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Abstract

A consistent, conservative and accurate scheme has been designed to calculate the current density and the Lorentz force
by solving the electrical potential equation for magnetohydrodynamics (MHD) at low magnetic Reynolds numbers and
high Hartmann numbers on a finite-volume structured collocated grid. In this collocated grid, velocity (u), pressure (p),
and electrical potential (u) are located in the grid center, while current fluxes are located on the cell faces. The calculation
of current fluxes on the cell faces is conducted using a conservative scheme, which is consistent with the discretization
scheme for the solution of electrical potential Poisson equation. A conservative interpolation is used to get the current den-
sity at the cell center, which is used to conduct the calculation of Lorentz force at the cell center for momentum equations.
We will show that both ‘‘conservative’’ and ‘‘consistent’’ are important properties of the scheme to get an accurate result
for high Hartmann number MHD flows with a strongly non-uniform mesh employed to resolve the Hartmann layers and
side layers of Hunt’s conductive walls and Shercliff’s insulated walls. A general second-order projection method has been
developed for the incompressible Navier–Stokes equations with the Lorentz force included. This projection method can
accurately balance the pressure term and the Lorentz force for a fully developed core flow. This method can also simplify
the pressure boundary conditions for MHD flows.
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1. Introduction

Magnetohydrodynamic (MHD) flow at high Hartmann numbers has been a topic of great interest in the
development of a fusion reactor blanket [1,2]. The self-cooled liquid–metal blanket [3] and dual coolant lead
lithium [4] uses liquid lithium or the eutectic alloy Pb–17Li as the coolant as well as the breeding material.
To design such liquid metal based blankets for fusion reactors, one must know the characteristics of
MHD flows at high Hartmann numbers, such as the high MHD pressure drop and effects on flow profiles
[5].

Two-dimensional MHD channel flows have been extensively studied by theoretical analysis and numerical
simulation [6–9]. The square of the Hartmann number Ha is the ratio between the electromagnetic and the
viscous forces. It is therefore a measure of the magnetic field strength for a given fluid in a duct of a given
scale. The thickness of the Hartmann layers scales with Ha�1 and is very thin; the side layers parallel to
the magnetic field scale with Ha�1/2 and are much thicker than the Hartmann layers at high Hartmann num-
bers. The development of fusion reactors experiments with strong magnetic fields leads to a growing interest in
the study of 3D MHD phenomena. When inertial terms are small, the asymptotic method [10–12] that focuses
on the main phenomena is a very efficient method to compute 3D MHD flows. This efficient method is valid
for high Hartmann numbers and high interaction parameters. When inertial terms are important, the direct
simulation method accounting for all the physical effects is an important tool to study the 3D MHD phenom-
ena. Using the direct simulation method, a very fine mesh is required to resolve the Hartmann layer and the
side layer at high Hartmann numbers. For unsteady flows, the time step is proportional to the smallest grid
size with an explicit update of the temporal term. The cost of direct simulation of 3D MHD flows at high
Hartmann number is high since it requires a fine mesh and therefore a small time step for unsteady flows.
Three-dimensional numerical simulations of inertial flows are often limited to the steady regime and low Hart-
mann numbers.

For low magnetic Reynolds numbers, the electrical potential formula can be employed for MHD with good
accuracy [13–15]. For incompressible liquid fluid flow, a staggered grid system is usually employed to effi-
ciently avoid the checkerboard phenomenon of pressure. When this grid system is applied for low magnetic
Reynolds number, the pressure and electrical potential can be put at the cell center point as shown in
Fig. 1a. Sterl [16] conducted a direct numerical simulation of liquid metal MHD flows in rectangular ducts
using a uniform mesh. Usually it is not difficult to design a conservative scheme for MHD calculation on a
uniform mesh. However, requiring 2–3 grids inside the Hartmann layer and the side layer will greatly increase
the computational time on a uniform mesh as Hartmann number increases. In Sterl’s calculation, Hartmann
number is limited to less than 1000 for 2D cases and to less than 50 for 3D cases. For fusion blankets, Hart-
mann number can be as high as 104–105, and non-uniform grids are needed to improve the computational effi-
ciency. Leboucher [17] found that the classical second-order difference scheme for electrical potential gradient
cannot ensure a good solution for side layers on a non-uniform mesh based on an ordinary staggered grid sys-
tem (see Fig. 1a). Leboucher attributes this to the larger leading error terms. He noted in [17] that a numer-
ically stable scheme for (u · B) · B = B2u^ is inaccurate when used together with $u · B the Lorentz force
term discretized on an ordinary staggered grid. u^ is the velocity component normal to the applied magnetic
field direction. The derivative ou/oz involved in the term $u · B needs to be known at the grid point
ðiþ 1

2
; j; kÞ before it is added to the x-component of the momentum equation. It is interesting to note the dif-

ference between the following two formulas:
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Fig. 1. Three grid arrangement systems.
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On a uniform mesh, the above formulas are equivalent. However, on a non-uniform mesh, the above two
formulas are entirely different. Fig. 2 is an illustrated non-uniform mesh generated for the simulation of
Hunt’s case with Hartmann number 10,000. The maximum grid size ratios in y and z directions are Dymax/
Dymin = 10,000 and Dzmax/Dzmin = 1000, respectively. With a non-uniform mesh employed, we will show later
that Eq. (1) is neither conservative nor consistent, while Eq. (2) is conservative and consistent with respect to
the current density. The non-conservative and inconsistent formula will definitely introduce an error into the
calculation of current density. The accuracy and conservative properties of discretized schemes on a uniform
mesh is discussed in [18]. A series of energy conservative schemes are constructed for the convective term and
pressure term of the Navier–Stokes equations. The energy conservative scheme is also discussed and con-
structed on a non-uniform mesh in [19] and unstructured staggered mesh in [20] and unstructured collocated
mesh in [21]. The energy conservative scheme has great advantages over a non-conservative scheme in the
DNS and LES for turbulent flows [18]. However, in this paper, we will discuss and develop a consistent
and conservative scheme for the calculation of the current density and the Lorentz force for MHD flows.

To keep a scheme consistent and conservative, a fully staggered grid system is designed in [17] for MHD
calculation with high Hartmann number as shown in Fig. 1b. Velocities and current fluxes are arranged on
the cell faces and pressure is arranged at the node center, while the electrical potential is arranged at the edge
centers of a cell box. Leboucher [17] even puts the current flux of jx at the center of the xy cell face, jz at the
center of the yz cell face. He did not mention the arrangement of jy for his 2D calculation or 3D calculation
with a unidirectional fixed applied magnetic field. This arrangement adds numerical complexity, especially for
three-dimensional simulation on a finite-volume unstructured mesh with multi-directional applied magnetic
field. We also note that this fully staggered grid system has been applied in [22] to conduct LES (large eddy



Fig. 2. Non-uniform grids generated for Ha = 10,000.
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simulation) of turbulent MHD. Umeda and Takahashi [23] employed a fully staggered grid to simulate MHD
flows for fusion application.

A collocated grid system has been employed for MHD simulations [24–26] based on the commercial CFD
(computational fluid dynamics) software CFX [27]. However the scheme used in [24,25] is neither consistent
nor conservative with respect to current density. In [26], it has been noted that a consistent scheme used to
calculate the current related to u · B is important. However, the Lorentz force calculated at the cell center
is not based on a conservative formula. In [24,25], the simulation for fully developed MHD channel flow
(Ha = 1000) shows a large difference between their numerical method and analytical results. Also, Ref. [26]
can only illustrate results for low Hartmann numbers.

In this paper, an accurate, consistent and conservative scheme is designed on a collocated grid system to
calculate the current density and the Lorentz force for MHD flows at low magnetic Reynolds number with
the electrical potential formulation. In this scheme, velocities, pressure and electrical potential are computed
at the cell center. Velocity fluxes at the cell faces are calculated based on a momentum interpolation [28,29] to
avoid checkerboard phenomena. The current density fluxes are located on the cell faces, and a consistent
scheme is used to get the current fluxes on the cell faces to ensure the divergence-free current in a controlled
volume. A conservative interpolation technique is used to get the current density at the cell center by interpo-
lating the conservative current fluxes. This arrangement effectively avoids the numerical instability of regular
schemes, and has good conservation with respect to the current density at the side layer and the Hartmann
layer. This scheme has already been extended on an unstructured grid system [30] with a conservative formula
employed to conduct the calculation of Lorentz force at the cell center.

A general second-order temporally accurate projection method [31] has been extended for incompressible
Navier–Stokes equations with the Lorentz force as a source term. This projection method can accurately and
effectively balance the pressure term and Lorentz force in the fully developed core flow. This projection
method can also simplify the pressure boundary conditions for MHD flows. This general projection method
can be reduced to the classical projection methods, such as the method in [32,33]. Also the SIMPLE-type
methods, such as the standard SIMPLE method in [34,35] and the SIMPLEC method in [36], can be acquired
from the general projection method.

