Brief Overview of APEX

Mohamed Abdou

APEX Website: <u>www.fusion.ucla.edu/APEX</u>

APEX/HPD Workshop, Tokyo, Japan February 21-23, 2000

APEX Objectives

Identify and explore NOVEL, possibly revolutionary, concepts for the Chamber Technology that might:

- 1. In the near-term: enable plasma experiments to more fully achieve their scientific research potential.
- 2. In the long-term: substantially improve the attractiveness of fusion as an energy source.
- 3. Lower the cost and time for R&D.

Chamber Technology Goals Used in APEX to Calibrate Progress

1. High Power Density Capability (main driver)

Neutron Wall Load > 10 MW/m²

Surface Heat Flux > 2 MW/m²

- 2. High Power Conversion Efficiency (> 40%)
- 3. High Availability

-Lower Failure Rate

 $\mathbf{MTBF} > 43 \ \mathbf{MTTR}$

-Faster Maintenance

4. Simple Technological and Material Constraints

APEX Phases

- APEX was initiated in November 1997 as part of the U.S. Restructured Fusion Program Strategy to enhance innovation.
- The first phase of APEX (11/97 to 10/99) explored and screened many ideas.

-The technical results of this phase are documented in an APEX Interim Report (November 99).

• The new phase of APEX (starting 11/99) focuses on more detailed exploration and critical R&D for two classes of concepts:

1. Liquid Walls (many variations)

2. EVOLVE (high-temperature refractory alloy with Lithium evaporation)

How to Get APEX Documentation or Other Information

1. APEX Website has considerable information: meeting presentations, papers, interim report, study participants, etc.

www.fusion.ucla.edu/APEX

APEX Interim Report (issued 11/99)
 Volume I: APEX Overview, ~90 pages
 Volume II: 17 Chapters, detailed, ~600 pages

To obtain a copy:

- A. Complete copy is displayed on the APEX Website.
- B. Hard copies are being distributed
- 3. If you wish to obtain a hard copy of the APEX Interim Report, or any other information on APEX, please send e-mail to the APEX Scientific Secretary, Dr. Mahmoud Youssef <youssef@fusion.ucla.edu>

Outline of APEX Presentations in this Workshop

• This presentation will cover:	
- Introduction to APEX	
- Introduction to Liquid Walls and EVOLVE	
- Brief description of FY 2000 Tasks	
• Technical results will be covered in U.S. presentations as follows:	
<u>Safety</u>	
 Safety & Environmental Issues 	Dr. McCarthy
<u>Liquid Walls</u> • Scientific Exploration, Hudrodynamics, Heat	Dr. Morlay
• Scientific Exploration, Hydrodynamics, field Transfer Modelling Plasma-Bulk Interactions	DI. Money
 Engineering of CliFF Divertor Integration 	Dr Sze
Flibe Chemistry, Tritium	
• Liquid Walls in NSTX, Other Results on	Dr. Ying
Liquid Walls	e
Plasma-Edge Modelling	Dr. Wong
<u>Solid Walls</u>	
• EVOLVE Technical Progress	Dr. Wong
	_

APEX TEAM

Organizations

UCLA	ANL	PPPL
ORNL	LLNL	SNL
GA	UW	UCSD
INEL	LANL	U. Texas

Contributions from International Organizations

- FZK (Dr. S. Malang)
- Japanese Universities
 - Profs. Kunugi, Satake, Uchimoto and others
 - Joint Workshops on APEX/HPD
- Russia
 - University of St. Petersburg (Prof. S. Smolentsev)

APEX Approach

- 1) Emphasize Innovation
- 2) Understand and Advance the Underlying Engineering Sciences
- 3) Utilize a Multidisciplinary, Multi-institution Integrated TEAM
- 4) Provide for Open Competitive Solicitations
- 5) Close Coupling to the Plasma Community
- 6) Direct Participation of Material Scientists and System Design Groups
- 7) Direct Coupling to IFE Chamber Technology Community
- 8) Encourage International Collaboration

Illustration of Liquid Walls

* Temperatures shown in figure are for Flibe

Thin Liquid Wall

- Thin (1-2 cm) of liquid flowing on the plasma-side of First Wall

Thick Liquid Wall

- Fast moving liquid as first wall
- Slowly moving thick liquid as the blanket

DIFFERENT MECHANISMS FOR ESTABLISHING LIQUID WALLS

• Gravity-Momentum Driven (GMD)

- Liquid adherence to back wall by centrifugal force.
- Applicable to liquid metals or molten salts.
- GMD with Swirl Flow
- Add rotation.

