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Abstract

The proposed use of a flowing liquid metal layers as virtual first-walls for magnetic fusion energy reactors has prompted
the development of numerical models capable of predicting the motion of such free surface liquid-metal flows within complex
geometry boundaries and in the presence of strong magnetic fields. Several model variants were developed that utilize the
assumption of toroidal axisymmetry to simplify the governing Navier–Stokes and Maxwell’s equations to a 2D form. Typically
an induced magnetic field formulation has been used to model eddy current formation and various numerical methods and free
surface tracking techniques (including height function and volume-of-fluid) have been employed. These axisymmetric models
predict a variety of interesting behavior including the effect of toroidal field gradients on the velocity profiles and stability, and
the effect of surface-normal magnetic field components on toroidal motion and flow thickness. However, axisymmetric models
cannot be used to simulate the true 3D geometry and magnetic field configuration of a magnetic fusion reactor. And so, a 3D,
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exible geometry, multiple material, free surface magnetohydrodynamic (MHD) solver called HIMAG has been develo
he past several years. The HIMAG formulation is described in detail along with the results of several initial benchmark p
reliminary data from the application of HIMAG to several fusion relevant liquid wall problems including: (1) motion of l

n a new sample holder for the Diverter Materials Evaluation System (DiMES) experiment on the DIII-D tokamak faci
otion of gallium alloy in a quasi-2D film flow test section in the MTOR facility; (3) motion of gallium alloy in a 3D field

ow test section in the MTOR facility; are also presented and discussed. Finally, future plans for the HIMAG code, in
pplication to the simulation of the effect of insulator coating cracks on closed channel MHD flows, are described.
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1. Introduction

The APEX project in its first phase examined a la
number of first-wall and blanket concepts that had
potential to handle high power density. One clas
concepts that seemed particularly promising was th
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liquid walls. During the initial evaluation of the liquid
wall idea, very simplified 1.5D1 evolution equations
for the liquid height were derived from the governing
Navier–Stokes and Maxwell’s equations and were used
to evaluate the dynamics of liquid-metal flow along a
curved first-wall. Both thick liquid metal wall flows,
that capture the majority of the neutrons, as well as
thin liquid wall flows, where only the surface heat and
particle fluxes are captured, were considered as possi-
bilities. There were also ideas advanced as to how exter-
nally applied electric currents might aid in controlling
the liquid flow by forcing it against the back wall and
even providing some measure of in situ pumping by
magnetohydrodynamic forces. This work, including a
detailed treatment of the flow models, is documented
in the APEX Interim Report[1]—a summary of which
is available in Abdou et al.[2].

The conclusions of this simple modeling work
were that, particularly, thin flowing liquid metal walls
(known asCLiFF concepts for Convective Liquid Flow
First-Wall) appeared feasible within the assumptions
of a simple single-component toroidal field and simple
cylindrical geometry.Table 1 gives a typical range
of thin liquid wall parameters. However, the APEX
Interim Report conclusions identified magnetohy-
drodynamic (MHD) issues in more prototypic fields
and geometries as a main feasibility issue that must
be seriously addressed by any subsequent research.
In particular, the main flow issues were identified
as magnetohydrodynamic drag and surface stability
e
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Table 1
Typical parameter ranges for thin fast-flowing liquid walls and di-
vertors in a fusion power reactor

Quantity (unit) Symbol Value

Flow depth (m) h 0.005–0.04
Flow length (m) L 1–8
First-wall radius of curvature (m) R 3–5
Velocity scale (m/s) U 5–20
Toroidal magnetic field (T) B 5–15
Toroidal magnetic field gradient

(T/m)
�B 0.25–1.5

Acceleration (g + U2/R) (m/s2) geff 1–130

Kinematic viscosity (m2/s) ν (0.3–1)× 10−6

Electrical conductivity
(�−1 m−1)

σ (2–4)× 106

Density (kg/m3) ρ 500–11000
Surface tension (N/m) σt 0.3–0.6
Magnetic permeability (N/A2) µm ∼4� × 10−7

Hartmann number (Bh(σ/ρν)).5 Ha 500–50,000
Gradient Hartmann number

(�Bh2/2(σ/ρν)).5
Ha� 0.1–100

Reynolds number (Uh/ν) Re 104–106

Interaction parameter (Ha2/Re) N 104–105

Weber number (ρU2h/σt) We 100–105

Magnetic Reynolds number
(σµmUh)

Rem 0.05–1

Froude number (U2/hgeff) Fr 100–1000

vation, electromagnetics simulation, and free surface
tracking capabilities are all accounted for in a much
more complete fashion with a minimum of assump-
tions.

The work reported here can be split into two main
efforts: axisymmetric flows, and arbitrary geometry
3D flows. While it was easy to see that a unsteady,
fully 3D, arbitrary geometry, free surface LM-MHD
flow simulation capability would ultimately be needed
to fully address issues of liquid metal wall flows, it was
also apparent that the development of such a capability
would take several years before even fledgling results
could be obtained, and that the parameter ranges
accessible by such afull solutionmight be limited. The
strategy then was adopted to begin development of a
3D simulation tool while also advancing the simulation
capability in reduced dimensions by making use of
the approximation of toroidal axisymmetry. In this
fashion, we have been continuously increasing our
understanding of liquid metal wall flows by modeling
more and more complex field and field gradient issues,
while working towards the capability needed to simu-
ffects resulting from:

. multi-component magnetic fields;

. strong toroidal and poloidal field gradients;

. externally applied control currents;

. 3D geometry, curvature, and penetrations.

Liquid metal MHD modeling research efforts in t
econd phase of the APEX project have focused m
n developing the computational capability to inve
ate these complex free surface LM-MHD issues
reater degree, and address their impact on the fea

ty of the thin liquid metal wall idea. A true resolutio
f these feasibility issues requires improved mo

ng where liquid mass, momentum and energy con

1 1.5-D notation is used to denote formulations where the sol
as a 2D character, but one of the dimensions is subject to
ignificant simplification. A similar notation is used for 2.5-D.
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late complex geometry flows in 3D. In addition, work
in 2D and 2.5D will be used for benchmarking the
complex 3D simulation tools. Throughout the paper,
the models described all make the assumption of low
magnetic Reynolds numberRem = σµmUh « 1,2 so
that induced magnetic fields are considered small and
contributions of the induced fields in electromagnetic
body force terms are neglected.

This paper focuses mainly on a description of the
modeling development and phenomena observed,
while serious application of the models to various
design ideas explored in the APEX study is reported
elsewhere in this special issue. The subsequent sections
are organized to reflect this two-pronged approach to
modeling liquid metal walls in strong magnetic fields.
Section2 contains discussion and results of modeling
efforts using the axisymmetric approximation, includ-
ing many results from several different codes using
somewhat different numerical procedures. Section3
contains a description of efforts to develop a fully
3D arbitrary geometry modeling capability as well
as initial results to various benchmark and fusion
problems. Section4 will finally summarize important
conclusions and direction of ongoing work in this area.

2. Axisymmetric models and simulation results

It is fairly easy to see, given the toroidal geometry
of a tokamak, that flows along a first-wall could be ide-
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then we make the assumption that∂/∂z= 0 to simplify
the Navier–Stokes equations:

∇⊥ · v = 0, (2)

where v = (u, v,w), p, and B0 are the velocity,
pressure and applied magnetic induction; andρ, ν, g
are the density, kinematic viscosity and acceleration of
gravity all assumed constant throughout the working
liquid. This formulation keeps all three components
of the velocity and applied magnetic field, but no
quantity is allowed to vary withz, so that the gradient
operator is 2D,�⊥ = (∂/∂x, ∂/∂y, 0). We will also
use the standard fluid dynamics terminology where
streamwise denotes the main flow direction (usuallyx),
transverse denotes the direction transverse to the main
flow and normal to the flow substrate (usuallyy)
and spanwise denotes the direction perpendicular
to the flow but parallel to the back wall (z-toroidal
direction for poloidal flow). The MHD terms in Eq.
(1) are separated in such a way to show forces acting
in the poloidal plane and forces acting in the toroidal
direction.

The convenience of the axisymmetic assumption is
that it decouples the effect of magnetic fields applied
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lized such that they extend completely unbroken
ithout variation in the toroidal direction—around t
xis of revolution of a poloidal cross-section. The
umption that the flow, and the magnetic fields thro
hich the flow must move, have no toroidal variat

s termed hereaxisymmetry. In general we will use th
erms “axisymmetric” and “infinite” in an interchang
ble way. In reality axisymmetric flows will have so
lement of curvature associated with them, but o
e will assume that curvature is small and appr
ate such flows in Cartesian geometry with thex–y
lane representing the poloidal plane, and withzcoor-
inate in the toroidal direction. For axisymmetric flo

2 It should be noted that this inequality is not necessarily sati
n all possible cases described inTable 1.
n the direction of the axisymmetry (toroidal) fro
hose in the poloidal plane. The model of electric
ents can be approached most effectively followin
ybrid approach, wherej⊥ is calculated from a cu
ent stream function, andjz is calculated from Ohm
aw:

⊥ = 1

µm

∇⊥ × Biẑ, (3a)

z = �(v⊥ × B0
⊥), (3b)

hereBi is the induced magnetic field (also the stre
unction for poloidal current),σ the electrical conduc
ivity and µm the magnetic permeability of the LM
q. (3b) is sufficient for the calculation ofjz since in
n axisymmetric 2D flow the electric field drops o
s toroidal currents are able to loop around the e

orus. But an induction type equation is necessar
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Bi and can be formulated based on thez-component of
the curl of Ohm’s law, giving:

1

σµm
∇2

⊥Bi = (v · ∇⊥)B0
z − (B0 · ∇⊥)w (4)

Deviations from this standard model (due to toroidal
curvature for instance) will be noted as needed.

Some of the modeling effort using the axisymmetric
approximation has already been summarized in Morley
et al.[3] with details reported in several other journal
papers[4–8]. This material will not be described here
in detail, but certain features and conclusions of the
problems analyzed in these papers will be recounted
for completeness, while generally more recent work is
highlighted.

2.1. Analytic solutions to special case problems

When focus is placed solely on the effect of varia-
tions in the toroidal field, with contributions of other
field components neglectedB0 = (0, 0,Bz(x, y)), then
there is no source for motion or current in the toroidal
direction (w, jz = 0) and the induced magnetic field
takes on the form described by

1

σµm
∇2

⊥Bi = u
∂B0

z

∂x
+ v

∂B0
z

∂y
(5)

What is notable from the form of Eq.(5) is that
the behavior of the induced field is governed by stan-
d the
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B times the characteristic length and not on any local
value of the field.

