Recent Advances in Chamber Science and Technology

Mohamed Abdou

ISFNT-6 San Diego, USA

April 8, 2002

Recent Advances in Chamber Science & Technology

<u>Outline</u>

- Highlights of Major World Programs on Chamber/Blanket
- Recent Progress on Liquid Walls
 - IFE & MFE
 - Basic Principles
 - Plasma-Liquid Surface Interactions
 - Bulk Plasma-Liquid Interactions
 - Fluid Dynamics and Heat Transfer
 - Modelling
 - Experiments
 - Analysis & Design

Highlights of Major World Programs on Chamber (Blanket) Technology

- Several overview and detailed papers at this conference

- Here, only a Quick Summary

Blanket Activities in Europe

- Program emphasis aims for DEMO, w/ test blanket modules (TBM) in ITER
- Emphasis on R&D for two near-term concepts that represent modest extrapolation in technology

1 - Water-cooled Pb-17Li	2 - He-cooled pebble bed
$P_{NW} = 2.2 \text{ MW/m}^2$	$P_{S} = 0.4 \text{ MW/m}^{2}$

- R&D Focus
 - Characterization of materials
 - Reduced activation Ferritic-Martensitic steel (EUROFER)
 - Breeding materials (Pb-17Li, Li₄SiO₄, Li₂TiO₃)
 - Beryllium
 - Manufacturing technology (HIP, joining, tritium permeation barrier)
- Other efforts on advanced concepts
 - A Intermediate: PbLi with ferritic/martensitic steel SiC is used only as flow channel inserts
 - B Long Term: Other possibilities, e.g. SiC/SiC as structure

Blanket Activities in Japan

Main Concepts

- Solid Breeder Blanket (Key Organization: JAERI)

Reference: Water cooled blanket with RAFS Advanced: He gas cooling system with SiC/SiC

- Liquid Breeder Blanket (Key Organization: NIFS & Universities)

Research on several advanced concepts: FLiBe, Li, LiPb with ferritic steel, V, and SiC

Key Milestones

- Demonstration of electrical power generation and tritium breeding in a DEMO-Relevant Test Blanket Module (TBM) in ITER is one of the most important milestones
- The first TBMs will be installed in ITER around 2015.
- In parallel with the TBM activity, material R&D should proceed with existing reactors and a fusion neutron source, such as IFMIF

Blanket Activities in Japan (cont'd)

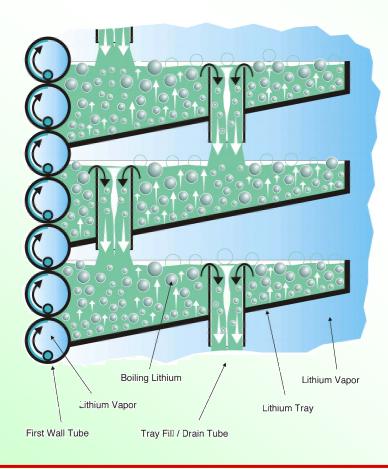
Key R&D items under investigation

Solid Breeder Blanket

- Development of base manufacturing technology for TBMs
- Development of manufacturing technology of breeding material and neutron multiplier, such as $Be_{12}Ti$
- Irradiation performance of RAFS, and ODS
- Thermal/mechanical and irradiation performance of pebble beds
- Supercritical water cooled blanket system for higher thermal efficiency
- High temperature gas cooled blanket system with SiC/SiC

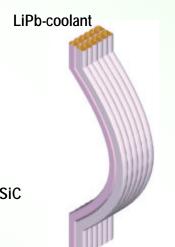
• Liquid Breeder Blanket

- Development of FLiBe-based blanket with RAFS
- Research on thermal hydraulics/heat transfer
- Research on Tritium recovery technology
- Research on Insulation/Tritium-permeation coating technology


• JUPITER-II

 Collaborative program between Japan (mainly Universities) and USA covers materials, tritium, thermofluids, and pebble bed/SiC thermomechanics

