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A computationally fast and efficient method for analyzing MHD flow at high Hartmann number and interaction parameter 
is presented and used to analyze a multiple duct geometry. This type of geometry is of practical interest in fusion applications. 
Because the Hartmann number and interaction parameter are generally large in fusion applications, the inertial and viscous 
terms in the Navier-Stokes equation can often be neglected in the core flow region, making this equation linear. In addition, 
because the magnetic fields in a fusion reactor vary slowly and the magnetic Reynolds number is small, the induced magnetic 
field can be neglected. The resulting equations representing core flow have certain characteristics which make it possible to 
reduce them to two dimensional without losing the three dimensional characteristics. 

The method which has been developed is an "iterative" method. A velocity profile is assumed, then Ohm's law and the 
current conservation equation are combined and used to solve for the potential distribution in a plane in the fluid, and in a 
surface in the duct wall. The potential variation along magnetic field lines is checked, and if necessary, the velocities are 
adjusted. This procedure is repeated until the potentials along field lines vary to within a specified error. 

The analysis of the multiple duct geometry shows the importance of global effects. The results of two basic cases are 
presented. In the first, the average velocity in each duct is the same, but the wall conductance ratios of the walls perpendicular 
to the magnetic field vary from duct to duct. The total pressure drop in the electrically connected ducts was greater than or 
equal to the total pressure drop in the same ducts electrically isolated. In addition, the velocity profile in the ducts can be 
significantly affected by the presence of neighboring ducts. In the second case, the wall conductance ratios are the same for 
each duct, but the average velocity varies from duct to duct. The overall pressure drop is the same as if the ducts were 
electrically isolated, but the velocity profile and side layer flow rate can be very different from the electrically isolated case. 

1. Introduction 

The self-cooled liquid metal blanket is a prime 
candidate for use in a fusion reactor. While lithium-con- 
taining liquid metals have good heat transfer and tri- 
t ium breeding characteristics, their flow is affected by 
the presence of a magnetic field. These magnetohydro- 
dynamic (MHD)  effects have a significant impact on 
the fluid flow, and therefore affect heat transfer, mass 
transfer, and the pressure drop. 

The M H D  pressure drop is a particularly important  
aspect of M H D  flow. Limiting the pumping power is 
necessary for economic reasons, but  more importantly, 
a large pressure drop results in large stress in the 
coolant duct walls. This stress may be accommodated 
by increasing the thickness of the duct walls. However, 
if the walls are conducting, this increases the M H D  

pressure drop. It  is important  to be able to calculate the 
pressure drop for each proposed blanket design. Ad- 
ditionally, it is important  to be able to calculate the heat 
transfer in a blanket. 

Numerical  solution of  the full set of equations would 
give the most accurate solution for any situation. How- 
ever, this is particularly difficult to do, because at 
parameters characteristic of the fusion reactor, the 
viscous and inertial terms in the Navier-Stokes equation 
are many orders of  magni tude smaller than the other 
terms. A numerical solution of the full set of equations 
for fully developed flow was done by Tillack et al. [1], 
but  it is also important  to understand developing flows. 
Two dimensional numerical  analyses of developing 
M H D  flow have been done (see for example Abdou et 
al. [2]), but the applicability of these analysis is limited 
because developing M H D  flows are three dimensional. 
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A three dimensional numerical analysis of flow in a 
varying magnetic field and flow in a sudden expansion 
has been carried out by Kim [3], but the codes are 
computer time intensive and are limited to Hartmann 
numbers on the order of one hundred. For some geome- 
tries such as abrupt expansions, solution of the full set 
of MHD equations is warranted. There are cases how- 
ever, when certain terms can be neglected in the 
Navier-Stokes equation and Amp4re's Law, making the 
MHD equations linear and eliminating the difficulties 
associated with their numerical solution. When the mag- 
netic field is high enough, viscous and inertial terms can 
often be neglected without a significant impact on the 
calculation of the core flow variables. (The core is the 
region in MHD flow where viscous and inertial forces 
are generally negligible, and the pressure gradient is 
balanced by the electromagnetic body force.) In ad- 
dition, if the induced magnetic field is negligible with 
respect to the applied magnetic field, the magnetic field 
can be assumed known. This is valid for slowly varying 
fields if the magnetic Reynolds number (the ratio of 
induced to applied magnetic field) is small, and in a 
fusion reactor, the magnetic fields are slowly varying. 
After making the simplifications implied by these as- 
sumptions, the set of MHD equations can be solved 
numerically without the problems inherent in the solu- 
tion of the full set of equations. 

The set of equations resulting from the approxima- 
tions mentioned above could be solved in a three di- 
mensional domain, but certain characteristics of the 
equations can be exploited. Because the variation of the 
flow variables along magnetic field lines can be de- 
termined, the equations can be reduced to two dimen- 
sions. Two such methods of solving these equations 
have been explored, based on work done by Kulikovskii 
[4]. One is a "direct integration" method where the 
equations are integrated along magnetic field lines. The 
resulting equations are then solved subject to the correct 
boundary conditions. This method has been applied to 
various geometries such as circular ducts (see for exam- 
ple Reed et al. [5] through Tillack [7]) and rectangular 
ducts (see for example Reed et al. [5] and Picologlou et 
al. [8]). In theory, this method is applicable to any 
problem; however, in certain complicated geometries, 
the equations become quite unwieldy due to necessary 
coordinate system transformations. An alternative 
method based on work done by Madarame and Tokoh 
[9,10] has been developed which avoids these complica- 
tions. It is an iterative method - the full set of equa- 
tions is not solved simultaneously. A velocity profile is 
assumed and the equations are solved in a plane in the 
fluid and in a surface of the duct wall. The potentials in 

the wall and fluid are compared along magnetic field 
lines, and if they do not vary in a specified way. the 
velocity is modified. This process is repeated until the 
correct solution is found. Because the duct wall and the 
plane in the fluid are meshed directly, no transforma- 
tions are necessary as in the direct integration method. 
In addition, since the full set of equations is not in- 
tegrated and combined, the equations being solved are 
not as complex as those derived in the direct integration 
method. For this reason, the iterative method should be 
more convenient than the direct integration method 
when applied to problems with complicated geometries. 

