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bstract

In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The
ynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term
s included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then
olving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit,
nd computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a
ingle relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic
oundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order
o resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an
nterpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering
here liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems,
nder various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and

urbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance
n parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The flow of an electrically conducting fluid in a magnetic field
s influenced by magnetohydrodynamic (MHD) forces resulting
rom the interaction of induced electric currents with the applied
agnetic field. In nature, systems in which MHD effects are

mportant include the Earth’s core and solar flares, and in the
ngineering world, the electromagnetic casting of metals and the

onfinement of plasmas. Another area of much interest is fusion
ngineering; reactor designs commonly involve the use of elec-
rically conducting liquid metals. For example, thermal blankets
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ber flows; Parallel computing

sually use liquid metals to transport heat [1], and some reactor
esigns use flowing liquid metals on the first wall [2,3]. The high
agnetic fields used to confine the plasma result in large MHD

orces, whose effects dominate the flow in such components. The
tudy of MHD has therefore been of particular importance to
usion engineering, forming significant components of facilities
nd projects such as APEX and ITER [4].

There are a number of different techniques for the numeri-
al simulation of fluid flows, most of which are based on finite
ifference or finite volume methods, in which the continuum
onservation equations are discretised and solved on compu-

ational grids. These methods can be extended to MHD flows
y introducing a solution procedure for the magnetic induc-
ion equation and including a term for the Lorentz force in the
quations for the flow dynamics [3]. An alternative approach,

mailto:martin@metah.com
dx.doi.org/10.1016/j.fusengdes.2007.10.005
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hich is becoming increasingly popular, is the lattice Boltzmann
ethod (LBM) [5]. The LBM has its roots in kinetic theory, and

he general idea behind this scheme is to compute a probabil-
ty distribution function f�(x, t), where f� is the population of
articles, representing fluid elements with a velocity along the
irection α at position x and time t as they move and collide
n a lattice. The collective behaviour of the distribution of par-
icle populations represents that of the dynamics of fluid flow.

number of different schemes for calculating the evolution
f the distribution function are available; most codes use sin-
le relaxation time (SRT) models for representing the effects of
ollisions [6–8]. However, the most advanced formulations use
he recently-developed multiple relaxation time (MRT) model
9,10]. This latter method has better accuracy and numerical
tability than the SRT models, and was chosen for the work
escribed here.

The LBM can be extended to handle MHD flows, with the
agnetic induction equation being solved in a manner similar to

hat for the fluid flow [12,13]. A vector distribution function rep-
esenting the magnetic field is introduced, and a Boltzmann-type
inetic equation is constructed such that the behaviour of the par-
icle populations corresponds to that of the induction equation.
his can then be discretised and solved on a lattice grid.

One advantage of the lattice Boltzmann method is that it is
ery well suited to parallel processing on supercomputers with
istributed memory architectures. At each time step, it is only
ecessary for a processor to communicate with a fixed number
f other processors, typically between two and eight depend-
ng on how the computational domain is divided up, and for
arge problems, the execution speed is roughly proportional to
he number of processors used. In fact, an LBM code has been
uccessfully used to simulate certain unbounded MHD flows
elevant to plasma physics on 4800 processors [14]. In contrast,
ith other methods each processor has to communicate with all,
r many other, processors involved in the computation; in this
ituation, when large numbers of processors are used, the time
pent communicating can severely reduce the execution speed
ompared with the LBM where the execution speed is almost
roportional to the number of processors used.

A number of new developments for the application of the
BM to MHD problems are presented here. An extrapolation-
ased technique for scalar distribution functions used to apply
elocity boundary conditions has been adapted to a vector dis-
ribution function to allow the magnetic field to be specified
t boundaries. In contrast to earlier methods [12], the imposed
agnetic field can be at any angle to the axes. A precondi-

ioning method has been applied to the induction equation to
nable the simulation of fluids with very low magnetic Prandtl
umbers, such as liquid metals. This technique can also be
sed to accelerate solution convergence for steady state flows.

means of allowing non-uniform grids to be used with both
ector and scalar distribution functions in 3D has been formu-
ated to allow higher resolution of regions with high gradients,

uch as Hartmann layers. All these new developments enable
he LBM to be used for problems in fusion engineering which
ommonly involve flows of liquid metals in high magnetic
elds.
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As well as discussing the models used for MHD computa-
ions, this paper presents the results of validations for a wide
ange of canonical flow problems where analytical solutions
xist or results from other prior computational fluid dynamics
CFD) simulations are available. Following confirmation of the
alidity of the models used, tests which demonstrate the effi-
iency of the LBM on parallel computers with large numbers of
rocessors are presented and the effectiveness of using stretched
rids is investigated. Additional examples of the LBM results
resented here are the large eddy simulation (LES) of turbulent
HD flow through a pipe, and a simulation of a section of a

hermal blanket relevant to fusion applications.

. Computational approach

.1. Multiple relaxation time lattice Boltzmann equation
or hydrodynamic fields

The lattice Boltzmann method is a relatively recent com-
utational approach based on kinetic theory for solving fluid
echanics and other physical problems [5]. In brief, the LBM

onsists of solving the lattice Boltzmann equation for the evo-
ution of a distribution function f (x, v, t) as they move and
ollide on a lattice. The solution of the equation involves two
ain steps, which represent streaming and collision of particle

opulations. Usually the collision process is represented by the
hatnagar–Gross–Krook model [6] where the particle popula-

ions relax to a local equilibrium state at a rate determined by a
haracteristic relaxation time parameter. More recently, the mul-
iple relaxation time model has been introduced, which involves
everal relaxation times and proves to have substantially better
umerical stability [9].

The LBE is discretised and solved on a lattice grid. The
umber of discrete velocity directions representing the lattice
s chosen to respect certain symmetry needed to recover the
sotropy of the viscous stress tensor of the fluid flow [5]. In
hree dimensional implementations, a cubic grid is used and 15
r 19 particle velocity models are commonly used, though other
odels are occasionally found. In this work, the 19 velocity
odel was used, due to its superior numerical stability, and this

s shown in Fig. 1.
The vectors corresponding to this three-dimensional, nine-

een velocity (D3Q19) particle velocities set are given by:

α=

⎧⎪⎨
⎪⎩

(0, 0, 0), α = 1,

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), α = 2, . . . , 7,

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1), α = 8, . . . , 19.