The general projection method is developed for MHD in Section 2. Section 3 gives the detailed description
of the consistent and conservative method developed for the calculation of current density and the Lorentz
force. In Section 4, several numerical experiments are conducted. The comparisons between consistent and
inconsistent formulas and between conservative and non-conservative schemes are analyzed. Numerical
results will show that the conservative and consistent method developed in this paper can accurately simulate
MHD at high Hartmann numbers.
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2. General second-order projection method for MHD flows

The flow of electrically conducting fluid under the influence of an external magnetic field is governed by the
following equations, which express the conservation of momentum and mass:
ou

ot
þ u � ru ¼ �rp þ 1

Re
r2uþ NðJ � BÞ ð3Þ

r � u ¼ 0 ð4Þ
where u, p are the non-dimensional velocity vector and kinetic pressure scaled with u0 and qu2
0, respectively.

With L defined as characteristic length, Re = u0L/g is the Reynolds number, Ha ¼ LB0

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
is the Hartmann

number, and N = Ha2/Re is the interaction parameter. J represents the current density, and B is the applied
magnetic field scaled with ru0B0 and B0, respectively. Also we define the magnetic Reynolds number here as
Rem = lrLu0, where g and r are the fluid viscosity and conductivity, respectively. l is the permeability of the
fluid and the walls, q is the density of the fluid. The term N(J · B) is the Lorentz force, which is a volume force
in a non-conservative form in the momentum equation of (3).

2.1. Balance between pressure gradient and the Lorentz Force

In the situation where N is large, we have an approximation known as fully developed core flow and Eq. (3)
can be reduced to:
rp ¼ NðJ � BÞ ð5Þ
where the Lorentz force will balance the pressure gradient. Considering a fully developed MHD flow in a rect-
angular channel, with flow velocity in the x-direction, all derivatives with respect to x are zero except for that
of pressure, which is a constant along the flow and zero in solid regions. An applied magnetic field is assumed
in the y-direction and the magnetic Reynolds number is assumed to be small so that an electric potential for-
mulation can be used. Electric current is computed from Ohm’s law as:
J ¼ ð0; jy ; jzÞ ¼ r 0;� ou
oy
;� ou

oz
þ u

� �
ð6Þ
In the core of the flow the balance Eq. (5) leads to the following relations:
� ou
oz
þ u ¼ Re

Ha2

dp
dx

ð7Þ
At high Ha (therefore, high interaction parameter N) with a given pressure gradient which corresponds to a
given flow rate, the right hand side of the above equation is very small. The core dimensionless velocity being
close to 1, we require the dimensionless gradient of the electric potential above to be also close to 1 in mag-
nitude, but opposite in sign. We then have a situation in which current is computed from the difference
between two (nearly identical) large numbers. It turns out that this imposes some restrictions on the manner
in which current is numerically computed from the electric potential. The first issue is that of formal order of
accuracy. Second, there is some reason to believe that leading truncation error terms in Taylor expansions of
the two terms in Ohm’s law, the potential gradient and the u · B terms, in the numerical calculation of current
may cause accumulation of error in a collocated sense, while they may effectively annul each other when stag-
gered appropriately, as observed by Leboucher [17]. The consistent and conservative scheme designed in this
paper attempts to alleviate these concerns for a collocated grid system.

2.2. Two four-step projection methods and boundary conditions for MHD flows

Before discussing the consistent and conservative scheme for the calculation of the current density and the
Lorentz force in Section 3, we first develop a general projection method for the incompressible Navier–Stokes
equations with the Lorentz force included. An accurate projection method should be able to enforce the
balance between the pressure gradient and the Lorentz force for a fully developed core flow. For the
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incompressible momentum and mass conservative equations (3) and (4) with the Lorentz force taken into
account, the four-step general second-order projection method [31] can be extended as:

� Four-step projection method I
Aû ¼ rk þ Gpk þ NðJ � BÞk ð8Þ
~u ¼ ûþ DtðHk

pGpk �Hk
F NðJ � BÞkÞ ð9Þ

DtDðHk
pGpkþ1Þ ¼ Dð~uþ DtHk

F NðJ � BÞkþ1Þ ð10Þ

ukþ1 ¼ ~u� DtðHk
pGpkþ1 �Hk

F NðJ � BÞkþ1Þ ð11Þ
� Four-step projection method II
Aû ¼ rk þ Gpk þ NðJ � BÞk ð12Þ
~u ¼ ûþ DtHk

pGpk ð13Þ

DtDðHk
pGpkþ1Þ ¼ Dð~uÞ ð14Þ

ukþ1 ¼ ~u� DtHk
pGpkþ1 ð15Þ

where A, G, and D are submatrices, D is the discrete divergence operator, and G is the discrete gradient
operator. The right-hand-side r vector contains all those quantities that are already known except the Lor-
entz force. Explicitly updating the convective term for simplicity and performing semi-implicit Crank-Nich-
olson updating of the diffusion term for stability, we have r ¼ 1

Dt ðI þ Dt
2Re LÞuk �NC kþ1=2ðuÞ and

A ¼ 1
Dt ðI � Dt

2Re LÞ. Here L is a discretized Laplace operator and NCk+1/2(u) is the sum of the discrete con-
vective operator. I is the unit identity matrix operator, Hp = (hpx,hpy,hpz) and HF = (hFx,hFy,hFz) are the
diagonal coefficient matrices with elements of hpx, hpy, hpz and hFx, hFy, hFz, which may depend on the grid
size, time step and even velocity. It has been proven that some classical second-order projection methods
[32,33] and SIMPLE-type methods [34,36] can be recovered from Eqs. (8)–(11) and Eqs. (12)–(15) with dif-
ferent coefficient matrices. The SIMPLE method has been shown to have second-order temporal accuracy
for unsteady flows [37].

We can see the difference between the projection method I of Eqs. (8)–(11) and the projection method II of
Eqs. (12)–(15). For the four-step projection method I, the pressure term always comes together with the Lor-
entz force. These two terms will be discretized at the same position. Both should be discretized at the same cell
center point, or the same cell face center. While, in the projection method II, the Lorentz force is only calcu-
lated in the predictor step of Eq. (12). From Eqs. (13)–(15), the pressure term does not appear together with
the Lorentz force.

The differences between the two projection methods can be understood based on a collocated grid system as
shown in Fig. 1c. The Lorentz force is calculated based on J · B. Using the projection method I, we need to
calculate the Lorentz force not only at the cell center, but also at the cell faces, which requires interpolation of
current density from one cell face to another in a control volume. The interpolation from face to face makes it
hard to conserve current density, especially on an unstructured grid or a very non-uniform grid for high Hart-
mann numbers. The non-conservative interpolation of current density will introduce numerical errors for the
calculation of Lorentz force on the cell faces. This numerical error makes that the balance between the pres-
sure term and the Lorentz force in a fully developed core flow cannot be guaranteed.

For the projection method II, we only need to calculate the Lorentz force at the cell center in the first pre-
dictor step of Eq. (12). Using the collocated grid system of Fig. 1c, a conservative scheme will be designed to
do the interpolation of current density from cell faces to cell center. This conservative interpolation can guar-
antee the balance between the pressure term and the Lorentz force at the cell center.

For the projection method I, one can get the pressure boundary condition as:
opkþ1
c

on

� �
BC

� NððJ � BÞ � nÞkþ1
BC ¼

opk
c

on

� �
BC

� NððJ � BÞ � nÞkBC ð16Þ
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For the projection method II, the corresponding pressure boundary condition can be given as:
opkþ1
c

on

� �
BC

¼ opk
c

on

� �
BC

ð17Þ
We can see that the simple Neumann condition works well for the projection method II, while the pressure
boundary condition of Eq. (16) must take into account the Lorentz force on the boundary for the projection
method I, especially for unsteady flows. Eq. (16) needs the current density along the tangential direction on the
boundary faces, which add complexity for pressure boundary conditions.

We therefore prefer to the projection method II of Eqs. (12)–(15) for the simulation of incompressible
Navier–Stokes equations couple with electromagnetic forces due to its simplicity of implementation and its
accuracy of calculation for the Lorentz force.

2.3. Two three-step projection methods and boundary conditions for MHD flows

The above two four-step projection methods can also be reduced to the following three-step projection
methods.

