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A B S T R A C T

To address concerns associated with liquid metal (LM) flow balancing among multiple poloidal channels of a LM
blanket, we investigate the factors (first of all the length of the channels) that influence the flow distribution
when the duct walls are electrically insulated. We simulate LM MHD flow through multiple channels fed by a
prototypical manifold for a range of channel lengths using a 3D MHD solver, HIMAG. The simplified manifold
geometry consists of a rectangular, electrically insulated feeding duct which suddenly expands such that the duct
thickness in the magnetic field direction abruptly increases by a factor of 4. After a short length downstream of
the expansion, the flow is divided into three identical parallel channels. By measuring the flow rate in each of the
channels, we conclude that flow balance among the channels is improved by increasing the length of the
channels. An effort is made to obtain scaling laws that characterize flow balancing as a function of the flow
parameters and the manifold geometry using a Resistor Network Model (RNM). Associated Hartman and
Reynolds numbers in the computations were ∼103 and 102 respectively. Compared to the full 3D analysis, the
proposed RNM suggests a relatively quick and simpler way of computing the blanket length that might be needed
to provide balanced flow among the parallel channels.

1. Introduction

Liquid metal (LM) blankets for power fusion reactors circulate LM
(Li or PbLi) in the presence of a strong plasma-confining magnetic field
for breeding tritium, transferring heat for electricity generation, and
cooling the breeding zone and structural components of the blanket. To
that end, blanket designs, e.g. dual-coolant lead-lithium (DCLL) [1],
feature a feeding inlet pipe which branches off into parallel channels
via a manifold. After making a few passes to absorb heat and produce
tritium, the heated LM is collected by another manifold to extract LM
from the blanket toward the ancillary system through the connected
outlet pipe.

Ensuring balanced distribution of flow among the multiple channels
is a critical concern as overheating of structural material may occur in
underfed channels [2]. Thus, it is important to characterize MHD flow
through manifold components and identify factors that affect flow
balance in multichannel MHD flows.

Numerical modeling has been an effective tool for probing the be-
havior of MHD flows in manifolds with transverse applied magnetic
field. Recent numerical studies suggest control of flow distribution
among multiple channels is possible as demonstrated by adjusting the
geometry of a prototypic manifold which feeds three parallel channels

(Fig. 1). It was shown that increasing expansion length, Lexp, for small
values of channel length, Lchan, tends to balance the flow [3]. Small Lexp
caused the side channels to be underfed. In the present work, we show
that increasing Lchan has a balancing influence on the flow distribution.
The system is shown to behave analogously to a Resistor Network
Model (RNM), which we introduce in the present work. Steady state,
fully 3D MHD solutions are obtained using HIMAG [4] to study the
influence of channel length on flow distribution in an electrically in-
sulated prototypic inlet manifold.

2. Numerical methodology

Steady solutions for laminar flow of liquid metal through an elec-
trically insulated manifold (Fig. 1) in a strong transverse magnetic field
are obtained numerically. Such a flow is characterized by the following
key dimensionless parameters: Hartmann number, =Ha bB σ ρν/f
where B, σf, ρ, and ν are applied magnetic field strength, fluid electrical
conductivity, density, and kinematic viscosity respectively; Reynolds
number, Re=Ub/ν; expansion ratio, rexp=b/d; dimensionless duct
height, a/d; dimensionless length of the expansion region, Lexp/b; di-
mensionless length of the multiple channels, Lchan/b; and channel size
parameter, sc=h/b. In the present work Ha=1465, Re=100, rexp=4, a/
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d=0.8, Lexp/b=0.5, and sc=0.3 while Lchan/b=[2, 10, 20, 30, 40, 50].
Using the Hoffman2 computer cluster at UCLA, each simulation was

run in parallel on 128 nodes until steady state solutions were reached as
determined by the L2 norm of the residuals reaching the order of 10−16.
Here, residuals are defined as the difference of flow variables at con-
secutive time steps.

2.1. Governing equations

The incompressible MHD equations, shown below (1–4), include an
electric potential formulation for Maxwell’s equations along with the
Navier-Stokes equations. It is assumed that the magnetic Reynolds
number is small such that the induced magnetic field is neglected
compared to the applied one:

Continuity equation for incompressible flow,

∇·u=0; (1)

Navier-Stokes equation,

∂
∂

+ ∇ = − ∇ + ∇ + ×u u u u J B
t ρ

p ν
ρ

· 1 1 ;2

(2)

Ohm’s law,

= −∇ + ×J u Bσ ϕ( ); (3)

Continuity equation for electrical current,

∇·J=0. (4)

Here, u, J, and B are the velocity, electrical current density, and

magnetic field vectors respectively and p and φ are the pressure and
electric potential. ν is kinematic viscosity. Taking the divergence of Eq.
(3) and combining with Eq. (4), we obtain a common electrical po-
tential formulation:

∇ ∇ = ∇ ×u Bσ ϕ σ·( ) ·( ). (5)

To consider both the liquid and the surrounding solid wall, which
may have different electrical conductivity, the electrical conductivity σ
is left inside the derivatives in Eq. (5).