(1)

he Cartesian component c of the particle velocity eα is given by
= δx/δt, where δx is the lattice spacing and δt the time step. In this
aper, the convention that Greek symbols (α, β, . . .) will be used
o represent particle velocities directions and Roman symbols

i, j, k) for Cartesian directions will be used. The corresponding
ector of distribution functions f at a location may be written as

= [f0, f1, f2, . . . , f18]T. (2)
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Fig. 1. Three dimensional, 19 velocity (D3Q19) lattice.

s previously mentioned, the distribution function is calculated
sing a two-step procedure comprising a so-called collision step
nd a streaming step. In the most advanced formulation currently
vailable, the MRT-LBE with forcing terms are used [9,10]:

f̃α(x, t) − fα(x, t)

=
∑
β

Λαβ(fβ − f
eq
β ) +

∑
β

(
Iαβ − 1

2Λαβ

)
Sβδt, (3-a)

α(x + eαδt, t + δt) = f̃α(x, t). (3-b)

The first term on the right hand side (RHS) of Eq. (3-a) repre-
ents the cumulative effect of particle collisions on the evolution
f the distribution function fα, and can be thought of as represent-
ng the effects of viscosity, as well as other processes. Collision is
onsidered as a relaxation process in which fβ relaxes to its local
quilibrium value f

eq
β at a rate determined by the relaxation time

atrix Λαβ. The MRT model has a generalized collision matrix
ith multiple relaxation times corresponding to the underlying
hysics: the macroscopic fields such as densities, momentum
nd stress tensors are given as various kinetic moments of the
istribution function. For example, collision does not alter the
ensities ρ and momentum ρu, while the stress tensors relax
uring collisions at rates determined by fluid properties such
s the shear and bulk viscosities. Thus certain relaxation times
orming components of the collision matrix Λαβ in the MRT
odel are developed to reflect the underlying physics, while

hose which do not affect hydrodynamics are chosen to enhance
he numerical stability of the approach. For more details, the
eader is referred to Refs. [9,10].

The second term on the RHS of Eq. (3-a) introduces changes
n the evolution of distribution function from driving forces F ,
uch as gravity (ρg) through a source term Sα. For MHD flows,
ne must also include the Lorentz force, J × B, where J is the
urrent density and B is the magnetic field strength, through Sα.
his source term may be written as [10]:
α = (eαj − uj)Fj

ρc2
s

f eq,M
α (ρ, u), (4)
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here f
eq,M
α (ρ, u) is the local Maxwellian, which is dependent

n the local density and velocity as

eq,M
α (ρ, u) =

(
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− 1

2

u · u

c2
s

)
,

α =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

3
α = 1

1

18
α = 2, · · ·, 7

1

36
α = 8, · · ·, 19.

(5)

nd cs = (1/
√

3)c is the speed of sound of the model. In the
econd term of Eq. (3-a), Iαβ is the identity matrix.

At this point is worth noting that the commonly used SRT
odel uses a scalar relaxation parameter in place of the ten-

ors Λαβ and there is no summation for the terms on the right.
lso note that the implementation of Eq. (3-a) does not involve
irect summation as shown, but uses a highly optimised pro-
edure that involves transformations into moment space and
xploits certain properties of Λαβ [9–11]. With these optimi-
ations, it is found that despite its much greater complexity, the

RT only takes about 10–30% more CPU time than the BGK
odel [9–11]. Thus Eq. (3-a) provides the post-collision value

f the distribution function given by f̃α.
Equation (3-b) is known as the advection, or streaming, step

nd deals with the change in the distribution function during
time interval δt, as the particles propagate from location x

o their adjacent location x + eαδt, with a velocity eα along the
haracteristic direction α.

The local macroscopic density and velocity fields are then
iven by

=
18∑

α=0

fα, (6)

u =
18∑

α=0

fαeα + 1

2
Fδt, (7)

nd the pressure field p may be written as

= c2
s ρ. (8)

The behaviour of the populations represented by the dis-
ribution function f corresponds to that of fluid flow, and the
ncompressible Navier–Stokes equations can be recovered from
he lattice Boltzmann equations for the case of low Mach
umber (v � cs, where cs is the speed of sound). The dis-
ussion of the MRT model presented here has been relatively
rief, but more detailed descriptions can be found elsewhere
9–11].

Two important points to note are that there is no pressure

oisson equation to solve, and that the solution scheme is
xplicit, with information required from neighbouring nodes
nly. The solution of the Poisson equation is time consum-
ng and typically takes 80–90% of the CPU time in traditional
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FD solvers [15]; its absence means that LBM codes are rela-
ively fast on a per time step per grid point basis. The explicit
ature of the computations means that codes based on the LBM
an run very efficiently on parallel architectures, and this is
ne of the main motivations for its use. These two advan-
ages also hold when lattice Boltzmann methods are used for
he magnetic induction equation, which is discussed in Section
.3.

.2. Boundary conditions for hydrodynamic fields

For solid wall boundaries, the simplest boundary condition
s the bounceback scheme. In this method, the populations are
imply reflected:

ᾱ(x, t + δt) = f̃α(x, t), (9)

here ᾱ is the direction opposite to α. In this equation, f̃α is
he distribution function after the collision step (and before the
treaming step). This scheme is suitable for flat walls where the
irection is parallel to a coordinate axis plane. In this situation,
he wall is located half way between two nodes, and for this rea-
on it is sometimes known as the halfway bounceback scheme.A
umber of different options are available for curved boundaries
16–19]. All these methods are based on applying interpola-
ions/extrapolations around position of the boundary and then
xecuting bounce-back type conditions at the boundary loca-
ion. After assessment, the so-called interpolated bounce back
cheme [18] was selected, due to its good numerical stability.
t specifies the distribution functions for the incoming parti-
le directions from the wall in terms of a parameter q, where
represents the fractional distance of the wall from the near-
all lattice node in comparison with the lattice spacing (see
ig. 2).

The first-order implementation of the scheme is:

ᾱ(x, t + δt) = 2qf̃α(x, t) + (1 − 2q)f̃ᾱ(x − eαδt, t)

for q < 0.5 (10)
ᾱ(x, t + δt) = 1

2q
f̃α(x, t) + (2q − 1)

2q
f̃ᾱ(x, t)

for q ≥ 0.5 (11)

Fig. 2. Wall boundary implementation for cut-lattice cells.

f

F
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f

i
b
c

f

c
n
t
l

ig. 3. Implementation of inflow, outflow, and symmetry boundary conditions.

nd the second-order version is:

ᾱ(xf, t + δt) = 1

q(2q + 1)
f̃α(xf, t)

+(1 − 2q)(1 + 2q)f̃ᾱ(x − eαδt, t)

+q(1−2q)f̃ᾱ(x−2eαδt, t) for q < 0.5 (12)

ᾱ(xf , t + δt) = 1

q(2q + 1)
f̃α(x, t) + 2q − 1

q
f̃ᾱ(x, t)

+1 − 2q

1 + 2q
f̃ᾱ(x − eαδt, t) for q ≥ 0.5 (13)

n the present work, little improvement was found by using the
econd-order scheme over the first order, though both schemes
ave substantially better results than just using the bounceback
cheme (to which the above reduces for q = 0.5) in which curved
oundaries are resolved in “staircase” fashion.