� Three-step projection method I (corresponding to the four-step projection method I of Eqs. (8)–(11)):
Aû ¼ rk þ Gpk þ NðJ � BÞk ð18Þ
DtDðHk

pGðpkþ1 � pkÞÞ ¼ Dðûþ DtHk
F NððJ � BÞkþ1 � ðJ � BÞkÞÞ ð19Þ

ukþ1 ¼ û� DtðHk
pGðpkþ1 � pkÞ �Hk

F NððJ � BÞkþ1 � ðJ � BÞkÞÞ ð20Þ
� Three-step projection method II (corresponding to the four-step projection method II of Eqs. (12)–(15)):
Aû ¼ rk þ Gpk þ NðJ � BÞk ð21Þ
DtDðHk

pGðpkþ1 � pkÞÞ ¼ DðûÞ ð22Þ
ukþ1 ¼ û� DtHk

pGðpkþ1 � pkÞ ð23Þ
The SIMPLE [34] and SIMPLEC [36] methods can be acquired from Eqs. (18)–(20) and Eqs. (21)–(23) with
a non-linear coefficient matrix dependent on velocity, grid size and time step. The pressure boundary condi-
tions for the three-step projection method I and three-step projection method II can be, respectively, given as:
oðpkþ1
c � pk

cÞ
on

� �
BC

¼ NðððJ � BÞkþ1 � ðJ � BÞkÞ � nÞBC ð24Þ
For the three-step projection method II, the corresponding pressure boundary conditions can be given as:
oðpkþ1
c � pk

cÞ
on

� �
BC

¼ 0 ð25Þ
Based on the same reasons for the choice of the four-step projection methods, we prefer to use the three-step
projection method II for the calculation of MHD flows. In this paper, the calculation of MHD flows is per-
formed using the four-step projection method II.

3. Consistent and conservative formula for current density and the Lorentz Force

3.1. Conservative laplace and divergence operators

On a collocated mesh, the calculation of the Lorentz force at the cell center is dependent on the current
density. For a low magnetic Reynolds number, the current density can be calculated through Ohm’s law
[13–15]:
J ¼ �ruþ u� B ð26Þ
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The current density includes two parts of Js = $u, the electrical potential gradient, and Ju = u · B, the Lor-
entz force dependent on velocity. Here the electrical potential is scaled with Lu0B0. Current density is con-
served, and we must also enhance:
r � J ¼ 0 ð27Þ

From Eqs. (26) and (27), we can get the electrical potential Poisson equation as:
r � ðruÞ ¼ r � ðu� BÞ ð28Þ

The discretization of the Laplace operator $ Æ ($) includes the discretization of the divergence operator and the
gradient operator. The gradient operator is related to the calculation of current density. The discretization of
the gradient operator in the Laplace operator in Eq. (28) should be consistent with the discretization of the
gradient operator in the calculation of current density in Eq. (26). Also, the calculation of u · B in the Poisson
equation of Eq. (28) should be consistent with the calculation of Ju for the current density at the cell face.

Integrating Eq. (27) over a control volume as shown in Fig. 1, we have:
Z
X
r � J dX ¼

I
S

n � J ds ¼
Xnf

f¼1

ðn � JÞf sf ð29Þ
The subscript f denotes the cell face, and nf is the total number of cell faces on the control volume, with nf = 4
for two-dimensional rectangular and nf = 6 for three-dimensional hexahedral cases, respectively. It is natural
to locate the current density flux Jn = J Æ n on the cell faces, which can effectively conserve the current density
in the control volume. This arrangement is illustrated in the staggered grid system and collocated grid system
in Fig. 1a and c. u and p are located at the cell center and Jn is located at the cell face center, with Jx at
ðiþ 1

2
; j; kÞ, Jy at ði; jþ 1

2
; kÞ, and Jz at ði; j; k þ 1

2
Þ. The velocities of u, v and w are located at the cell center

in the collocated grid system. In a finite volume grid, the cell center point is located at the center of a control
volume.

The conservative discretized divergence operator for current density can be given for the controlled volume
(i,j,k) as:
ðDcðJÞÞi;j;k ¼
ðJ xÞiþ1

2;j;k
� ðJ xÞi�1

2;j;k

xiþ1
2
� xi�1

2

þ
ðJ yÞi;jþ1

2;k
� ðJ yÞi;j�1

2;k

yjþ1
2
� yj�1

2

þ
ðJ zÞi;j;kþ1

2
� ðJ zÞi;j;k�1

2

zkþ1
2
� zk�1

2

ð30Þ
where Ju is made up of Ju and Js, we have:
ðDcðJuÞÞi;j;k ¼
ðJuxÞiþ1

2;j;k
� ðJuxÞi�1

2;j;k

xiþ1
2
� xi�1

2

þ
ðJuyÞi;jþ1

2;k
� ðJuyÞi;j�1

2;k

yjþ1
2
� yj�1

2

þ
ðJuzÞi;j;kþ1

2
� ðJuzÞi;j;k�1

2

zkþ1
2
� zk�1

2

ð31Þ

ðDcðJsÞÞi;j;k ¼
ðJsxÞiþ1

2;j;k
� ðJsxÞi�1

2;j;k

xiþ1
2
� xi�1

2

þ
ðJsyÞi;jþ1

2;k
� ðJsyÞi;j�1

2;k

yjþ1
2
� yj�1

2

þ
ðJszÞi;j;kþ1

2
� ðJszÞi;j;k�1

2

zkþ1
2
� zk�1

2

ð32Þ
(Jx, Jy, Jz), (Jux, Juy, Juz) and (Jsx, Jsy, Jsz) are three components of J, Ju and Js in the x, y, and z directions,
respectively. Correspondingly, we have the following conservative discretized formulation of Eq. (28) at a con-
trolled volume of:
ðLcðuÞÞi;j;k ¼ ðDcðG f ðuÞÞÞi;j;k

¼
ðG fxðuÞÞiþ1

2;j;k
� ðG fxðuÞÞi�1

2;j;k

xiþ1
2
� xi�1

2

þ
ðG fyðuÞi;jþ1

2;k
� ðG fyðuÞi;j�1

2;k

yjþ1
2
� yj�1

2

þ
ðG fzðuÞi;j;kþ1

2
� ððG fzðuÞi;j;k�1

2

zkþ1
2
� zk�1

2

¼ ðDcððJuÞf ÞÞi;j;k ð33Þ
Here Dc is a discretized divergence operator, Lc is a discretized Laplace operator at the cell center, and Gf is a
gradient operator discretized at the cell face. Gfx, Gfy, Gfz are the projectors of Gf in the x, y, z directions,
respectively. The subscript c denotes the cell center, and f denotes the cell face.
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3.2. Consistent gradient operator and interpolation operator at cell face to ensure calculated current flux

conservative

Since the conservative discretized divergence and Laplace operators of Eqs. (30) and (33) need the value of
current density on the cell faces, we now give the discretized gradient operator of electrical potential and inter-
polation operator for velocity on the cell faces. The gradient operator can be given as:
ðJsxÞiþ1
2;j;k
¼ �ðG fxðuÞÞiþ1

2;j;k
¼ �

uiþ1;j;k � ui;j;k

xiþ1 � xi
ð34Þ

ðJsyÞi;jþ1
2;k
¼ �ðG fyðuÞÞi;jþ1

2;k
¼ �

ui;jþ1;k � ui;j;k

yjþ1 � yj

ð35Þ

ðJszÞi;j;kþ1
2
¼ �ðGfzðuÞÞi;j;kþ1

2
¼ �

ui;j;kþ1 � ui;j;k

zkþ1 � zk
ð36Þ
This discretized gradient operator in the calculation of current density has been forced to be consistent with
the corresponding part in the calculation of Laplace operator. In other words, Eqs. (34)–(36) are consistent
with Eq. (33). In the discretized divergence operator on Ju from Eq. (31), the detailed formula can be given
as:
ðJuxÞiþ1
2;j;k
¼ viþ1

2;j;k
ðBzÞiþ1

2;j;k
� wiþ1

2;j;k
ðByÞiþ1

2;j;k
ð37Þ

ðJuyÞi;jþ1
2;k
¼ wi;jþ1

2;k
ðBxÞi;jþ1

2;k
� ui;jþ1

2;k
ðBzÞi;jþ1

2;k
ð38Þ

ðJuzÞi;j;kþ1
2
¼ ui;j;kþ1

2
ðByÞi;j;kþ1

2
� vi;j;kþ1

2
ðBxÞi;j;kþ1

2
ð39Þ
where B is assumed known. The calculation of Ju is dependent on the velocity, which is related to grid arrange-
ment. On a collocated grid system, an interpolation operator of Kc!f can be defined, which represents the
interpolation from cell center to cell face since u,v,w are located at the cell center for a collocated grid system:
V f ¼ Kc!f ðVcÞ ð40Þ