Chamber Science & Technology in the USA


- Distinct, but collaborative Chamber Programs for IFE & MFE
- Last 3 years: strengthened interactions among Materials, PFC, and Chamber Programs
- The effort on "conventional" blankets is limited to:
 - Thermomechanics of pebble bed beryllium and ceramic breeders (IEA, JUPITER-II)
 - Insulators for liquid metal blankets (part of JUPITER-II)
- The major emphasis in Chamber Science & Technology over the past 3 years has been on Innovative Concepts that:
 - 1 In the near-term: enable plasma experiments to more fully achieve their research potential
 - 2 In the long-term: substantially improve the attractiveness of Fusion as an Energy Source
- Key research programs initiated: APEX (Chamber) and ALPS (PFC)
- Innovative concepts proposed: 1) Advanced Solid Walls 2) Liquid Walls

Innovative Solid Wall Concepts

EVOLVE (APEX)

- Novel Concept based on use of high temperature refractory alloy (e.g. tungsten) with innovative heat transfer/transport scheme for vaporization of lithium
- Low pressure, low stresses
- Low velocity, MHD insulator not required
- High Power Density / Temperature / Efficiency ARIES-AT FW/Blanket Segment
- Key Issues Relate to Tungsten

SiC/SiC-LiPb proposed by ARIES

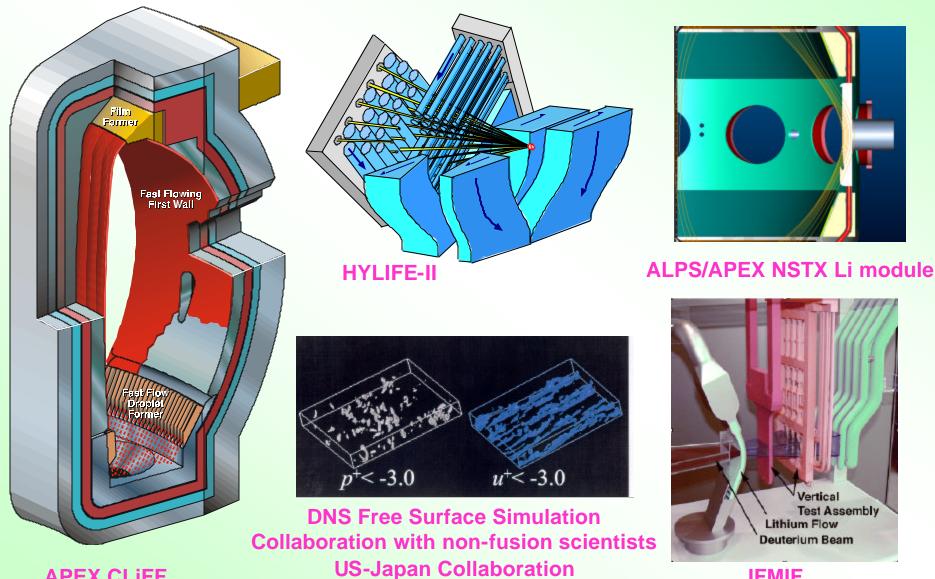
- SiC allows high temperature, but power density may be limited
- Low activation
- Key Issues relate to SiC/SiC

SiC_f/SiC

Reflections on Advanced Solid Walls

- Attempts to extend the capabilities and attractiveness of solid walls have required very advanced structural materials
- EVOLVE requires W alloy for high power density, high temperature But the Material Community is not enthusiastic (risky, costly, very long-term)
- High temperature with LiPb or other coolants/breeders relied on SiC/SiC Recent advances in SiC/SiC development are remarkable But some scientists are asking: Is SiC/SiC appropriate for FW?

<u>A Viewpoint:</u> SiC cannot address all the issues of the first wall: heat load, pressure boundary, erosion, helium retention issue, etc.

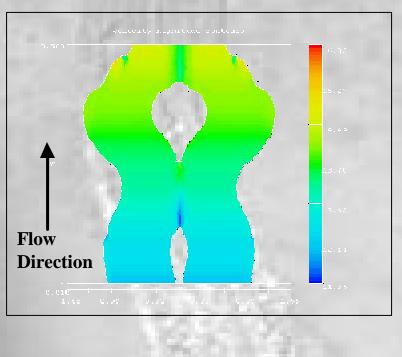

<u>A Suggestion:</u> Focus on utilizing SiC for suitable applications such as inserts (for insulation), and deeper regions of the blanket.