For inflow boundary surface with a specified velocity uin,
xtended bounce back [20] that adds appropriate momentum to
he particle populations is implemented (see Fig. 3):

ᾱ(x, t + δt) = f̃α(x, t) + 2ωαρin
eᾱ · uin

c2
s

(14)

or outflow boundaries, an extrapolation method is employed
21].

ᾱ(x, t + δt) = 2f̃ᾱ(x, t) − f̃ᾱ(x − eαδt, t) (15)
n which the equilibrium distributions in the collision step for the
oundary lattice nodes are specified in terms of the no-gradient
onditions for the macroscopic quantities.

For a symmetry surface (see Fig. 3), we use the condition
β(x, t + δt) = f̃ᾱ(x, t). After implementation of them, initial
omputations were carried out for a set of cases involving lami-
ar flows without MHD effects to assess their suitability. These
ests yielded results that were in excellent comparison with ana-
ytical solution and other computational results.
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.3. Vector lattice Boltzmann equation for magnetic
nduction fields

For flows with MHD effects, it is necessary to calculate the
agnetic field, and this can be done through the magnetic induc-

ion equation [22,23]:

∂B

∂t
+ ∇ · (uB − Bu) = η∇2B (16)

here B is the magnetic induction field, η is the magnetic resis-
ivity or diffusivity, defined by η = 1/(σμ), and σ and μ are the
lectrical conductivity and the magnetic permeability, respec-
ively.

Within the LBM framework, the equation for the magnetic
eld can be solved in a similar fashion to the fluid dynamic
quations, in which the evolution of a distribution function is
omputed. This approach has previously been taken by Del-
ar [12], who successfully performed a set of two-dimensional

HD simulations, and forms the basis of the present work.
o solve the magnetic induction equation with this approach,
vector distribution function h is employed, since a scalar dis-

ribution function, as is used for the hydrodynamic equations,
ill not suffice [12]. A single relaxation time model is used for

ts evolution:

˜
α(x, t) = hα(x, t) − [hα(x, t) − heq

α (x, t)]/τm, (17)

α(x + eα, δt, t + δt) = h̃α(x, t). (18)

The values with a tilde represent post-collision values, as was
he case with the hydrodynamic equations. The relaxation time,
m, is a function of the conductivity and permeability of the
edium and for the 3-D case they are related by [13]:

m = 1

2
+ 4η

δt

(δx)2 . (19)

In practical implementations of this scheme, it is found that
nly seven directions are required and are represented by em

α ;
hese are taken to be directions parallel to the axes and a zero
ector, i.e. the first seven directions used in the lattice used for
he fluid dynamic calculations (Fig. 1).

The components of the equilibrium distribution functions h
eq
i

re then calculated through the following relation, given in index
otation [13]:

eq
αi = Wα

[
B̂i + 4em

αj

c2 (ujB̂i − B̂jui)

]
,

Wα =
{

1
4 , α = 0
1
8 , α = 1, . . . , 6

(20)

here B̂ is a dimensionless magnetic field given by B̂ =
δt/(δx

√
ρ0μ0) where ρ0 is a reference density and μ0 the mag-

etic permeability. Here, i ∈ {x, y, z} represents the Cartesian
oordinate directions. Note that this particular nondimensional-

sation is chosen so that the Alfvén velocity can be kept small
y choosing an appropriate value of ρ0. Due to the weakly
ompressible nature of the approach, this is necessary to avoid
naccuracies resulting from certain higher order terms [12].

fl
c
s
l
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The magnetic field can be recovered from the model by taking
eroth kinetic moments; its components are given by:

ˆ
i =

6∑
α=0

hαi. (21)

The current density, Ĵk can be calculated in two ways. One
s from simply taking the curl of the magnetic field (�× B).
he other, specific to kinetic approaches, is to extract it from

he higher kinetic moments which avoids the need to take finite
ifferences:

ˆ
k = − 4

μ0c2τm
εijk

6∑
α=0

(em
αihαj − em

αih
eq
αj, ) (22)

here

6

=0

em
αih

eq
αj = (ujB̂i − B̂jui), (23)

ˆ is a dimensionless current density given by Ĵ = Jδt
√

μ0/ρ0
nd εijk is the Levi–Civita permutation tensor.

This latter approach is more efficient in complex geometries,
ince calculations of finite differences can prove computation-
lly time consuming for nodes located near boundaries, leading
o a significant effect on the overall performance in certain types
f geometry.

This formulation recovers the full form of the magnetic induc-
ion Eq. (16), which contrasts with many other procedures which
olve a reduced form of the induction equation, neglecting higher
rder terms in the induced magnetic field. In many situations,
he difference is not important, but for cases with high mag-
etic Reynolds number flows where the induced field is of the
ame order as the applied field, a reduced formulation is not
ppropriate.

As well as satisfying the induction equation, the field must
lso have zero divergence (�·B = 0) as required by Maxwell’s
quations. It can be shown that provided the initial conditions
ave zero divergence, this requirement is automatically satisfied
y this scheme [12].

This lattice Boltzmann formulation of the induction equation
s accurate only in the limit of small Alfvén velocity. For higher
elocities, errors from terms associated with certain higher order
oments of the distribution function may become significant

12]. For this reason, the density ρ0 used to nondimension-
lise the magnetic field should be selected such that B̂ remains
mall. In the current work, the reference density was selected
uch that the maximum value of the dimensionless applied field
as 0.1. This is similar to the requirement that υ � cs for the
BM to reproduce the behaviour of the weakly compressible
ydrodynamic equations.

Note that the LBM approach presented in Refs. [12,13] do
ot address the issue of simulating low magnetic Prandtl number

ows at steady state or the specification of magnetic boundary
onditions through distribution functions. Also, they do not con-
ider the use of non-uniform grids required to resolve thin wall
ayers in high Hartmann number flows. These elements, which
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re important for fusion applications, are presented in the fol-
owing sections. Moreover, in contrast to that in [12,13], the
resent approach uses the MRT collision model for simulation
f hydrodynamic fields with significantly enhanced numerical
tability. This work also provides validations for a variety of
enchmark problems relevant to fusion applications under dif-
erent conditions.