Let u denote the velocity vector of (u,v,w), and we have a detailed formula of the interpolation operator on
collocated grids:
uiþ1
2;j;k
¼ Kc!fxþðucÞ ¼ aþui;j;k þ ð1� aþÞuiþ1;j;k ð41Þ

ui;jþ1
2;k
¼ Kc!fyþðucÞ ¼ bþui;j;k þ ð1� bþÞui;jþ1;k ð42Þ

ui;j;kþ1
2
¼ Kc!fzþðucÞ ¼ cþui;j;k þ ð1� cþÞui;j;kþ1 ð43Þ
The subscripts c! fx+, c! fy+, and c! fz+ denote the interpolation from cell center to cell faces normal to
the x-, y- and z-directions, respectively. The symbol + denotes that the cell faces are located to the right, top
and front of the cell center, respectively. Now, we can give the detailed formula for the interpolation operator
from cell center to cell face center as:
ðV fþÞi;j;k ¼
uiþ1

2;j;k

ui;jþ1
2;k

ui;j;kþ1
2

0
B@

1
CA ¼

Kc!fxþðuÞ
Kc!fyþðuÞ
Kc!fzþðuÞ

0
B@

1
CA

i;j;k

¼ Kc!fþðVcÞi;j;k ð44Þ
In a similar way, we can get:
ðV f�Þi;j;k ¼
ui�1

2;j;k

ui;j�1
2;k

ui;j;k�1
2

0
B@

1
CA ¼

Kc!fx�ðuÞ
Kc!fy�ðuÞ
Kc!fz�ðuÞ

0
B@

1
CA

i;j;k

¼ Kc!f�ðVcÞi;j;k ð45Þ
Here the symbol - denotes that the cell faces are located to the left, bottom and back of a cell center in a con-
trolled volume. Omitting the subscript (i, j, k) in Eqs. (44) and (45), we therefore have the general interpolation
formula of Eq. (40) from cell center to cell face.
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In Eqs. (41)–(43), the interpolation has second-order accuracy if we have:
aþ ¼
xiþ1 � xiþ1

2

xiþ1 � xi
; bþ ¼

yjþ1 � yjþ1
2

yjþ1 � yj

; cþ ¼
zkþ1 � zkþ1

2

zkþ1 � zk
ð46Þ
However, this interpolation is not symmetrical between neighbor points of a cell face, while the discretization
of the gradient operator at the cell face is symmetrical. To keep consistency between the calculations for Js and
Ju, we can choose:
aþ ¼
1

2
; bþ ¼

1

2
; cþ ¼

1

2
ð47Þ
Now we give a brief summary of Sections 3.1 and 3.2. Eqs. (30) and (33) give a conservative discretized for-
mula for the divergence and the Laplace operators. By solving the conservative discretized electrical potential
equation of Eq. (33), and calculating the interface current density of Jsf based on Eqs. (34)–(36) and of Juf

from Eqs. (37)–(39), with velocity interpolation operator of Eq. (40) and the average coefficient of Eq. (47)
employed, the current density should be conserved in a control volume. The calculation of Juf on the cell face
based on Eqs. (37)–(39) with the velocity interpolation formula of Eqs. (40) and (47) for a collocated grid sys-
tem are consistent with the discretized formula for Jsf on the cell face using Eqs. (34)–(36). Both the interpo-
lation operator of Eq. (40) and gradient operator of Eqs. (34)–(36) are consistent with the discretization of the
divergence operator of Eqs. (31) and (32) and the Laplace operator of Eq. (33), and therefore they are also
conservative and consistent.
3.3. Calculation of the Lorentz force at cell center

3.3.1. Conservative formula

The calculation of the Lorentz force in the momentum equations (3) and (12) can be described as:
F ¼ ðJ � BÞ ¼ ð�ruþ u� BÞ � B ð48Þ
On a collocated grid system, we have the Lorentz force at a cell center as:
ðF xÞi;j;k ¼ ðJ yBz � J zByÞi;j;k ¼ ðJ yÞi;j;kðBzÞi;j;k � ðJ zÞi;j;kðByÞi;j;k ð49Þ

ðF yÞi;j;k ¼ ðJ zBx � J xBzÞi;j;k ¼ ðJ zÞi;j;kðBxÞi;j;k � ðJ xÞi;j;kðBzÞi;j;k ð50Þ

ðF zÞi;j;k ¼ ðJ xBy � J yBxÞi;j;k ¼ ðJ xÞi;j;kðByÞi;j;k � ðJ yÞi;j;kðBxÞi;j;k ð51Þ
We calculate the current density fluxes on the cell faces of the control finite volume from the consistent and
conservative discretized operators developed in Section 3.2. Since the current density fluxes Jx, Jy and Jz are
located on the cell faces normal to the x-, y- and z-directions, respectively, interpolation from cell faces to cell
center is needed to calculate the Lorentz force at the cell center. We now define a conservative interpolation
operator Kf!c, which represents interpolation from cell face to cell center:
Jc ¼ Kf!cðJ f Þ ð52Þ
The detailed formula can be given on a control volume as:
ðJ xÞi;j;k ¼ ðKfx!cððJ xÞfxÞÞi;j;k ¼
1

2
ððJ xÞiþ1

2;j;k
þ ðJ xÞi�1

2;j;k
Þ ð53Þ

ðJ yÞi;j;k ¼ ðKfy!cððJ yÞfyÞÞi;j;k ¼
1

2
ððJ yÞi;jþ1

2;k
þ ðJ yÞi;j�1

2;k
Þ ð54Þ

ðJ zÞi;j;k ¼ ðKfz!cððJ zÞfzÞÞi;j;k ¼
1

2
ððJ zÞi;j;kþ1

2
þ ðJ zÞi;j;k�1

2
Þ ð55Þ
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Eqs. (53)–(55) can be written as a vector formula:
ðJcÞi;j;k ¼
ðJ xÞc
ðJ yÞc
ðJ zÞc

0
B@

1
CA

i;j;k

¼
Kfx!cððJ xÞfxÞ
Kfy!cððJ yÞfyÞ
Kfz!cððJ zÞfzÞ

0
B@

1
CA

i;j;k

¼ ðKf!cðJ f ÞÞi;j;k ð56Þ
Omitting the subscript (i, j, k) in Eq. (56), we therefore have the general interpolation formula of Eq. (52) from
cell faces to cell center. The interpolation is based on the conservative current density fluxes on the cell faces.
The interpolation procedure of Eq. (56) meets the conservation condition of J = $ Æ (Jr) (r denotes the distance
vector), which will be detailed discussed in our next paper [30] for the construction of consistent and conser-
vative scheme on an unstructured grid system [30]. The calculation of the Lorentz force using Eqs. (49)–(51)
together with Eq. (52) or Eq. (56) will be consistent and conservative, which can conserve the total momentum
as proven in [30]. Therefore this scheme is conservative and consistent.

3.3.2. A non-conservative formula

Since J = Ju + Js, the calculation of the Lorentz force of Eq. (48) can be decomposed into two parts, which
are:
Js� B ¼ �ru� B ð57Þ
Ju� B ¼ ðu� BÞ � B ð58Þ
Js and Ju can be interpolated, respectively as:
ðJscÞi;j;k ¼
ðJsxÞc
ðJsyÞc
ðJszÞc

0
B@

1
CA

i;j;k

¼
Kfx!cððJsxÞfxÞ
Kfy!cððJsyÞfyÞ
Kfz!cððJszÞfzÞ

0
B@

1
CA

i;j;k

¼ ðKf!cðJsf ÞÞi;j;k ð59Þ

ðJucÞi;j;k ¼
ðJuxÞc
ðJuyÞc
ðJuzÞc

0
B@

1
CA

i;j;k

¼
Kfx!cððJuxÞfxÞ
Kfy!cððJuyÞfyÞ
Kfz!cððJuzÞfzÞ

0
B@

1
CA

i;j;k

¼ ðKf!cðJuf ÞÞi;j;k ð60Þ
Eq. (59) for the calculation of Jsc, together with Eq. (60) for Juc will form the conservative and consistent
scheme of Eq. (56) developed in the above section. However, Jsc can also be calculated directly from the elec-
trical potential gradient as follows:
ðJsxÞi;j;k ¼ �ððGcuÞxÞi;j;k ¼
uiþ1;j;k � ui�1;j;k

xiþ1 � xi�1

ð61Þ

ðJsyÞi;j;k ¼ �ððGcuÞyÞi;j;k ¼
ui;jþ1;k � ui;j�1;k

yjþ1 � yj�1

ð62Þ

ðJszÞi;j;k ¼ �ððGcuÞzÞi;j;k ¼
ui;j;kþ1 � ui;j;k�1

zkþ1 � zk�1

ð63Þ
Eqs. (61)–(63) can be written in a vector formula as:
ðJscÞi;j;k ¼
ðJsxÞc
ðJsyÞc
ðJszÞc

0
B@

1
CA

i;j;k

¼ �
ðGcuÞx
ðGcuÞy
ðGcuÞz

0
B@

1
CA

i;j;k

¼ �ðGcuÞi;j;k ð64Þ
Omitting the subscript (i,j,k) in Eq. (64), we therefore have
Jsc ¼ �Gcu ð65Þ
Eqs. (64) and (65) are not conservative on a non-uniform grid system for high Hartmann cases. Eq. (64) is
consistent with Eq. (59) on a uniform grid system; however, they are not consistent on any non-uniform grid
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system. Eqs. (64) and (65) are not consistent with the discretized Laplacian operator of Eq. (33). Indeed, the
conservative and consistent scheme of Eq. (59) can be given as:
ðJsxÞi;j;k ¼
1