The fully developed solution for the velocity and in-
duced field (electric current) is lengthy and is covered in
detail in Ref.[5], but it is readily seen that the resultant
mass flow depends only on the gradient value. It is this
fact that allows a fully developed solution to be reached
at all. Also notable is that the induced current is only
streamwise, meaning there are no directj × B0 retard-
ing forces, only forces acting perpendicular to the main
flow direction. These forces create a streamwise pres-
sure gradient that in turn affects the streamwise flow in
drastic ways, depending on the strength of the applied
field gradient. The velocity profiles for several values
of Ha� are shown inFig. 1, were at highHa� we see
the formation of an asymmetric, free surface equivalent
of the classic M-shaped velocity profile commonly ob-
served in closed channel flows in gradient fields, with
boundary jet thickness scaling with

√
Ha�.

This asymmetric M-shaped velocity is driven purely
by the pressure gradient effects, and is the result of the

F ent
( ise
e

ard diffusion with a source term that depends on
patial (and temporal in a more complete treatm
ariations in the applied field. In Cartesian geome
f there is no variation in the applied field, then ther
o MHD effect on the flow in this 2D treatment (as

rom laminarization which is implicitly assumed).
ther words, the axisymmetric geometry has no H
ann layers as current closure paths, so that onl
ffects of the gradients are studied.

It is possible to gain insight into some of the
avior of a free surface flow in a spanwise field w
treamwise variation by exploring a special case w
z(x, y) = Cx + D (whereC andD are constants). I

his case, with linear field gradient, it is possible
onstruct an analytic solution to the fully develop
ow problem as a function of Hartmann numberHa�
�B(h2/2)(σ/ρν)1/2, whereinHa� is based on a cha
cteristic field strength calculated from thegradientof
ig. 1. Fully developed velocity profiles for flow in a linear gradi
A) with applied fields of various strength and (B) with streamw
xternally applied current of various strength.
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same physical effect as the so-called magnetic propul-
sion idea[9] proposed to aid in situ pumping of free
surface flows in fusion reactors. In the magnetic propul-
sion scheme, a streamwise applied electrical current
is injected into the film flow. This current is oriented
such that it pushes the liquid against the supporting
wall (which could in theory be inverted to gravity),
and due to gradient in the field strength (or the current
density itself since the flow cross-sectional area can
change) provides a streamwise pressure gradient that
propels the flow along. This applied current can be eas-
ily added to the preceding analysis through a change in
boundary condition onBi , and gives changes in the ve-
locity profile as shown inFig. 1. Because the strongest
portion of the streamwise pressure gradient is near the
back wall, the flow is accelerated predominantly in this
region, with relatively slower flow near the surface.

2.2. 2.5D developing flow with height function
free surface model and curvature effects

In earlier work during the evolution of the APEX
modeling effort the governing equations were for-
mulated based on a Cartesian or cylindrical system.
However, the toroidal curvature can be strong espe-
cially when considering for example the small radius
center-stack of a spherical torus. To address the curva-
ture effects, 3D thin-shear-layer equations for flows of
conducting fluids in a magnetic field have been derived
in orthogonal body-oriented coordinates and then
a ver
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ordinary flows and is not repeated here. When dealing
with the group of the equations for the electromagnetic
quantities, the induced currents are allowed to form a
closed loop within the flow domain. Therefore unlike
the flow equations, all the second derivatives in the
induction equations were kept unchanged (a more
complete treatment is available in Ref.[10]).

The full model describes basic 3D effects due to
the wall curvature and spatial variations of the applied
magnetic field. As a particular case, equations for
flows with rotational symmetry have been derived
and numerical calculations were performed for
free-surface flows over a body of revolution under
conditions relevant to a fusion reactor. We call this
formulation a “2.5D” representation since flow and
current in the third (toroidal) direction are included,
but variations of quantities in this direction are still
not considered. At present this case is of considerable
practical importance for fusion applications, where the
flow symmetry is allowed by the chamber topology. At
the same time this case provides a simplified example
of 3D flow in which the variables are independent of
the azimuthal angle. Some specific flow patterns, such
as flow thickening and spiral-type (strong toroidal
motion) flows, have been observed. Of course it should
be noted that some 3D features that may be present in
the true physical problem, like instabilities with vari-
ations in azimuthal angle, are not modeled by such an
approach.

Here we will introduce the surface of revolution in
a tation
o The
c t in
t
T ates
fi
c of
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a are
pplied to the analysis of MHD free-surface flows o
curved wall. Unlike the classic boundary-layer-t

quations, present ones permit information to be p
gated upstream through the induced magnetic
nother departure from the ordinary hydrodyna

heory is that the normal momentum equation ke
he balance between the pressure gradient term
hose related to gravity, centrifugal forces, and Lor
orce. Thus, the normal pressure variations are
owed. The 3D boundary-layer equations are obta
rom the full Navier–Stokes equations (including
orentz force term) by neglecting terms which
sually small in the boundary-layer approximat

ncluding: the second-order derivatives parallel to
ody surface, and all convection and diffusion term

he surface-normal momentum equation. The sim
cations are based on the standard order of magn
nalysis, which does not depart in essence from th
standard way as a surface generated by the ro
f a plane curve around an axis in its plane.
urvilinear body-oriented coordinates of any poin
he flow around the surface will be taken as (x, y, θ).
hese coordinates form a set of orthogonal coordin
tted to the surface of the body. Letu, v,w be the
omponents of velocity of the fluid in directions
ncreasingx, y, andθ respectively. Ifr is the distanc
rom the axis of revolution to a given point in t
iquid, so thatr is a function ofxalone, then the metr
oefficients are,H1,2 = 1, andH3 = r. As for the applied
agnetic field, it can be considered to be indepen
n y, because the dimensions of the body are m

arger than the characteristic length scale over w
he changes of the applied magnetic field can
ignificant.

The axisymmetric governing equations using
ssumptions and simplifications formulated above
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comprised of three momentum equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− w2

r

dr

dx

= −1

ρ

∂p

∂x
+ gx + ν

∂2u

∂y2 + 1

ρ
(jyB

0
θ − jθB

0
y), (6a)

ρ(Kau
2 + Kbw

2 + gy) + (jθB
0
x − jxB

0
θ ) = ∂p

∂y
, (6b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ uw

r

dr

dx

= gθ + ν
∂2w

∂y2 + 1

ρ
(jxB

0
y − jyB

0
x), (6c)

the mass and current continuity equations:

1

r

∂(ru)

∂x
+ ∂v

∂y
= 0, (7a)

1

r

∂(rjx)

∂x
+ ∂jy

∂y
= 0, (7b)

the equations of ampere’s law and Ohm’s law defining
the current density:

jx = 1

µ0

∂Bi
θ

∂y
, (8a)

j
1 1 ∂(rBi )

j

a ced
t

r-
v ve,
b and

negative when it is concave outwards.Kb is the recip-
rocal of the length of the normal intercepted between
the curve and the axis of rotation.

Simulation of unsteady flow is possible, but in
general the steady-state solution is obtained by solving
equations numerically by advancing in time until the
flow thickness in the whole flow domain does not
vary with time. The momentum equations are used to
calculate the velocity componentsu andw tangential
to the back-wall, while the velocity component normal
to the back-wall,v, is calculated from the continuity
equation. All equations are approximated with the
finite-difference formulas on a non-uniform grid that
clusters more grid points near the back-wall and
near the free surface where the flow and magnetic
field gradients are expected to be high. If the mesh
is uniform, the finite-difference scheme provides the
second-order approximation with respect to bothx
andy. The two momentum equations are solved by the
Blottner-type technique[11], which is well suited for
marching problems. The induction equation is solved
at each time step using the well-known ADI method.

The height function approach[12] is used for track-
ing the free surface. In this method, a new variabley1 =
y/h[x] is introduced. By instituting this change of vari-
ables, the curvilinear domain of integration is reduced
to a rectangular shape that makes discretization of the
equations and boundary conditions much easier, and
along with the continuity equation provides mass con-
servation over the whole flow domain. The flow height,
h an-
t ich
e eady
f ique
i the
s aves
( om-
p ack-
i ume
o lso
u .

h-
i ions
o od
d nver-
g

f ted
y = −
µ0 r

θ

∂x
, (8b)

θ = σ(uB0
y − vB0

x) (8c)

nd the single induction equation for the indu
oroidal field:

∂Bi
θ

∂t
= B0

x

∂w

∂x
+ B0

y

∂w

∂y
−
(

dB0
θ

dx
− B0

θ

r

dr

dx

)
u

−wB0
x

r

dr

dx
+ 1

µmσ

[
1

r

∂

∂x

(
r
∂Bi

θ

∂x

)
+ ∂2Bi

θ

∂y2

]

−∂B0
θ

∂t
. (9)

Here 1/Kaand 1/Kb are the two principal radii of cu
ature.Ka is just the curvature of the generating cur
eing positive when the wall is convex outwards
[x] is calculated simultaneously with other flow qu
ities using the kinematic free surface condition, wh
xpresses the fact that the velocity vector at a st
ree surface is tangential to the surface. This techn
s an effective way of tracking free surface unless
urface is broken or demonstrates overturning w
i.e. not a single-valued function). In these, more c
lex situations, more sophisticated free surface tr

ng algorithms should be used, such as VOF (vol
f fluid method) or Level Set Method, which are a
sed in the present study and are explained below

A similar numerical method for solving marc
ng problems was used by the author in calculat
f MHD turbulent open-channel flows. The meth
emonstrated high accuracy as well as good co
ence in a wide range of flow parameters[13].

The numerical solution to Eqs.(6)–(9) is obtained
or many cases, only a few of which are presen
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Fig. 2. The “bottle-neck” surface of revolution approximating the
lower portion of a ST center-stack.

here. As a reference geometry we take a “bottle-neck”
surface of revolution shown inFig. 2 as a prototype
for liquid-metal flow around the central column of the
NSTX reactor near its basis. The liquid driven by a
gravity force flows down over the surface forming a
thin liquid layer. It is easy to see that all assumptions
used in deriving the thin-shear-layer equations are met.