.4. Low magnetic Prandtl number steady state
agnetohydrodynamics

Most MHD flows of interest involve liquid metals and for
hese fluids there is a large difference between the timescales
or the fluid flow and the magnetic induction. The ratio of the
imescales is given by the magnetic Prandtl number Prm = νσμm,
here ν is the kinematic viscosity, σ is the electrical conduc-

ivity and μm the permeability. For liquid metals, Prm ∼ 10−7,
eading to a large disparity in time scales for the hydrodynamic
nd magnetic induction fields. Although the original LBM solu-
ion scheme performs well when the time scales are similar, it
ecomes numerically unstable when the time scales differ by
few orders of magnitude. This issue does not appear to have
een addressed in previous works [12,13], but in this work the
roblem was resolved by rewriting the induction equation in the
orm

∂B

∂t
+ χ

γm
∇ · (uB − Bu) = 1

γm
η∇2B, (24)

hich is appropriate for simulating steady state low Prm MHD
ows.

The parameter χ allows the selection of an effective magnetic
esistivity (η = 1/(σμ)) to fix an appropriate Prm and γm is a pre-
onditioning parameter introduced to allow different time steps
o be used to accelerate steady-state convergence. The use of
his equation and the selection of χ and γm is discussed in depth
lsewhere [24]. In brief, it results in the following modifications
o Eqs. (19), (20) and (22) in the approach presented in Section
.3.

′
m = 1

2
+ 4η

γm

δt

(δx)2 , (25)

eq
αi = Wα

[
B̂i + 4em

αj

c2

(
χ

γm

)
(ujB̂i − B̂jui)

]
, (26)

ˆ
k = − 4

χμmc2τ′
m

εijk

6∑
α=0

(em
αihαj − em

αih
eq
αj). (27)
Another point to note is that this approach is only strictly
alid for steady state flows, though in practice it can be applied
o transient flows provided the timescale for the magnetic field
emains much less than that for the fluid motion. A similar mod-
fication to the fluid flow equation can also be made to allow
teady state solutions of both hydrodynamic and magnetic fields
o be reached much more rapidly [24].

v
d
t
t
i
r

ig. 4. Implementation of magnetic boundary condition in LBM. The mag-
etic boundary can, in general, be extended outside the fluid region so that the
omputational domain encompasses induced fields.

.5. Boundary conditions for magnetic induction fields

For the induction equation, no suitable formulations for the
oundary conditions could be found in the literature. Earlier
ork [12] had used a reverse bounceback scheme for the bound-

ries, but this method was only suitable for a limited range
f geometries and did not allow an induced component in the
irection parallel to the imposed field.

A new technique for applying boundary conditions for the
pplied field was therefore formulated. This method enabled the
agnetic field vector to be specified at the boundary, which is

enerally equivalent to imposing zero induced field. In practice,
he induced magnetic field will extend outside the fluid region,
nd for this reason, greater accuracy may be obtained if the
omain over which the magnetic induction equation is solved
xtends outside the fluid region. The approach taken was similar
o the extrapolation scheme used for the fluid flow [21], but sets
he magnetic field rather than the velocity to a specified value at
he boundary. The procedure is as follows:

for nodes on domain boundary (e.g. point a in Fig. 4), use the
imposed field for the calculation of the equilibrium distribu-
tion in Eq. (20).
use these values to calculate the post-collision distributions
with Eq. (17), h̃α on boundary points.
perform the advection step.
for directions α facing into the domain, the post-advection val-
ues of hα will be unknown. These unknown distributions are
then calculated using the second-order extrapolation scheme.

α(x, t + δt) = 2h̃α(x, t) − h̃α(x + eαδt, t), (28)

here x and x + eαδt correspond to points a and b in Fig. 4.
In practice, since the distribution function has seven direction

ectors, only one of which points into the domain, only one
istribution value for each face is calculated is calculated with

he above. For reasons of numerical stability it was found that
he two points neighbouring a face on which the magnetic field
s set should have the same electrical conductivity; this may
esult in one more extra layer of grid points than might otherwise
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ig. 5. Schematic diagram of pipe flow with magnetic field applied perpendic-
lar to flow.

ave been needed. For example to impose an insulating wall
oundary condition, in Fig. 4, the grid points a and b should both
ie within the solid region (which in this case is assigned a very
ow conductivity). The insulating boundary will then lie midway
etween points b and c. Conducting walls can be handled in a
imilar way by selecting appropriate values for the conductivity
or the wall.

. Results and discussion: multidimensional MHD
enchmark problems

.1. Laminar MHD canonical flows

Several standard test cases for which analytical solutions
xist are available for the validation of computer codes. These
nclude the flow between two parallel plates with a magnetic field
mposed perpendicular to the plates (Hartmann flow), MHD flow
n a two dimensional duct [25], and MHD flow through a pipe
26]. For more complex cases, such as 3D lid-driven cavity flow,
here there are no analytical solutions, comparisons with results
btained with other numerical solution schemes can be made.

Preliminary tests with Hartmann flow gave excellent agree-
ent with the analytical solution. However, since many of the

erms in the governing field equations are zero in this case, it
as necessary to also try more complex canonical problems

or a comprehensive validation, and these are detailed in the
ollowing sections.

.1.1. MHD flow through a cylindrical pipe
The laminar flow through a pipe with a field applied normal

o the flow, often known as the Gold problem [26], is illus-

rated in Fig. 5. No slip velocity boundary conditions through
he approach presented in Section 2.2, and electrically insulating
oundary conditions imposed through the approach presented in
ection 2.4 are imposed.

p
t
w

ig. 6. Velocity profiles for directions parallel (left) and perpendicular (right) to appl
re analytical solution.
Fig. 7. Schematic view of lid-driven cavity flow problem.

Fig. 6 shows the velocity profiles for the directions paral-
el and perpendicular to the imposed magnetic field, B0 for a
artmann number (Ha = B0r/

√
σ/ρν) of 10 (where the length

cale r is taken to be the pipe radius). Velocities are normalised
ith the peak velocity for the case with no applied field, and

he distance with the pipe radius. In this simulation, 120 points
ere used to resolve the diameter of the pipe. The analytical

olution was calculated using the formulation given in [26] and
ood agreement can be seen.

.1.2. 3-D MHD lid-driven cavity flow
A true 3-D MHD validation case is provided by the lid-driven

avity flow, which sets up complex fluid flow that is strongly
nfluenced by the applied magnetic fleld in all coordinate direc-
ions. In the case presented here, the flow is in a cubic box with

the top lid moving in the x direction and the magnetic field
pplied in the y direction as in Fig. 7. The Reynolds number was
00 and the Hartmann number was 45; both characteristic num-
ers were calculated using the side of the cube as the reference
ength.

