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Abstract

In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The
dynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term
is included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then
solving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit,
and computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a
single relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic
boundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order
to resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an
interpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering
where liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems,
under various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and
turbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance
on parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The flow of an electrically conducting fluid in a magnetic field
is influenced by magnetohydrodynamic (MHD) forces resulting
from the interaction of induced electric currents with the applied
magnetic field. In nature, systems in which MHD effects are
important include the Earth’s core and solar flares, and in the
engineering world, the electromagnetic casting of metals and the
confinement of plasmas. Another area of much interest is fusion
engineering; reactor designs commonly involve the use of elec-
trically conducting liquid metals. For example, thermal blankets
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usually use liquid metals to transport heat [1], and some reactor
designs use flowing liquid metals on the first wall [2,3]. The high
magnetic fields used to confine the plasma result in large MHD
forces, whose effects dominate the flow in such components. The
study of MHD has therefore been of particular importance to
fusion engineering, forming significant components of facilities
and projects such as APEX and ITER [4].

There are a number of different techniques for the numeri-
cal simulation of fluid flows, most of which are based on finite
difference or finite volume methods, in which the continuum
conservation equations are discretised and solved on compu-
tational grids. These methods can be extended to MHD flows
by introducing a solution procedure for the magnetic induc-
tion equation and including a term for the Lorentz force in the
equations for the flow dynamics [3]. An alternative approach,
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which is becoming increasingly popular, is the lattice Boltzmann
method (LBM) [5]. The LBM has its roots in kinetic theory, and
the general idea behind this scheme is to compute a probabil-
ity distribution function f,(x, f), where f is the population of
particles, representing fluid elements with a velocity along the
direction « at position x and time ¢ as they move and collide
on a lattice. The collective behaviour of the distribution of par-
ticle populations represents that of the dynamics of fluid flow.
A number of different schemes for calculating the evolution
of the distribution function are available; most codes use sin-
gle relaxation time (SRT) models for representing the effects of
collisions [6—8]. However, the most advanced formulations use
the recently-developed multiple relaxation time (MRT) model
[9,10]. This latter method has better accuracy and numerical
stability than the SRT models, and was chosen for the work
described here.

The LBM can be extended to handle MHD flows, with the
magnetic induction equation being solved in a manner similar to
that for the fluid flow [12,13]. A vector distribution function rep-
resenting the magnetic field is introduced, and a Boltzmann-type
kinetic equation is constructed such that the behaviour of the par-
ticle populations corresponds to that of the induction equation.
This can then be discretised and solved on a lattice grid.

One advantage of the lattice Boltzmann method is that it is
very well suited to parallel processing on supercomputers with
distributed memory architectures. At each time step, it is only
necessary for a processor to communicate with a fixed number
of other processors, typically between two and eight depend-
ing on how the computational domain is divided up, and for
large problems, the execution speed is roughly proportional to
the number of processors used. In fact, an LBM code has been
successfully used to simulate certain unbounded MHD flows
relevant to plasma physics on 4800 processors [14]. In contrast,
with other methods each processor has to communicate with all,
or many other, processors involved in the computation; in this
situation, when large numbers of processors are used, the time
spent communicating can severely reduce the execution speed
compared with the LBM where the execution speed is almost
proportional to the number of processors used.

A number of new developments for the application of the
LBM to MHD problems are presented here. An extrapolation-
based technique for scalar distribution functions used to apply
velocity boundary conditions has been adapted to a vector dis-
tribution function to allow the magnetic field to be specified
at boundaries. In contrast to earlier methods [12], the imposed
magnetic field can be at any angle to the axes. A precondi-
tioning method has been applied to the induction equation to
enable the simulation of fluids with very low magnetic Prandtl
numbers, such as liquid metals. This technique can also be
used to accelerate solution convergence for steady state flows.
A means of allowing non-uniform grids to be used with both
vector and scalar distribution functions in 3D has been formu-
lated to allow higher resolution of regions with high gradients,
such as Hartmann layers. All these new developments enable
the LBM to be used for problems in fusion engineering which
commonly involve flows of liquid metals in high magnetic
fields.

As well as discussing the models used for MHD computa-
tions, this paper presents the results of validations for a wide
range of canonical flow problems where analytical solutions
exist or results from other prior computational fluid dynamics
(CFD) simulations are available. Following confirmation of the
validity of the models used, tests which demonstrate the effi-
ciency of the LBM on parallel computers with large numbers of
processors are presented and the effectiveness of using stretched
grids is investigated. Additional examples of the LBM results
presented here are the large eddy simulation (LES) of turbulent
MHD flow through a pipe, and a simulation of a section of a
thermal blanket relevant to fusion applications.

2. Computational approach

2.1. Multiple relaxation time lattice Boltzmann equation
for hydrodynamic fields

The lattice Boltzmann method is a relatively recent com-
putational approach based on kinetic theory for solving fluid
mechanics and other physical problems [5]. In brief, the LBM
consists of solving the lattice Boltzmann equation for the evo-
lution of a distribution function f(x, v, f) as they move and
collide on a lattice. The solution of the equation involves two
main steps, which represent streaming and collision of particle
populations. Usually the collision process is represented by the
Bhatnagar—Gross—Krook model [6] where the particle popula-
tions relax to a local equilibrium state at a rate determined by a
characteristic relaxation time parameter. More recently, the mul-
tiple relaxation time model has been introduced, which involves
several relaxation times and proves to have substantially better
numerical stability [9].

The LBE is discretised and solved on a lattice grid. The
number of discrete velocity directions representing the lattice
is chosen to respect certain symmetry needed to recover the
isotropy of the viscous stress tensor of the fluid flow [5]. In
three dimensional implementations, a cubic grid is used and 15
or 19 particle velocity models are commonly used, though other
models are occasionally found. In this work, the 19 velocity
model was used, due to its superior numerical stability, and this
is shown in Fig. 1.

The vectors corresponding to this three-dimensional, nine-
teen velocity (D3Q19) particle velocities set are given by:

(0,0, 0), a=1,
el)tz (:l:ls Oa 0)1 (09:l:110)7(07 Ov:tl)s a=21"'a7s
(%1, £1,0), (£1, 0, £1), (0, £1, £1), a=38,...,19.
(D
The Cartesian component c of the particle velocity e, is given by
¢ =46,/8;, where &, is the lattice spacing and , the time step. In this
paper, the convention that Greek symbols (e, 8, . . .) will be used
to represent particle velocities directions and Roman symbols

(i, j, k) for Cartesian directions will be used. The corresponding
vector of distribution functions f at a location may be written as

f= [f()’ flv f27-~'a flS]T~ (2)
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Fig. 1. Three dimensional, 19 velocity (D3Q19) lattice.

As previously mentioned, the distribution function is calculated
using a two-step procedure comprising a so-called collision step
and a streaming step. In the most advanced formulation currently
available, the MRT-LBE with forcing terms are used [9,10]:

Falx, 1) — fulx, 1)

=Y A= £+ D (g — 3 Ap) S8 G3-)
B B

Ja(x +eads, 1 +8) = folx,1). (3-b)

The first term on the right hand side (RHS) of Eq. (3-a) repre-
sents the cumulative effect of particle collisions on the evolution
of the distribution function f;, and can be thought of as represent-
ing the effects of viscosity, as well as other processes. Collision is
considered as a relaxation process in which fg relaxes to its local
equilibrium value f; at a rate determined by the relaxation time
matrix Aqg. The MRT model has a generalized collision matrix
with multiple relaxation times corresponding to the underlying
physics: the macroscopic fields such as densities, momentum
and stress tensors are given as various kinetic moments of the
distribution function. For example, collision does not alter the
densities p and momentum pu, while the stress tensors relax
during collisions at rates determined by fluid properties such
as the shear and bulk viscosities. Thus certain relaxation times
forming components of the collision matrix Ayg in the MRT
model are developed to reflect the underlying physics, while
those which do not affect hydrodynamics are chosen to enhance
the numerical stability of the approach. For more details, the
reader is referred to Refs. [9,10].

The second term on the RHS of Eq. (3-a) introduces changes
in the evolution of distribution function from driving forces F,
such as gravity (pg) through a source term S,. For MHD flows,
one must also include the Lorentz force, J x B, where J is the
current density and B is the magnetic field strength, through S, .
This source term may be written as [10]:

_ (eaj —ujF;

S
o pC%

M (p, ), 4)

where fofq’M(p, u) is the local Maxwellian, which is dependent
on the local density and velocity as
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and ¢, = (1/+/3)c is the speed of sound of the model. In the
second term of Eq. (3-a), Ig is the identity matrix.

At this point is worth noting that the commonly used SRT
model uses a scalar relaxation parameter in place of the ten-
sors Aqpg and there is no summation for the terms on the right.
Also note that the implementation of Eq. (3-a) does not involve
direct summation as shown, but uses a highly optimised pro-
cedure that involves transformations into moment space and
exploits certain properties of Ayg [9-11]. With these optimi-
sations, it is found that despite its much greater complexity, the
MRT only takes about 10-30% more CPU time than the BGK
model [9-11]. Thus Eq. (3-a) provides the post-collision value
of the distribution function given by 7.

Equation (3-b) is known as the advection, or streaming, step
and deals with the change in the distribution function during
a time interval §;, as the particles propagate from location x
to their adjacent location x + e, §;, with a velocity e, along the
characteristic direction «.

The local macroscopic density and velocity fields are then
given by

18
P = Zfav (©)
a=0
18 1
pu = C;faea + 5 For, )

and the pressure field p may be written as

p=cip. (8)

The behaviour of the populations represented by the dis-
tribution function f corresponds to that of fluid flow, and the
incompressible Navier—Stokes equations can be recovered from
the lattice Boltzmann equations for the case of low Mach
number (v K c¢g, where ¢, is the speed of sound). The dis-
cussion of the MRT model presented here has been relatively
brief, but more detailed descriptions can be found elsewhere
[9-11].

Two important points to note are that there is no pressure
Poisson equation to solve, and that the solution scheme is
explicit, with information required from neighbouring nodes
only. The solution of the Poisson equation is time consum-
ing and typically takes 80-90% of the CPU time in traditional
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CFD solvers [15]; its absence means that LBM codes are rela-
tively fast on a per time step per grid point basis. The explicit
nature of the computations means that codes based on the LBM
can run very efficiently on parallel architectures, and this is
one of the main motivations for its use. These two advan-
tages also hold when lattice Boltzmann methods are used for
the magnetic induction equation, which is discussed in Section
2.3.

2.2. Boundary conditions for hydrodynamic fields

For solid wall boundaries, the simplest boundary condition
is the bounceback scheme. In this method, the populations are
simply reflected:

fale, t +8) = fulx, 1), )

where @ is the direction opposite to «. In this equation, f, is
the distribution function after the collision step (and before the
streaming step). This scheme is suitable for flat walls where the
direction is parallel to a coordinate axis plane. In this situation,
the wall is located half way between two nodes, and for this rea-
son it is sometimes known as the halfway bounceback scheme. A
number of different options are available for curved boundaries
[16-19]. All these methods are based on applying interpola-
tions/extrapolations around position of the boundary and then
executing bounce-back type conditions at the boundary loca-
tion. After assessment, the so-called interpolated bounce back
scheme [18] was selected, due to its good numerical stability.
It specifies the distribution functions for the incoming parti-
cle directions from the wall in terms of a parameter g, where
q represents the fractional distance of the wall from the near-
wall lattice node in comparison with the lattice spacing (see
Fig. 2).
The first-order implementation of the scheme is:

fa(x, t+8) = 2q fo(x, ) + (1 — 2q) fa(x — a8, 1)

for ¢ < 0.5 (10)
1. 2q—1)-
fax, t+8) = — folx, 1) + —— falx, 1)
2q 2q
for ¢ > 0.5 (11)
0, [ q()‘
q<% 40—0—6—017—l7
x—2e,6, x-—e,d, x \wall x,
S S, qo,
g2 ® L +
x-2e,0, x-—e,, x Xo

wall

Fig. 2. Wall boundary implementation for cut-lattice cells.
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Fig. 3. Implementation of inflow, outflow, and symmetry boundary conditions.

and the second-order version is:

falxe, t+8) = Fulxe, 1)

1
q2g +1)
+(1 = 29)(1 + 29) fa(x —
+q(1-2q) fa(x—2e48,, t)forg < 0.5  (12)

east’ t)

1 -
falxp, t+8) = mfa(&

1—q

29 — 1 ~
0+ 5 e p
q

fa(x ey, H)forg > 0.5 (13)

In the present work, little improvement was found by using the
second-order scheme over the first order, though both schemes
gave substantially better results than just using the bounceback
scheme (to which the above reduces for ¢ = 0.5) in which curved
boundaries are resolved in “staircase” fashion.