A basis for comparison, laminar flow without a mag-
netic field is shown inFig. 3A. The flow thickness is
monotonically reduced by the joint action of the gravity
and the geometrical effect of flow area increase—that
is the surface geometry causes a stretching (or contrac-
tion) of the streamlines of the main flow that results in
a thinning (or thickening) of the layer.

To illustrate the combined effect caused by the ge-
ometrical changes described above with the changes
of the toroidal magnetic field, a 1/R toroidal field was
considered. Under these conditions, only the currents
in thex–yplane are induced, all electromagnetic forces
are located in the same plane, so that no toroidal flow
occurs. With the influence of the applied magnetic field
the liquid is driven out of the flow bulk towards the free
surface. This typically results in a “surface bump”. The
bump occurs where the surface and hence the applied
azimuthal magnetic field exhibit maximum changes.
The magnetic field contour lines also represent the tra-
jectories along which the electric current flows. One

Fig. 3. Simulations results forRe= 23,500, Fr = 5.0 open channel
fl the
x rent
s
0

ow in a spanwise field with gradient. (A) Velocity vector plot in
–yplane with no magnetic field, (B) velocity vector and (C) cur
treamline plot in thex–y plane with toroidal magnetic fieldRem =
.07,Hamax = 8500.
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can see that the current takes its path within the flow
domain and is stronger near the back-wall and free sur-
face.

The MHD effects become even more interesting as
one adds additional field components and observes the
interaction of various components of field and induced
current. If a wall normal field component is added to a
constant toroidal magnetic field, then in the axisymmet-
ric case, the two components do not interact. Motion in
poloidal plane does not produce any current due to the
constant toroidal field (except maybe near conducting
nozzles), and the current created by the poloidal mo-
tion in the radial field produces only toroidal current.
This toroidal current however will interact with the ra-
dial field to produce a strong drag effect. Since the as-
sumption of axisymmetry provides a complete toroidal
flow path for this toroidal current, no electric field can
arise to oppose the current—meaning that the flow be-
haves like flow in a perfectly conducting channel. Some
calculations done for APEX are given in Ref.[3] and
show that fields larger that∼0.018 T for lithium and
∼0.08 T for tin lead to unacceptable thickening of the
flow. The conductivity of the back wall does not affect
these results, unless one considers inserting toroidal
dividers—breaking the axisymmetry.

When a small wall-normal component of the mag-
netic field additionally to the toroidal field with 1/R
variationB0 = (0, B0

y, B
0
θ [r]) is considered, the result

is a secondary toroidal flow. In the case under consid-
eration, the secondary flow exists in the form of a swirl
fl ich
a the

F nt () in a tw rs
i

Fig. 5. Effect of toriodal field gradient on depth of lithium first-wall
flow with B0 = 10 T.

x–y plane and wall-normal magnetic field.Fig. 4illus-
trates the swirl flow effect. Although the wall-normal
magnetic field is very small comparatively to the az-
imuthal field (only about 0.2% of the azimuthal field),
the swirl flow is pronounced and even comparable with
the main flow. The azimuthal Lorentz force is fully
defined by the induced currents, which are oppositely
directed near the back-wall and free surface (see the
induced current distribution inFig. 3C for example).
Correspondingly, the liquid in the layer rotates in two
opposite directions with strong shear over the thin layer.

Calculations have also been performed for a typical
outboard liquid first-wall case in a reactor the scale of
ARIES-RS where the flow will experience an average
toroidal field gradient in the range of 0.25–1 T/m de-
ow and is caused by the toroidal Lorentz force, wh
rises from the interaction between the currents in

ig. 4. Downstream variations of the toroidal velocity componew
n Fig. 3.
o component magnetic field. See geometry inFig. 2and paramete
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pending on the first-wall geometry assumed. For a cir-
cular arc outboard flow geometry the lithium flow depth
shown inFig. 5is affected only slightly by the field gra-
dient drag effect. The relative drag effect (normalized
by the liquid inertia) can be slightly stronger for con-
ducting walls and much stronger for thicker or slower
flows. When an alternate liquid like Sn is considered,
the drag effect is much reduced due to the greater den-
sity (inertia) of Sn, and for these conditions no change
in film height is observed due to the gradient effect.

The so-called magnetic propulsion current dis-
cussed earlier can be added to both of the above cases.
Calculations[3] and recent experiments[14] have
shown this current to be very effective in pushing the
liquid against the back wall, aiding in liquid propulsion,
and suppressing surface instabilities—potentially over-
coming several of the problems discussed above for
both first-wall and drain pipes. The most serious prob-
lem encountered with the magnetic propulsion idea is
the effect of other field components on the flow dy-
namics. The use of streamwise magnetic propulsion
currents in a case with wall normal field components
will preferentially push the liquid in the toroidal/anti-
toroidal direction depending on the sign of the ra-
dial field. For an axisymmetric flow, these types of
toroidal motions may be acceptable. But if one con-
siders toroidal breaks of any kind, liquid splashing and
non-uniformity can result.

2.3. 2D modeling of instabilities in a non-uniform
m

igh
m dis-
t n-
u
v m
t be
u n be
o in-
j field
m netic
fi t in
a eld,
w e
c ch
fl /m
o bil-

ity. From the point of view of hydrodynamic stability
theory, these flows can be characterized in terms of the
classic Raleigh–Tolmien point-of-inflection criterion,
which links the instability to the shape of the basic
velocity profile. A first order analytic analysis of the
problem for free surfaces was given in Ref.[5], where
the conclusion was reached that a more complete model
that includes and accurate treatment of variations in the
current as well as the velocity profiles was required.

Several models for Eqs.(1)–(3a) and (5)that assume
only a toroidal field component without curvature ef-
fects have been developed and applied to the flow sta-
bility problem. Both flows in closed channels and with
free surfaces are considered.

2.3.1. Instabilities in closed channel flows

In the present phase of APEX, flow instabilities in
closed channels were studied for a case of a spatially
varying magnetic field[15]. The computer code solves
2D Navier–Stokes–Maxwell equations that use vortic-
ity, stream function and induced magnetic field as basic
variables using a time-marching procedure that extends
the standardψ–ω approach described in[16] for non-
MHD flows. The governing equations were approxi-
mated explicitly with finite-difference formulas on a
uniform mesh. The discretization is of first-order in
time and second-order in space. Advancing in time is
performed in the following way:

H ox-
i ond-
o n
o r ac-
c sed
f or-
t onic
S xi-
m sses
s up-
agnetic field

When a conducting liquid passes through a h
agnetic field gradient zone, the liquid can re

ribute to form velocity profiles with significant no
niformity (such as the profiles shown inFig. 1). These
elocity distributions have inflection points and fro
he point of view of classic hydrodynamics can
nstable. Such flows in strong field gradients ca
bserved in fusion reactors when liquid metal is

ected into the reactor chamber between toroidal
agnets, passing a zone of a high gradient mag

eld. Another example is a poloidal flow (such tha
blanket) in a strong toroidal reactor magnetic fi
hich varies as “1/R”, whereR is the distance from th
hamber axis to a given point within the flow. In su
ows, the field gradient can vary from 0.25 to 10 T
r even higher, which is enough to trigger the insta
ω̃n+1 − ω̃n

�t̃
= L̂ωω̃

n+1 + F̂ n
ω, (10a)

(B̃i
z)

n+1 − (B̃i
z)

n

�t̃
= L̂B(B̃i

z)
n+1 + F̂ n

B, (10b)

ψ̃n+1,k+1 − ψ̃n+1,k

�τ̃
= L̂ψψ̃

n+1,k+1 + F̂ n
ψ. (10c)

ere,L̂ is a 2D finite-difference operator that appr
mates the diffusive and convective terms by sec
rder formulas.F̂ the finite-difference approximatio
f the source term, which also has second-orde
uracy. Central-difference approximations were u
or the discretization of the diffusive terms. In the v
icity transport equation, the second-order monot
amarskii scheme[17] was employed as an appro
ation of the convective terms. This scheme posse

maller schematic viscosity in comparison with the
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wind schemes and is widely used in computations of
convective flows for which adequate representation of
the non-linear terms is especially important. The finite-
difference equation for the stream function was for-
mulated in a pseudo-transient form by introducing a
pseudo-time term and solved by iterations at each time
step. Upon convergence, the pseudo-time term van-
ishes, and the original Poisson equation is satisfied.
The expressions for the electric current components
and those for the velocity components were also ap-
proximated with the second-order formulas.

A particular example of a fringing magnetic field
was considered when an electrically conducting fluid
enters a gap between the magnet poles. An applied
magnetic field was simulated with the following ex-
pression:B0

z = B0/(1 + exp[−α(x − x0)]). By vary-
ing B0 andα, flow regimes were sought in which an
initially non-disturbed flow transitions to an unstable
one. Quasi-periodic flow regimes were observed sim-
ilar to those in ordinary hydrodynamic flows around
a cylinder. Downstream of the magnetic field gradient
zone, a wake formation occurs resembling the Karman
vortex street behind a bluff body. However details of
the flow patterns observed in the present MHD case
were different because of the magnetic field effects.
The two shear layers formed in the wall vicinity when

F flow in
d observ ff body.

the liquid passes the field gradient zone, under some
critical values of the flow parameters become unstable.
Corresponding instability patterns for the flow stream
function and vorticity are shown inFig. 6.

The instability appears if the velocity demonstrates
inflection points (similar to the analytic stability
solution[5]). If the inflection points are not very pro-
nounced, the instability does not appear because the
instability mechanism associated with the inflection
points is not strong enough against the stabilizing ef-
fect due to the Joule and viscous dissipation. Also, the
instability does not appear ifReis small, even though
Ha� is high, since viscous forces damp perturbations.
However, full conclusions on stability/instability can
be drawn only on the basis of a more detailed stability
analysis.

2.3.2. Instabilities in free surface flows
Distinct from the codes described in Section2.2,

a series of free surface codes that utilize thevolume
of fluid (VOF) technique have also been developed.
VOF follows the advection of a fluidf with unit “den-
sity” and reconstructs the interface based on the�f
information (e.g. see Puckett et al.[18]). It allows for
large deformation of the free surface to occur without
lost of robustness. The dynamic conditions at free sur-
ig. 6. Unsteady stream function and vorticity behavior in MHD
evelops downstream of the magnetic field gradient zone. The
a fringing magnetic field withRe= 200 andHamax=200. The instability
ed structures resemble the Karman vortex street behind a blu
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face are implemented via the continuum surface force
(CSF) model[19]. The Navier–Stokes equations are
solved in a two-step projection method, and the induc-
tion equation is solved implicitly for the induced field.
The numerical scheme has been validated in regard
to the Navier–Stokes solver by simulating thin water
film flows and magnetic mechanism implementation
by computing MHD films and comparing with analyt-
ical solution and other numerical results. The model is
described in detail in several of the Refs.[20,21].