2. Solution approach 

In this section, background information leading up 
to the choice of the solution approach is given. The 
analytic formulation of the equations is presented, and 
the numerical scheme is described. 

2.1. Analytic formulation 

The equations describing steady-state, incom- 
pressible MHD flow are (see for example Shercliff [11]): 

Ov" W v =  - U p  + i x  B +  ~V'2v, (1) 

j = o ( -  v,~ + v x n ) ,  (2) 

v -  n = o,  ( 3 )  

V X B = ~t0j, (4) 

v.v=O, (5) 

v,.j=o, (6) 

where O is the fluid density, v is velocity, p is pressure, 
j is current density, B is the magnetic field, /~ is the 
kinematic viscosity, o is electrical conductivity, O is 
electric field potential, and /~0 is the free space permea- 
bility. These equations can be made dimensionless by 
setting v* = v / v ,  B *  = B / B  o, j *  = j / o f  vB o, O* = 
$/avBo,  and p* = p / o f  vB2a. In these relationships, the 
starred quantities are dimensionless, v is the bulk veloc- 
ity, B 0 is the maximum magnetic field, and a is a 
characteristic length. All length variables are normalized 
using a. 

The dimensionless MHD equations are (dropping 
the stars): 

N - i v  • Wv = - Wp +J  X B + M-2tTzv, (7) 

• O,.w n ) ,  ( 8 )  .t = ~ S / ( -  v',t, + v x 
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V.B=O,  (9) 

v × B = R ~ j ,  (10) 

V.v=O,  (11) 

v . j = 0 ,  (12) 

where N is the interaction parameter, N = oBZa/pv, M 
is the Hartmann number, M = Ba~/-~/ix, the subscripts 
f and w refer to the fluid and wall, respectively, and R m 
is the magnetic Reynolds number, Rm=lXoooa. The 
interaction parameter is the ratio of magnetic forces to 
inertial forces, the Hartmann number squared is the 
ratio of magnetic forces to viscous forces, and the 
magnetic Reynolds number is the ratio of the induced 
magnetic field to the applied magnetic field. 

At high M and N, MHD flow is made up of distinct 
regions: the core flow, boundary layers, and free shear 
layers. In the core, viscous and inertial forces are gener- 
ally negligible, so the pressure gradient is balanced by 
magnetic forces. In a fusion reactor it is envisioned that 
M and N may be as large as 106. This introduces 
additional complexity into the solution of the MHD 
equations. Besides being nonlinear, the inertial and 
viscous terms in the Navier-Stokes equation, equation 
(7), can be orders of magnitude smaller than the other 
terms. This makes the numerical solution of the full set 
of MHD equations very difficult as is explained by 
Ramos and Winowich [12]. However, at such high M 
and N, certain approximations can often be made that 
greatly simplify the solution. 

If the following is assumed: 
(1) viscous forces are negligible ( M  ~ oo), 
(2) inertial forces are negligible (N ~ oo), 
(3) the induced magnetic field is negligible (R m ~ 0), 

then the dimensionless equations governing steady, in- 
ertialess, inviscid MHD flow are: 

v p = j x S ,  (13) 

j =  °f'w ( - V e p + v X B ) ,  (14) 
fff 

v . i  = 0, ( 1 5 )  

V ' v  = 0, (16) 

where the subscripts f and w refer to the fluid and wall 
respectively, and B is the divergence-free, known ap- 
plied magnetic field. The flow is treated as if made up 
entirely of core flow. The boundary layers are assumed 
to have a negligible effect on the core flow. This is 
usually a valid assumption as long as there is a compo- 
nent of magnetic field perpendicular to the duct wall. In 
certain situations, however, the boundary layers are 
important. For example, in nonconducting ducts, the 

Hartmann boundary layers (boundary layers with a 
magnetic field component perpendicular to them) carry 
all the returning current. For this type of problem, it is 
necessary to use a matching condition between the core 
and the boundary layer (see for example Hua and 
Walker [13]). When the walls are conducting however, 
the amount of current in the Hartmann layers is negligi- 
ble. In circular ducts with transverse magnetic fields, 
this is violated only at a point, so all boundary layers 
can be neglected. In a rectangular duct with one wall 
parallel to the magnetic field, there is a side wall 
boundary layer and the influence it has on the flow 
cannot be neglected. The core flow method can still be 
applied with special treatment of side wall boundary 
layers. 

Equations (13)-(16) could be solved in a three di- 
mensional domain, but there are certain characteristics 
of the equations that can be taken advantage of which 
enable one to solve the equations on a two dimensional 
surface. It is important to notice that eq. (13) shows 
that the pressure does not vary along magnetic field 
lines. Additionally, it can be shown by taking the curl of 
the Navier-Stokes equation that the components of the 
current density perpendicular to magnetic field lines 
(hereafter referred to as perpendicular components) do 
not vary along field lines. Expressions for the variation 
of the perpendicular components of velocity and paral- 
lel components of current density and velocity can be 
derived by taking the curl of Ohm's law. For a Carte- 
sian coordinate system: 

= f d l ( v , ,  x j .  + v ' .  x j,, ) / B ,  

BVl I# I I  - V l IV I IB  = v..L V'.L B + V . j .L  , 

B V j t  I - j l i V t i B  = j .  V j_B,  

where 1 is taken along a field line. 

(17) 

(18) 
(19) 

Once the core variables are known on one surface, 
they can be calculated in the entire domain. Solving the 
equations in two dimensions enables one to find the 
three dimensional solution. This makes the numerical 
solution much more tractable, both in terms of com- 
puter time and code complexity. In making this sim- 
plification, the three dimensional aspects of the solution 
are not lost. 

2. 2. Numerical scheme 

An iterative technique has been developed to solve 
the core flow equations. A velocity distribution is 
guessed, then the equations (with the potential as the 
unknown variable) are solved in a plane in the fluid and 
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in a surface in the duct wall. There is a computational 
grid in the plane in the fluid, and in the duct wall. It is 
not necessary to transform the wall equations into the 
fluid coordinate system or vice versa, as is sometimes 
necessary in the direct integration method. When the 
equations and boundary conditions have been satisfied 
in the entire domain of the duct, the problem has been 
solved. 

In the domain of the fluid, the core flow equations 
are given by eqs. (13)-(16). Combining eqs. (14) and 
(15) yields: 

v'zq~f = V" ( v X  B) .  (20) 

In order to solve this equation on a two dimensional 
surface, parallel derivatives of the fluid potential must 
be put in terms of perpendicular components. This can 
be done by using eq. (19). 

If all of the core current returns through the walls (as 
opposed to some of the current returning though 
boundary layers), then in the domain of the wall, Ohm's 
law and current conservation are used without any 
modifications. (If there are side layers, and their resis- 
tance is low enough, a significant fraction of current 
will return through the boundary layer. This can be 
approximated in geometries with certain symmetries as 
is done in McCarthy [14] and Tillack and McCarthy 
[15], for example): 

- °w Vrw4,w, (21) J w - - - -  fff 

~Tw " lw = - 3 j f J O n  , (22) 

where n is a unit normal pointing from the wall to the 
fluid and the gradients are taken in the surface of the 
wall (the gradients do not contain a component normal 
to the wall). The wall is assumed to be thin enough so 
that the potential variation through the thickness of the 
wall is negligible. Equation (22) can then be integrated 
across the wall to obtain (for constant wall conductiv- 
ity): 

(V" . j w ) t w  = - i f . n ,  (23) 

where tw is the wall thickness normalized with respect 
to a. 

Equations (21) and (23) can be combined, resulting 
in the following equation: 

(/) lTZq)w = h . n ,  (24) 

where (I) is the wall conductance ratio, (/)= Owtw/Oea. 
Equation (24) is known as the thin-wall boundary con- 
dition. 

Once the two dimensional potential distribution in 
the fluid and wall has been calculated for a given 
velocity field, it is necessary to determine whether the 
equations have been satisfied in the entire domain of 
the problem. The criterion for determining this is based 
on the variation of the potential along field lines. The 
parallel component of Ohm's law is integrated along a 
magnetic field line: 

f ; Z d l ~ / f  = q S f , 2 -  ~fq  = -  f/f2d0f!,, (25) 

where jf, is found from equation (19). Integration of 
this equation results in an expression for the variation 
of the potential along magnetic field lines. 

The potentials in the fluid and wall are compared 
along field lines. Because the potential jump across 
Hartmann layers is negligible at high Hartmann num- 
bers, the potential in the fluid is equal to the potential 
in the wall at the fluid-wall interface. If the potentials 
do not meet this criterion to within a specified error, it 
is necessary to adjust the velocities. This is done using 
the following equation: 

. . . . .  ld ( ~q~w ~(])f ) (26) 
Uaxia I - -  Oaxia I - -  K at 3t wall ' 

where t is the transverse direction, which is perpendicu- 
lar to the field and the axial direction, and ~ is an 
underrelaxation parameter, 0 < K < 1. The value of K 
depends on the wall conductance ratio: the lower (/) is, 
the lower r must be. 

If the correct velocities have already been found, the 
potential gradient at the wall will be equal to the 
potential gradient in the fluid evaluated at the wall. In 
other words, the potentials vary correctly along mag- 
netic field lines. However, if the potential gradients are 
not equal, the velocity must be adjusted in order to 
adjust the potential gradients. If the potential gradient 
in the wall is larger than the potential gradient in the 
fluid at the wall, the axial velocity must be decreased in 
order to decrease the current density in the fluid, which 
decreases the amount of current going into the wall, 
thus decreasing the potential gradient in the wall. 

The axial velocity calculated in this manner will not 
necessarily satisfy global mass conservation. The veloc- 
ity must be normalized such that the flow in the 
boundary layers plus the flow in the core is equal to the 
total input flow. When the magnetic field is parallel to a 
wall at more than one point (such as with a rectangular 
duct with one wall parallel to the magnetic field), the 
layers at the fluid-wall interface can carry a large frac- 
tion of the flow. These layers are called side layers. For 
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the case of circular ducts, the amount of fluid in the 
boundary layers is negligible. 

The equation used to normalize the velocities is: 

ffd..o.,.l+ffda~,v..,.~l=constant, (27) 

where a is the cross sectional area of the duct and asl is 
the cross sectional area of the side layer. The second 
term in eq. (27) is necessary only when the magnetic 
field is parallel to a wall at more than a point. 

Using Ohm's law and neglecting O(~)  terms, 
Fig. 2. Geometry and coordinate system for circular duct. 

f f das,,,a,,ial,sl = f d',a,o, (28) 

where AO is the potential jump across the side layer. 
The potential jump across the side layer is the dif- 
ference between the potential at the wall and the poten- 
tial in the fluid adjacent to the wall. These potentials 
are calculated so the side layer flow rate can be de- 
termined. 

The transverse component of velocity must also be 
calculated. An expression for this velocity component 

Assume 
Velocities 

I_ 
Calculate Potential 
Distribution in Fluid 
and Wall 

No I Adjust 
Velocities 

Fig. 1. Flowchart showing iterative solution procedure. 

can be found by integrating eq. (16) along a magnetic 
field line: 

f d t ( v - , 0  = 0, (29) 

where the parallel component of velocity is found using 
eq. (18). This results in an equation that relates the 
transverse velocity component to the axial velocity com- 
ponent, and which satisfies local mass conservation. 
Because the parallel component has been integrated out, 
this equation can be solved on a two dimensional 
surface. 

After calculating a new velocity distribution, the 
potential in the fluid and wall is calculated again. This 
process is repeated until the criterion based on the 
potential variation along field lines is satisfied. 

To summarize the process, Ohm's law and the cur- 
rent conservation equation are used to calculate the 
potential distribution in a plane in the fluid, and in a 
surface in the wall. The Navier-Stokes equation is used 
to determine whether the potential variation along mag- 
netic field lines is correct. If necessary, a new axial 
velocity is calculated using Ohm's law, and the mass 
conservation equation is used to normalize the new 
axial velocity. Figure 1 gives a summary of the iterative 
procedure. 

3. Representative examples of benchmarking results 

The iterative method described in the previous sec- 
tion has been used to analyze flow in various geometries 
(see McCarthy [14], and McCarthy et al. [16]). Because 
there are no exact analytic solutions for developing 
MHD flow with which to compare the present model, 
benchmarking to experimental results from the Argonne 
Liquid Metal Experiment (ALEX) (see Reed et al. [5] 
and Picologlou et al. [8]) was done for rectangular and 
circular ducts. Representative results of the benchmark- 
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Fig. 3. Magnetic field variation at the exit of ALEX [17]. 
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ing are presented here. Further benchmarking results 
can be found in McCarthy [14] and McCarthy et al. 
[161. 

In ANL' s  circular duct experiment (Reed et al. [5]), 
the duct had a wall  conductance ratio of 0.026. In the 
results presented, M = 6000 and N = 10000. Measure- 
ments of potentials, velocities, and pressures were taken 
in regions of constant magnetic field and in the exit 
region of the magnet where the field strength decreases 
to zero. 

The circular duct geometry and coordinate system 
are shown in Fig. 2 and the shape of the magnetic field 
at the exit region of the magnet is given in Fig. 3. 
Figures 4 and 5 show model results of the axial pressure 
gradient near the duct wall and the velocity profile on 
the z = 0 plane near x = 0 compared with experimental 
results from ALEX. The bump in the measured pressure 
gradient is less pronounced than the model  predicts. 
This is because the pressure gradient in the experiment 
is actually a pressure difference measured over a dis- 

0.03 

x 0.02 ~ E ~ l _  
7Z3 

7ZJ 

0.01 

0.00 I Mod:l Results I i ~ . _ _ _  m, 
- 0 - 5  0 5 0 

X 
Fig. 4. Present model prediction of axial pressure gradient at 
y = - 1 compared with experimental results measured in ALEX 

[17] circular duct with variable transverse magnetic field. 

o % 

-- - M0del,Results / 

0 I [ I 

1 0 
Y 

Fig. 5. Present model prediction of velocity profile around 
x = 0 compared with experimental results measured in ALEX 

[17] circular duct with variable transverse magnetic field, 

tance of 152 mm. This has the effect of flattening out 
the bump. In addition, the measured pressures include 
the pressure drop through the duct wall (the pressure 
taps are on the outside of the wall) so they are expected 
to be slightly lower than the values predicted with the 
model• Overall, there is good agreement between the 
model and the experimental results. 

4. Application of method to multiple duct geometry 

The multiple duct geometry (see fig. 6) is assumed to 
be symmetric about the y = 0 plane, and the ducts are 
arranged such that a field line intersecting one duct, 
intersects all ducts• 

Because the solution is not necessarily symmetric 
about the z = z~, i plane (where zc. ~ is the value of z at 
the centerline of duct i), JL~ ( z  = zc, i) may not be zero 
even in fully developed flow. In order to express the 

j s  S" y 

r I x 

! z 

/ t . _ _ .  

B = B(x )  z 

Fig. 6. Multiple duct geometry. 
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Fig. 7. Reference figure for derivation of the current density at 
the center of the ith duct. 

equations for the walls parallel to the z = 0 plane in 

terms of x and y, an expression for jrr,i (z = z,,~) must 
be derived. If the equation for the potential variation 

along field lines, eq. (25), is evaluated twice, once using 

Zl = G,, and zr = zi, then using z, = z,+r and z2 = z,,, 
(see fig. 7), and the second equation is subtracted from 
the first, an expression for jr,,, (z = z,,~) results: 

jf,,, = 
zi+l -z~ 

1 aB. --- 2B axlfx.r(Z~+l +zi-2zc,i). (30) 

The z component of the current density in the ith 
duct can now be written: 

jf,,, (z) = $ gjfx,i 
[z-(qq 

+ HZi) - cp(Z,,l) 
z,+1 - zi 

(31) 

Using this expression in the potential equations 
where necessary, the potential equation for the fluid, the 
walls parallel to the z = 0 plane, and the walls at 
y = - 1 respectively, can be written: 

(32) 

~ZE[jfx,i_I(T+!)-jfx,,(~)] 

+ &VW,,-1 - &v,,, + ew,,i+1 - +w,, 

z, - zj-_l zi+1 - zi 

= @_ a24v,z ; a’+w 
l(ax2 ayZ’ i 

(33) 

Notice that eq. (34) assumes that all the currents return 
in the side wall (I%-“~ s as,,)_ Because there is no 
symmetry about the x-y plane through the centerline of 
each duct, it is not possible to account for the currents 

returning in the side layer using the method of past 

analyses (see McCarthy [14]). 
The boundary conditions used to solve the potential 

equations are: 