2

uiþ1;j;k � ui;j;k

xiþ1 � xi
þ

ui;j;k � ui�1;j;k

xi � xi�1

� �
ð66Þ

ðJsyÞi;j;k ¼
1

2

ui;jþ1;k � ui;j;k

yjþ1 � yj

þ
ui;j;k � ui;j�1;k

yj � yj�1

 !
ð67Þ

ðJszÞi;j;k ¼
1

2

ui;j;kþ1 � ui;j;k

zkþ1 � zk
þ

ui;j;k � ui;j;k�1

zk � zz�1

� �
ð68Þ
We now analyze the schemes of Eqs. (61)–(63) and Eqs. (66)–(68). As we already mentioned in the introduc-
tion, the calculation of Eqs. (61)–(63) should be same as the formula of Eqs. (66)–(68) on a uniform grid sys-
tem. They both are conservative for low Hartmann number cases with uniform grid systems employed.
However, Eqs. (66)–(68) are very different with Eqs. (61)–(63) on a non-uniform grid system. Eqs. (66)–(68)
are conservative interpolation formulae based on conservative current density fluxes on cell faces, while
(61)–(63) are not based on the conservative formulae. Without loss of generality, Eqs. (63) and (68) are used
to conduct the analysis. With the subscripts i,j omitted, we now analyze the following two equations:
ou
oz

� �
k

¼ ukþ1 � uk�1

zkþ1 � zk�1

ð69Þ

ou
oz

� �
k

¼ 1

2

ukþ1 � uk

zkþ1 � zk
þ uk � uk�1

zk � zk�1

� �
ð70Þ
Using the Taylor series, it is not difficult to get the modified equations of Eqs. (69) and (70), respectively as:
ukþ1 � uk�1

zkþ1 � zk�1

¼ ou
oz
þ 1

2

o
2u

oz2
ðzkþ1 � 2zk þ zk�1Þ þ

1

6

o
3u

oz3
f ðzÞ þ � � � ð71Þ

1

2

ukþ1 � uk

zkþ1 � zk
þ uk � uk�1

zk � zk�1

� �
¼ ou

oz
þ 1

4

o
2u

oz2
ðzkþ1 � 2zk þ zk�1Þ þ

1

12

o
3u

oz3
gðzÞ þ � � � ð72Þ
With g(z) = (zk+1�zk�1)(zk+1�2zk + zk�1), and f(z) = (zk+1�zk�1)�1(zk+1�2zk + zk�1)((zk+1�zk)2 + (zk+1�zk)
(zk�zk�1) + (zk-zk�1)2) we can prove that f ðzÞP 1

2
gðzÞ. From the modified equations (71) and (72), we can see

that the leading error term of Eq. (71) is double the leading error term of Eq. (72), and the second error term of
Eq. (71) is also greater than the corresponding error term of Eq. (72). These increased error terms in Eq. (71)
make the scheme of Eqs. (61)–(63) neither conservative nor consistent, while the scheme of Eqs. (66)–(68) is
both conservative and consistent. These increased error terms cannot get a good result for high Hartmann
number cases of MHD using the inconsistent scheme.

The second part of the Lorentz force in Eq. (58) can be written as:
Ju� B ¼ ðu� BÞ � B ¼ B2u? ð73Þ

This part of the Lorentz force is corresponding to the velocity itself. On a collocated grid system, the velocity
at the center point itself can be directly used as the second part of the Lorentz force, and we then have:
ðJu� BÞc ¼ B2
cðucÞ? ð74Þ
However, the conservative discretized divergence operator of Ju is based on the velocity at the cell face. Eq.
(74) is not based on conservative current density, and it is not consistent with the discretized divergence oper-
ator of Eq. (30) and the Laplace operator of Eq. (33). There is one choice to keep this portion of Lorentz force
calculated based on a conservative formula as:
ðucÞi;j;k ¼
u

v

w

0
B@

1
CA

i;j;k

¼
Kfx!cðuÞ
Kfy!cðvÞ
Kfz!cðwÞ

0
B@

1
CA

i;j;k

¼ ðKf!cðuf ÞÞi;j;k ð75Þ
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Omitting the subscript (i,j,k), Eq. (75) can be given as:
uc ¼ Kf!cðuf Þ ð76Þ

Eq. (76) can be used to perform the calculation of u^ at the cell center.

3.3.3. Testing schemes for the calculation of the Lorentz force in this paper

To test the effects of schemes on the calculated results for MHD at high Hartmann number cases, we now
give the following four schemes for the calculation of the Lorentz force at the cell center:

� Scheme I
(1) Calculate Jf on the cell faces using consistent schemes of Eqs. (34)–(36) for Jsf and Eqs. (37)–(40) and

(47) for Juf;
(2) Calculate the Lorentz force at cell center using Eq. (48) or Eqs. (49)–(51). The current density of Jc at

the cell center used to calculate the Lorentz force is acquired from a conservative interpolation of Eq.
(52) based on Jf from step (1). This step is equivalent to using Eq. (59) for the calculation of Jsc, which is
used to calculate the first part of the Lorentz force using Eq. (57) at a cell center, while the second part
of the Lorentz force is calculated using Eq. (73) with velocity acquired from Eq. (75) or Eq. (76).

Fig. 3a illustrates the grid arrangement for current density of Jx and Jy of Scheme I.
� Scheme II

(1) Use inconsistent scheme of Eqs. (61)–(63) for the calculation of Jsc, which is used to calculate the first
part of the Lorentz force using Eq. (57);

(2) Calculate the second part of the Lorentz force from Eq. (74), based on the velocity at the cell center
directly.

Fig. 3b shows the grid arrangement for current density of Jx and Jy of Scheme II.
Fig. 3. Four schemes for calculations of the current density and the Lorentz force.
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� Scheme III
(1) Calculate Jsf from the consistent formula of Eqs. (34)–(36);
(2) Calculate Jsc from the conservative interpolation scheme of Eq. (59), which is used to calculate first part

of the Lorentz force from Eq. (57) at a cell center;
(3) Calculate the second part of the Lorentz force from Eq. (74), based on the velocity at the cell center

directly.
Fig. 3c shows the grid arrangement for current density of Jx and Jy of Scheme III.

� Scheme IV
(1) Use the inconsistent and non-conservative scheme of Eqs. (61)–(63) for the calculation of Jsc which is

used to calculate the first part of the Lorentz force using Eq. (57);
(2) Use the conservative interpolation of Eq. (76) to get the velocity at the cell center, which is used to get

the second part of the Lorentz force based on Eq. (74).
Fig. 3d shows the grid arrangement for current density of Jx and Jy of Scheme IV.

Scheme I is a consistent and conservative formula. The Lorentz force is acquired based on the conservative
current density. In Scheme II, both Juc and Jsc are not based on conservative current density on the cell face. It
is a non-conservative and inconsistent formula. In Scheme III, the acquisition of Jsc is based on a conservative
formula, however Juc is not. In Scheme IV, the acquisition of Jsc is not based on a conservative formula, how-
ever Juc is.
3.4. Consistent and conservative methods on a collocated grid system

We now summarize the schemes developed in the above subsections, and give a detailed computation pro-
cedure for MHD flows using consistent and conservative schemes for the current density on a collocated grid
system. The four-step projection method of Eqs. (12)–(15) is applied on a collocated mesh, which can be writ-
ten as:
Acûc ¼ rk
c þ Gcðpk

cÞ þ NðJ � BÞkc ð77Þ
~uc ¼ ûc þ DtHk

cGcðpk
cÞ ð78Þ

DtDcðHk
f G f ðpkþ1

c ÞÞ ¼ DcðKc!f ð~ucÞÞ ð79Þ
ukþ1

c ¼ ~uc � DtHk
cGcðpkþ1

c Þ ð80Þ
ukþ1

f ¼ Kc!f ð~ucÞ � DtHk
f G f ðpkþ1

c Þ ð81Þ
ðu� BÞkþ1

f ¼ Kc!f ð~ukþ1
c Þ � Bkþ1

f ð82Þ
DcðG f ðukþ1

c ÞÞ ¼ Dcððu� BÞkþ1
f Þ ð83Þ

ðJ nÞkþ1
f ¼ �ðGf ðukþ1

c ÞÞ � nf þ ðu� BÞkþ1
f � nf ð84Þ

ðJ � BÞkþ1
c ¼ Kf!cððJ nÞkþ1

f Þ � Bkþ1
f ð85Þ
The complete algorithm from time step k to time step k + 1 based on the four-step projection method II can be
summarized as:

(1) Evaluate Lorentz force ðJ � BÞkc at time level k; Calculate Gcðpk
cÞ;

(2) Evaluate coefficient matrices Hk
c, Hk

f ;
(3) Solve the predictor step of Eq. (77) for ûc; obtain the second intermediate velocity ~uc using Eq. (78);

transfer the cell center velocity ~uc to face center velocity ~uf using ~uf ¼ Kc!f ð~ucÞ;
(4) Solve the pressure Poisson equation of Eq. (79) for pkþ1

c ; calculate Gcðpkþ1
c Þ and G f ðpkþ1

c Þ;
(5) Correct the velocity ukþ1

c at cell center based on ~uc, and Gcðpkþ1
c Þ using Eq. (80); correct the velocity ukþ1

f

at face center based on ~uf and G f ðpkþ1
c Þ;

(6) Calculate ðu� BÞkþ1
f using Eq. (82); solve the electrical potential equation for ukþ1

c ;
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(7) Calculate G f ðukþ1
c Þ and calculate the current density flux of ðJ nÞkþ1

f at the cell face using Eq. (84);
(8) Calculate the Lorentz force of ðJ � BÞkþ1

c at the cell center based on a conservative formula of Eq. (85);
(9) Repeat Steps 2 through 8 for next time level.

The above projection method can balance the pressure term and the Lorentz force in the fully developed
core flow. The consistent and conservative scheme developed in this paper is used to calculate the Lorentz
force at the cell center. This includes the calculation of current density fluxes at the cell faces using a consistent
and conservative scheme, and the current density at the cell center conservatively interpolated from the cell
faces to cell center. We will validate our methods in the next section.

4. Validation and application of consistent and conservative schemes

There exist some exact solutions for fully developed incompressible laminar flows in ducts with transverse
magnetic fields, such as: (1) Shercliff’s solution for rectangular ducts with non-conducting walls and the field
perpendicular to one side [7]; (2) Hunt’s solution for rectangular ducts with two non-conductive side walls
(parallel to the field) and two conductive Hartmann walls (normal to the field) [8]. These two solutions will
be used in this paper to verify our methods developed above.

4.1. Shercliff ’s case

We simulate Shercliff’s case with all of the walls electrically insulated. We present some preliminary results
from a fully developed flow calculation at Ha = 1000 and Re = 10, a mass flow rate of 4 and a pressure gra-
dient from Shercliff’s solution (with appropriate numerical implementation) of �102.88. Velocity distributions
calculated on non-uniform meshes using the consistent and conservative scheme (Scheme I) are shown in
Fig. 4. We present a comparison between the exact solution from Shercliff’s analysis compared with the coarse
and fine mesh solutions in Fig. 4. As can be seen the comparison is better than 0.1% for the fine mesh case with
66 · 66 non-uniform grids employed. The solution on the coarse mesh with 33 · 33 non-uniform grids indi-
cates an error of about 0.5% in mass flow rate and peak velocity with uniform convergence. This figure illus-
trates the comparison in the Hartmann layer and side layers using Scheme I. The results from coarse grid and
fine grids match the analytical results well. The comparison demonstrates a very good computational
accuracy.

4.1.1. Conservation

Now we analyze the difference between different schemes. Fig. 5 illustrates the iteration history of the flow
rate using the above mentioned four schemes on 33 · 33 and 66 · 66 non-uniform grids, respectively. Both
Fig. 5a and b show that consistent and conservative Scheme I can give an accurate result of flow rate, while
the other non-conservative and inconsistent schemes cannot give accurate results. Schemes II and III give a
lower flow rate, with the lowest value from Scheme III, while Scheme IV gives a higher value.

Fig. 6 shows the comparison between Shercliff’s analytical results and numerical results from a 66 · 66 non-
uniform mesh. From this figure, we can see the velocity from Scheme I matches the analytical result pretty
well, while Scheme II and Scheme III get lower velocities compared to the Shercliff’s analytical result. Scheme
IV can give good results in the core flow; however, in the side layers, there is an unphysical velocity jump.

Fig. 7 illustrates the iteration history of the divergence of current density on a 66 · 66 grid. Fig. 7a is the
history of the maximum value of the divergence. In Scheme I, the current density fluxes at the cell faces are
calculated using a consistent method, which are used to get the divergence of current at a center of a control
volume. In Scheme II, the current density fluxes at the cell faces, which are needed for the calculation of diver-
gence, are interpolated from the current density calculated at the cell center. In Scheme III, the current density
fluxes related to the electrical potential are calculated at the cell faces using a consistent method, while the
velocity relevant parts are calculated by interpolating from cell center to cell face. In Scheme IV, the current
fluxes related to the electrical potential are interpolated from the calculated value at the cell center. Generally,
the current density fluxes on the cell faces from Scheme II and Scheme IV are not calculated from a consistent
scheme with the electrical potential equation, while the methods of Scheme I and Scheme III for current
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density flux at the cell faces are consistent. From Fig. 7a, we can see that the divergences of current go to a
very small value as iteration marches for the consistent Scheme I and Scheme III. However, the divergences of
current are large and constant as iteration marches for the inconsistent Scheme II and Scheme IV. The history
of L2 error of divergence of current density (see Fig. 7b) tells the similar story. These figures show us that
consistent Scheme I and Scheme III can conserve the current density in a control volume, while Scheme II
and Scheme IV cannot conserve the current density. The non-conservative Schemes II and IV cannot give
the correct results.

Fig. 8 gives the distribution of current density at cell centers from results on a coarse mesh with 33 · 33
non-uniform grids. This current density at cell centers will be used to calculate the Lorentz force. The current
density from Scheme I (Fig. 8a) traces a closed streamline, which means the current density used to calculate
Lorentz force is also conservative. Fig. 8b and d show that the current values used to calculate the Lorentz
force based on Schemes II and IV are not conservative at the side layer. It seems that there are currents enter-
ing the side walls. The closed current streamline is not formed in the side layers. Scheme III (Fig. 8c) cannot



Fig. 5. Iteration history of flow rate using different schemes.

Fig. 6. Velocity distribution using different schemes on a 66 · 66 non-uniform grid.
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form a closed streamline too. Although Fig. 7 shows that Scheme III can locally conserve the current density
in a control volume, the current at the cell centers used to calculate the Lorentz force is not conservative
because of the non-conservative interpolation. Scheme III redistributes the current density in both directions.
This redistribution can locally conserve the current density in a controlled volume, but is not physically cor-
rect. The current density leaves out of the wall from the side layer.

Although the current fluxes on the faces of a control volume from Scheme III is divergence free, the Lorentz
force at the cell center is not calculated based on a conservative current. Therefore, Scheme III cannot get an
accurate result either. Velocity contours are shown in Fig. 9 from the fine mesh with 66 · 66 non-uniform
grids. As we have already seen in Fig. 6, Scheme II and Scheme III give a lower velocity in the core flow, while
Scheme IV gives a result with a velocity jump in the side layers. These are due to non-conservative current
distribution from the inconsistent and non-conservative schemes.



Fig. 7. Iteration history of divergence of current density.
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Generally speaking, the current fluxes on the cell face calculated using the consistent scheme are locally con-
servative in a control volume as shown in Fig. 7 for Schemes I and III. And the current densities at the cell
centers interpolated from the conservative current fluxes on the cell faces are conservative as shown in Fig. 8
for Scheme I. Only conservative current densities at the cell centers can be used for the calculation of the Lor-
entz force with accurate results as shown in Fig. 9 for Scheme I. The inconsistent schemes for the current fluxes
and the non-conservative interpolation from the cell faces to cell centers cannot get a good result for MHD
flows at a high Hartmann number as shown in Fig. 9 for Schemes II, III and IV.

4.1.2. Order of accuracy
The order of accuracy of a numerical scheme is customarily computed based on a sequence of uniformly

spaced meshes. The numerical solutions of high Hartmann number flows must usually involve severely
stretched meshes. The use of uniform mesh spacing will result in an unduly large number of cells and unrea-
sonable computational time. In the case of fully developed MHD flow in a square duct with insulating walls,
the velocity in the core of the duct is fairly uniform, and it may be surmised that the numerical errors are
caused largely in the Hartmann and side-layer regions. If these regions are resolved by uniform mesh spacing,
a smoothly stretched mesh with much larger cells can be used in the core of the flow, thus, presumably, not
affecting the order of accuracy of these calculations.

We generate a sequence of three meshes at each of the Hartmann numbers 50, 500 and 1000. These meshes
use 4, 8 and 16 cells to resolve the Hartmann and side layers with a uniform spacing. This resolution is carried
out to two times the conventional 1/Ha thickness of the Hartmann layer and 1/Ha1/2 thickness of the side
layer, and smoothly increased towards the core. The core of the channel is resolved by using 30 cells in each
direction for all cases. This results in mesh sizes of 38 · 38, 46 · 46 and 62 · 62 for each Hartmann number.
Fig. 10 shows sample meshes for Ha = 500.