2.2. Computational mesh

Eqs. (1), (2) and (5) were solved numerically on non-uniform rec-
tangular meshes (Fig. 2) which were previously evaluated in a mesh
refinement study using the same solver and similar parameters. The
mesh refinement study used three meshes: a coarse mesh (∼0.5 million
cells), a medium mesh (∼1 million cells), and a fine mesh (∼2 million
cells). In the present computations, the fine mesh was used. In making
each mesh, we ensured that there are at least 5 nodes inside all Hart-
mann layers on the walls perpendicular to the magnetic field and 12
nodes inside twice the side layer thickness on each wall parallel to the
magnetic field. Also, higher mesh resolution was used in the liquid next
to the back wall of the expansion region, which is perpendicular to the
axial direction, where internal shear layers might be formed.

2.3. Initial and boundary conditions

Simulations were started with initially uniform flow conditions with

Fig. 1. A prototypic manifold geometry with attached parallel channels for numerical simulation. Fully developed flow enters the feeding duct, spreads out into the
expansion region, is sorted into multiple channels, and collects in the common outlet where it becomes fully developed before exiting the duct.
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a time step size Δt=10−4s. Fully developed Shercliff flow is used as the
inlet boundary condition in the feeding duct. The outlet boundary
condition is in the form =∂

∂ 0x for all variables except pressure. The
pressure is set to zero at the outlet and the fully developed Shercliff
pressure gradient is used at the inlet. The no slip condition is enforced
at all fluid-wall interfaces. Normal components of electrical current
density are set to zero at the outer domain boundary to agree with the
fully developed inlet and outlet conditions.

2.4. Numerical solver

The full MHD equations shown in section 2.1 are solved using Hy-
PerComp/UCLA’s MHD solver, HIMAG (HyPerComp Incompressible
MHD solver for Arbitrary Geometries). Details regarding the formula-
tion and validation of the HIMAG code can be found elsewhere (e.g.
[4,5]).

3. Results & discussion

In Fig. 3, the percentage of the total flowrate carried by each
channel is plotted versus Lchan.

The curves for the left and right channels overlap because the flow is
symmetrical for the study’s parameter space. The manifold flow be-
comes more balanced as Lchan increases, tending towards perfectly ba-
lanced flow where each channel carries a third of the total flowrate. The
behavior of this effect is best described via analogy to an electrical
circuit segment. In this analogy, our manifold geometry is simplified as

a Resistor Network Model (RNM) composed of three parallel pairs of
resistors as illustrated in Fig. 4.

Here, the three parallel channels of the manifold are represented by
three identical resistors with variable resistance R3 which increases
linearly with Lchan. The resistors labeled R1 and R2 have constant re-
sistance and represent the 3D flow in the expansion region which feeds
each of the three channels. Since Lexp is small (Lexp/b < 1), it is ex-
pected that R2 < R1. The flow distribution is then governed by the
following equations:

+ = −Q R R P P( 1 3) ,1 2 1 (6)

+ = −Q R R P P( 2 3) ,2 2 1 (7)

=Q center Q(% )
100

,o2 (8)

=
−Q center Q100 (% )

200
.o1 (9)

Eqs. (6)–(7) are analogous to Ohm’s law such that electrical current
is to flowrate Q as voltage is to pressure P. Eqs. (8)–(9) relate the total
flowrate Qo and channel flowrates Q1 and Q2 to the percentage of the
total flowrate carried by the center channel (%center).

Assuming that the development length of the flow in the channels is
small compared to Lchan, we may define R3 as follows:

R3= LchanS. (10)

Here, S is the Shercliff pressure gradient in a fully developed flow [6]
per flowrate. Combining Eqs. (6)–(10) yields

= +
+ +

center L S R
L S R R

(% ) 100 1
3 2 2 1

.chan

chan (11)

The resulting Eq. (11) matches our intuition that as Lchan approaches
infinity, (%center) approaches 33.3…%. Values for R1 and R2 cannot be
determined analytically due to the complexity of the flow in the ex-
pansion region; however, we have determined values for R1 and R2 by
curve fitting Eq. (11) to numerical data for (%center).