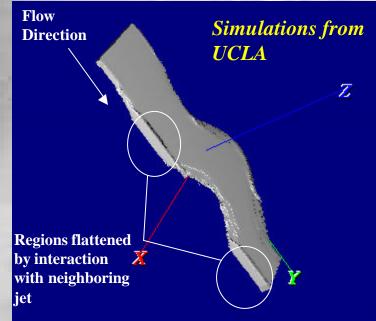
- Emerging Trend:
 - Emphasize advanced higher-temperature ferritic steels
 - EU/J/US: ODS
 - US: Nano-Composited Ferritic Steel (max. temp ~ 800 C)

Recent Progress on LIQUID WALLS

The remainder of this presentation will focus on Liquid Walls

Liquid Wall Science & Technology are being Advanced in Several MFE & IFE Research Programs


APEX CLIFF


IFMIF

Oscillating IFE jet experiments and simulations

•Single jet water experiments and numerical simulations demonstrate control of jet trajectory and liquid pocket formation at near prototypic Re

Experimental Data from UCB

Remarkable Progress on Liquid Wall Research in the Past 3 years

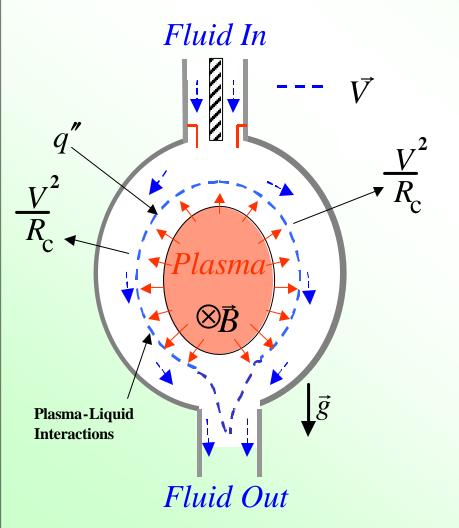
- New Design Ideas for Liquid Walls in MFE Have Evolved (Elaborate Liquid Wall Designs for IFE have long existed)
- Key Technical Issues Identified & Characterized
- R&D Effort on Top Issues Initiated: Significant Progress
 - Modeling
 - Plasma Physics Edge & Core
 - Fluid Mechanics, MHD, Heat Transfer

Experiments

- Laboratory Experiments on Thermofluids (w/ & w/o MHD)
- Laboratory Experiments on Sputtering & Particle Trapping, etc.
- Tokamak Experiments: Liquid Lithium in Actual Plasma Devices

Potential Benefits if we can develop good liquid walls:

- Improvements in Plasma Stability and Confinement
 - Enable high ß, stable physics regimes if liquid metals are used
- High Power Density Capability
 - Eliminate thermal stress and erosion as limiting factors in the first wall and divertor
 - Results in smaller and lower cost components
- Increased Potential for Disruption Survivability
- Reduced Volume of Radioactive Waste
- Reduced Radiation Damage in Structural Materials
 -Makes difficult structural materials problems more tractable
- Potential for Higher Availability

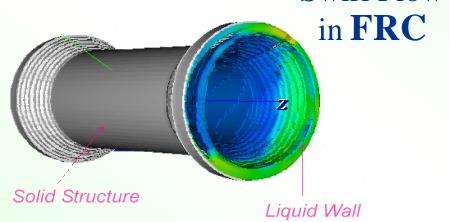

No single LW concept may simultaneously realize all these benefits, but realizing even a subset will be remarkable progress for fusion

"Liquid Walls" Have Many Design Options

1) Type of Flow Control

2) Working Fluid

3) Liquid Thickness



• Gravity-Momentum Driven (GMD)

- Fast liquid adheres to back wall by centrifugal force
- Applicable to LM's or molten salts

• GMD with Swirl Flow

- Add rotation
- Good for cylindrical geometry (e.g. FRC or IFE) Swirl Flow