We compute the L1 and L2 error norm in the solution from the following expressions, noting that the exact
solution to this problem is known.
kekL1 ¼
Z

X
ju� uexactjdX; kekL2 ¼

Z
X
ðu� uexactÞ2 dX ð86Þ
From the slopes of the logarithm of error vs. representative mesh size, a formal order of accuracy can be com-
puted from the above data. The actual mesh size is a proportionality factor that appears as an additive con-
stant in the logarithmic data above. The ratio of each mesh size against the subsequent mesh size is 1 : 1

2
: 1

4
.

Table 1 shows the computed order from this data. Interestingly, we observe that the actual L1 and L2 error



Fig. 8. Current density inside the side wall layer with 33 · 33 grid numbers.
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at each mesh level is approximately the same for all Hartmann numbers. This is perhaps due to the fact that
the mesh has been chosen to exactly resolve the regions of gradients and that the velocity profile has been sized
to yield the same mass flow rate and thus the same mean flow speed in all cases.

We observe a trend of numerical order decreasing slightly with increasing Hartmann number. This can be
caused both by the greater stretching factors at higher Hartmann numbers, as well as the tendency of numer-
ical errors to grow proportionate to an exponent of the Hartmann number in such calculation, thus causing a
singular perturbation-type effect in numerical accuracy. For reference, we provide here a table of converged
mass flow rates (see Table 2) from computed solutions for the various Hartmann numbers and grids used.
Pressure gradient used in the calculation was selected such that the exact value of the mass flow rate is 4.

Also, the fact that the grid number in the core flow does not increase with Hartmann number may reduce
the test accuracy.

4.2. Hunt’s case

The projection method of Eqs. (12)–(15) for the incompressible MHD equations and the consistent and
conservative schemes for the calculation of the current density and the Lorentz force have been implemented
into a parallel 3D code of HIMAG [38], which is used to conduct the following numerical simulations.



Fig. 9. Velocity contours on a 66 · 66 non-uniform grid.
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4.2.1. Fully developed flow

We begin by considering fully developed flow at Re = 10 (with characteristic velocity specified as 1),
Ha = 300. The walls perpendicular to the applied magnetic field are assumed to be conducting and those par-
allel to the applied magnetic field are insulated. In the fully developed flow simulation, we make the assump-
tion that the non-linear advection terms are negligible, and set Neumann boundary conditions on the velocity
at the x-facing boundaries. In a fully developed region, the pressure gradient is constant. This constant
pressure gradient is used as input data to get Hunt’s analytical result. A pressure gradient of �300 is specified.
Fig. 11 shows the convergence history of the mass flow rate, peak velocity (Fig. 11a) and the converged veloc-
ity profile compared with Hunt’s exact solution (Fig. 11b), converged velocity distribution (Fig. 11c) and cur-
rent distribution (Fig. 11d). The velocity matches well with Hunt’s analytical result.
4.2.2. 3D simulations

It is certainly of interest to test our approach in a three-dimensional simulation. We choose here the same
cross section as above and extend it in the x-direction to 30 units (channel half-width is 1). A non-uniform



Fig. 10. Three meshes used in a computation of Ha = 500 flow. From top to bottom, the dimension 2/Ha is resolved by 4, 8 and 16 cells,
respectively. Mesh is expanded smoothly to the interior, using 30 cells in all cases.
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Table 1
Computed order of accuracy

Hartmann number L1 order L2 order

50 1.8688 1.8580
500 1.8330 1.8277

1000 1.8155 1.8097

Fig. 11. Numerical results for Hunt’s fully developed case with Ha = 300.
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mesh containing 31 · 47 · 47 nodes and 63,480 cells was used in this simulation. The mesh is partitioned to
run on 16 different processors.

A bi-parabolic inflow velocity distribution is given and used as an initial flow condition in the channel.
Magnetic field with a value of 1 is applied in the y-direction. The flow quickly adjusts from ordinary laminar
flow profile to the fully developed MHD state (Fig. 12a), converges rapidly, and is virtually indistinguishable



Table 2
Computed mass flow rate

Hartmann number Mesh-1 Mesh-2 Mesh-3

50 4.13534 4.03574 4.01075
500 4.14244 4.04400 4.01862

1000 4.13525 4.03927 4.01476

Fig. 12. 3D numerical solution for Hunt’s fully developed case with Ha = 300.
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from the exact solution even for a relatively coarse mesh. These comparisons are shown in Fig. 12b. The pres-
sure gradient is computed and used as an input to Hunt’s exact solution. Velocity profiles from both sources
are compared and they match well. The convergence of maximum velocity and mass flow rate (Fig. 12d), and
residuals of pressure and electrical potential are also shown in Fig. 12c. A dramatic correction to mass flow
rate (dropping the error by several orders of magnitude) is seen to occur towards the end of the computation,
when the Poisson equations for pressure and potential begin to show a tapering of their residual histories.



Table 3
Computed pressure gradient at Ha = 300 and cw = 0.1

Reynolds number 10 100 500 1000

Interaction parameter 9000 900 180 90
Calc. $p �585.0810 �58.50701 �11.70214 �5.858703
Anal. $p �585.4302 �58.54302 �11.70860 �5.854302
Calc. error 0.060% 0.062% 0.055% 0.075%

Table 4
Computed pressure gradient at Ha = 500 and cw = 0.05

Reynolds number 10 100 500 1000

Interaction parameter 25,000 2500 500 250
Calc. $p �952.57338 �95.280135 �19.065981 �9.5346676
Anal. $p �953.14475 �95.314475 �19.062895 �9.5314475
Calc. error 0.06% 0.036% 0.016% 0.033%

M.-J. Ni et al. / Journal of Computational Physics 227 (2007) 174–204 197
With Ha = 300 and the conductance cw = 0.1, we used the consistent and conservative scheme to do the
direct calculation of 3D MHD flows at Re = 100 (N = 900), Re = 500 (N = 180) and Re = 1000 (N = 90).
The inlet flow rate is fixed at 4. The calculated pressure gradients are given in Table 3 with analytical values
listed in the table too. The relative error is calculated based on the following formula of
Error ¼ j ðrpÞAnal�ðrpÞCalc

ðrpÞAnal
j. The calculated pressure gradients matches well with the analytical solution when

the interaction parameters changed from 9000 to 90.
We also calculated the 3D MHD flows with Ha = 500, cw = 0.05. Again, the inlet flow rate is fixed at 4, and

the calculated pressure gradients are listed in Table 4. The calculated pressure gradients match well with the
analytical solution from low interaction parameter of 250 to high interaction parameter of 25,000 with relative
error below 0.06%.

4.2.3. A case study at Ha = 10,000

We present here some observations on the calculation of Ha = 10,000 and Re = 1000 flow in a square duct.
This is a large Hartmann number by the standard of MHD simulation in 3D. We experimented with fully
Fig. 13. Computed velocity profile and current lines for fully developed flow at Ha = 10,000, Re = 1000 in a square duct with conducting
Hartmann walls with cw = 0.05 and insulating side-walls.
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developed flow calculations in the cross section, as well as the three-dimensional developing flow situation. A
channel of dimensions 2 · 2 was padded with walls with a thickness of 0.1 on all sides. The mesh has 67 · 67
cells in the cross section with 4 cells in the Hartmann layer. The grid on a cross section generated for Hart-
mann number of 10,000 is shown in Fig. 2. The 3D mesh uses 20 mesh points over a length of 20 units. Mag-
netic field with a value of 1 is applied. Pressure is held fixed at the exit plane, while the electric potential is held
fixed at the inflow. The Hartmann walls are assumed to be conducting with a wall conductance ratio cw = 0.05
and the side-walls are insulated.

The 3D case used a fixed mass flow rate of 4 at the inflow, specified as a bi-parabolic profile. This simulation
is performed on a parallel cluster with 16 processors. The convergent pressure gradient of 1990.62 was
observed in the fully developed region, which is very close to the Hunt’s analytical result of 1972.26.

Fig. 13a gives the comparison between our results at the fully developed region and Hunt’s analytical
results. Fig. 13b zooms in the side layer. The numerical results from the consistent and conservative schemes
on a collocated non-uniform grid match very well with Hunt’s solution. The figure clearly shows the M-shape
formed by the Lorentz force. In fact, we can see that two jets form in the side layers. The turbulence due to the
Fig. 14. Pressure along the upper Hartmann wall.
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high velocity in the jet has been studied in [39], which can be an interesting future direction of research using
our approach.