Fig. 8 compares the results with those obtained with a finite
ifference code [3]; an analytical solution is not available for this
roblem. Good agreement can be seen, although there is a slight
eparture for the case with the profile of u against y; this is most
ikely a consequence of the resolution used in the LBM (uniform
rid, 1283), and examination of runs with different resolutions
pheld this viewpoint.
Due to the discontinuity at the edges, this is a demanding
roblem, and the range of time steps that could be used with
he more common single relaxation time (SRT) collision model
ithout the computation becoming unstable was very restrictive.

ied field for MHD pipe flow with Ha = 10. Line is LBM predictions and circles
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reached, the flow field on one cross sectional plane was collected
every time step for 5000 time steps. This set of velocity fields
was used for the inlet conditions and was recycled every 10,000
ig. 8. Comparison of results of lid-driven cavity problem with those of a finite
a = 45, Re = 100.

he SRT model uses a single dimensionless relaxation time,
= 0.5 + 3νδt/δ

2
x in the collision term, (here ν is the kinematic

iscosity) and it was necessary for τ to be very close to, or greater
han unity. However, with the MRT model for the hydrodynamics
he code was found to be much more stable, and a value of τ

which forms a component of the relaxation matrix in the MRT
odel) as low as about 0.55 at Ha = 45 could be used. This

orresponds to a factor of 10 in the minimum viscosity that can
e used compared with the SRT model, or an order of magnitude
ncrease in the Reynolds number that could be simulated. Note
hat in both cases, the induction equation was solved using an
RT model.

The rate at which the solution converges to its steady-state
alue is shown in Fig. 9. In this case, the viscosity and resistivity
ere set to be equal, and a flow with an effective Prandtl number
f 5.625 × 10−7 was simulated by setting χ to that value. The
ariable γm is the preconditioning parameter appearing in the
agnetic induction equation and γ is the corresponding param-

ter for hydrodynamics. More details on the implementation of
his method are given in Ref. [24]. Two values of γm are shown
n the figure, and the rate at which the solution converges is
ubstantially increased by using a lower value of γm. Note that
m = γ = 1 corresponds to the case in which no preconditioning

s applied.

.2. Turbulent MHD flow
Let us now consider the simulation of turbulent flow in the
resence of a magnetic field through a cylindrical pipe as illus-
rated earlier in Fig. 5. A fully-developed turbulent flow entered

pipe; at the inlet, there was no magnetic field, but farther

F
i
t
e

rence code involving direct solution of the Navier–Stokes equations (NSE) [3].

ownstream it entered a region where a field was imposed per-
endicular to the pipe axis. In the LBM computations, a linear
ariation from zero to the desired strength was made over a
istance of two pipe diameters. This arrangement is similar to
he recent experiments at UCLA [27]. Statistics were collected
ownstream to see how the field had affected the turbulence.

The inlet conditions were obtained by running a pipe flow
imulation with periodic boundary conditions and a body force
n the axial direction. After a statistically steady state had been
ig. 9. Convergence to steady state for 3-D lid driven cavity. Residual error
s a measure of the rms velocity difference between iterations separated by 10
ime steps, and γ and γm are speed-up parameters in hydrodynamic and MHD
quations respectively and γ = 1 corresponds to no convergence acceleration.
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ime steps. The Reynolds number based on the bulk velocity and
he diameter was 4900.

Unresolved turbulent scales were handled by using a
magorinsky subgrid scale (SGS) eddy viscosity model with
an Driest wall damping [11]. The presence of MHD forces
s known to affect turbulence, and the Smagorinsky formulation
an be modified to reflect this [28]; for the conditions used in this
ase, these corrections were found to very small, so the standard
magorinsky model was used. The computations were run on

he US Department of Energy’s Bassi supercomputer, housed
t NERSC. Bassi is a distributed memory computer with 888
BM p575 processors running at 1.9 GHz, each with 4 GBytes
f memory. The domain size used for the large eddy simulation
LES) was 2400 × 120 × 120 and this was run on 32 processors,
hich resulted in the computation proceeding at the rate of about
500 time steps per hour. With this domain size, a length of 20
iameters was simulated, and Fig. 10 shows the mean velocity
rofile and turbulence statistics 15 diameters into the region with
he magnetic field. A Hartmann number of 20 (based on the pipe
adius) was used and the profiles are in the direction parallel to
he field and through the pipe centre.

For the case with no MHD, it can be seen that the profiles of
urbulence intensities predicted by the LBM are similar to those
rom a DNS [29], though there is some overprediction of turbu-
ence, particularly for the streamwise direction. Studies showed
his could be attributed to the resolution used, with the error

hanging roughly as the square of the grid spacing. Also, LES
enerally overpredicts the turbulence intensity in the streamwise
irection.

p
p
a

ig. 10. Profiles of rms velocity fluctuations along z axis through centre, taken 15 di
eld (Ha = 0), crosses DNS [29] at Re = 5300, Ha = 0 and dashed line LBM with Ha =
g and Design 83 (2008) 557–572 565

At 15 diameters downstream, all three components of turbu-
ent fluctuations are substantially reduced, as is expected for an

HD flow where the field is applied in the wall-normal direc-
ion. Another feature is that the peaks in the intensities are shifted
way from the wall, an effect that was also found by [30].

A set of tests using different numbers of processors was
ndertaken for this problem to assess the parallel performance of
he code. The code was run for a short duration and the elapsed
ime taken to perform a fixed number of time steps was recorded.
n all the tests the same parameters and grid resolution were used,
he only difference being in the number of processors. In each
ase a period of 50 time steps was used, and to avoid any effects
rom the initialisation of the program the code was run for 50
ime steps before starting the timed period. Fig. 11 shows the
peed of the computation for different numbers of processors.
he largest case used 128 processors and the smallest 16; mem-
ry constraints prevented tests with fewer processors. The speed
s defined as the reciprocal of the elapsed time, and is normalised
uch the case with 16 processors has a speed of 16. This case
ctually took 4.6 s to complete each time step. The speed up can
e seen to be almost linear, with the 128 processor case reaching
speed of 113 on this scale – a drop of only about 12% below

he value for a linear variation.
Slab decomposition along the longest axis was used for these

ests, with ghost points used at each face of the subdomains
o store information exchanged with other processors. For 16

rocessors, the largest subdomain would have been 152 grid
oints wide and for the 128 processor case 21 points wide (19
ctive and 2 ghost points). Although the ghost points do not

ameters from entry into the magnetic field. Solid line is LBM for no magnetic
20.
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Fig. 11. Speed of computations for MHD turbulent pipe flow, on NERSC Bassi
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upercomputer. Circles are data points and solid line corresponds to linear scal-
ng. Grid size was 2400 × 120 × 120 and speeds are normalised to give 16
rocessor case a speed of 16.

erform all the computational steps involved in the LBM, the
xtra computational workload probably accounts for a substan-
ial proportion of the 12% fall found. Other sources would be
rom the time involved in exchanging data and the variations in
peed of different nodes on the supercomputer. This latter one
robably accounts for a few percent – when running smaller
omputations on single nodes of the Bassi machine (eight pro-
essors) execution times found to vary by up to about 5% from
ne node to another.