For inflow boundary surface with a specified velocity uip,
extended bounce back [20] that adds appropriate momentum to
the particle populations is implemented (see Fig. 3):

Fa@ 14 8) = JulX, 1) + 20010 “C”‘“ (14)

S

For outflow boundaries, an extrapolation method is employed
[21].

Ja(x, 14 8) =2 fa(x, 1) — falx — eads, 1) s)
in which the equilibrium distributions in the collision step for the
boundary lattice nodes are specified in terms of the no-gradient
conditions for the macroscopic quantities.

For a symmetry surface (see Fig. 3), we use the condition
felx, t+6;) = Fa(x, 1). After implementation of them, initial
computations were carried out for a set of cases involving lami-
nar flows without MHD effects to assess their suitability. These
tests yielded results that were in excellent comparison with ana-
lytical solution and other computational results.
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2.3. Vector lattice Boltzmann equation for magnetic
induction fields

For flows with MHD effects, it is necessary to calculate the
magnetic field, and this can be done through the magnetic induc-
tion equation [22,23]:
oB 2
E—i—V-(uB—Bu):nVB (16)
where B is the magnetic induction field, 7 is the magnetic resis-
tivity or diffusivity, defined by n=1/(ocu), and o and p are the
electrical conductivity and the magnetic permeability, respec-
tively.

Within the LBM framework, the equation for the magnetic
field can be solved in a similar fashion to the fluid dynamic
equations, in which the evolution of a distribution function is
computed. This approach has previously been taken by Del-
lar [12], who successfully performed a set of two-dimensional
MHD simulations, and forms the basis of the present work.
To solve the magnetic induction equation with this approach,
a vector distribution function k is employed, since a scalar dis-
tribution function, as is used for the hydrodynamic equations,
will not suffice [12]. A single relaxation time model is used for
its evolution:

ho(x, 1) = ho(x, 1) — [ho(x, t) — hEA(x, )]/ Tm, (17)
ho(x + eq, 8t + 8;) = ho(x, 1). (18)

The values with a tilde represent post-collision values, as was
the case with the hydrodynamic equations. The relaxation time,
Tm, 1S a function of the conductivity and permeability of the
medium and for the 3-D case they are related by [13]:

L g2
R RTE)

In practical implementations of this scheme, it is found that
only seven directions are required and are represented by ey';
these are taken to be directions parallel to the axes and a zero
vector, i.e. the first seven directions used in the lattice used for
the fluid dynamic calculations (Fig. 1).

The components of the equilibrium distribution functions h?q
are then calculated through the following relation, given in index
notation [13]:

(19)

4l
IO
2 (ujBi — Bjui)| ,

m:mh+

-

where B is a dimensionless magnetic field given by B =
B3 /(8x/poio) where pg is a reference density and jio the mag-
netic permeability. Here, i € {x, y, z} represents the Cartesian
coordinate directions. Note that this particular nondimensional-
isation is chosen so that the Alfvén velocity can be kept small
by choosing an appropriate value of pg. Due to the weakly
compressible nature of the approach, this is necessary to avoid
inaccuracies resulting from certain higher order terms [12].

, a=0

20
, a=1,...,6 20)

0| — =

The magnetic field can be recovered from the model by taking
zeroth kinetic moments; its components are given by:

B = Zha,-. (1)

The current density, J; can be calculated in two ways. One
is from simply taking the curl of the magnetic field (V x B).
The other, specific to kinetic approaches, is to extract it from
the higher kinetic moments which avoids the need to take finite
differences:

6
T 4 m m 7 €q
T = _mgﬁk;)(eaihaj — efhgt) (22)
where
6
> emhat = (u;Bi — Bjuy), (23)
a=0

J is a dimensionless current density given by J = J8.\/110/p0
and e;j, is the Levi—Civita permutation tensor.

This latter approach is more efficient in complex geometries,
since calculations of finite differences can prove computation-
ally time consuming for nodes located near boundaries, leading
to a significant effect on the overall performance in certain types
of geometry.

This formulation recovers the full form of the magnetic induc-
tion Eq. (16), which contrasts with many other procedures which
solve areduced form of the induction equation, neglecting higher
order terms in the induced magnetic field. In many situations,
the difference is not important, but for cases with high mag-
netic Reynolds number flows where the induced field is of the
same order as the applied field, a reduced formulation is not
appropriate.

As well as satisfying the induction equation, the field must
also have zero divergence (V-B =0) as required by Maxwell’s
equations. It can be shown that provided the initial conditions
have zero divergence, this requirement is automatically satisfied
by this scheme [12].

This lattice Boltzmann formulation of the induction equation
is accurate only in the limit of small Alfvén velocity. For higher
velocities, errors from terms associated with certain higher order
moments of the distribution function may become significant
[12]. For this reason, the density pg used to nondimension-
alise the magnetic field should be selected such that B remains
small. In the current work, the reference density was selected
such that the maximum value of the dimensionless applied field
was 0.1. This is similar to the requirement that v < ¢ for the
LBM to reproduce the behaviour of the weakly compressible
hydrodynamic equations.

Note that the LBM approach presented in Refs. [12,13] do
not address the issue of simulating low magnetic Prandtl number
flows at steady state or the specification of magnetic boundary
conditions through distribution functions. Also, they do not con-
sider the use of non-uniform grids required to resolve thin wall
layers in high Hartmann number flows. These elements, which
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are important for fusion applications, are presented in the fol-
lowing sections. Moreover, in contrast to that in [12,13], the
present approach uses the MRT collision model for simulation
of hydrodynamic fields with significantly enhanced numerical
stability. This work also provides validations for a variety of
benchmark problems relevant to fusion applications under dif-
ferent conditions.

2.4. Low magnetic Prandtl number steady state
magnetohydrodynamics

Most MHD flows of interest involve liquid metals and for
these fluids there is a large difference between the timescales
for the fluid flow and the magnetic induction. The ratio of the
timescales is given by the magnetic Prandtl number Pry, = vo iy,
where v is the kinematic viscosity, o is the electrical conduc-
tivity and pn, the permeability. For liquid metals, Pry, ~ 1077,
leading to a large disparity in time scales for the hydrodynamic
and magnetic induction fields. Although the original LBM solu-
tion scheme performs well when the time scales are similar, it
becomes numerically unstable when the time scales differ by
a few orders of magnitude. This issue does not appear to have
been addressed in previous works [12,13], but in this work the
problem was resolved by rewriting the induction equation in the
form

IB 1,
——{——V (uB — Bu) = —nV?*B, 24)

ot Ym 'm

which is appropriate for simulating steady state low Pr,, MHD
flows.