Qf,i(O&L, Y, zc,i) 
ax =O, (35) 

a+ssw,i(O&Lt - 1, z) =. 

ax (36) 

a&JO&L, Y, z,) =o 
ax (37) 

+f.j(Xt O, zc,i) =O, (38) 

&,,i(x, O, z,) =O, (39) 

Gf,iCx, - 1, z,,,) = 
hv,i+l(xt - lt zi+l)(z8 -zc,i) 

zi - z,+1 

_ hv,.iCx* - l, zz)(zi+l - zc,i) 

zi - zi+l 

L,(x, - 1, zi)tsw -jwz,i--1(x, - 1, zi)tsw 

-jwy.,(x, - 1, Zi)tw,j =O. (41) 

Equations (35)-(37) specify fully developed (or sym- 
metry) conditions, eqs. (38)-(39) are due to symmetry 
about the y = 0 plane, eq. (40) comes from the variation 
of the potentials along field lines, and eq. (41) implies 
current is conserved at the comers of the duct. 



370 K.A. McCarthy, M.A. Abdou /Analysis of liquid metal MHD flow 

The variation of the potentials along field lines is 
given by: 

~fA( x '  Y, Zca) 

= [ + w . i + l (  x ,  Y, Zi+l)(Zi--Zc,i) 
-+w.iCx, y, z , ) ( z , + , - z c , , ) ] / [ z i - z , + , ]  

1 3B 
2 B  aX jfx'i(X' y'  zc'') 

Z 2 X [ ~ , , -  Zc. , (z,+ , + z,) + z i+ , z , ]  . (42) 

The equation for updating the axial velocities is: 

. . . .  v o l d ( O ~ P f ~ i O ~ f , i )  (43) G.i - x , , - x  ~ y  3y ~=~., ' 

where Cf*i is ~f,i(z¢,,) in eq. (42). 
The variation of the velocities along field lines is: 

1 3B Ojfx, i v,,,( z ) = ~x,,( z = ~ , , )  + 
2B 2 3x 3y 

X[(Z2--Zff i ) --(Z-- Zc,t)(Zi+I-]- Zi) ] 
1 ( z - z ~ , ; )  a 

+ B  z ,+ ,Cz  -, ~- / [~w . , -~ - . , , , / + , ] ,  (44) 

a a / l a B  
VY , '(z)=vy. '(zc, ' )  2B a x ~ B  3-xxJfx,'J 

I (45) 

The normalization of the new axial velocity must 
include the flow in the side layer: 

After applying the boundary condition Gj(zi&zi+l) 
= 0 (zero mass flux into the wall), an expression for the 

y component of velocity can be derived using eq. (29): 

3X + ' Oy 2B 3 ~ ]  -~y' 

X 6 - ~¢" + z~'i(z' + z'+l ) 

1 3 B 3  + r / x  / x l  
B 2 ax ay t*tz;)-¢tz;+')l  

( Z i~  Zi+l Zc,i ) 
2 

X " = O. (48)  
Z i -- Zi+ 1 

The potential distribution is found, then the poten- 
tial variation along field lines is checked. Notice that 
the variation is checked in each duct separately. In 
other words, the fluid potentials in duct 1 are checked, 
based on the value of the potentials in walls z~ and z 2. 
As a result, the pressure drop in each duct can be 
different. If the boundary condition required is equal 
pressure drops through each duct, the analysis would 
have to be altered. One way to handle it would be to 
have one duct splitting into many, then joining into one. 
Therefore, because the pressure is constant along field 
lines in each duct, at the axial position where the duct 
splits into many ducts, the pressure is constant along a 
field line, and the same is true at the axial position 
where the ducts go into one duct. In order for the 
pressure at the inlet and outlet of each separate duct to 
be the same for each duct, the axial pressure drop in 
each duct must be the same. 

f~0 fz,+ dz d y  G,i + f i l f f '  dz(q~sw,i _ qff,i) = constant" 
l ~1 I t + l  

(46) 

After carrying out the integration with respect to z, eq. 
(46) becomes: 

01dy ( 1 3B Ojfx,, 
f_  Vx,i(z = Z c , ) ( z ~ -  z,+,)  + 2 "  ~ ax ay 

\ 

[ z L ,  - z ~, - 3(z,+,z~ + z , z 2 , )  
× 6 

} 1  
-z},,(~i-z,+,) +~c,,(~,+~,+,) B 

x [  z'+z'+'2 ] ~7a (~,, ) - z¢,i] - q~w,i+l) = constant. 

(47) 

5. Results of analysis of multiple duct geometry 

The complexity of multiple duct flow makes it dif- 
ficult to generalize conclusions. The results in this sec- 
tion are presented as an example of the type of phenom- 
ena which can occur. 

There are no multiple duct experimental results with 
which to benchmark the multiple duct problems that 
are analyzed here, where the pressure drop across each 
individual duct can be different. The core flow method 
was developed for geometries such as these that are 
difficult to use in an experiment and difficult to model 
with the direct method. Benchmarking of the model in 
simpler geometries gives assurance that the method 
yields good results, so application to a more com- 
plicated geometry can be done with an increased level 
of confidence. In addition, the multiple duct code can 
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Fig. 8. A multiple duct assembly and the corresponding isolated duct equivalent. 

be checked by analyzing a multiple duct geometry that 
is made up of several single ducts as shown in fig. 8. 
Each duct in the multiple duct assembly should have 
results identical to the single duct because the current 
density in the duct walls of the multiple duct assembly 
is the same as in the single duct problem. 

The multiple duct geometry was chosen as a step in 
moving towards evaluating the flow tailoring blanket 
shown in fig. 9 (Picologlou [18]). The expansions and 
contractions together with the different wall conduc- 
tance ratios skew the fluid towards the first wall of the 
reactor. In this research, the multiple duct geometry 
analyzed has straight ducts, but global effects can be 
present even with straight ducts. 

5.1. Ducts without symmetry about the z = 0 plane 

The multiple duct code was written so that any 
number of adjacent ducts can be analyzed. Each duct 
can have a different average velocity, and the walls 
perpendicular to the magnetic field can have different 
wall conductance ratios. In order to determine what 
global effects are present, comparisons are made be- 
tween ducts electrically connected, and ducts electri- 
cally isolated. Fig. 9. Flow tailoring blanket [18]. 
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When ducts no longer have symmetry about the 
z = 0 plane, as when the walls perpendicular to the 
magnetic field have different thicknesses, there is a 
noticeable effect on the core variables. If the two walls 
are identical, when flow is fully developed, the velocity 
profile in the core is flat. If one wall is thicker than the 
other, the velocity is lower near the center of the duct. 
and higher near the sides. Figure 10 shows an example 
of this type of geometry, and the resulting velocity 
profile and potential variation. The results presented are 
for a = b. The walls perpendicular to the magnetic field 
have very different wall conductance ratios. The wall at 
z = b / a  is one hundred times thicker than the wall at 
z = - b / a ;  the wall conductance ratios are 1.0 and 0.01 
respectively, and the side wall conductance ratio is 0,06. 
A graph in fig. 10 shows the velocity profile which is a 
result of this combination of wall conductance ratios, 
and the other graph shows the potential distribution in 
the y direction. The potential no longer increases lin- 
early as in the symmetric problem. The shape of the 
velocity profile and potential distribution is due to the 
fact that there are currents in the z direction in the fluid 
which are a function of y, even in fully developed flow. 

(When the field is constant, these currents are constant 
along z). At y = 0 ,  there can be no z current in the 
fluid, due to symmetry. Here, the potential is constant 
along the magnetic field line. Because the walls have 
different thicknesses, the potential is not  constant along 
field lines for other values of v. As y gets larger, the 
potential difference between the wall at z = b / a  and 
the wall at z = - b / a  will become greater. Thus, the z 
current in the fluid, which is constant along field lines. 
will vary. in the y direction. This affects the fluid 
potential, and thus the velocity profile. In order to keep 
the .j,. currents constant along y (which is necessary to 
satisfy the governing equations), the potential and 
velocity distribution must assume the shape shown in 
fig. 10. 

5.2. Multiple duet results Constant magnetic f ie ld 

In order to determine what global effects are present, 
two types of analyses were done. In the first, the aver- 
age velocity in each duct was the same, while the wall 
conductance ratios were different. In the second, the 
average velocity in each duct was different, but the wall 
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Fig. 10. Duct without symmetry about the z = 0 plane, and the resulting potential distribution and velocity profile in fully developed 
flow. 



K.A. McCarthy, M.A. Abdou / Analysis of liquid metal MHD flow 373 

B 
m 

\ 
• = O.Ol 

3 

\ 
• = 0.02 

\ 
• = 0.06 

• = 1.0 , \  
\ 

0=2.0  

1 
i 

Fig. 11. Duct assembly and wall conductance ratios for multi- 
ple duct analysis; each duct has an average velocity of 1. 
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Fig. 12. Velocity profile in duct I of fig. 11 and corresponding 

isolated duct, fully developed flow. 

conductance ratios were the same. (When the wall con- 
ductance ratios in multiple duct assemblies are said to 
be the same, what is meant  is that if each duct were 
isolated, they would have equal wall conductance ratios. 
Thus, in a multiple duct assembly, shared walls must be 
twice as thick as non-shared walls perpendicular to the 
magnetic field.) The examples presented here are for 
three adjacent ducts. The code was tested for up to 
seven ducts, but using three ducts illustrates the effects 
adequately, and more simply. The computational grid 
had 10 nodes in the x direction, 20 nodes in the y 
direction, and 40 nodes per duct in the z direction. 

In the first case, the duct assembly was as shown in 
fig. 11. Each duct has an average velocity of 1, an aspect 
ratio of 1, and a length of 1 side-length (because the 
flow is fully developed, the length of the duct is not 
important). The value of r used in updating the veloci- 
ties, eq. (43), was 0.8. Ten iterations were required for 
convergence. The same problem was analyzed with the 
three ducts electrically isolated. The resulting pressure 
drop and percentage of flow in the side layer for each 
duct is given in table 1. The velocity profiles in the 
electrically isolated ducts are compared with the corre- 

Table 1 
Pressure drop and percentage of flow in the side layer for duct 
assembly shown in fig. 11, and corresponding isolate ducts, 
fully developed flow 

Pressure drop % flow in side layer 

electrically electrically electrically electrically 
connected isolated connected isolated 

Duct I 1.45e-! 1.46e-1 73 74 
Duct 2 8.06e-2 8.00e-2 41 40 
Duct 3 2.04e-2 1.06e-2 10 5 
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Fig. 13. Velocity profile in duct 2 of fig. 11 and corresponding 

isolated duct, fully developed flow. 
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Fig. 14. Velocity profile in duct 3 of fig. 11 and corresponding 

isolated duct, fully developed flow. 

sponding velocity profiles in the electrically connected 
ducts in figs. 12-14. The shapes of the velocity profiles 
can be understood by examining the current density jy. 
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Fig. 15. Velocity profile and current density in duct 1 isolated 

of fig. 11. 