When the liquid is flowing downstream, the
liquid–gas interfaceh[x, t] changes with the stream-
wise location and time, which is defined by the kine-
matic equation:

v[x, y = h] = ∂h

∂t
+ u[x, y = h]

∂h

∂x
. (11)

At the free surface the normal stress is balanced by
the capillary force, and the shear stress vanishes for the
constant surface tension condition.

As seen in the electric current distributions shown
earlier inFigs. 3 and 5, there is a concern that arises
from the fact that the streamwise currents flow in one
direction near the surface and in the opposite direction
near the back wall. This current pattern results in a
force near the surface that tries to pull the liquid into
the plasma. This force integrates to zero over the entire
depth of the liquid film if the back wall is electrically
insulated, but may have implications on the surface
stability of the flow. If the back wall is conducting,
t id
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Fig. 7. Instability growth on a 1 cm deep, 10 m/s flow of lithium into
a typical 1/R toroidal field gradient beginning atx = 0.05 m.

ity from the initial small bump. An identical calculation
using tin properties shows no visible growth of insta-
bility over the same period of time. (Instability is seen
in cases analyzed with lower inlet velocity where the
inertia of the tin is not so high.) The effects of stronger
field gradients on thicker flows was investigated in Ref.
[4] where considerably more dramatic effect was ob-
served, even for tin, owing to the large field gradient
and thicker layer. The strength of the magnetic inter-
action is particularly sensitive to the flow depth, one
reason that thin layers for liquid first-wall and divertor
applications have been pursued in APEX rather than
neutronically thick liquid wall concepts.

In all cases, the application of magnetic propulsion
current[9] was useful in stabilizing the surface shape
and propelling the liquid through the gradient region.
For the conditions inFig. 7, the flow behaves as shown
in Fig. 8with 100 A/m applied current in the main flow
direction. It should be noted that the magnetic propul-
sion concept is suitable for flows from strong to weak
field (inboard to outboard) or smaller area to larger area
(again, inboard to outboard). It cannot be applied uni-
versally for any MHD flows.

This area of research needs considerably more in-
vestigation to outline the conditions under which se-
rious instabilities are expected in free surface flows,
especially as more complex geometries and fields are
considered that require a full 3D treatment.
here will be a net force pulling or pushing the liqu
elative to the wall and issues of flow detachment a

A case is explored here that approximates flow
n inverted upper half of an outboard first-wall in
RIES-RS reactor, assumed to be the most uns
art of the flow path. The flow is inverted to gravity a

nitiated with 10 m/s slug flow into a 1 m long comp
ational area. A magnetic field is considered such

0
z =




11T, x < 0.05,
11× (5.5)

(x − 0.05+ 5.5)
T x > 0.05,

(12)

here an initially constant magnetic field begins
ary 5 cm downstream from the computational in
he flow is perturbed by relaxation of the veloc
rofile.

Looking at a lithium flow shown inFig. 7 over the
m length we see the growth of a fairly strong insta
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Fig. 8. Instability growth on a 1 cm deep, 10 m/s flow of lithium into
a typical 1/R toroidal field gradient beginning atx = 0.05 m with
100 A/m of streamwise current applied.

3. Fully 3D LM-MHD models and results

It was recognized by the conclusion of the first phase
in APEX that a numerical tool that can handle complex
3D geometry free surface MHD flows would be an ex-
tremely valuable aid to the understanding of liquid wall
flows. It was also recognized that it would take consid-
erable effort to develop such a capability, and even if
successful, the code might be very limited in the range
of Hartmann number if steps were not taken in the
beginning to overcome as much as possible inherent
limitations in formulation or numerical methodology.
Initially, effort was put into writing an MHD module to
work with the FLOW3D commercial software package
(in use at UCLA to investigate 3D free surface flows
without MHD). The module met with limited success,
the main problem being extremely long computational
times for large jobs and no access to the source code
for necessary modifications[22,23].

So the design of a new numerical tool specifically
formulated to overcome the limitation of existing tools
was initiated. The work on the HIMAG (HyPerComp
Incompressible MHD solver for Arbitrary Geometries)
code is presented here in some detail, as it is the first
time any of code formulation and results have been
published. Still, a more complete reference to the code
structure and formulation is available in[24].

3.1. HIMAG 3D free surface MHD code

At the beginning of the code design the following
choices were made which guided the formulation of
the code:

1. Unstructured grid formulation to allow any geom-
etry of fluid flow, nozzles, obstructions, etc. to be
accommodated, and allow high resolution of thin
Hartmann type boundary layers at high Hartmann
number with a minimum of cells.

2. Parallel solver implementation to allow large prob-
lem sizes and “stiff” matrices to be solved in an
acceptable amount of wall clock time.

3. Flexible implicit framework for using various free
surface tracking (level-set, VOF, etc.) and electric
current (potential formulation, induced-B formula-
tion, etc.) modules and for reducing time-step re-
strictions.

HIMAG has been developed as an extension to the
HyPerComp electromagnetics code environment[25],
and compressible MHD code development activities
[26]. HIMAG has inherited a parallel, unstructured
code environment from the electromagnetics software,
and has essentially replaced the solver and code in-
tegration strategies. In its present form, the following
capabilities are available in HIMAG:

• 3D incompressible flow solver (second-order accu-
rate in space and time);

•
•
•
• lec-

• er;
• ess

•
•

cant
e els
( ent,)
t tial
a eri-
c gher
H

free surface capture using level set technique;
arbitrary mesh structure (unstructured/hybrid);
parallel code environment using MPI;
computation of electromagnetic fields using the e
tric potential formulation;
point implicit scheme, solved in an iterative mann
multiple strategies to account for mesh skewn
(non-orthogonality);
modular addition of source terms;
graphical user interfaces.

Besides the development of the solver, a signifi
ffort was expended in studying alternate MHD mod
based on induced magnetic field and induced curr
o overcome certain limitations of the electric poten
pproach. These limitations tend to be chiefly num
al and become progressively more prominent at hi
artmann numbers and magnetic field intensities[27].
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3.1.1. Model formulation
In this section, we describe the governing equa-

tion sets for the flow phenomena that we intend
to simulate and study. Each individual phenomenon
is modeled separately and their mutual interactions
are “loosely” coupled, in the terminology of multi-
physics.

3.1.1.1. Conservation of mass and momentum—prim-
itive variable formulation.Incompressible flow is
governed by the continuity and momentum equations
given below, frequently referred to as the incompress-
ible Navier–Stokes equations.

(13a)

∇ · v = 0. (13b)

The momentum equation above has contributions
due to viscous, MHD, gravitational and surface
tension forces, all of which may be present in free
surface MHD. The basic fluid quantities that are
to be determined from this set, are the velocity
componentsu, v,w (in the x, y, z directions respec-
tively,) and the pressurep. While the momentum
equation provides a time advancement of the velocity
components, pressure must be derived using some
external procedure that will guarantee the conser-
v e
t d is
d that
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functionH[ϕ]:

∂ϕ

∂t
+ v · ∇ϕ = 0, (14a)

ρ = ρ1 + (ρ2 − ρ1)H [ϕ], (14b)

µ = µ1 + (µ2 − µ1)H [ϕ]. (14c)

Though the interface is ideally of zero thickness,
this is unattainable in practical numerical simulations
using this technique, and non-physical oscillations in
the computed solutions can occur. The Heaviside func-
tion is therefore smeared about the zero level by an
amountε that may depend on the local mesh resolu-
tion. Fig. 9 illustrates this effect.

3.1.1.3. Electromagnetics—electric potential formu-
lation. If Rem � 1, the induced magnetic field may
be neglected in the calculation of the body force terms
j × B0. In such a situation, the electric field may be
derived from a scalar potential:

E = −∇φ (15)

and current may be computed using Ohm’s law:

j = σ(−∇φ + v× B0). (16)

F
(

ation of mass (continuity). In HIMAG, we us
he projection method, wherein a pressure fiel
erived from an updated momentum field such

he divergence of velocity at the new time leve
ero.

.1.1.2. Free surface capture—level set techni
e have elected to use the level set technique[28]

o model the advancement of free surfaces prese
he flow. A functionϕ is defined such that its value
ero on the interface separating the two fluids: a lig
uid-2 and a heavier fluid-1, as shown inFig. 9. Away
rom the interface, the value ofϕ is given as the norm
istance from the interface, negative into fluid-2
ositive into fluid-1. This function is advanced in tim

n a Lagrangian fashion on the fluid mesh using
ocal fluid velocity, and is related to the fluid prop
ies such as density and viscosity through the Heav
ig. 9. (A) Graphical representation of the level set functionϕ, and
B) smeared Heaviside function.
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The only electromagnetic field quantity that needs
to be computed numerically at each time step is the
electric potential. This potential is governed by the fol-
lowing elliptic differential equation that is obtained by
enforcing conservation of current through setting the
divergence of the current density equation (16) to zero:

∇2φ

= ∇ · (v× B0) + ∇(logσ) · (−∇φ + v× B0). (17)

In a single fluid medium, electrical conductivity is
constant, and the second term on the right hand side
above vanishes. At interfaces (solid as well as liquid,)
where the electrical conductivity has a gradient, this
equation must be written in a weak form, since the
gradient of the conductivity is infinite. At an interface
across which the conductivity becomes zero, the com-
ponent normal to the interface, the normal component
of current is explicitly forced to be zero (in a fully con-
servative form, this can cause division by zero):

∇nφ = v× B0|n. (18)

There are of course many other EM formulations,
like the induced-B used in the 2D axisymmetric codes
described in the Section2 of this paper, variants on
the vector potential formulation, or even directj for-
mulations[27,29]. While some of these are considered
for future development in HIMAG, the electric poten-
tial approach has been adopted here as the first stage,
and investigating the extent to which this formulation
c f the
m

n-
i that
h nes
t the
e :

b
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t se.
H s not

the primary intent in this research at present, this has
been deferred to a later time.

3.1.1.4. Heat conduction.HIMAG presently utilizes
of a simple heat transfer model wherein convective and
diffusive effects are modeled for essentially isotropic
fluids and solid walls. The following form of the heat
equation is solved:

∂T

∂t
+ v · ∇T = ∇ · α∇T (20)

The thermal diffusivityα depends on the level set
function in a similar manner to density and the coeffi-
cient of viscosity.

3.1.1.5. Solid walls and obstacles.It is possible to de-
fine solid walls in HIMAG by flagging the material cells
during generation the computational mesh. This flag is
imported in the solver and different material properties
are assigned to the cells in solid regions. Multiple solid
materials are possible and a database of solid proper-
ties is maintained. The finite volume formulation used
in HIMAG enables an easy treatment of face fluxes
at internal solid boundaries. Velocity and the normal
pressure gradient are set to zero at an internal solid
boundary.

3.1.2. Numerical technique
In this section, the numerical formulation for

second-order accuracy in space and time on unstruc-
t -order
s orm
m cell
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an be applied for high Hartmann number is one o
any research subjects we wish to address.
In order to allow the modeling of liquids with no

sotropic electrical conductivity, namely plasmas
ave greater conductivity along magnetic field li

han perpendicular to them, we have re-derived
lectric potential equation to allow such anisotropy

∇ · (σ⊥∇φ + (σ|| − σ⊥)(∇φ · b)b)

= ∇ · (σ⊥v × B + (σ|| − σ⊥)((v× B0) · b)b). (19)

In the above, we use the symbolb = B0/|B0| = (bx,
y, bz) to represent a unit vector in the direction ofB0.
he quantitiesσ⊥ andσ‖ represent the conductivi

n the directions normal to and parallel to the app
agnetic fieldB0. A more general form of the condu

ivity tensor may be implemented with relative ea
owever, since a comprehensive plasma model i
ured meshes is presented. To preserve a second
patial accuracy, it is often necessary on non-unif
eshes to interpolate quantities from neighboring

enters to a cell face using a fast and accurate int
ation procedure. When a quantityϕ is extrapolated t
he cell face from a cell center using the locally av
ged value of the gradient within the cell, the accu

s formally second order. However, in order to enfo
onservation, it may be necessary to average bet
his value and the corresponding value obtained
he neighboring cell. These operations tend to be ex
ive, and we have found a simple distance based
olation to work well for even highly stretched mesh

First the perpendicular distance is computed fro
urrent cell P and a neighboring cell N to their co
on face whose centroid is denoted by G. If the m

s orthogonal, the following interpolation law may
sed forϕf , the value ofϕ at the cell face (the vectora
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Fig. 10. Important vectors and distances in interpolating quantities
to cell faces, (A) face normal distances, (B) projection of orthogonal
and non-orthogonal contributions.

is the face normal area vector):

d1 =
∣∣∣∣∣∣
ax(xP − xG) + ay(yP − yG) + az(zP − zG)√

a2
x + a2

y + a2
x

∣∣∣∣∣∣ ,
(21a)

d2 =
∣∣∣∣∣∣
ax(xN − xG) + ay(yN − yG) + az(zN − zG)√

a2
x + a2

y + a2
x

∣∣∣∣∣∣ ,1

(21b)

ϕf = d2ϕP + d1ϕN

d1 + d2
, or ϕf = fϕP + (1 − f )ϕN,

where f = d2

d1 + d2
. (21c)

If the mesh is non-orthogonal, or skewed, a further
correction may be made to relocate this quantity to the
cell center.Fig. 10shows a stencil where the quantity
ϕ needs to be relocated from f to G, the centroid. A
gradient is evaluated from Gauss’ rule, using the thus
far interpolated valueϕf , and averaged between neigh-
boring cells, to get a cell face value.

∇ϕ|P =
∑
faces

ϕG
.
a, (22a)

ϕG = d2ϕP + d1ϕN

d1 + d2
+ 1

2
[ ∇ϕ|P + ∇ϕ|N]r3 (22b)

This, in effect, changes the face valueϕf that was
used in computing the gradient in the Gauss integral
formula. This procedure is iterated for convergence.
Typically, 3–4 iterations were sufficient to recover the
exact value of the gradient of a linear field on a highly
skewed triangular mesh.

3.1.2.1. A fractional step method for interfacial flow.
The momentum equation can be written using the
Crank–Nicholson (trapezoidal) time differencing of the
non-linear advective and the linear diffusive terms, to
yield:
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Linearizing about time leveln, and making no as-
sumptions about the magnitude of change in momen-
tum ρu (we do not show the body force terms in Eq.
(24) for simplicity of presentation):
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(24a)

∂un+1
i

∂xi
= 0. (24b)

The fractional step method attempts to constru
elocity field at time leveln+ 1 from successive oper
ions upon the field at time leveln. First, an intermediat
eld bearing a superscript * is computed, by remov
he pressure gradient term. Then, a pressure field a
eveln + 1 is computed in such a way as to project
elocityu* into the space of discretely incompress
unctions from which a velocity fieldun+1 is then ob
ained. (The initial pressure field is calculated by s
ng the pressure equation utilizing the initial veloc
onditions.) This procedure is some times referre
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as a projection method. We follow the schemes out-
lined by [30–32], following suggestions of[33] and
[34] for variable density, and[35] for implementation
the projection method scheme on a co-located (i.e. non-
staggered) mesh:
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Density is advanced in time by solving the level
set equation, as will be described below. While a full
matrix inversion solution strategy for the entire domain
is possible and is commonly used in structured meshes,
an over-relaxation based iterative solution is used in our
work. In practice, it has been seen that the equation set
as presented above converges within 4–5 iterations to
within about 10 orders of magnitude. A cell centered
as well as a face based iteration strategy have both been
used with almost equal performance.

3 .
t
a ction
l

is
s op-
e e
c

ed
a this
a

a given cell, such that local spikes, or dips in this quan-
tity are smoothed[37]. However, this approach is not
directly applicable to the level set reinitialization equa-
tion (27) where a second-order upwind version of the
shape-from-shading approach of Ruoy and Tourin[36]
is used, extended here to unstructured mesh systems.
Higher order corrections, and source terms to account
for mass loss errors from the level set method, have
been incorporated. Details of this implementation will
be presented in a future publication. It must be borne in
mind that the Heaviside function, relating density to the
level set function, is typically smoothed over a region
that is up to 2–3 computational cells wide. It can be
made sharper near convergence, or steady state. How-
ever, if the flow is dominated by transient processes, a
smoother Heaviside function has been seen to be help-
ful.

3.1.2.3. Continuumsurface forcemodel of surface ten-
sion. The evaluation of the surface tension force is
greatly facilitated in the level set formalism since the
curvature of the free surface may be computed from
derivatives of the continuous functionϕ. The contin-
uum surface force (CSF) model[19] is used in HIMAG,
where the surface tension force is added as a spatially
varying body force to the Navier–Stokes equations,
while it is sizeable only near the free surface. The ex-
pression for the surface tension force is:
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( ∇ϕ
)

a
g

δ

3
l ity,
t hed
H

ρ

µ

σ

.1.2.2. Discretization of the level set equationsIn
he level set method, the level set functionϕ is first
dvanced using a simple discrete Lagrangian adve

aw:

∂ϕ

∂t
+ ui

∂(ϕ)

∂xi
= 0. (26)

Then, it is re-initialized such that its distribution
mooth, and that it retains its “distance function” pr
rty, whereby the value ofϕ at any given point is th
losest distance to the liquid–gas interface:

∂ϕ

∂τ
+
(

sign(ϕ0)
∇ϕ

|∇ϕ|
)

· ∇ϕ = sign(ϕ0). (27)

A total variation diminishing (TVD) scheme is us
dvance the level set function at each time step. In
pproach, we essentially limit the gradient ofϕ inside
s = σtκ̄∇ϕδ(ϕ), where κ̄ = ∇ · |∇ϕ| (28)

nd the delta function (smoothed over a distanceε), is
iven as:

ε(ϕ) =



1

2ε

(
1 + cos

(πϕ
ε

))
if |ϕ| < ε,

0 otherwise
(29)

.1.2.4. Computation of physical properties.The
evel set function is related to the density, viscos
hermal and electrical conductivities via a smoot
eaviside function, as follows:

= ρ1 + (ρ2 − ρ1)Hε(ϕ) (30a)

= µ1 + (µ2 − µ1)Hε(ϕ), (30b)

= σ1 + (σ2 − σ1)Hε(ϕ), (30c)
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where the Heaviside function is defined numerically
as:

Hε(ϕ) =




0 if x < −ε,

x + ε

2ε

sin(πx/ε)

2π
if |x| ≤ ε,

1 if x > ε.

(31)

3.1.2.5. Pressure Poisson equation on an arbitrary
mesh.The pressure Poisson equation is solved in two
distinct ways, based on the orthogonality of the mesh.
Numerical representation of the pressure gradient nor-
mal to the cell face separates the two situations:

∇ · ∇p

ρ
= ∇ · V̄ ∗

�t
⇒ 1

Ω

∑
faces

1

ρ

∂p

∂n
�s

= 1

Ω�t


∑

�=BC

U∗�s +
∑
=BC

Un+1�s


 (32)

where the summations on the right hand side are dif-
ferent for boundary faces and internal faces, and�s
denotes the cell face area andΩ the cell volume.

For an orthogonal mesh (face normal has the same
direction as the line joining cell centers) a straightfor-
ward face-centered differencing expression should be
second-order accurate. The following expressions are
used:

∂p =
(
pN − pP

)
d · n̂, (33a)

w on-
o ach
p

w id
u

α ro

and unity, essentially works by increasing the stencil
used in the non-orthogonal contribution. The gradient
of p itself, is evaluated by a simple Gauss summation:

∇p = 1

Ω

∑
faces

pf�s, (35)

wherepf represents the value of pressure interpolated
to the cell face. A matter of some concern is the re-
location of this quantity from the intersection of line
joining the cell centers with the cell face (labeled X in
Fig. 10), to the centroid of the cell face (G). This may be
done by iteratively using the gradient of pressure data
that is available from its last estimate, and correcting
it thus:

pf |G = pf |X + (∇p)∗f · ε (36)

where the�p∗ at the cell face is its last evaluated value,
linearly interpolated to the cell face, and the vectorε

is the vector joining the intersection point to the face
centroid. In general, an over-relaxation factor is used
in pressure computation, as follows:

pn+1 = pn + ω(p∗ − pn) (37)

wherep∗ is the newly computed quantity andω the
relaxation factor, typically, 1.7–1.9. The choice of this
relaxation factor is restricted when used in the paral-
lel mode. A conservative choice ofω = 1.0 is used in
parallel runs.