4.3. Application to 3D MHD flows with conductive walls

Experiments on MHD flows in a conducting rectangular channel with a sudden expansion have been per-
formed recently by Bühler and Horanyi [40]. We simulated these experiments using the current density con-
sistent and conservative scheme. Here we compare the pressure distribution along the upper Hartmann wall.
Fig. 14a compares our calculated pressure distribution with the theoretical value (which is a core flow asymp-
totic soultion as N!1) and the experimental data at Ha = 1000 and N = 1000, while Fig. 14b compares at
Ha = 2000 and N = 2000. The calculated pressure distribution matches well with the experimental data. The
numerical results [30] for a fully 3D MHD flows in a circular pipe with conductive walls using the current den-
sity conservative scheme on an unstructured grid also match well with the available experimental data. These
indicate that the consistent and conservative scheme can be used to accurately simulate the MHD flows with
full conducting walls.
Fig. 15. Three dimensional current streamlines with plot size ratio 1:1:15.
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4.4. Application to 3D MHD flow with fringing magnetic field

A fringing (spatially varying) external magnetic field can induce a three-dimensional MHD flows [14,42]
[43]. Numerical simulations using the full set of MHD equations without simplifications have been performed.
The applied normalized fringing magnetic field is given as follows [44]:
Bx ¼
p
2

zB2ð1� B2Þ; By ¼ 0; Bz ¼ B� z2p2

4
B3ð1� B2Þð1� 2B2Þ ð87Þ
with 0 6 x 6 40, �1 6 y 6 1, and �0.2 6 z 6 0.2. The parameter B in the above equations is given by the fol-
lowing implicit function of the variable x, and will be numerically solved:
F ðB; xÞ ¼ 2

p
1

B
þ 0:5 ln

1� B
1þ B

� �� �
þ ðx� x�Þ ¼ 0 ð88Þ
Fig. 16. Current streamline at plane of z = 0 around the fringing area.
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Around x = x*, there is a large magnetic field gradient from Eq. (88). The applied magnetic field is nearly curl
free with a small error and exactly divergence free. In this simulation, we take Ha = 100 and Re = 200, the
inertial effect is not negligible, and the applied magnetic field is along two directions.

The current paths are depicted in Fig. 15. Downstream at some distance from the fringing, the current dis-
tribution corresponds to fully developed conditions; the current loops are 2D, and they close in cross-sectional
planes. Upstream does not correspond exactly to a fully developed condition, since the applied magnetic field
of Bz is not constant at the inlet; we can also see a weak axial current density here. However, approaching the
fringing, the current loops clearly incline in the direction of the motion due to the presence of induced axial
currents. The path that encloses the zone shows strong three-dimensional effects. A schematic figure is given to
represent the pattern in Fig. 16a, in which current streamlines are plotted on the plane z = 0. There are current
lines that surround the area in which core loops develop. Some of these current streamlines, after entering the
fringing area, move to the middle of the channel before again approaching the side walls. The point where the
current line narrows, close to the center of the duct, can be interpreted as a saddle point, marked as A in
Fig. 16a, and clearly shown in Fig. 16b. It indicates the location where the transverse component of current
Fig. 17. Pressure and velocity distributions verse to x at the plane of z = 0.
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density Jy starts flowing again in the direction of the 2D currents. The trace of core current loops with center
marked as B is shown in Fig. 16a and c. The saddle point and closed loops are also found in the three-dimen-
sional MHD flow of a sudden expansion in [24].

The transverse component of current density Jy along the line of y = 0 and z = 0 has been illustrated in
Fig. 17a. The line Jy = 0 has two intersections with the curve, which are marked as A and B. A represents
the saddle point, and B represents the current core loops’ center, respectively, which have been illustrated
in Fig. 16c. The pressure and velocity distributions along the line of y = 0 at the plane of z = 0 has also been
given in Fig. 17a. In the fully developed region, the pressure distribution has a constant gradient. In the fring-
ing region, the pressure reaches the peak value at the center of the closed current loops shown in Fig. 16c. The
velocity reaches its lowest value a little distance from the center. This is partly due to the contribution of the
axial component of the current density. The local current density distribution with components in flow direc-
tion results in Lorentz forces with direction towards the center. The positive value of Jy distribution between
the saddle point A and the closed loops’ center B, the negative value of Jy outside of this region will make the
Lorentz force acting toward the center B. The schematic Lorentz force directions acting around the center are
also illustrated in Fig. 16c. The Lorentz force acting around the center of the closed loops from four directions
results in a peak value of pressure at the center of B. As a consequence, a high transversal pressure gradient is
induced, as shown in Fig. 17a. In this figure, the pressure distribution along y = 0 and along y = 0.995 at the
plane of z = 0 are shown. In the fringing area, the pressure along y = 0 is higher than it is along y = 0.995
(inside the Hartmann layer) due to the contribution of the axial component of current density. The pressure
at y = 0 is reduced greatly after it reaches a peak value at the center of the closed loops, which is due to the
large negative value of Jy shown in Fig. 17a. In the fully developed region, the pressure gradient and the trans-
versal component Jy of the current density have constant negative values.

Moreover, the pressure gradient around the closed loops’ center B will decelerate the core flow upstream
and accelerate it downstream. And the highest pressure at the closed loops’ center expels the flow from the
core flow region of the duct to the vicinity of the side walls, generating significant overspeed and an overall
M-shaped velocity profile. Fig. 17b shows the velocity distribution in a rectangular duct, calculated near
the center and near the side. In the region where the magnetic field varies, the velocity is strongly reduced
in the center, while it increases near the side.

5. Conclusions

A general second-order projection method has been developed for incompressible Navier–Stokes equations
with the Lorentz force included. This method can balances the pressure gradient and the Lorentz force for a
fully developed core flow and simplifies boundary conditions for the pressure. A consistent and conservative
scheme has been designed for the calculation of the current density and the Lorentz force on a collocated rect-
angular grid. The consistent method can ensure the calculated current fluxes divergence free in a control vol-
ume. The current density at a cell center needed to calculate the Lorentz force is determined using a
conservative interpolation from the fluxes at the cell faces. It is also demonstrated that only conservative cur-
rent at the cell center can be used to accurately calculate the Lorentz force. This projection method and the
consistent and conservative scheme have been applied for MHD flows at high Hartmann numbers. The cur-
rent density consistent and conservative scheme can be applied to do direct simulations of MHD at low mag-
netic Reynolds number with high or low Hartmann numbers, with or without strong inertial terms, with
conducting or insulated walls. It is also extended for MHD flows in a complicated geometry on an arbitrary
unstructured collocated grid system [30], in which a fully conservative formulation of the Lorentz force has
been employed to conduct the simulation. Future work including simulations of unsteady MHD flows with
parallel algorithms and advanced accelerated techniques employed will be conducted using the current density
conservative scheme.

Acknowledgments

The authors from UCLA acknowledge the support from the US Department of Energy under Grant # DE-
FG03-86ER52123, and the authors from HyperComp Inc. acknowledge the support from the US Department



M.-J. Ni et al. / Journal of Computational Physics 227 (2007) 174–204 203
of Energy under DOE SBIR Grant # DE-FG02-04ER83977. M.-J. acknowledges the discussion with Dr. Ser-
gey Smolentsev and his interesting in the simulation of 3D MHD flows with fringing applied field. The exper-
imental data of 3D MHD flows in a sudden expansion is from Leo Buhler.
References

[1] M.A. Abdou et al., On the exploration of innovative concepts for fusion chamber technology fusion, Fusion Engineering and Design
54 (2001) 181–247.

[2] N.B. Morley, S. Smolentsev, R. Munipalli, M.-J. Ni, D. Gao, M.A. Abdou, Progress on the modeling of liquid metal, free surface,
MHD flows for fusion liquid walls, Fusion Engineering Design 72 (2004) 3–34.

[3] S. Malang et al., Self-cooled liquid–metal blanket concept, Fusion Technology 14 (1988) 1343–1356.
[4] M.A. Abdou, D. Sze, C. Wong, M. Sawan, A. Ying, N.B. Morley, S. Malang, US Plans and strategy for ITER blanket testing, Fusion

Science and Technology 47 (2005) 475–487.
[5] L. Bühler, The influence of small cracks in insulating coatings on MHD and heat transfer in rectangular ducts, Fusion Engineering

and Design 27 (1995) 634–641.
[6] J.A. Schercliff, The flow of conducting fluids in circular pipes under transverse magnetic fields, Journal of Fluid Mechanics 1 (1956)

644.
[7] J.A. Schercliff, Steady motion of conducting fluids in pipes under transverse magnetic fields, Proceedings of the Cambridge

Philosophical Society 49 (1953) 126–144.
[8] J.C.R. Hunt, Magnetohydrodynamic flow in rectangular ducts, Journal of Fluid Mechanics 21 (1965) 577–590.
[9] J.S. Walker, Magnetohydrodynamic flow in rectangular ducts with thin conducting walls, Journal de Mécanique 20 (1981) 79.
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