. High Hartmann number MHD flows using
nterpolated-streaming LBM approach

The use of nonuniform grids is desirable in many applica-
ions and is important in regions of flow where sharp gradients
re present. Magnetohydrodynamic flows at high Hartmann
umbers, which are important in fusion applications, provide
xamples where stretched grids are likely to result in very high
avings in computational time. The regions with high gradients
re contained within very narrow layers close to the wall, with
he flow being relatively constant outside these layers. For exam-
le, the thickness of Hartmann layers, (perpendicular to applied
eld) varies as δH ∝ 1/Ha while for the so-called side layers
parallel to applied field) the variation goes as δH ∝ 1/

√
Ha

22].
In their basic form, the LBE formulations are restricted to

niform grids in that the minimum streaming distance of the
article populations in one time step is exactly equal to the
inimum lattice spacing. In other words, the discretization of

he configuration and particle velocity spaces are coupled. This
ockstep advection of particle populations is a feature inherited
rom its predecessor, i.e. the lattice-gas automaton (LGA) [31]
nd is not necessary for the LBE. It was realized that the LBE
re actually simplified forms of the Boltzmann equation and

ence can be solved without the coupling of the physical and
article velocity spaces and can in principle be implemented
n any mesh [32]. Thus, it was proposed by [33] that the col-
ision step can be computed locally on the lattice grids in the

n

t

ig. 12. Illustration of a second-order upwind Lagrangian interpolation for a
article velocity direction (α = 7) to implement non-uniform grids in the LBM.

sual manner; after the collision step, the particle distributions
ove according to their velocities eα, although the advected

istance of the particle distributions may not, in general, coin-
ide with the mesh spacing (as shown in the example in Fig. 12).
he distribution functions in these locations can always be com-
uted using interpolation; after interpolation, the collision and
treaming steps are repeated. It has been shown that, if the inter-
olation method is at least of second-order, the Navier–Stokes
quations can still be recovered from LBE [34]. Thus, the order
f interpolation schemes should not be lower that the order of
ccuracy of the LBE. This approach is often termed the inter-
olation supplemented lattice Boltzmann method (ISLBM). It
as been applied to simulate a variety of problems, for example
o simulate turbulent plane jets using a two-equation turbulent

odelling approach within the LBM framework [35].
To improve the computational efficiency, here we employ

variant of this original interpolation-supplemented LBE, in
hich the streaming and the interpolation steps are carried out

n two distinct steps. Here, we combine them in one step – the
nterpolated-streaming step. Also, the original approach was
pplied to the SRT-LBE. However, inspection of the method
hows no reason why it cannot be applied in a similar man-
er to the MRT-LBE and the magnetic induction equation, and
his is indeed what was done in this work. A second-order
agrange interpolation was employed in the implementation,
hich is carried out in the respective upwind directions for the
article velocity directions. An example of this implementation
or one particle velocity direction, including the interpolation
oefficients in 3D, is given in Appendix A.

With this modification, it allows non cubic grids, though it
s not suitable for stretching grids in any coordinate direction
elative to the others, i.e. for non-rectangular meshes. However,
his does not pose a problem for many cases of practical inter-
st. Moreover, it is relatively easy to implement and naturally
menable for parallel implementation.

.1. MHD flow between parallel plates at high Hartmann

umber

Following preliminary tests with non-MHD flows to ensure
he ISLBM was working correctly, a series of studies was carried
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number of grid points by an order of magnitude or more. For
the Ha = 10,000 case, use of a uniform grid would have required
85,000 points to achieve the same near wall resolution, but in
this simulation only 192 points were used to span the channel
M.J. Pattison et al. / Fusion Engin

ut with MHD flows. The case described here was a simple
artmann flow between two insulating parallel plates, where

he magnetic field is applied perpendicular to the plates. For this
ase, there is an analytical solution for the velocity v and the
nduced magnetic field Bi [22]

(z) =
(

−dP

dx

)
L

B0

√
ρ

σν

[
1 − cosh(Ha z/L)/cosh(Ha)

tanh(Ha)

]
(29)

i(z) =
(

−dP

dx

)
μ0ρL

B0
[sinh(Ha z/L)/sinh(Ha) − z/L]

(30)

here −(dP/dx) is the driving pressure gradient, σ the electrical
onductivity, ν the kinematic viscostity and μ0 is the magnetic
ermeability. The coordinate z is defined such that z = −L on the
ower plate and z = L on the upper plate. The Hartmann number
s defined as:

a = B0L

√
σ

ρν

he solution is discussed in depth in Ref. [23], where the more
eneral solution for finite conductivity walls and a square duct
s also given. Note that at very high Hartmann numbers, it is
ifficult to evaluate the above analytical solution directly, since
he terms inside the hyperbolic functions become too large. In
his situation, approximate (asymptotic) forms for high Ha can
e used (this is also addressed by Ref. [23]).

The grid used should be set such that several points lie within
he Hartmann layer, with the grid point separation increasing
o large values outside this region. One suitable formulation is
ue the Roberts transformation [36] in which a uniform grid
i.e. with equally spaced points) zk in the range 0 < zk < 1 is
ransformed into a stretched grid z:

= 2L
(β + 2α)[(β + 1)/(β − 1)(z̄−α)/(1−α)] − β + 2α

(2α + 1){1 + [(β + 1)/(β − 1)](z̄−α)/(1−α)}

(31)

here the parameter α is used to control where the points clus-
er. With α = 0, only points near z = 2L are spaced closely; with
= 0.5, points are closely spaced at regions near z = 0 and z = 2L.

(
f
(
I

Fig. 13. Velocity (U) and magnetic field (B) profiles for Hartmann flow betwee
g and Design 83 (2008) 557–572 567

he parameter β determines the degree of stretching, and Smo-
entsev et al. [37] suggest using a value

=
[

Ha

Ha − 1

]0.5

In practice, this was found to give grids in which the spacing
as far too small near the walls. The above recommendation was
ased on the assumption that that the dimensionless boundary
ayer thickness (corresponding to the Hartmann layer in this
ase) is ∼1/Ha. Inspection of profiles generated suggested that
he boundary layer thickness, δ/L, was actually ∼5/Ha, though
he definition of the end of the layer is somewhat arbitrary

In the Hartmann flow computations presented here, the rela-
ion used was modified to become:

=
[

Ha/5

Ha/5 − 1

]0.5

ith this factor, flow velocities predictions within 1% of the
nalytical solutions could be obtained by the lattice Boltzmann
pproach.