Using a minimization algorithm, we select values of R1 and R2
which minimize the Root Mean Squared Deviation (RMSD) comparing
the 3D numerical results and Eq. (11). Given the pressure gradient in a

Fig. 2. An example computational mesh with 2.05 million cells for a manifold geometry with 3 channels, Lexp/b=0.5, Lchan/b=2, rexp=4, sc=0.3, and a/d=0.8.

Fig. 3. Percentage of the total flowrate carried by each of the three channels is
plotted.

Fig. 4. A Resistor Network Model of the prototypical manifold in Fig. 1.
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fully developed flow S=8.800× 106 Pa s/m4 for the reference mag-
netic field and flow velocity specified in Section 2, Eq. (11) best fits the
data when R1 and R2 equal 6.726×106 Pa s/m3 and 4.462× 106 Pa s/
m3 respectively. The resulting RNM fits the numerical data with an
RMSD of 0.0067. The model is plotted along with the numerical data in
Fig. 5. In addition to fitting the numerical data well, the RNM is shown
to agree with the expected behavior of the manifold as Lchan increases
past 2.5m. It is worth noting that in this case, the modelled (%center)
comes within 1% of the perfectly balanced value (34.33…%) after Lchan
exceeds 5m.

Since there are two unknowns in the RNM, R1 and R2, it is possible
to fully define the RNM using only two simulations or experiments.
That is, if we know (%center) for each of two values of Lchan, we can
solve Eq. (11) for the constants R1 and R2 at a particular Ha and Re.
Below, we demonstrate by calculating R1 and R2 for each possible pair
of simulations we have performed.

We have six simulations with different channel lengths so the

number of unique pairs of channel lengths is 15= ⎡
⎣

⎤
⎦−

1
2

6 !
(6 2) ! . Thus we

can calculate 15 pairs of resistor values R1 and R2. The computed re-
sistor values are plotted in Fig. 6 versus the sum of the two channel
lengths used for each calculation.

A slight decreasing trend is observed even though the model sti-
pulates that R1 and R2 are constants that are not dependent on Lchan.
Still, the calculated resistances are within 5.7% and 7.7% of the best fit
values of R1 and R2 respectively. To get an idea for how these errors
affect the model’s applicability, we compare the RNMs using the highest
and lowest calculated resistor values along with the numerical data in
Fig. 7.

The maximum difference between the two models and the numer-
ical data is 0.36% (at Lchan=0.1m)) and the error is an order of mag-
nitude smaller for Lchan> 1m. Thus all of the calculated resistor pairs
are suitable for predicting the flow distribution as a function of Lchan
with acceptably small error. This is an important result because it in-
dicates that only two simulations or experiments are required for pre-
dicting the flow distribution for the full range of Lchan.

4. Conclusions

We simulated MHD flow through a non-conducting manifold using
HIMAG with parametric variations of Lchan, the length of the three
parallel channels fed by the manifold.

We observed that increasing Lchan causes flow to become more
evenly distributed among the parallel channels. Furthermore, a Resistor
Network Model was introduced to model the flow distribution as a
function of Lchan. The RNM was shown to fit the flow distribution data
as well as the expected behavior of the flow distribution as Lchan be-
comes very large. In the present case, it was shown that prohibitively
long channels would be required to achieve a balanced flow distribu-
tion (Lchan∼ 5m for 34.33% of flow passing through the center
channel). However, this problem may be mitigated by increasing the
length (Lexp) between the sudden expansion and the inlets of the

Fig. 5. An RNM is fit to the numerical results for (%center). The smaller plot shows the modelled behavior of the flow distribution for much larger channel length. The
flowrate carried by the center channel approaches 1/3 of the total flowrate as Lchan increases.

Fig. 6. Resistor values are plotted against the sum of each pair of channel
lengths used for the calculations.
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parallel channels [3] or by electrically coupling the channels [7].
As a design tool, the proposed RNM is useful because only two si-

mulations or experiments are required to determine a channel length
which produces a desired flow distribution given a set of flow para-
meters and manifold geometry. By contrast, other methods for opti-
mizing channel length will require more than two iterations. Thus using
an RNM may save blanket designers months or years of computational
time and may prevent the need for many expensive experiments for
optimizing blanket designs.

The model is not limited to the particular manifold configuration of
three parallel channels and can easily be extended to a more complex
configuration, though for other configurations the RNM would require

validation. For instance, changing Lexp or adding a sudden contraction
to the outlet is likely to only affect the values of R1 and R2 in Eq. (11).
Additionally, the RNM is likely to be applicable for non-rectilinear
ducts. The model can be generalized to n channels, taking the form of n
parallel pairs of resistors. In that case, n data points will be required to
fully define the RNM and solve for the n unknown resistor values. If the
problem is symmetric as in the present work, the number of unknowns
(and required data points) will be reduced to n/2 (rounded up).
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