3
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))φN�
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∂n d d

∂p

∂n
=
(
pN − pP

d · n̂
)

, (33b)

heren̂denotes a unit normal to the cell face. For a n
rthogonal (skewed) mesh an “over-relaxed” appro
resented[38] has been used:

∂p

∂n
= 1

�s

(
|D| pN − pP

|d| + k · (∇p)f

)
, (34)

here the gradient ofp is evaluated at the face centro
sing an interpolation formula.

A linear interpolation (∇p)f = α(∇p)P + (1 −
)(∇p)Nwhere the constantα is a value between ze

φP =

∑
faces((σ⊥/d) + ((σ⊥ − σ‖)(b · d)(b · n)/d2

+((σ⊥ − σ‖)(v × B0) · b)b) · �s∑
faces((σ⊥/d) + ((σ⊥ − σ‖)(b ·
.1.2.6. Electric potential equation.Eq. (19) is con-
erted into its conservative finite volume equivale
nd solved using the point relaxation technique. In
nite volume method, the divergence operators are
erted into volume integrals and there upon, into
ace integrals using Gauss’ law as follows:

· F =
∫
Ω

F dΩ =
∫
∂Ω

F ds (38)

sing the standard notation of finite volume meth
nd the notation introduced in the pressure Poisso

ution description, we can obtain the final discrete
ion of the current conservation law (Eq.(19)) in terms
f the electric potential, as:

s +∑faces(σ⊥(v × B0)

n)/d2))�s
(39)
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with the appropriate non-orthogonal corrections where
desired. In general, we solve this equation using point-
wise over-relaxation, with a relaxation factor 1.7–1.9.

3.1.3. Initial and boundary conditions
In HIMAG, the boundaries of the computational

domain are divided into “patches”, and boundary
conditions are prescribed on each patch for each of the
variables:u, v,w, p, ϕ, φ, andT. At inflow boundaries,
the velocity may be prescribed and pressure extrapo-
lated from within the domain. At an outflow boundary,
velocity may be extrapolated and a pressure (if known)
specified. A pure Neumann boundary condition for
pressure and electric potential is available. Here, only
the gradient of these quantities normal to the boundary
are known. For instance, for the electric potential,
a current tangency condition at an insulating wall
requires that�nφ = (v × B0)n in order to make the
wall normal current zero. A Neumann condition for
pressure is used when the pressure distribution across
a surface is expected to be non-uniform or simply
unknown. Whenever a Neumann BC is used, care
must be taken to fix the value ofp or φ at one interior
cell. In HIMAG, cell number 1 is chosen for this
purpose. In a parallel computation, the cell number
1 on the host node is used as the reference cell. The
quantityp is set to zero in this cell in each iterative
cycle, and its computed value is subtracted from all the
cells.

Five different BC-types are presently available in
H ec-
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Table 2
HIMAG boundary condition types

Unique ID

Velocity BCs
Inflow

Velocity profile from file
(enter value)

1

Constant velocity (enter value) 2
Outflow

Characteristic BC for V 3
Neumann BC for V 4
No Slip (viscous) wall 5
Slip (inviscid) wall 6

Far field (free stream)
Characteristic BC 7
Neumann BC 8
Fixed BC (enter value) 9

Pressure BCs
Constant value (specify) 1
Neumann 2

Level Set BCs
Fixed polynomial for level set function

(specify coefficients inx, y, z-linear:
φ = ax+ by× cz+ d)

1

Neumann 2
Specified contact angle 3

Thermal BCs
Fixed temperature (specify value) 1
Adiabatic 2

Electromagnetic BCs
Specified potential 1
Neumann (current free) 2
Thin conducting wall (specify

thickness, sigma ratio)
3

Hartmann layer—analytical 4

tions are also expressed implicitly for higher accuracy
in time, a point implicit relaxation strategy for time ad-
vancement would seem to be adequate. CFL numbers
computed based on cell face normal velocities and their
corresponding length scales can be chosen quite large,
and can in fact be varied as the solution progresses. We
have used CFL number in the range of 2–5 still with
stable results in various situations.

A relaxation factor may be applied to all ellip-
tic solvers in order to accelerate the solution. Over-
relaxation factors in the range of 1–2 can be used here,
depending on the size and quality of the mesh. We have
favored the range of relaxation factors between 1.7 and
1.9 and this has worked well for all cases studied.
IMAG. They are: velocity, level set, pressure, el
romagnetics, and thermal BCs.Table 2shows a ful
ist of BCs that are currently available from HIMAG
REP, the graphical interface to HIMAG.

.1.4. Solution acceleration
There are several solution acceleration dev

resent in the code at this time. HIMAG presently u
he Crank–Nicholson implicit schemes for the n
inear advective terms as well as the viscous terms i

omentum equations to allow the possibility of la
or variable) time steps. This scheme is applied
oint implicit sense. That is to say that the entire

em of equations containing the unknown variable
hen+ 1 level is not inverted at once. This is due to
act that the code is capable of handling arbitrary
metries, and the coefficient matrices tend to be d
nd expensive to invert. Also, since the boundary co
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The relaxation technique to converge the pressure
Poisson equation can be easily improved by better iter-
ative techniques from linear algebra. Among the most
popular methods to solve Poisson type equations with-
out storing a coefficient matrix, is the conjugate gra-
dient technique, where successive approximations are
made to a matrix equation representing the discrete
Poisson equation. These approximations are refined in
order to minimize an error functional. The process con-
verges rapidly, and there are many variants in the liter-
ature that improve upon the basic procedure and make
changes based on prior knowledge of the nature of so-
lutions to seek. The method has been implemented for
HIMAG for scalar calculation but has not yet been ex-
tended to the parallel version.

HIMAG has inherited the parallel message passing
environment from HyPerComp’s suite of electromag-
netics codes. Within each physical phase of the solu-
tion process, sub-iterations are performed and data is
exchanged periodically across computer node bound-
aries. In Poisson solvers, such as pressure and potential,
data may be exchanged only every 10 steps or so, to re-
duce the communication overhead in the starting stages
of solution.

3.1.5. Computational parameters
HIMAG expects to address a wide multi-physical

parameter space. The numerical algorithm treats both
the advection and viscous terms implicitly, thereby
allowing for strong variations in these terms. Liquid
m the
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ratios of about 1000 and higher in free surface flow
calculations.

3.2. Code validation and benchmark problems

A code this complicated, with so many different
features and capabilities, must be thoroughly bench-
marked against existing analytic solutions and results
of other codes and experiments in order to establish the
accuracy of the numerical solutions and aid in the de-
bugging process. A number of such benchmark cases
are briefly reported here and are presented in more de-
tail in [24].

3.2.1. 2D ordinary hydrodynamic flow
Perhaps the simplest code-verification strategy for

incompressible Navier–Stokes solvers is to predict the
pressure drop in a 2D channel with a fully developed
parabolic velocity profile given as an initial condition.
For a channel of unit width, and a peak velocity of 1,
this gives a velocity distribution:u = 4y(1 − y) and a
dp/dx = −8µ. The pressure profiles along the channel
for the two cases ofRe= 50 and 500 were calculated
with HIMAG and exact pressure drop emerges easily
from the numerical solution.

3.2.1.1. 2D driven cavity problem.A benchmark
problem frequently used for incompressible solvers is
the lid-driven cavity problem atRe= 1000. Here, a ve-
locity ofu= 1 is applied to they= 1 face of a unit square,
w ms
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etal MHD computations are often restricted by
arge values of the Hartmann number and the in
ction parameter (N = Ha2/Re) that are encountere
ith our present approach, using an appropriate m

esolution, we are able to run Hartmann numb
p to 10,000 with an interaction parameter of 1
orresponding to a Reynolds number of 105. At higher
artmann numbers, even in simple geometrie

arge number of mesh points are often needed
esolve the Hartmann layers accurately. This num
ould run into several millions, depending on
inear dimensions of the geometry. The use of par
omputing is inevitable in such cases, where si
rocessor runs are practically impossible. HIM
as shown good scalability on parallel processors
as been tested successfully, to date, on PC clu
unning LINUX. We have used Weber numb
n the range of 0.1–10 successfully, and den
here all internal points at initially at rest. 2D proble
re simulated in HIMAG by using one cell in the th
z-direction,) and selecting the boundary condition
hez-facing boundaries to be “undefined”. A relativ
niform mesh and a severely stretched unstructure
ngular mesh have been used in this study to tes
ffect of mesh skewness on the accuracy of the solu
ood solution convergence has been observed in

ases, with an insignificant residual divergence o
elocity. Various Poisson solver strategies have b
xperimented for this case, and it has been obse
hat the relaxation solver and the conjugate grad
echniques are both well suited for this purpose,
he CG technique being overall superior in term
onvergence rate and error reduction. Velocity vec
nd streamlines for the two meshes are almost

ical and the profiles match well with published d
39].
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3.2.1.2. Backward facing step.The re-attachment
point location of the flow entering a backward facing
step has also used for validation of spatial accuracy of
the solver. A Reynolds number is computed from the
average velocity of the inflow and using the channel
half-width as the characteristic length scale. The re-
attachment point location ofx/h= 5.2 forRe= 200 and
x/h= 1.95 forRe= 160 match closely with experimental
and other CFD data in the literature[40].

3.2.1.3. 2D von Karman vortex street.The flow past
a cylinder in 2D is known to become unsteady after a
Reynolds number of about 41 (Re based on the diame-
ter of the cylinder.) Such flows produce an oscillatory
wake, in which rows of positive and negative vortices
shed from the top and bottom of the cylinder alter-
nately, propagate downstream. This is referred to as
thevon Karman vortex street. Experimenting with var-
ious meshes shows good comparison for dimensionless
frequency to within 1% error of the published data[41],
even with relatively coarse meshes.

3.2.1.4. 2D open-channel flow on an inclined plane.
Including now the coupling to the level-set free surface
tracking routines, a simple open-channel flow case
is calculated. Among the various tests of merit of a
free surface capture scheme is the sensitivity to mesh
skewness, the tangency of the surface streamline under
various density and viscosity ratios, and sensitivity
to Weber and Froude numbers in the flow. We have
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Fig. 11. Comparison of HIMAG to 2D axisymmetric codes for 2D
free surface benchmark problem.

0.5 exp[−0.01(x/ho − 50)2] T, with the walls assumed
to be electrically insulating. This is an axisymmetric
problem that has been modeled by the various 2D
codes described in the Section2. A double bump in the
free surface shape is observed corresponding to the rise
and fall of the Gaussian magnetic field distribution.

This problem was modeled in HIMAG using two flu-
ids of density, viscosity and electrical conductivity ratio
of 1000 between the heavier and lighter fluid. Many dif-
ferent grids were tested for the test case with HIMAG,
where a non-dimensional domain size of 100× 1.5 was
chosen. The 2D-VOF simulation used a mesh of 1000
× 500 equally spaced cells, with channel size of 100×
2. The 2D height function code used 201× 101 grids
with channel size of 100× 1. Error bars have been
placed on the HIMAG result shown inFig. 11, cor-
responding to the mesh resolution at the free surface.
The results seem to agree within 1% tolerance, and the
differences are believed to be due to differences be-
tween the various formulations (the benchmark result
uses a B-formulation). A new benchmark problem with
a stronger gradient has been proposed in order to cause
a larger deviation from the base flow, but data on this
new problem is not yet available.

3.2.3. 3D MHD flows in closed channels
It is difficult to find benchmark problems for fully

3D MHD flow with free surfaces, in fact none exist
to our knowledge. To have some 3D benchmark data,
ound HIMAG to be fairly robust with regard to the
oncerns and close agreement between existin
nd 3D codes is observed.

.2.2. 2D MHD flows
Since the ordinary hydrodynamic solver appea

e accurate when compared to standard bench
roblems, these cases are expanded to include
ffects to investigate the accuracy of the coupled e

romagnetics and hydrodynamics solvers.

.2.2.1. 2D axisymmetric open-channel flow in
radient toroidal field.A validation case was select

or 2D free surface flow with MHD with the followin
pecifications. A semi-parabolic inflow veloc
rofile with 0.1 m/s average velocity is given
liquid flowing down an incline of 5◦. A toroidal
agnetic field was applied with a Gaussian profileBz=
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Fig. 12. Geometry of 3D driven cavity benchmark problem.

then, two closed-channel flows are calculated for which
there is some existing data.

3.2.3.1. 3D lid driven cavity.Similar to the 2D driven
cavity, a 3D driven cavity problem was prepared in
a unit cube with magnetic field perpendicular to the
moving wall as shown inFig. 12. For comparison to
HIMAG two other 3D codes (called simply code 1 and
code 2) were developed specifically for this geome-
try using structured grids. Also, the calculations were
performed using the commercial CFD software pack-
age FLUENT[42] using a new limited MHD module
currently being developed by FLUENT.

Code 1 solves the governing equations by finite dif-
ference approximation using a fully staggered grid sys-
tem in which each variable is defined at a different lo-
cation. The pressure is located in the cell center and
the velocities are in the centers of the corresponding
sides. The components of the induced magnetic field
are shifted from the velocity locations by half of the
grid size in theZ-direction. Such a grid arrangement al-
lows for a compact evaluation of both the Lorentz force
term on the RHS of the momentum equation and the
velocity containing terms on the RHS of the induction
equation, so that averages ofV andBi are not required.
The continuity equation is discretized at the center of
the cell. The projections of the momentum equations
and those of the induction equation are discretized at
points where the corresponding variables are defined.
As a discretization scheme for the convective terms, a
m the
d cing
s l ve-
l ion

in which the pressure gradient terms are omitted. The
Lorentz force terms in the momentum equation are also
calculated in the first sub-step by solving the induction
equation and then using ampere’s law. In the second
sub-step, the provisional velocity is corrected by ac-
counting for the pressure gradient and the continuity
equation through solving the pressure Poisson equa-
tion. The approach developed belongs to the group of
explicit projection methods and is similar to that pro-
posed in[43] and[44] for non-MHD flows. The pres-
sure Poisson equation is solved at each time step by
SOR method. The induction equation is approximated
with a conservative scheme analogous to that in[45] so
that the conjugation conditions across the boundaries of
the flow domain are directly satisfied. The code devel-
oped was verified by comparison with the non-MHD
results calculated in[46] with the vorticity-velocity ap-
proach.

Code 2 is an adaptation of existing cell-centered
code[47] where a general four-step and three-step pro-
jection method has been developed for incompress-
ible Navier–Stokes equation. This general projection
method has been further extended to solve a modified
induced magnetic equation with a penalty function�q
[48] added to aid in enforcing�·Bi = 0. The projec-
tion methods for induced magnetic field equation can
ensure the divergence of induced magnetic field zero
(for the case of 3D lid-driven cavity flow, we have the
divergence of induced magnetic field as 10−14) without
employing special grid arrangement. Hence it can be
e the
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ixture of the central difference approximation and
onor-cell discretization is used. The time-advan
tep consists of two sub-steps. First, the provisiona
ocity field is calculated from the momentum equat
asily extended to an unstructured grid system. In
oon future, this developed projection method wil
pplied on HIMAG for the higher Hartmann numb
ases.

Results from HIMAG and other models and exp
ments seem to agree well for the cases studied, w
resenting slight differences in the treatment of elec
agnetic fields. Various cuts of the velocity profile

hown inFig. 13demonstrating the level of agreeme

.2.3.2. 3D developing flow in a channel.A case stud
ed by Sterl[49] has been utilized to test 3D MHD mo
ls in HIMAG (seeFig. 14). A channel of unit squar
ross-section of dimensionless length−4 to 4 with pro-
cribed inlet velocityu(y, z) = (9/4)(1− y2)(1 − z2) is
tudied under the influence of an applied magnetic
f the formBy = 1/(1 + exp[−x/0.15]) which has stron
ariation nearx = 0.
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Fig. 13. Comparison of velocity profiles in 3D driven cavity problem
for Re= 100,Ha = 45.

This case was studied for the Hartmann numbers of
50, 200 and 1000. A highly stretched rectangular mesh
was used here, taking care to resolve the Hartmann lay-
ers and wall jets appropriately, without a prohibitively

Fig. 14. Channel geometry and test conditions for 3D MHD bench-
mark problem.

large number of mesh points. It is observed following
the increase in magnetic field strength, or, alternatively,
the Hartmann number, that flow physics change signif-
icantly. Wall jets are formed, that contain most of the
mass flow, while sharp Hartmann layers are formed at
the walls perpendicular to these jets. The effect gets
progressively larger, until when the core of the flow
loses all of its momentum and forms a re-circulating
vortex core. At this point, a trailing wake system ap-
pears, and begins to slowly flutter at a frequency which
we did not measure in this particular study.

In all of the numerical simulations, the non-
dimensional interaction parameterN = (Ha2/Re) was
kept fixed at 1000.Fig. 15 shows the pressure varia-
tion at the center line of the channel forHa = 50 and
200. The slope of the pressure profile from fully devel-
oped channel flow results is shown alongside for com-
parison.Fig. 16shows a sampling of the 3D velocity
profiles at different axial locations. The development
of the expected M-shaped velocity profiles and Hart-
mann layers for high Hartmann number are easily seen.
With the highly stretched mesh used here, it has been
possible to simulate Hartmann numbers of up to 1000
without any special procedures for stability.

For the purpose of validation, results from a code
that solves the fully developed closed channel MHD
flows in ducts[50] were used. The comparison with
fully developed flow is only valid when the flow be-
comes uniform in the axial direction, and may not oc-
cur (to engineering precision) within the channel length
c ag-
n are
t mate
v

onsidered here for an arbitrarily flow and electrom
etic conditions. The fully developed flow results

hus, used as guidelines in estimating the approxi
alidity of the numerical solution.Fig. 17 shows the
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Fig. 15. Comparison of fully developed pressure gradient calculation with the developing channel flow computation from HIMAG with (A)Ha
= 50 (B),Ha = 200.

Fig. 16.Ha = 200,N = 1000, velocity profiles at various downstream locations following the steep magnetic field gradient atx = 0.

Fig. 17. Comparison of fully developed velocity profile (symbols) with 3D solution from HIMAG at the exit plane,u-velocity on the center
lines.
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favorable comparison of fully developed profile to the
HIMAG results near the exit plane. Sterl[49] validates
3D effects of the developing flows by comparing with
fully developed flow results. Very little has been said
about insulating walls in the above paper. However,
Table 1on p. 184 mentions the maximum transverse
variations in the electric potential, pressure and the
moment-center of the velocity distribution at the loca-
tionx= 0. These results are in good agreement with the
results from HIMAG (e.g. the value of�φ = 1.01 com-
puted from HIMAG, while Sterl gives 1.0390—this re-
sult is scaled by the Hartmann number and is essentially
independent of it).

3.2.4. Parallel code execution benchmarks
HIMAG can be run in parallel across multiple pro-

cessors. Message passing interface (MPI), a freely
available and widely employed software suite, is used
for parallel communications. Presented here are some
preliminary results and scaling studies. HIMAG per-
formance was tested on three types of calculations to
assess the time taken by each. The same computational
mesh, of 60× 60× 100 cells was used in a rectangular
domain of size 1× 1 × 5 in all three cases. The three
cases were:

(a) impulsively started single phase flow;
(b) two-phase flow with bi-parabolic initial velocity;
(c) single phase flow with MHD.

The mesh was first partitioned into 2, 4 and 16 par-
t
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Fig. 18. Sample domain partitioning for a channel geometry with
360,000 cells using 2, 4 and 16 (left) partitions.

linear performance was obtained for the single-phase
flow, with an efficiency of about 95%. With two-phase
flow, the efficiency dropped a little, to 91%, and with
MHD, the efficiency returned to close to 96%. These
numbers are highly encouraging from the perspective
of parallelization. The relative time consumed by the
level set solver and MHD may be estimated from the
itions as seen inFig. 18.
The impulsive flow initial condition is useful in a

essing the stability of the numerical procedure. F
eveloped initial velocity profiles normally are mu
ore stable, but it was found that the solution c

erged well even for the impulsive start, thus indica
hat the code is well behaved even in the parallel m
o fluid kinetic parameters. A bi-parabolic velocity p
le was used for the two phase flow case with den
nd viscosity ratio of 1000. The flow was seen to c
erge smoothly, with streamlines tangential to the
urface at convergence (a very desirable property

Scaling studies were made for cases run with 2, 4
6 processors assuming a fixed number of the pre
oisson equation and the level set reinitialization s
ere used. For a time accurate calculation, it ma
ard to specify the number of steps, and may be sim

o use a tolerance level. It is seen inFig. 19that nearly
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Fig. 19. Parallel performance of HIMAG for a single phase channel
flow, two phase flow, and MHD channel flow.

drop in performance from the single-phase solver for
these two cases.

3.3. Fusion relevant test problems

While the HIMAG code has just recently neared the
production stage, there has been a great interest in the

Fig. 20. Sketch of the new DiMES probe s

Fig. 21. Current streamlines forz= 0 cross-section at t≈ 0 given a
40 kA/m2 inlet plasma current.

APEX community to simulate different real problems
to help in the understanding of phenomena observed
in experimental tests currently underway. Three such
problems are addressed below.

3.3.1. Simulation of liquid lithium motion in
DiMES sample holder in DIII-D

Here, we simulate the plasma-current driven MHD
flow in an initially static lithium pool with geometry
(seeFig. 20) and plasma current as proposed for a
new lithium experiment in Diverter Materials Evalu-
ation System(DiMES) probe apparatus in the DIII-
lot geometry and HIMAG numerical grid.
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Fig. 22. 3D view of the liquid lithium surface in DiMES slot aftert
= 3.5 ms with 40 kA/m2 plasma current.

D tokamak facility[51]. The static pool is placed in
contact with the divertor plasma where currents are
expected to close through the liquid, causing MHD
forces.

In this slot geometry, the lower block contains the
liquid metal, and is made of insulating material, but for
the thin strip of conducting material that is grounded at
zero potential. Plasma current with density 40 kA/m2

enters the domain at the far right edge of the upper block
in thex-direction at an inclination of 3◦ to the horizon-
tal, parallel to the 2 T magnetic field. The upper block
is initially comprised of plasma, where the electrical
conductivity is greater in the direction of the magnetic
field than in the directional perpendicular to it. The
electrical conductivity of the plasma is held at 1000
times less than that of the isotropic liquid metal, and so
the current lines close to liquid surface, therefore, seek
the low resistance path to the grounding plate at the
lower wall. Fig. 21 depicts a 2D slice of the DiMES
geometry with the computed electric current paths
shown.

Several simulations (seeFig. 22) of liquid-metal
flows in this geometry were made, with the liquid metal
initially at rest. Several qualitative features of the solu-
tion were verified including the tendency of the liquid
to push out of the sample holder seen in preliminary
DiMES experiments.

Fig. 23. MTOR quasi-2D test channel geometry.

3.3.2. Quasi-2D channel experiment in MTOR

The flow of liquid metal in an open-channel with ge-
ometry (seeFig. 23) and field similar to an experiment
with liquid gallium alloy in the UCLA MTOR facility
[14] was simulated and compared against experimental
results. In the case selected (seeTable 3), the magnetic
interaction parameter was fairly low, and the flow is
dominated by viscous and advective effects, except that
flow laminarization by the magnetic field is expected.
The magnetic field profile isBy = 0.45/(1+2x) T as a
function of the flow direction coordinate.

The experiment has a large aspect ratio so that 2D
models could be compared against the experimental
data. HIMAG was used to simulate this same case in
2D and 3D. A mesh resolution study first revealed the
need for clustering mesh points close to the Hartmann
walls, where Hartmann layers were seen to form. A
rather finely clustered mesh was generated, using the
number 1/Ha (whereHa is the Hartmann number based
on the width of the channel,) as the non-dimensional

Table 3
Parameters of the quasi-2D open channel MHD benchmark problem
and Ga–In–Sn alloy in MTOR facility

Volumetric flowrate (l/s) 0.26
Initial depth (mm) 2
Channel width (cm) 20
Initial average velocity (m/s) 0.65
V 2 −7

E
S
D

iscosity (m /s) 4.4× 10
lectrical conductivity (�/m) 3× 106

urface tension (N/m) 0.55
ensity (kg/m3) 6333
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Fig. 24. MTOR data compared to 2D and 3D MHD solutions for
the parameters given inTable 2. Spread of experimental data due to
wave phenomena not resolved in the numerical calculations.

distance from the wall that had to be resolved. A
total of 200,000 computational cells were present in this
mesh.

Computed results for free surface height compared
to averaged MTOR data are shown inFig. 24and seem
to match closely, with better accuracy than the 2D
axisymmetric model. The code was able to resolve
wavy patterns emerging from the Hartmann walls as
part of the captured free surface seen inFig. 25.

Fig. 25. 3D image of gallium surface from HIMAG calculation for
the MTOR parameters inTable 2at steady state.

3.3.3. NSTX simulation experiment in MTOR

In this simulation a liquid metal film flows from
a nozzle with electrically conducting walls out into a
channel, also with conducting side walls, with a spa-
tially varying multiple component magnetic field is
modeled.Fig. 26shows a dimensioned sketch of this
flow geometry. The liquid metal used in the MTOR
experiment this test problem is attempting to simulate
is the same gallium alloy as described inTable 3. The
channel walls were made of 304 stainless steel. A flow
speed of about 3 m/s at the nozzle exit was estimated.

This complex geometry, multi-material case serves
as a test of all the features of the HIMAG code (ex-
cept heat transfer). The computational mesh for this
problem was prepared, with the appropriate modifica-
tions to include solid walls.Fig. 26B shows a view
of this mesh, containing 327,744 cells and 311,690
nodes. Solid walls were defined in the mesh generator.
The computational run was initiated using an impul-
sive start of the flow. That is, velocity is initially set
to zero everywhere inside the domain, and an inflow
velocity is applied at timet = 0. Such an initialization
is often problematic, since it poses numerical stability
problems. However, with suitably converged pressure
Poisson solver, it was possible to implement it into the
code easily.

Preliminary results from the MHD simulation of this
case show clearly, the evolution of smooth pressure and
electric potential contours (Fig. 27). Current vectors en-
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ering solid walls and forming closed pathways ins
he solid medium have been observed.Fig. 28A and B
how the flow of current prior to nozzle exit. Aft of t
ozzle exit, the upper wall that had provided the clo
ircuit for current flow, is absent, and current beg
o flow along thex-direction in the solid walls. This
een inFig. 28C. Fig. 28D shows the velocity vecto
n the flow as it exits the nozzle. Detailed studies of
roblem are presently underway and not yet read
ublication.

. Conclusions and future directions

The modeling capabilities for simulating fr
urface LM-MHD flow have evolved greatly over t
ast two years of research and development within
PEX project. Various 2D and 3D capabilities ha
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Fig. 26. NSTX film flow experiment geometry in MTOR. (A) Isometric view of the geometry (note to scale—all dimensions in mm), (B) a
portion of the numerical grid in the nozzle region and (C) viscosity contours, showing solid (304 SS) walls.

been developed and a great deal has been learned about
the hydrodynamics of liquid walls. Field gradients typi-
cal of the large toroidal magnetic field have been shown
to have only small effect on the drag for thin (∼<2 cm)
liquid wall flows, but still may have detrimental effects

Fig. 27. (A) Pressure distribution, and (B) electrical potential distribution in the near nozzle region at steady state.

on the surface stability especially for lithium flowing
on conducting surfaces. The magnetic propulsion con-
cept has been shown to be effective in propelling and
stabilizing liquid walls flowing from strong to weak
field regions. This concept might be especially useful in
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Fig. 28. Current vectors in (A)x = 6 mm plane inside the nozzle, (B)x = 35 mm plane at the nozzle exit, (C) inx–zandy–zplanes, (D) velocity
vectors at nozzle exit.

forces liquid out through drain channels between mag-
netic field coils. Multiple component magnetic fields
lead to more complicated effects, most notably strong
toroidal motion in liquid wall flows that are initially
flowing poloidally. The impact of this toroidal flow on
the concept of using sector dividing walls may be very
serious.

In terms of new numerical capability and technique,
the HIMAG 3D code is poised to push the boundaries
of computational magnetohydrodynamics even further
in the flow parameters and geometries that can be simu-
lated. Several complex geometry/field cases have been
described above as examples of the simulation possi-
bilities that HIMAG can address—but no conclusions
have been reached regarding some the complex geome-

try features of liquid wall designs such as penetrations,
sidewalls, fins and deflectors as this capability is just
now becoming available.

Work still needs to continue on various R&D tasks
that are essential to the further understanding and pre-
diction of liquid walls. Despite the headway made,
there remains critical work remaining in some areas of
HIMAG development and detailed application to prob-
lems of interest to liquid walls that should continue to
be pursued. These include, importantly:

(a) an implicit treatment of level set equations at high
order of accuracy;

(b) boundary element method for semi-infinite and
closed surfaces in the flow;
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Fig. 29. Section of a channel flow with fine (10−5 of channel dimension) crack, resolved economically using unstructured hexahedral mesh.
Sample contour plot ofx-current density and current lines are shown.

(c) induced magnetic field and vector potential EM
formulations to help push high Hartmann number
and magnetic Reynolds number;

(d) continued validation and application for various
MHD flows of engineering importance—for in-
stance closed channel MHD flows with insulator
coating imperfections.

Referring to this last bullet, some preliminary work
has already been performed to assess the capabilities
of HIMAG for closed channel flows with multiple ma-
terials having various electrical conductivity.Fig. 29
shows a sample situation where the true power of un-
structured meshing in HIMAG can be demonstrated.
Currents emerging from a conducting channel (cross-
section of which is shown,) may flow into the con-
ducting exterior wall through two cracks in the in-
sulating medium that separates the two. The size of

the cracks is very small (five orders of magnitude
less than channel dimensions). With a typical struc-
tured mesh, many mesh cells will be wasted in re-
solving this crack dimension, since the mesh lines
will have to extend across the channel. Unstructured
meshes enable this computation to be performed with
only local clustering. It is believed that this framework
may be extended more generally to 3D problems to
study the effectiveness of insulation coatings. Work has
been also proposed to add various turbulent and con-
jugate heat transfer effects to HIMAG in future years,
and magnetic formulations that can extend the mag-
netic parameter ranges reachable by numerical simu-
lation. With these capabilities, HIMAG will have the
potential to serve as a true design tool for fusion re-
actor design, as well as other applications in metal-
lurgy and aerospace propulsion involving multi-phase
MHD.
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