Figs. 13–15 show the velocity and induced magnetic field
rofiles for Hartmann numbers of 100, 1000, and 10,000, i.e.
panning two-orders of magnitude. The coordinate z in these
gures runs from 0 at the wall to 1 at the centre. Fig. 13 uses
linear scale, but the other two use a logarithmic scale for the

bscissa since the Hartmann layers are very narrow in these
ases. The comparison with the analytical solution is very good,
nd all cases predicted the centreline velocity to within 0.5%;
he locations of the circles correspond to the grid points so it
an be seen that about 10 points are used to resolve this layer.
n all cases, the use of a stretched grid considerably reduced the
total was actually 196 points because extra points are needed
or bounding walls) – a dramatic saving in computer resources
less than 0.5% of the computational effort is required when the
SLBM is used in lieu of the uniform grid LBM).

n parallel plates at Ha = 100; line LBM, circles analytical. 96 grid points.
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ig. 14. Velocity and magnetic field for Hartmann flow between parallel plat
bscissae.

.2. MHD flow in insulating duct at high Hartmann number

Another test case used was the flow through a square duct
ith insulating walls at a high Hartmann number (in this case
a = 500). Duct flow velocity profiles are again characterised
y a flat central region with narrow layers with high gradi-
nts near to the walls. The width of the layers adjacent to the
alls perpendicular to the applied field direction (the Hart-
ann layers) varies as 1 = Ha, but for those parallel to the field√
the side layers), the width varies as 1/ Ha. The case was
esolved by using 128 grid points in each direction, and Fig. 16
hows the velocity profiles obtained with the LBM along the
all bisectors along with the analytical solutions. The veloc-

u

w
t

ig. 15. Velocity and magnetic field for Hartmann flow between parallel plates at H
bscissae.

ig. 16. Velocity profiles along wall bisectors for MHD flow in an insulating duct at H
olution. Field applied in z direction. Note that for clarity the right graph has log scal
Ha = 1000; line LBM, circles analytical. 128 grid points. Log scale used for

ty at the centre differs from the analytical solution by about
%, rather more than that in the earlier simulations. The rea-
on for this is that the ideal grid distributions required for the
and z directions are rather different and the stretching pro-

le used was a compromise. Use of a few more grid points in
he y direction would be expected to significantly reduce the
iscrepancy.

The profile through the side walls was calculated with the
ollowing approximate asymptotic formula [22]
= u0(1 + η2)(1 − erf(n/
√

2)) − η
√

2/π exp(−η2/2) (32)

here η is a dimensionless distance η = y
√

Ha/2, with y being
he distance from the wall, normalised with the duct half width.

a = 10 000; line LBM, circles analytical.192 grid points. Log scale used for

a = 500, left: side layers and right: Hartmann layer; line LBM, circles analytical
e for the abscissa, and axes are normalised by the duct half-width.
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Fig. 17. Plots of induced magnetic field (Bx) and vel

he velocity u0 is the velocity at the centre for the equivalent
ase with no side walls. This solution is also given a thorough
iscussion by Ref. [23], but readers are warned that during the
ourse of this study, the equation given in their book was found
o contain a typographical error.

Two dimensional plots of magnetic field and the velocity field
re shown in Fig. 17. Over the central region, the velocity profile
an be seen to be very flat, with the induced field having a con-
tant gradient. These observations are in keeping with expected
rends.

It was found that although extreme amounts of stretching
factors > 100) work perfectly well in regions where the flow
arameters do not change very little, such as in the core of
artmann flow, more moderate stretching values are required

n other regions. With large values of the stretching factor in
he side or Hartmann layers, the computation can lose accu-
acy and problems with convergence to a steady state may
rise.

. Fusion MHD example: 3D simulation of MHD flow in
thermal blanket module

One case undertaken that is relevant to a current fusion

ngineering problem was the simulation of a section of a
hermal blanket. A cross-section of the geometry for the prob-
em tackled is shown in Fig. 18. The widths of the layers
re assumed to be uniform around the perimeter, and the

ig. 18. Schematic diagram showing cross-section of thermal blanket module.
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(U) for MHD flow in an insulating duct at Ha = 500.

ell is 1.4 m long. Liquid lead/lithium flows through the cen-
ral region which is surrounded by the flow channel insert
FCI), a layer of a silicon carbide composite designed to
rovide thermal and magnetic insulation. This is in turn sur-
ounded by a layer of Pb/Li with the outer casing being ferritic
teel.

Conditions and thermophysical properties were set to be simi-
ar to those in the design. The simulation assumes the mean Pb/Li
nlet velocity to be 0.1 ms−1. The magnetic field is applied in
he z direction. In both the y and z directions 118 grid points
ere used, with the nodes clustered such that they were close

t the liquid wall and the outer boundaries. The Roberts stretch-
ng transformation, as discussed before, was used in the central
b/Li core flow, and exponential stretching in the other regions.
niform spacing of the nodes in the streamwise (x) direction
as used.
A pressure gradient was imposed to drive the flow. It was

ound that during the convergence process, the velocities fluc-
uated greatly though the amplitude of these fluctuations did
ecay rapidly. To avoid numerical problems, the pressure gra-
ient was ramped up in stages. The reason for the fluctuations
s not clear, but is thought to be associated with the precondi-
ioning method used to accelerate convergence to steady state.
ery similar behaviour has previously been observed in a this
ort of problem with a finite volume method [37]; in both codes,
hese fluctuations were only observed when there were conduct-
ng walls. A Hartmann number of about 100 was used. Due to
he dependence of the viscosity on temperature, the effective
a increased along the length of the channel. In practice, higher
artmann numbers would be used in the real situation, but here

he objective was to obtain a similar flow distribution for the
urposes of calculating the temperature profile, and value used
ere was high enough that the Hartmann and side layers were
mall compared with the central region. Naturally, higher Ha
ows could be simulated with higher resolution grids and with

he use of multi-processor computer clusters.
Fig. 19 shows the induced field and the velocity profile on a

ross-section of the cell. The velocity can be seen to have peaks
ear the side walls – this is due to the finite conductivity of the

iC composite in the FCI, and peaks would not be observed for
perfectly insulating FCI. In duct flows with highly conducting
alls, these peaks can become very narrow, and are known as

ide wall jets. In the other direction, there is a very steep climb in
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Fig. 19. Induced field (Bx) and velocity (U) plots on

he velocity near the walls (the Hartmann layers). The velocity in
he narrow channels is low compared with the main channel, and
s higher in the sections perpendicular to the applied field. The
nduced magnetic field shows the usual steep climb at the outer
alls and a constant slope over most of the rest of the domain.
ote the presence of a step near z = 0, this corresponds to the
CI which has low electrical conductivity, inhibiting changes in

he field. The profiles of the velocity induced field are consistent
ith expectations.

