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APEX-TASK IV-Phase-I (FY1999)
EVOLVE

(Evaporation of Lithium and Vapor Extraction)

� W-5%Re is the candidate structural material
� High strength and high Kth W-alloy is a very attractive

high performance structural material
� Due to projected embrittlement properties, we design to

Tmin>1000°C and Tmax<1400°C
� High operating temperature implies high CCGT power

conversion efficiency (~57%) is possible
� For heat removal, vaporizing lithium allows very low

operating pressure ~0.04 MPa
� With Tin = 900°C and Tout = 1200°C the temperature variation

throughout the first wall and blanket is minimized
� Slow liquid lithium flow rate implies MHD insulator coating

is not required at the first wall and blanket
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�  Lower temperature limit based on radiation hardening/ fracture 
toughness embrittlement (K1C <30 MPa-m1/2) — large uncertainty for
W due to lack of data

�  Upper temperature limit based on 100 MPa creep strength (2% in 1000 h);
chemical compatibility considerations may cause further decreases in the
max operating temp
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Schematic of EVOLVE First Wall Tubes and Boiling Blanket Trays
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Phase II (FY2000) — We Focused on Evaluating
Critical Issues

Introduced the Transpiration Blanket and Evaluated:

�  First Wall and Blanket Design
�  Nuclear Analysis
�  Lithium leakage
�  Safety

Beginning to address:
 
�  Fundamental liquid lithium experiments
�  W-alloy fabrication, testing and experiments
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Transpiration Cooled
First Wall and Blanket 
Concept (Poloidal flow FW)
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Side view
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W-alloy First Wall with Capillary and
Vaporizing Li
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Transpiration First Wall Results
A critical concept for both boiling trays and transpiration cooled
blanket options
Design Criteria: Capillary pressure + static pressure > total pressure drop

Capillary diameter, dc

Gap Width, w (mm)
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Transpiration FW and Blanket Parameters

� FW surface heat flux, MW/m2 2
� Toroidal magnetic field strength, Tesla 6.0
� Thickness of the W-alloy FW, mm 3.0
� Thickness of the FW screen, mm 0.5
� Capillary open area, % 50
� Capillary diameter, mm 0.47
� Thickness of the blanket W capillary sheet, mm 2.0
� Thickness of the FW Li-channel, mm                        0.75
� True superheating at FW ∆TSH, K 54
� Blanket Li slab thickness, cm 3.5-6.9
� FW/Blanket Li system pressure, MPa 0.037
� ∆P (Capillary + hydrostatic), Pa 3707
� ∆P FW/blanket system, Pa 3674
� Lithium Tmax, K 1514
� W-alloy Tmax, K 1597
� Li vapor void fraction, % <10
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Lithium Boiling Blanket
Three models for the analysis:
� Neglected magnetic field, applied a standard drift-flux model
� Vapor channel model
� Large B-field effect on boiling

Results from drift-flux model

Radial position
From first wall
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Nuclear Analysis

The EVOLVE blanket has excellent nuclear performance

� Applied 1 and 2-D calculations to assess impacts from Li vapor void fraction

� Evaluated cases from 8 to 65% void fraction

� Tritium breeding ratio = 1.33, high void fraction is ~5% lower than low void fraction

� Shielding performance, low void fraction is a factor 2 to 5 better than

high void fraction

� IB and OB shielding and radiation damage performance were also assessed

� Afterheat and activation data were provided for safety analysis
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Lithium Leakage Assessment

� Fatigue crack can cause fuel dilution and localized heating
� Assumed crack size 25 mm long, 10 micron wide, Li pressure

@0.17 Mpa >>0.04 MPa
� Results show:

Li leakage rate
5x10–4 g/s << 0.2 g/s (heat removal rate)
Fuel dilution
1017 atoms /m2/s << 2x1020 atoms/m2/s
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� Crack depth vs. cycle for an 
initially 25 mm long, 1 mm deep 
crack (a0) subjected to 2 MW/m2 

wall thickness h = 3 mm, crack growth 
calculated using n =4 and n = 12 

da
dN

x K= ( )−7 10 27 12∆

∆K — stress intensity factor

n

Based on Present W-alloy Data
Crack Growth May Not Be A Significant Concern

where
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Safety-afterheat removal

Multiple natural- convection loops passive heat removal
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Evolve component surface temperatures
during a complete loss of power accident scenario

First wall T <800°C in 13 hours
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The Safety Goal of No Public Evacuation
Plan Could Be Satisfied

� Mass mobilization calculation with 375 kg of W-alloy aerosol
(95% is vented in 2–3 days)

� With HVAC filter in place, a long response time of 1.6 days
is available for the W-dust+HTO release to be < 10 mSv limit
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W Component Fabrication

� Piggyback on the development of helium-cooled W-alloy components,
SBIR programs

� Thermacore built a W porous metal heat exchanger with W end cap in 4
separate assembly-brazing steps, all using BAu-4 (Nioro-TM) braze filler metal,
either 0.01 or 0.02 inch diameter wire in dry hydrogen, tested to heat
flux>5 MW/m2, using 20°C helium at 4 MPa

� Fabrication of W-alloy components has been very difficult, and significant
further research and progress will be needed
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�  We have assessed areas of:
— FW/blanket thermal-hydraulics
— Nuclear design
— FW leakage
— Passive afterheat removal
— Accidental releases

�  High performance and passively safe design has
been shown to be credible

We Have Higher Confidence in the Credibility of the
EVOLVE Concept
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�  Un-irradiated and Irradiated properties of W-alloys (e.g. W-5Re, W-La2O3,
and TiC nano doped) needed for future selection

�  Transpiration cooled W-alloy FW is crucial to transpiration-cooled and
boiling blanket options. Reliability of W capillary screen will have to be 
demonstrated

�  Experiments are needed to quantify Li superheat from a surface and bulk
lithium, and to provide understanding on the search for stable boiling regime
of lithium in a magnetic field

�  Technique of W-alloy component fabrication has been initiated but much
more development will be needed

Critical Issues and Key Inputs Needed
Have Been Identified:


