1TN ⊗ Ip‖‖n(s)‖

+
t−1∑
s=1

‖W t−s ⊗ Ip −
1

N
1N1TN ⊗ Ip‖‖u(s) + v(s)‖

(c)

≤
t−1∑
s=0

βt−s‖n(s)‖+
t−1∑
s=1

βt−s‖u(s)‖+
t−1∑
s=1

βt−s‖v(s)‖

(d)

≤
t−1∑
s=0

βt−s‖n(s)‖+
t−1∑
s=1

Msβ
t−s‖n(s)‖+

√
NG

t−1∑
s=1

ηsβ
t−s

=
t−1∑
s=1

2βt−s‖n(s)‖+
√
NG

t−1∑
s=1

ηsβ
t−s, (E.19)

where (a) holds since W is doubly stochastic, (b) follows from the triangle inequality together

with the inequality ‖Ax‖ ≤ ‖A‖‖x‖ where ‖A‖ denotes the operator norm4, we use the

spectral property of the weight matrix in (c) and β is defined as the second largest eigenvalue

of W , we plugged in (E.18) and (E.17) to derive (d).

Having set Lemma E.2, we bound the the deviation of zi(t) from the mean parameter for

Stage I as follows.

‖z(t)− 1

N

(
1N1TN ⊗ Ip

)
z(t)‖ (E.20)

3Without loss of generality we assume the initial condition is zero, otherwise there is an extra term that
goes to zero exponentially fast.

4‖Ax‖ ≤ ‖A‖‖x‖ holds for matrix A ∈ Rn×n and x ∈ Rn where ‖A‖ is the operator norm of a matrix.
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= ‖
(
IpN −

1

N

(
1N1TN ⊗ Ip

))
(ẑ(t) + u(t)) ‖

≤ ‖ẑ(t)− 1

N

(
1N1TN ⊗ Ip

)
ẑ(t)‖

+ ‖
(
IpN −

1

N

(
1N1TN ⊗ Ip

))
u(t)‖

≤
t−1∑
s=1

2Msβ
t−s‖n(s)‖+

√
NG

t−1∑
s=1

ηsβ
t−s + ‖u(t)‖,

where we used Lemma E.2, (E.18) along with triangle inequality and the inequality ‖Ax‖ ≤
‖A‖‖x‖.

In Stage II, x(t) = (W ⊗ IP ) x(t− 1) for t > T , therefore

‖x(t)− 1

N

(
1N1TN ⊗ Ip

)
x(t)‖

= ‖(W t−T ⊗ Ip −
1

N

(
1N1TN ⊗ Ip

)
)x(T )‖

≤ βt−Tx(T ), (E.21)

where we use the spectral property of W .

E.4 Proof of Lemma 5.3

Let us define ẑi(t)
4
=
∑

j∈Ni wijyj(t), i.e., zi(t) = ProjX ẑi(t) therefore

‖zi(t)− x‖
(a)
= ‖ProjX ẑi(t)− ProjXx‖
(b)

≤ ‖ẑi(t)− x‖2, (E.22)

where (a) follows since x ∈ X and we used non-expansiveness property of the projection in

(b). Summing up both sides of (E.22) results in

∑
i∈[N ]

‖zi(t)− x‖2 ≤
∑
i∈[N ]

‖ẑi(t)− x‖2 (E.23)

= ‖ẑ(t)− 1N ⊗ x‖2

(a)
= ‖ (W ⊗ Ip) y(t)− 1N ⊗ x‖2

115



(b)
= ‖ (W ⊗ Ip) (y(t)− 1N ⊗ x) ‖2

(c)

≤ ‖y(t)− 1N ⊗ x‖2 =
∑
i∈[N ]

‖yi(t)− x‖2,

where (a) follows directly from definition of ẑi(t), W being doubly stochastic implies (b) and

(c) is from the spectral properties of W .

Note that,

‖yi(t)− x‖2 = ‖xi(t− 1)− x‖2 + ‖ni(t)‖2 (E.24)

+ 2〈xi(t− 1)− x, ni(t)〉.

The proof is complete by plugging (E.24) into (E.23) together and taking the expectation

from both sides.
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