. Summary and conclusions

A number of new developments have been introduced for the
imulation of MHD flows with the lattice Boltzmann method.
he main ones were:

introduction of a new method for specifying the magnetic
field at a boundary, through an extrapolation scheme for the
vector distribution function. Unlike earlier LBM approaches,
there is no restriction on the angle of the field relative to the
coordinate axes.
a new technique, based on a preconditioning approach, for
allowing simulations of MHD flows with low magnetic
Prandtl numbers and for steady-state convergence.
non-uniform gridding approach to resolve thin layers near
the walls at high Hartmann numbers developed through
an interpolated-streaming step in the LBM for both scalar
(hydrodynamics) and vector (magnetic induction) distribution
functions.
introduction of an advanced multiple relaxation time (MRT)
collision model to solve MHD problems using the LBM for
enhanced fidelity and numerical stability.

f7,i,j,k = a−
1,i,j,k[b1

1,i,j,kf̃7,i,j,k + b−
2

+ a−
2,i,j,k[b−

1,i−1,j,kf̃7,i−1,j,k +
A comprehensive set of validations and tests has been under-
aken including both laminar and turbulent MHD flows. For
he simpler canonical problems, comparisonswith analytical

+ a−
3,i,j,k[b−

1,i−2,j,kf̃7,i−2,j,k + b−
2,

H
t
b

ss-section of a thermal blanket module at Ha = 100.

olutions have shown very good agreement. For the more
omplex benchmarks, such as the 3-D lid-driven cavity flow,
nalytical solutions are not available, but comparisons with
redictions of other CFD codes showed close agreement with
enchmark results, verifying the validity of the new advances.
or many problems, the use of the MRT model in lieu of the
RT model allows an improvement in numerical stability by
factor of about 3, and for particularly demanding problems,

uch as the MHD lid driven cavity, an order of magnitude
mprovement can sometimes be seen.

The extension of the ISLBM to MHD flows allows flows
ith Hartmann numbers of several thousand to be simulated

elatively quickly. By appropriately selecting the distribution
nd clustering of grid points, it has been found that the com-
uter time requirement can be reduced for a factor of several
undred, when compared with that of uniform grids. Also,
he LBM has demonstrated very good parallel performance
n multi-processor machines, with tests showing almost linear
caling up to 128 processors for evaluated MHD problems.

Designs of heat transport systems in fusion reactors typ-
cally involve 3-D bounded liquid metals flows with low

agnetic Prandtl number (Prm = ν/ηm ∼ 10−7). Magnetic fields
re generally high, leading to narrow shear layers near the
alls which require the use of stretched grids for accurate

nd computationally efficient solutions. With the new devel-
pments discussed here, the LBM is now in a position to
imulate actual systems for proposed fusion reactors, and a
reliminary example of such a computation for a thermal
lanket is indeed presented in this paper. The ability of the
BM to parallelise efficiently will enable much larger prob-

ems to be tackled than would otherwise be the case (see
ig. 12).

ppendix A

1,kf̃7,i,j−1,k + b−
3,i,j−2,kf̃7,i,j−2,k]

i−1,j−1,kf̃7,i−1,j−1,k + b−
3,i−1,j−2,kf̃7,i−1,j−2,k]

i−2,j−1,kf̃7,i−2,j−1,k + b−
3,i−2,j−2,kf̃7,i−2,j−2,k]

(A.1)
ere, the “tilde” refers to the post- “effective” collision values of
he distribution function (i.e. including forcing terms) obtained
y executing the collision step as in Eq. (3-a). The upwind
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agrange interpolation coefficients in Eq. (A.1) are given below:

−
1,i,j,k =

[
Xm(i,j,k) − (Xm(i−1,j,k) + δx)

(Xm(i,j,k) + δx) − (Xm(i−1,j,k) + δx)

]

×
[

Xm(i,j,k) − (Xm(i−2,j,k) + δx)

(Xm(i,j,k) + δx) − (Xm(i−2,j,k) + δx)

]
(A.2)

−
2,i,j,k =

[
Xm(i,j,k) − (Xm(i,j,k) + δx)

(Xm(i−1,j,k) + δx) − (Xm(i,j,k) + δx)

]

×
[

Xm(i,j,k) − (Xm(i−2,j,k) + δx)

(Xm(i−1,j,k) + δx) − (Xm(i−2,j,k) + δx)

]
(A.3)

−
3,i,j,k =

[
Xm(i,j,k) − (Xm(i,j,k) + δx)

(Xm(i−2,j,k) + δx) − (Xm(i,j,k) + δx)

]

×
[

Xm(i,j,k) − (Xm(i−1,j,k) + δx)

(Xm(i−2,j,k) + δx) − (Xm(i−1,j,k) + δx)

]
(A.4)

nd

−
1,i,j,k =

[
Ym(i,j,k) − (Ym(i,j−1,k) + δy)

(Ym(i,j,k) + δy) − (Ym(i,j−1,k) + δy)

]

×
[

Ym(i,j,k) − (Ym(i,j−2,k) + δy)

(Ym(i,j,k) + δy) − (Ym(i,j−2,k) + δy)

]
(A.5)

−
2,i,j,k =

[
Ym(i,j,k) − (Ym(i,j−1,k) + δy)

(Ym(i,j−1,k) + δy) − (Ym(i,j,k) + δy)

]

×
[

Ym(i,j,k) − (Ym(i,j−2,k) + δy)

(Ym(i,j−1,k) + δy) − (Ym(i,j−2,k) + δy)

]
(A.6)

−
3,i,j,k =

[
Ym(i,j,k) − (Ym(i,j,k) + δy)

(Ym(i,j−2,k) + δy) − (Ym(i,j,k) + δy)

]

×
[

Ym(i,j,k) − (Ym(i,j−2,k) + δy)

(Ym(i,j−2,k) + δy) − (Ym(i,j−1,k) + δy)

]
(A.7)

imilarly coefficients c−
1,i,j,k, c−

2,i,j,k, c−
3,i,j,k, can be developed

or the z direction which are needed for certain other parti-
le directions. In the above, δx, δy and δz, are the streaming
istances based on the particle velocity c during a time inter-
al δt, i.e. δx = cδt, δy = cδt, δz = cδt. Xm(i,j,k), Ym(i,j,k), and
m(i,j,k), are the physical coordinates of grids. In general, the
rids would be stretched such that Xm(i,j,k) − Xm(i−1,j,k) �= δx,
m(i,j,k) − Ym(i−1,j,k) �= δy and Zm(i,j,k) − Zm(i−1,j,k) �= δz. In a sim-

lar way, if the particle velocity directions are flipped as
ompared to the above, as in for e.g., in the calculation of
he interpolated-streaming values of f8,i,j,k (see Fig. 1), the
espective interpolation coefficients are then based on the corre-

ponding upwind directions, i.e. a+

1,i,j,k, a+
2,i,j,k and a+

3,i,j,k, and
+
1,i,j,k, b+

2,i,j,k and b+
3,i,j,k. This approach can be extended to

ector distribution functions using similar interpolation formu-
ae.
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