- Electromagnetically Restrained LM Wall
- Externally driven current (\vec{J}) through the liquid stream.
- Liquid adheres to the wall by EM force $\vec{F} = \vec{J} \times \vec{B}$

Fluid Out

- Magnetic Propulsion Liquid Metal Wall
- Adheres to the wall by $\vec{F} = \vec{J} \times \vec{B}$
- Utilizes 1/R variation in $\vec{F} = \vec{J} \times \vec{B}$ to drive the liquid metal from inboard to the outboard.

Liquid Wall Options

Thickness	 Thin (~ 2cm) Moderately Thick (~ 15 cm) Thick (> 40 cm)
Working Liquid	LithiumSn-LiFlibe
Hydrodynamic Driving / Restraining Force	 Gravity-Momentum Driven (GMD) GMD with Swirl Flow Electromagnetically Restrained Magnetic Propulsion
Liquid Structure	 Single, contiguous, stream Two streams (fast flowing thin layer on the plasma side and slowly flowing bulk stream)

Motivation for Liquid Wall Research

What may be realized if we can develop good liquid walls:

- Improvements in Plasma Stability and Confinement Enable high β, stable physics regimes if liquid metals are used
- High Power Density Capability
- Increased Potential for Disruption Survivability
- Reduced Volume of Radioactive Waste
- Reduced Radiation Damage in Structural Materials -Makes difficult structural materials more problems tractable
- Potential for Higher Availability -Increased lifetime and reduced failure rates -Faster maintenance

Scientific Issues for Liquid Walls

- Effects of Liquid Walls on Core Plasma including:
 - Discharge evolution (startup, fueling, transport, beneficial effects of low recycling)
 - Plasma stability including beneficial effects of conducting shell and flow
- Edge Plasma-Liquid Surface Interactions
- Turbulence Modifications At and Near Free-Surfaces
- MHD Effects on Free-Surface Flow for Low- and High-Conductivity Fluids
- Hydrodynamic Control of Free-Surface Flow in Complex Geometries, including Penetrations, Submerged Walls, Inverted Surfaces, etc.

Swirling Thick Liquid Walls for High Power Density FRC

- **Design:** Horizontally-oriented structural cylinder with a liquid vortex flow covering the inside surface. Thick liquid blanket interposed between plasma and all structure
- **Computer Simulation:** 3-D time-dependent Navier-Stokes Equations solved with RNG turbulence model and Volume of Fluid algorithm for free surface tracking
- **Results:** Adhesion and liquid thickness uniformity (> 50 cm) met with a flow of $V_{axial} = 10$ m/s, $V_{\theta,ave} = 11$ m/s

Calculated velocity and surface depth

Toroidally Rotating Thick Liquid Wall for the ST

Design Concept:

- Thick liquid flow from reactor top
- *Outboard:* Fluid remains attached to outer wall due to centrifugal acceleration from the toroidal liquid velocity
- Inboard: Fast annular liquid layer

Simulation Results:

- Step in outboard vacuum vessel topology helps maintain liquid thickness > 30 cm
- Calculated outboard inlet velocity, $V_{poloidal} = 4.5 \text{ m/s}, V_{toroidal,ave} = 12 \text{ m/s}$
- Inboard jet $V_z = 15$ m/s is high to prevent excessive thinning, < 30%

Advanced Tokamak

3-D Hydrodynamics Calculation Indicates that a Stable Thick Flibe-Liquid Wall can be Established in an Advanced Tokamak Configuration

Inlet velocity = 15 m/s; Initial outboard and inboard thickness = 50 cm

Toroidal width = 61 cm Corresponding to 10° sector
 Area expansion included in the analysis

The thick liquid layer:

- is injected at the top of the reactor chamber with an angle tangential to the structural wall
- adheres to structural wall by means of centrifugal and inertial forces
- is collected and drained at the bottom of the reactor (under design)

[–]Inboard thick flowing liquid wall

Convective Liquid Flow First Wall (CLIFF)

- Underlying structure protected by a fast moving layer of liquid, typically 1 to 2 cm thick at 10 to 20 m/s.
- Liquid adheres to structural walls by means of centrifugal force
- Hydrodynamics calculations indicate near equilibrium flow for Flibe at 2 cm depth and 10 m/s velocity (below). Some contradiction between different turbulence models needs to be resolved.