The parameter y allows the selection of an effective magnetic
resistivity (n = 1/(ou)) to fix an appropriate Pry, and yy, is a pre-
conditioning parameter introduced to allow different time steps
to be used to accelerate steady-state convergence. The use of
this equation and the selection of x and yy, is discussed in depth
elsewhere [24]. In brief, it results in the following modifications
to Egs. (19), (20) and (22) in the approach presented in Section
2.3.

CAE (25)
T2 ym (80
. 4e. . .
hSd = w, [B, + C;J <VX) (u;Bi — Bjui)] , (26)
m
‘7" X/‘L 2 / gllkz(emhﬂt] (rxnzhz(]l) (27)

Another point to note is that this approach is only strictly
valid for steady state flows, though in practice it can be applied
to transient flows provided the timescale for the magnetic field
remains much less than that for the fluid motion. A similar mod-
ification to the fluid flow equation can also be made to allow
steady state solutions of both hydrodynamic and magnetic fields
to be reached much more rapidly [24].

Fluid

. s
Lo O

Domain boundary:

Fig. 4. Implementation of magnetic boundary condition in LBM. The mag-
netic boundary can, in general, be extended outside the fluid region so that the
computational domain encompasses induced fields.

2.5. Boundary conditions for magnetic induction fields

For the induction equation, no suitable formulations for the
boundary conditions could be found in the literature. Earlier
work [12] had used a reverse bounceback scheme for the bound-
aries, but this method was only suitable for a limited range
of geometries and did not allow an induced component in the
direction parallel to the imposed field.

A new technique for applying boundary conditions for the
applied field was therefore formulated. This method enabled the
magnetic field vector to be specified at the boundary, which is
generally equivalent to imposing zero induced field. In practice,
the induced magnetic field will extend outside the fluid region,
and for this reason, greater accuracy may be obtained if the
domain over which the magnetic induction equation is solved
extends outside the fluid region. The approach taken was similar
to the extrapolation scheme used for the fluid flow [21], but sets
the magnetic field rather than the velocity to a specified value at
the boundary. The procedure is as follows:

e for nodes on domain boundary (e.g. point a in Fig. 4), use the
imposed field for the calculation of the equilibrium distribu-
tion in Eq. (20).

e use these values to calculate the post-collision distributions
with Eq. (17), h on boundary points.

e perform the advection step.

e fordirections « facing into the domain, the post-advection val-
ues of h, will be unknown. These unknown distributions are
then calculated using the second-order extrapolation scheme.

ho(x, t +8) = 2ho(x, 1) — ho(x + €481, 1), (28)

where x and x + e, §; correspond to points a and b in Fig. 4.

In practice, since the distribution function has seven direction
vectors, only one of which points into the domain, only one
distribution value for each face is calculated is calculated with
the above. For reasons of numerical stability it was found that
the two points neighbouring a face on which the magnetic field
is set should have the same electrical conductivity; this may
result in one more extra layer of grid points than might otherwise
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S—ri z

— 1 B i ¥
Fig. 5. Schematic diagram of pipe flow with magnetic field applied perpendic-
ular to flow.

X

have been needed. For example to impose an insulating wall
boundary condition, in Fig. 4, the grid points a and b should both
lie within the solid region (which in this case is assigned a very
low conductivity). The insulating boundary will then lie midway
between points b and c. Conducting walls can be handled in a
similar way by selecting appropriate values for the conductivity
for the wall.

3. Results and discussion: multidimensional MHD
benchmark problems

3.1. Laminar MHD canonical flows

Several standard test cases for which analytical solutions
exist are available for the validation of computer codes. These
include the flow between two parallel plates with a magnetic field
imposed perpendicular to the plates (Hartmann flow), MHD flow
in a two dimensional duct [25], and MHD flow through a pipe
[26]. For more complex cases, such as 3D lid-driven cavity flow,
where there are no analytical solutions, comparisons with results
obtained with other numerical solution schemes can be made.

Preliminary tests with Hartmann flow gave excellent agree-
ment with the analytical solution. However, since many of the
terms in the governing field equations are zero in this case, it
was necessary to also try more complex canonical problems
for a comprehensive validation, and these are detailed in the
following sections.

3.1.1. MHD flow through a cylindrical pipe

The laminar flow through a pipe with a field applied normal
to the flow, often known as the Gold problem [26], is illus-
trated in Fig. 5. No slip velocity boundary conditions through
the approach presented in Section 2.2, and electrically insulating
boundary conditions imposed through the approach presented in
Section 2.4 are imposed.

Appl]ec/
Field E> u
Z|Ly

X

Fig. 7. Schematic view of lid-driven cavity flow problem.

Fig. 6 shows the velocity profiles for the directions paral-
lel and perpendicular to the imposed magnetic field, By for a
Hartmann number (Ha = Byr/+/o/pv) of 10 (where the length
scale r is taken to be the pipe radius). Velocities are normalised
with the peak velocity for the case with no applied field, and
the distance with the pipe radius. In this simulation, 120 points
were used to resolve the diameter of the pipe. The analytical
solution was calculated using the formulation given in [26] and
good agreement can be seen.

3.1.2. 3-D MHD lid-driven cavity flow

A true 3-D MHD validation case is provided by the lid-driven
cavity flow, which sets up complex fluid flow that is strongly
influenced by the applied magnetic fleld in all coordinate direc-
tions. In the case presented here, the flow is in a cubic box with
a the top lid moving in the x direction and the magnetic field
applied in the y direction as in Fig. 7. The Reynolds number was
100 and the Hartmann number was 45; both characteristic num-
bers were calculated using the side of the cube as the reference
length.

Fig. 8 compares the results with those obtained with a finite
difference code [3]; an analytical solution is not available for this
problem. Good agreement can be seen, although there is a slight
departure for the case with the profile of u against y; this is most
likely a consequence of the resolution used in the LBM (uniform
grid, 1283 ), and examination of runs with different resolutions
upheld this viewpoint.

Due to the discontinuity at the edges, this is a demanding
problem, and the range of time steps that could be used with
the more common single relaxation time (SRT) collision model
without the computation becoming unstable was very restrictive.
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Fig. 6. Velocity profiles for directions parallel (left) and perpendicular (right) to applied field for MHD pipe flow with Ha = 10. Line is LBM predictions and circles

are analytical solution.
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Fig. 8. Comparison of results of lid-driven cavity problem with those of a finite difference code involving direct solution of the Navier—Stokes equations (NSE) [3].

Ha=45, Re=100.

The SRT model uses a single dimensionless relaxation time,
T =0.543vé/ 8% in the collision term, (here v is the kinematic
viscosity) and it was necessary for 7 to be very close to, or greater
than unity. However, with the MRT model for the hydrodynamics
the code was found to be much more stable, and a value of t
(which forms a component of the relaxation matrix in the MRT
model) as low as about 0.55 at Ha=45 could be used. This
corresponds to a factor of 10 in the minimum viscosity that can
be used compared with the SRT model, or an order of magnitude
increase in the Reynolds number that could be simulated. Note
that in both cases, the induction equation was solved using an
SRT model.

The rate at which the solution converges to its steady-state
value is shown in Fig. 9. In this case, the viscosity and resistivity
were set to be equal, and a flow with an effective Prandtl number
of 5.625 x 10~7 was simulated by setting x to that value. The
variable yp, is the preconditioning parameter appearing in the
magnetic induction equation and y is the corresponding param-
eter for hydrodynamics. More details on the implementation of
this method are given in Ref. [24]. Two values of y, are shown
in the figure, and the rate at which the solution converges is
substantially increased by using a lower value of yr,. Note that
¥m =Y =1 corresponds to the case in which no preconditioning
is applied.

3.2. Turbulent MHD flow

Let us now consider the simulation of turbulent flow in the
presence of a magnetic field through a cylindrical pipe as illus-
trated earlier in Fig. 5. A fully-developed turbulent flow entered
a pipe; at the inlet, there was no magnetic field, but farther

downstream it entered a region where a field was imposed per-
pendicular to the pipe axis. In the LBM computations, a linear
variation from zero to the desired strength was made over a
distance of two pipe diameters. This arrangement is similar to
the recent experiments at UCLA [27]. Statistics were collected
downstream to see how the field had affected the turbulence.
The inlet conditions were obtained by running a pipe flow
simulation with periodic boundary conditions and a body force
in the axial direction. After a statistically steady state had been
reached, the flow field on one cross sectional plane was collected
every time step for 5000 time steps. This set of velocity fields
was used for the inlet conditions and was recycled every 10,000
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Fig. 9. Convergence to steady state for 3-D lid driven cavity. Residual error
is a measure of the rms velocity difference between iterations separated by 10
time steps, and y and yy, are speed-up parameters in hydrodynamic and MHD
equations respectively and y =1 corresponds to no convergence acceleration.
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time steps. The Reynolds number based on the bulk velocity and
the diameter was 4900.

Unresolved turbulent scales were handled by using a
Smagorinsky subgrid scale (SGS) eddy viscosity model with
van Driest wall damping [11]. The presence of MHD forces
is known to affect turbulence, and the Smagorinsky formulation
can be modified to reflect this [28]; for the conditions used in this
case, these corrections were found to very small, so the standard
Smagorinsky model was used. The computations were run on
the US Department of Energy’s Bassi supercomputer, housed
at NERSC. Bassi is a distributed memory computer with 888
IBM p575 processors running at 1.9 GHz, each with 4 GBytes
of memory. The domain size used for the large eddy simulation
(LES) was 2400 x 120 x 120 and this was run on 32 processors,
which resulted in the computation proceeding at the rate of about
1500 time steps per hour. With this domain size, a length of 20
diameters was simulated, and Fig. 10 shows the mean velocity
profile and turbulence statistics 15 diameters into the region with
the magnetic field. A Hartmann number of 20 (based on the pipe
radius) was used and the profiles are in the direction parallel to
the field and through the pipe centre.

For the case with no MHD, it can be seen that the profiles of
turbulence intensities predicted by the LBM are similar to those
from a DNS [29], though there is some overprediction of turbu-
lence, particularly for the streamwise direction. Studies showed
this could be attributed to the resolution used, with the error
changing roughly as the square of the grid spacing. Also, LES
generally overpredicts the turbulence intensity in the streamwise
direction.

At 15 diameters downstream, all three components of turbu-
lent fluctuations are substantially reduced, as is expected for an
MHD flow where the field is applied in the wall-normal direc-
tion. Another feature is that the peaks in the intensities are shifted
away from the wall, an effect that was also found by [30].

A set of tests using different numbers of processors was
undertaken for this problem to assess the parallel performance of
the code. The code was run for a short duration and the elapsed
time taken to perform a fixed number of time steps was recorded.
In all the tests the same parameters and grid resolution were used,
the only difference being in the number of processors. In each
case a period of 50 time steps was used, and to avoid any effects
from the initialisation of the program the code was run for 50
time steps before starting the timed period. Fig. 11 shows the
speed of the computation for different numbers of processors.
The largest case used 128 processors and the smallest 16; mem-
ory constraints prevented tests with fewer processors. The speed
is defined as the reciprocal of the elapsed time, and is normalised
such the case with 16 processors has a speed of 16. This case
actually took 4.6 s to complete each time step. The speed up can
be seen to be almost linear, with the 128 processor case reaching
a speed of 113 on this scale — a drop of only about 12% below
the value for a linear variation.

Slab decomposition along the longest axis was used for these
tests, with ghost points used at each face of the subdomains
to store information exchanged with other processors. For 16
processors, the largest subdomain would have been 152 grid
points wide and for the 128 processor case 21 points wide (19
active and 2 ghost points). Although the ghost points do not

Fig. 10. Profiles of rms velocity fluctuations along z axis through centre, taken 15 diameters from entry into the magnetic field. Solid line is LBM for no magnetic
field (Ha =0), crosses DNS [29] at Re =5300, Ha =0 and dashed line LBM with Ha =20.
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Fig. 11. Speed of computations for MHD turbulent pipe flow, on NERSC Bassi
supercomputer. Circles are data points and solid line corresponds to linear scal-
ing. Grid size was 2400 x 120 x 120 and speeds are normalised to give 16
processor case a speed of 16.

perform all the computational steps involved in the LBM, the
extra computational workload probably accounts for a substan-
tial proportion of the 12% fall found. Other sources would be
from the time involved in exchanging data and the variations in
speed of different nodes on the supercomputer. This latter one
probably accounts for a few percent — when running smaller
computations on single nodes of the Bassi machine (eight pro-
cessors) execution times found to vary by up to about 5% from
one node to another.

4. High Hartmann number MHD flows using
interpolated-streaming LBM approach

The use of nonuniform grids is desirable in many applica-
tions and is important in regions of flow where sharp gradients
are present. Magnetohydrodynamic flows at high Hartmann
numbers, which are important in fusion applications, provide
examples where stretched grids are likely to result in very high
savings in computational time. The regions with high gradients
are contained within very narrow layers close to the wall, with
the flow being relatively constant outside these layers. For exam-
ple, the thickness of Hartmann layers, (perpendicular to applied
field) varies as §yg ox 1/Ha while for the so-called side layers
(parallel to applied field) the variation goes as 8y o 1/+/Ha
[22].

In their basic form, the LBE formulations are restricted to
uniform grids in that the minimum streaming distance of the
particle populations in one time step is exactly equal to the
minimum lattice spacing. In other words, the discretization of
the configuration and particle velocity spaces are coupled. This
lockstep advection of particle populations is a feature inherited
from its predecessor, i.e. the lattice-gas automaton (LGA) [31]
and is not necessary for the LBE. It was realized that the LBE
are actually simplified forms of the Boltzmann equation and
hence can be solved without the coupling of the physical and
particle velocity spaces and can in principle be implemented
on any mesh [32]. Thus, it was proposed by [33] that the col-
lision step can be computed locally on the lattice grids in the
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Fig. 12. Illustration of a second-order upwind Lagrangian interpolation for a
particle velocity direction (o =7) to implement non-uniform grids in the LBM.

usual manner; after the collision step, the particle distributions
move according to their velocities ey, although the advected
distance of the particle distributions may not, in general, coin-
cide with the mesh spacing (as shown in the example in Fig. 12).
The distribution functions in these locations can always be com-
puted using interpolation; after interpolation, the collision and
streaming steps are repeated. It has been shown that, if the inter-
polation method is at least of second-order, the Navier—Stokes
equations can still be recovered from LBE [34]. Thus, the order
of interpolation schemes should not be lower that the order of
accuracy of the LBE. This approach is often termed the inter-
polation supplemented lattice Boltzmann method (ISLBM). It
has been applied to simulate a variety of problems, for example
to simulate turbulent plane jets using a two-equation turbulent
modelling approach within the LBM framework [35].

To improve the computational efficiency, here we employ
a variant of this original interpolation-supplemented LBE, in
which the streaming and the interpolation steps are carried out
in two distinct steps. Here, we combine them in one step — the
interpolated-streaming step. Also, the original approach was
applied to the SRT-LBE. However, inspection of the method
shows no reason why it cannot be applied in a similar man-
ner to the MRT-LBE and the magnetic induction equation, and
this is indeed what was done in this work. A second-order
Lagrange interpolation was employed in the implementation,
which is carried out in the respective upwind directions for the
particle velocity directions. An example of this implementation
for one particle velocity direction, including the interpolation
coefficients in 3D, is given in Appendix A.

With this modification, it allows non cubic grids, though it
is not suitable for stretching grids in any coordinate direction
relative to the others, i.e. for non-rectangular meshes. However,
this does not pose a problem for many cases of practical inter-
est. Moreover, it is relatively easy to implement and naturally
amenable for parallel implementation.

4.1. MHD flow between parallel plates at high Hartmann
number

Following preliminary tests with non-MHD flows to ensure
the ISLBM was working correctly, a series of studies was carried
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out with MHD flows. The case described here was a simple
Hartmann flow between two insulating parallel plates, where
the magnetic field is applied perpendicular to the plates. For this
case, there is an analytical solution for the velocity v and the
induced magnetic field B; [22]

< dP> L [p {l—cosh(Haz/L)/cosh(Ha)}
u(z) = —

T dx By V ov tanh(Ha)
(29)
Bi(z) = <_‘:1f:> “;’;; L \sinh(Ha z/L)/sinh(Ha) — /L]
(30)

where —(dP/dx) is the driving pressure gradient, o the electrical
conductivity, v the kinematic viscostity and ¢ is the magnetic
permeability. The coordinate z is defined such that z=—L on the
lower plate and z=L on the upper plate. The Hartmann number
is defined as:

[o
Ha = BoL,|—
pV

The solution is discussed in depth in Ref. [23], where the more
general solution for finite conductivity walls and a square duct
is also given. Note that at very high Hartmann numbers, it is
difficult to evaluate the above analytical solution directly, since
the terms inside the hyperbolic functions become too large. In
this situation, approximate (asymptotic) forms for high Ha can
be used (this is also addressed by Ref. [23]).

The grid used should be set such that several points lie within
the Hartmann layer, with the grid point separation increasing
to large values outside this region. One suitable formulation is
due the Roberts transformation [36] in which a uniform grid
(i.e. with equally spaced points) zx in the range 0 < 7 < 1 is
transformed into a stretched grid z:

o = oy B 20UB+ D/(B= DI — B+ 2
Qe+ DL+ LB + D/(B — D)1=}

3D

where the parameter « is used to control where the points clus-
ter. With o =0, only points near z=2L are spaced closely; with
a =0.5, points are closely spaced at regions near z=0and z=2L.
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The parameter 8 determines the degree of stretching, and Smo-
lentsev et al. [37] suggest using a value

Ha 0.5
b= [Ha— 1}

In practice, this was found to give grids in which the spacing
was far too small near the walls. The above recommendation was
based on the assumption that that the dimensionless boundary
layer thickness (corresponding to the Hartmann layer in this
case) is ~1/Ha. Inspection of profiles generated suggested that
the boundary layer thickness, 8/L, was actually ~5/Ha, though
the definition of the end of the layer is somewhat arbitrary

In the Hartmann flow computations presented here, the rela-
tion used was modified to become:

[ Ha/5 1%
b= [Ha/S— 1}

With this factor, flow velocities predictions within 1% of the
analytical solutions could be obtained by the lattice Boltzmann
approach.

Figs. 13—15 show the velocity and induced magnetic field
profiles for Hartmann numbers of 100, 1000, and 10,000, i.e.
spanning two-orders of magnitude. The coordinate z in these
figures runs from O at the wall to 1 at the centre. Fig. 13 uses
a linear scale, but the other two use a logarithmic scale for the
abscissa since the Hartmann layers are very narrow in these
cases. The comparison with the analytical solution is very good,
and all cases predicted the centreline velocity to within 0.5%;
the locations of the circles correspond to the grid points so it
can be seen that about 10 points are used to resolve this layer.
In all cases, the use of a stretched grid considerably reduced the
number of grid points by an order of magnitude or more. For
the Ha = 10,000 case, use of a uniform grid would have required
85,000 points to achieve the same near wall resolution, but in
this simulation only 192 points were used to span the channel
(total was actually 196 points because extra points are needed
for bounding walls) — a dramatic saving in computer resources
(less than 0.5% of the computational effort is required when the
ISLBM is used in lieu of the uniform grid LBM).

0.8

0 02 04 06 08 1
r4

Fig. 13. Velocity (U) and magnetic field (B) profiles for Hartmann flow between parallel plates at Ha = 100; line LBM, circles analytical. 96 grid points.
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Fig. 14. Velocity and magnetic field for Hartmann flow between parallel plates at Ha=1000; line LBM, circles analytical. 128 grid points. Log scale used for

abscissae.

4.2. MHD flow in insulating duct at high Hartmann number

Another test case used was the flow through a square duct
with insulating walls at a high Hartmann number (in this case
Ha=500). Duct flow velocity profiles are again characterised
by a flat central region with narrow layers with high gradi-
ents near to the walls. The width of the layers adjacent to the
walls perpendicular to the applied field direction (the Hart-
mann layers) varies as 1 = Ha, but for those parallel to the field
(the side layers), the width varies as 1/+/Ha. The case was
resolved by using 128 grid points in each direction, and Fig. 16
shows the velocity profiles obtained with the LBM along the
wall bisectors along with the analytical solutions. The veloc-
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0.015

=2 0.01

0.005

0
10° 10"  10°  10° 107 10°
z

ity at the centre differs from the analytical solution by about
2%, rather more than that in the earlier simulations. The rea-
son for this is that the ideal grid distributions required for the
y and z directions are rather different and the stretching pro-
file used was a compromise. Use of a few more grid points in
the y direction would be expected to significantly reduce the
discrepancy.

The profile through the side walls was calculated with the
following approximate asymptotic formula [22]

u = uo(1 4+ n*)(1 — erf(n/~/2)) — n\/2/7 exp(—n?/2)

where 7 is a dimensionless distance n = y+/Ha/2, with y being
the distance from the wall, normalised with the duct half width.

(32)
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Fig. 15. Velocity and magnetic field for Hartmann flow between parallel plates at Ha =10 000; line LBM, circles analytical.192 grid points. Log scale used for

abscissae.
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Fig. 16. Velocity profiles along wall bisectors for MHD flow in an insulating duct at Ha =500, left: side layers and right: Hartmann layer; line LBM, circles analytical
solution. Field applied in z direction. Note that for clarity the right graph has log scale for the abscissa, and axes are normalised by the duct half-width.
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Fig. 17. Plots of induced magnetic field (B,) and velocity (U) for MHD flow in an insulating duct at Ha = 500.

The velocity ug is the velocity at the centre for the equivalent
case with no side walls. This solution is also given a thorough
discussion by Ref. [23], but readers are warned that during the
course of this study, the equation given in their book was found
to contain a typographical error.

Two dimensional plots of magnetic field and the velocity field
are shown in Fig. 17. Over the central region, the velocity profile
can be seen to be very flat, with the induced field having a con-
stant gradient. These observations are in keeping with expected
trends.

It was found that although extreme amounts of stretching
(factors > 100) work perfectly well in regions where the flow
parameters do not change very little, such as in the core of
Hartmann flow, more moderate stretching values are required
in other regions. With large values of the stretching factor in
the side or Hartmann layers, the computation can lose accu-
racy and problems with convergence to a steady state may
arise.

5. Fusion MHD example: 3D simulation of MHD flow in
a thermal blanket module

One case undertaken that is relevant to a current fusion
engineering problem was the simulation of a section of a
thermal blanket. A cross-section of the geometry for the prob-
lem tackled is shown in Fig. 18. The widths of the layers
are assumed to be uniform around the perimeter, and the

- 131 >

]

|
|

Ferritic Steel (FS)

All dimensions in mm, not to scale

Fig. 18. Schematic diagram showing cross-section of thermal blanket module.

cell is 1.4 m long. Liquid lead/lithium flows through the cen-
tral region which is surrounded by the flow channel insert
(FCI), a layer of a silicon carbide composite designed to
provide thermal and magnetic insulation. This is in turn sur-
rounded by a layer of Pb/Li with the outer casing being ferritic
steel.

Conditions and thermophysical properties were set to be simi-
lar to those in the design. The simulation assumes the mean Pb/Li
inlet velocity to be 0.1 ms~'. The magnetic field is applied in
the z direction. In both the y and z directions 118 grid points
were used, with the nodes clustered such that they were close
at the liquid wall and the outer boundaries. The Roberts stretch-
ing transformation, as discussed before, was used in the central
Pb/Li core flow, and exponential stretching in the other regions.
Uniform spacing of the nodes in the streamwise (x) direction
was used.

A pressure gradient was imposed to drive the flow. It was
found that during the convergence process, the velocities fluc-
tuated greatly though the amplitude of these fluctuations did
decay rapidly. To avoid numerical problems, the pressure gra-
dient was ramped up in stages. The reason for the fluctuations
is not clear, but is thought to be associated with the precondi-
tioning method used to accelerate convergence to steady state.
Very similar behaviour has previously been observed in a this
sort of problem with a finite volume method [37]; in both codes,
these fluctuations were only observed when there were conduct-
ing walls. A Hartmann number of about 100 was used. Due to
the dependence of the viscosity on temperature, the effective
Ha increased along the length of the channel. In practice, higher
Hartmann numbers would be used in the real situation, but here
the objective was to obtain a similar flow distribution for the
purposes of calculating the temperature profile, and value used
here was high enough that the Hartmann and side layers were
small compared with the central region. Naturally, higher Ha
flows could be simulated with higher resolution grids and with
the use of multi-processor computer clusters.

Fig. 19 shows the induced field and the velocity profile on a
cross-section of the cell. The velocity can be seen to have peaks
near the side walls — this is due to the finite conductivity of the
SiC composite in the FCI, and peaks would not be observed for
a perfectly insulating FCI. In duct flows with highly conducting
walls, these peaks can become very narrow, and are known as
side wall jets. In the other direction, there is a very steep climb in
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Fig. 19. Induced field (B,) and velocity (U) plots on a cross-section of a thermal blanket module at Ha = 100.

the velocity near the walls (the Hartmann layers). The velocity in
the narrow channels is low compared with the main channel, and
is higher in the sections perpendicular to the applied field. The
induced magnetic field shows the usual steep climb at the outer
walls and a constant slope over most of the rest of the domain.
Note the presence of a step near z=0, this corresponds to the
FCI which has low electrical conductivity, inhibiting changes in
the field. The profiles of the velocity induced field are consistent
with expectations.

6. Summary and conclusions

A number of new developments have been introduced for the
simulation of MHD flows with the lattice Boltzmann method.
The main ones were:

e introduction of a new method for specifying the magnetic
field at a boundary, through an extrapolation scheme for the
vector distribution function. Unlike earlier LBM approaches,
there is no restriction on the angle of the field relative to the
coordinate axes.

e a new technique, based on a preconditioning approach, for
allowing simulations of MHD flows with low magnetic
Prandtl numbers and for steady-state convergence.

e non-uniform gridding approach to resolve thin layers near
the walls at high Hartmann numbers developed through
an interpolated-streaming step in the LBM for both scalar
(hydrodynamics) and vector (magnetic induction) distribution
functions.

e introduction of an advanced multiple relaxation time (MRT)
collision model to solve MHD problems using the LBM for
enhanced fidelity and numerical stability.

solutions have shown very good agreement. For the more
complex benchmarks, such as the 3-D lid-driven cavity flow,
analytical solutions are not available, but comparisons with
predictions of other CFD codes showed close agreement with
benchmark results, verifying the validity of the new advances.
For many problems, the use of the MRT model in lieu of the
SRT model allows an improvement in numerical stability by
a factor of about 3, and for particularly demanding problems,
such as the MHD lid driven cavity, an order of magnitude
improvement can sometimes be seen.

The extension of the ISLBM to MHD flows allows flows
with Hartmann numbers of several thousand to be simulated
relatively quickly. By appropriately selecting the distribution
and clustering of grid points, it has been found that the com-
puter time requirement can be reduced for a factor of several
hundred, when compared with that of uniform grids. Also,
the LBM has demonstrated very good parallel performance
on multi-processor machines, with tests showing almost linear
scaling up to 128 processors for evaluated MHD problems.

Designs of heat transport systems in fusion reactors typ-
ically involve 3-D bounded liquid metals flows with low
magnetic Prandtl number (Pry, = v/ny, ~ 1077). Magnetic fields
are generally high, leading to narrow shear layers near the
walls which require the use of stretched grids for accurate
and computationally efficient solutions. With the new devel-
opments discussed here, the LBM is now in a position to
simulate actual systems for proposed fusion reactors, and a
preliminary example of such a computation for a thermal
blanket is indeed presented in this paper. The ability of the
LBM to parallelise efficiently will enable much larger prob-
lems to be tackled than would otherwise be the case (see
Fig. 12).

Appendix A

— 47 1 7 — 7 — 7
f7,i,j,k = al’,‘,j’k[bl,,',j,kf7,i,j,k + bz,,’,j_l,kfli,j—l,k + b3,,"j_2,kf7,i,j—2,k]

+ay; by iy i Sri-1gk F by gk Stk F b3 ok fri-1 2]

(A1)

taz; by io i fri-2 gk F by 0 gk Jri2 -1k F b3 0 0 fi-2,j-2.k]

A comprehensive set of validations and tests has been under-
taken including both laminar and turbulent MHD flows. For
the simpler canonical problems, comparisonswith analytical

Here, the “tilde” refers to the post- “effective” collision values of
the distribution function (i.e. including forcing terms) obtained
by executing the collision step as in Eq. (3-a). The upwind



M.J. Pattison et al. / Fusion Engineering and Design 83 (2008) 557-572 571

Lagrange interpolation coefficients in Eq. (A.1) are given below:

.= { XnG, jky — Xm(i=1, k) + 6x) }
Lijk (X, j k) + 8x) — (Xin(i—1,jk) + %)

{ Xongi jk) — Xm(i—2. k) + %) }
X, jky + %) = (Xm(i—2, k) + %)

(A2)

- { Xom(i,jk) = (Xm(i,jik) + %) }
i ik (Xom(i—1,jk) + 6x) — (X, k) + 6x)
y { X, jky — Kim(i-2,j.k) + 6x) ]
(Xm(i—1,jk) + 0x) — (Ximi—2, k) + %)

(A.3)

— { X, jky — K, j.ky + 6x) }
3ok (Xm(i—2,j,k) + 8%) — (X, jk) + 6X)
5 { X, jy — Km(i—1,j.k) + 6x) ]
(Xm(i—2,j.k) + 0x) — (Xm(i—1,j.k) + %)

(A4)

and

P [ Yii, jk) — Y, j—1,6) + 8Y) }
Li.jk Ynii, jioy + 8Y) — Y, j—1.0 + 8y)
{ Youii, jky — Y, j—2.6) + 8Y) ]
Yo, jky +8Y) — Y, j—2.k) + 8Y)

(A.5)

{ Yii,jky — Yma, j—1.60 + 8Y) }

Ymti,j—1,0) + 89) = V(i jby + 8Y)

x [ Yiii,jky — Ym, j—2.6 + 8y) }
Ymti, j—1.4) + 89) = V(i j—2.0) + 8)

b2,i,j,k =

(A.6)

P { Y, jky = Y, jk + 8y) }
3ok Y, j—2.k) + 8Y) — Y, jky + 8Y)
x [ Yniijdk) — Vi, j=2.00 + 8Y) } (A7)
Y, j—2.0 + 8Y) — Ym(i, j—1,6) + 8Y)

Similarly coefficients c;i’ ik ci ik c3f i, jk» can be developed
for the z direction which are needed for certain other parti-
cle directions. In the above, §x, §y and §z, are the streaming
distances based on the particle velocity ¢ during a time inter-
val 8t, i.e. dx=cdt, Sy=cét, Sz=cét. Xm(ixi’k)’ Ym(i,/,k)s and
Z(i k), are the physical coordinates of grids. In general, the
grids would be stretched such that X, jx) — Xni—1,jk) # 6%,
YinGijioy — Ym—1,4k) 7 8y and Zy jky — Zin(i—1,4.k) 7 6z In a sim-
ilar way, if the particle velocity directions are flipped as
compared to the above, as in for e.g., in the calculation of
the interpolated-streaming values of f3;;x (see Fig. 1), the
respective interpolation coefficients are then based on the corre-
sponding upwind directions, i.e. af ik az ik and azi,j’ «» and
bfi’ ik b;’ i jk and b;‘yi’ ik This approach can be extended to
vector distribution functions using similar interpolation formu-
lae.
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