The velocity profile and current density for duct 1 
isolated is shown in fig. 15. The current density is 
constant along y, therefore the j × B body force is 
constant along y producing a flat velocity profile. The 
velocity profile and current density for duct 1 connected 
is shown in fig. 16, The current density is lower near 
v = 0, therefore the body force is lower in that region, 
and the velocity is higher. The body force is higher near 
the duct walls, so the velocity in this region is lower. As 
can be seen from the table and graphs, the duct that is 
affected the most is duct 3, whose walls have the lowest 
wall conductance ratio. The velocity profile in duct 3 
electrically connected is very similar to duct 2, electri- 
cally isolated. This is because there are currents in the z 
direction when the duct is connected because the poten- 
tials in the wall shared by ducts 2 and 3 are affected by 
the currents in duct 2. As a result, when connected with 
duct 2, the flow in duct 3 behaves as though one wall 
has a much greater conductivity than the other• The 
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Fig, 16. Velocity profile and current density in duct 1 con- 
nected of fig. l.. 
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Fig. 17. Duct assembly and wall conductance ratios for multi- 
pie duct analysis; average velocities in ducts 1, 2, and 3 are 0.5, 

1.0, and 1.5, respectively. 

pressure drop in each duct is also affected by the 
presence of the other ducts. The pressure drop in the 
duct with the highest wall conductance ratios, duct 1, is 
decreased slightly by the presence of the ducts with 
lower wall conductance ratios. The pressure drop in 
duct 2 increases slightly, and the pressure drop in duct 3 
increases by about 92%. Overall, the pressure drop 
increases about 4%. An increase in pressure drop (or no 
change at all) when ducts are electrically connected was 
observed for all the cases run, the percent increase 
depending on the combinat ion of wall conductance 
ratios. 

The effect of varying the average velocities in the 
ducts was observed by looking at adjacent ducts with 
wall conductance ratios of 0.06, a = b, and average 
velocities in ducts 1-3  of 0.5, 1.0, and 1.5 respectively 
(see fig. 17). Table 2 gives the pressure drop and per- 
centage of flow in the side layer for each duct, and figs. 
18-19 show the velocity profiles in ducts I and 3. The 
velocity profile in duct 2 is the same whether the ducts 
are connected or isolated. This is because the effects of 

Table 2 
Pressure drop and percentage of flow in the side layer for duct 
assembly shown in fig. 17, and corresponding isolated ducts, 
fully developed flow 

Pressure drop % flow in side layer 

electrically electrically electrically electrically 
connected isolated connected isolated 

Duct 1 2.20e-3 2.41e-2 2 24 
Duct 2 4.82e-2 4.82e-2 24 24 
Duct 3 9.43e-2 7.23e-2 32 24 
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Fig. 18. Velocity profile in duct 1 of fig. 17 and corresponding 
isolated duct, fully developed flow. 

the two adjacent ducts cancel each other out. In an 
isolated duct, the core variables increase linearly with 
the velocity. The pressure drop in duct 1 isolated is 50% 
that of duct 2 isolated, and 33% that of duct 3 isolated, 
corresponding to the same ratios of average velocity 
(the average velocity in duct 1 is 50% that of duct 2 and 
33% that of duct 3). Duct 1 is trying to lower the 
current density in the wall shared by 1 and 2, while duct 
3 is trying to increase the current density in the wall 
shared by 2 and 3 by the same amount. As a result, the 
flow in the center duct is unaffected. The velocity 
profiles and pressure drops in ducts 1 and 3 are affected 
however. The principle is similar to that in an electro- 
magnetic pump. The fluid in duct 1 is being pushed 
along due to the currents in duct 2, while the fluid in 
duct 3 is feeling drag due to the currents in duct 2. The 
overall pressure drop however, is unaffected. 

An interesting result of these analyses is that the 
overall pressure drop in the electrically connected ducts 
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Fig. 19. Velocity profile in duct 3 of fig. 17 and corresponding 

isolated duct, fully developed flow. 

is unaffected by global effects if the ducts have equal 
wall conductance ratios. The ducts can have different 
average velocities, but the overall pressure drop will be 
the same as if the ducts were electrically isolated. This is 
because the core variables vary linearly with the veloc- 
ity. The core variables do not vary linearly with the wall 
conductance ratio however, so the overall pressure drop 
in electrically connected ducts can be different than that 
in electrically isolated ducts if the walls have different 
wall conductance ratios. However, the velocity profile 
and side layer flow rates can be affected even if the 
walls have equal conductivity. This will affect heat 
transfer. This is the idea behind flow tailoring - the 
wall conductance ratios and average velocities can be 
chosen such that heat transfer is enhanced. These 
changes in the velocity profile will also affect corrosion 
(and deposition) of the structural material and possibly 
tritium permeation through the walls. 

5.3. Multiple duct results - Varying magnetic fieM 

The same ducts were also used in an analysis where 
the magnetic field varied from 1.0 to 0.5 over about 5 
duct side-lengths, the variation being centered around 
x = 0. The axial length was 30 side-lengths. The compu- 
tational grid had 100 nodes in the x direction, 20 nodes 
in the y direction, and 40 nodes per duct in the z 
direction. The value of K used in updating the velocities, 
eq. (43), was 0.8. 