Plasma-Liquid Surface Interactions Affect both the Core Plasma and the Liquid Walls

- Multi-faceted plasma-edge modelling has started (Ronglien et al.)
- Experiments have started (in PISCES, DIII-D and CDX-U)

Liquid lithium limiter in CDX-U

EVOLVE CONCEPT

Elevation Section of Lithium Trays + First Wall Tubes

Characteristics of EVOLVE

- 1) The high operating temperature leads to a high power conversion efficiency.
- 2) The choices for structural materials are limited to high temperature refractory alloys.
- 3) The vapor operating pressure is very low (sub-atmospheric), resulting in a very low primary stress in the structure.
- 4) The temperature variation throughout the first wall and blanket is low, resulting in low structural distortion and thermal stresses.
- 5) The lithium flow rate is approximately a factor of ten slower than that required for self-cooled first wall and blanket. The low velocity means that an insulator coating is not required to avoid an excessive MHD pressure drop.

Key Issues for EVOLVE

- 3-D heat transfer and transport modeling and analyses for the 2-phase flow including MHD effects.
- 2) Feasibility of fabricating entire blanket segments of W alloys.
- 3) Effect of neutron irradiation on W alloys.
- 4) Analysis of safety issues associated with the high afterheat in tungsten in case of a LOCA.

The allowable operating temperature range for structural materials based on unirradiated/irradiated mechanical properties, void swelling and thermal conductivity degradation is denoted by the black boxes. Chemical compatibility issues may cause a further restriction in the operating temperature window

APEX FY 2000 Activities (started 11/99)

- In this new phase of APEX, the effort is focused on a more detailed exploration of two classes of concepts:
 - 1) Liquid Walls (several variations)
 - 2) EVOLVE (W with 2-phase Li)
- The effort includes:
 - Modelling
 - Analysis
 - Laboratory Experiments
 - Experiments in Plasma Devices
- There is a stronger involvement from the physics community in this new phase.
- The study is now organized around a number of Tasks. Each Task has a Leader and a Core Group.

5-Year Goals

Liquid Walls:

- 1. Fundamental understanding of free surface fluid flow phenomena and plasma-liquid interactions verified by theory and experiments
- 2. Operate flowing liquid walls in a major experimental physics device (e.g. NSTX).
- 3. Begin construction of an integrated Thermofluid Research Facility to simulate flowing liquid walls for both IFE and MFE.
- 4. Understand and document advantages and implications of using liquid walls in fusion energy systems.

Solid Walls:

5. Understanding of novel concepts that can extend the capabilities and attractiveness of solid walls.

APEX

FY 2000 Technical Tasks:

Study Leader: Mohamed A. Abdou

<u>**Task I**</u>: Explore options and issues for implementing a flowing liquid wall in a major experimental physics device. Characterize the technical issues and develop an R&D plan.

Task Leader: Alice Ying

Task II: Explore high pay-off liquid wall options. Include: a) tokamaks and other confinement schemes, b) flibe and liquid metals (Li and Sn Li), c) concepts with physics advantages, and d) concepts with engineering advantages.

Task Leader: Neil Morley

Task III: Investigate practical engineering issues associated with the design of a liquid wall in a high-power density fusion energy system (start with CLIFF-flibe because it is better understood and has more data available).

Task Leaders: Dai-Kai Sze and Brad Nelson

<u>**Task IV**</u>: Investigate key issues and develop a practical design for high-temperature refractory solid wall with primary focus on EVOLVE.

Task Leader: Clement Wong

Task V: Other tasks.

APEX Cross-Cutting Tasks for FY 2000

- Task A: Plasma-Liquid SurfaceInteractions and Plasma EdgeModellingTask Leader: Tom Rognlien
- Task B: Liquid Wall-Bulk PlasmaInteractionsTask Leader: Bob Kaita
- **Task C:** MaterialsTask Leader: Steve Zinkle
- **Task D:** Safety and EnvironmentTask Leader: Kathy McCarthy