For the first case, where the average velocities in the 
ducts were the same, 15 iterations on the velocity were 
required. In duct 1, because the wall conductance ratios 
are so high, the varying magnetic field doesn't perturb 
the flow much. The main difference between the con- 
nected and isolated ducts is the same as that observed 
in the fully developed flow case - the fully developed 
velocity profile is not fiat. In duct 2, the results in the 
connected and isolated ducts are similar. Because of the 
high wall conductance ratio in one wall, the varying 
field doesn't significantly perturb the flow. In duct 3, 
however, there is a noticeable difference between the 
connected and isolated ducts. Figure 20 shows the 
velocity profile on the z---0 plane in duct 3 when the 
ducts are electrically connected, and fig. 21 shows the 
velocity profile in duct 3 when the ducts are electrically 
isolated. The varying field has a noticeable effect on the 
flow when the duct is isolated, but very little effect 
when the ducts are connected. The large Hartmann 
currents in duct 2 mask the smaller currents in duct 3 
that are generated as a result of the varying field. The 
pressure gradient and percentage of flow in the side 
layer are affected similarly. Figure 23 shows the pres- 
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Fig. 20. Axial velocity on the z = 0 plane in duct 3 of fig. 11, electrically connected, varying magnetic field. 

sure gradient for the electrically connected case, while 
fig. 24 shows the pressure gradient for the electrically 
isolated case, and fig. 22 compares the percentage of 
flow in the side layers. The overall pressure drop in the 
electrically connected ducts is 3.9% higher, practically 
the same as the fully developed flow case. 

When the same magnetic field variation was used for 
adjacent ducts with equal wall conductance ratios but 
different average velocities, the following results were 
obtained. As in the fully developed flow case, the flow 
in duct 2 was the same whether the ducts were electri- 
cally isolated or connected. In ducts I and 3, the flow 
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Fig. 21. Axial velocity on the z = 0 plane in duct 3 of fig. 11, electrically isolated, varying magnetic field. 
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Fig. 22. Percentage of flow in side layers, duct 3 of fig. 11, 
electrically connected and isolated, varying magnetic field. 

field was affected similarly to the constant magnetic 
field case, and the effect of the varying magnetic field is 
as pronounced in the electrically connected ducts as in 
the electrically isolated ducts. Figure 25 shows the 
velocity profile on the z = 0 plane in duct 3 for the 
electrically connected case, fig. 26 for the electrically 
isolated case. While the effect of the varying field ap- 
pears more pronounced in the electrically isolated case, 
the magnitude of the change in the velocity due to the 
varying magnetic field is similar. The same is true for 
the percentage of flow in the side layer, which is shown 
in fig. 27. The overall pressure drop in the electrically 
connected ducts is the same as for the electrically iso- 
lated ducts. As in the fully developed flow case, because 

the core variables increase linearly with the velocity, the 
overall pressure drop is not affected. 

6. Discussion 

Global effects can have a large effect on the flow 
field. In order to understand the flow in a set of 
electrically connected ducts, it has been shown to be 
necessary to evaluate the electrically connected ducts, 
because electrically isolated results can be misleading. 
Global effects can have an impact on the flow variables, 
and therefore they are important in evaluating heat 
transfer, the pressure drop, corrosion of structural 
materials and tritium permeation from the fluid through 
the walls. 

The results of this analysis are particularly important 
to liquid metal blanket design work. Liquid metal 
blanket designs can be very complex, with many paths 
for global currents. It is possible that some global 
effects would introduce a prohibitively large pressure 
drop or an unacceptable velocity profile. It is important 
to look at a blanket design carefully to identify possible 
global current paths. 

In this research, the flow in each duct was assumed 
to be adjusted independently from the flow in adjacent 
ducts. If the ducts were joined by manifolds at each 
end, the flow would redistribute such that there would 
be the same pressure drop across each duct. Thus if 
different ducts have different wall conductance ratios 
such as in one of the cases presented here, the core 
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Fig. 23. Pressure gradient on the z = 0 plane in duct 3 of fig. 11, electrically connected, varying magnetic field. 
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Fig. 24. Pressure gradient on the z = 0 plane in duct 3 of fig. 11, electrically isolated, varying magnetic field. 

variables would be affected by this flow redistribution. 
In the duct assembly shown in fig. 11, more fluid would 
go through ducts 2 and 3, while less would go through 
duct 1. This would have an effect on heat transfer and 
the pressure drop. 

Flow redistribution could be included in the code in 
different ways. One way would be to analyze the prob- 

lem without flow redistribution, then to adjust the aver- 
age velocity in each duct based on the pressure drop in 
each duct, then repeat the analysis. This process could 
be repeated until the pressure drop across each duct is 
the same. This process could take a lot of computer  
time, however, so it probably would not be optimal. A 
second method would be to analyze a single duct which 
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Fig. 25. Axial velocity on the z = 0 plane in duct 3 of fig. 17, electrically connected. 
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Fig. 26. Axial velocity on the z = 0 plane in duct 3 of fig. 17, electrically isolated. 
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splits into many ducts, then goes back to a single duct. 
A third method would be to force the pressure along 
field lines at the inlet and outlet of the multiple duct 
assembly to be constant through the whole duct assem- 
bly, and allow flow redistribution each time the veloci- 
ties are normalized. The flow redistribution could be 
based on the ratio of y currents in each duct to the total 
amount of y currents. 

The work presented here dealt entirely with straight 
ducts. Multiple duct geometries may contain ducts with 
bends and/or  changes in cross section. These geome- 
tries should also be understood. 

Further investigation of global effects is necessary. 
The results presented here show that the flow in each 
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duct can be affected by neighboring ducts. The velocity 
profiles and percentage of flow in the side layers were 
shown to be significantly affected by neighboring ducts 
in certain situations. This is an important consideration 
when analyzing heat transfer. The total pressure drop in 
electrically connected ducts was greater than or equal to 
the total pressure drop in electrically isolated ducts, the 
difference depending on the wall conductance ratios. 

Nomenclature 

B magnetic field, 
f subscript referring to fluid, 
j current density, 
M Hartmann number, 
t) unit normal, 
N interaction parameter, 
p pressure, 
R m magnetic Reynolds number, 
t w wall thickness, 
v velocity, 
w subscript referring to wall, 
# kinematic viscosity, 
ix0 free space permeability, 
p fluid density, 
o electrical conductivity, 

electric field potential, 
wall conductance ratio. 
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