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Abstract

A conservative formulation of the Lorentz force is given here for magnetohydrodynamic (MHD) flows at a low mag-
netic Reynolds number with the current density calculated based on Ohm’s law and the electrical potential formula. This
conservative formula shows that the total momentum contributed from the Lorentz force is conservative when the applied
magnetic field is constant. For the case with a non-constant applied magnetic field, the Lorentz force has been divided into
two parts: a strong globally conservative part and a weak locally conservative part.

The conservative formula has been employed to develop a conservative scheme for the calculation of the Lorentz force
on an unstructured collocated mesh. Only the current density fluxes on the cell faces, which are calculated using a consis-
tent scheme with good conservation, are needed for the calculation of the Lorentz force. Meanwhile, a conservative inter-
polation technique is designed to get the current density at the cell center from the current density fluxes on the cell faces.
This conservative interpolation can keep the current density at the cell center conservative, which can be used to calculate
the Lorentz force at the cell center with good accuracy. The Lorentz force calculated from the conservative current at the
cell center is equivalent to the Lorentz force from the conservative formula when the applied magnetic field is constant,
which can conserve the total momentum. We will further prove that the simple interpolation scheme used in the Part I
[M.-J. Ni, R. Munipalli, N.B. Morley, P.Y. Huang, M. Abdou, A current density conservative scheme for MHD flows
at a low magnetic Reynolds number. Part I. On a rectangular collocated grid system, Journal of Computational Physics,
in press, doi:10.1016/j.jcp.2007.07.025] of this series of papers is conservative on a rectangular grid and can keep the total
momentum conservative in a rectangular grid.
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1. Introduction

Magnetohydrodynamic (MHD) flows of electrically conducting liquids at high Hartmann numbers has
been a topic of great interest in the development of a fusion reactor blanket [1–4]. Two-dimensional MHD
flows in a channel have been extensively studied by theoretical analysis and numerical simulation [5–8].
The Hartmann number Ha is a measure of the magnetic field strength for a given fluid in a duct of a given
scale. The thickness of the Hartmann layers on all walls normal to field scales with Ha�1 and is very thin;
the side layers on all walls parallel to the magnetic field scale with Ha�1/2 and are much thicker than the Hart-
mann layers at high Hartmann numbers. The development of fusion reactors experiments with strong mag-
netic fields leads to a growing interest in the study of 3D MHD phenomena. When inertial terms are small,
the asymptotic method [9–11] that focuses on the main phenomena is a very efficient method to compute
3D MHD flows. This efficient method is valid for high Hartmann numbers and high interaction parameters,
but cannot always handle arbitrary complex geometries. When inertial terms are important, the direct simu-
lation method accounting for all the physical effects is an important tool to study the 3D MHD phenomena.
Using the direct simulation method, a very fine mesh is required to resolve the Hartmann layer and the side
layer at high Hartmann numbers. For unsteady flows, the time step is proportional to the smallest grid size
with an explicit update of the temporal term. The cost of direct simulation of 3D MHD flows at high Hart-
mann number is high since it requires a fine mesh and therefore a small time step for unsteady flows. Three-
dimensional numerical simulations of inertial flows are often limited to the steady regime and low Hartmann
numbers.

For low magnetic Reynolds numbers, the electrical potential formula can be employed for MHD with good
accuracy [12,13]. Consider the fully developed MHD flow in a rectangular channel, where flow velocity is in
the x-direction and magnetic field is applied in the y-direction. All derivatives with respect to x are zero except
for that of pressure, which is a constant in the flow and zero in solid wall regions. Current is computed from
Ohm’s law as
J ¼ ð0; jy ; jzÞ ¼ r 0;� ou
oy
;� ou

oz
þ u

� �
: ð1Þ
In the core of the flow away from any viscous or inertial boundary layers, the Lorentz force is balanced by the
pressure gradient, as illustrated in [14], which leads to the following relations:
dp
dx
¼ Ha2

Re
� ou

oz
þ u

� �
ð2Þ
At high Ha with a given pressure gradient which corresponds to a given flow rate, the right hand side of the
above equation is very small. The core dimensionless velocity being close to 1 requires the dimensionless gra-
dient of the electric potential above to be also close to 1 in magnitude, but opposite in sign. We then have a
situation in which current is computed from the difference between two large and nearly identical numbers. It
turns out that this imposes some restrictions on the manner in which current is numerically computed from the
electric potential. An elaborate algorithm is needed for the calculation of MHD at high Hartmann numbers.

For incompressible MHD flow, a staggered grid system [15], a fully staggered grid system [16–18] and a
collocated grid system [19,20,14] have been employed to do the direct simulations. The staggered grid system
can effectively avoid the checkerboard phenomenon of pressure. However, it is hard to construct a current
density conservative scheme on a non-uniform staggered grid system. A fully staggered grid system can be
employed to conserve the current density with a uni-directional applied magnetic field [16]. However, it is hard
to extend the conservative scheme to a case with multi-directional applied magnetic field. Also it is not easy to
constructed a current density conservative scheme on an unstructured staggered and fully staggered grid
systems.

Ni et al. [14] developed a current density conservative scheme on a rectangular collocated mesh, as shown in
Fig. 1(a). In this collocated grid, velocity (u), pressure (p), and electrical potential (u) are located in the grid
center, while current fluxes are located on the cell faces. A consistent scheme is presented to get the divergence-
free current fluxes on the cell faces of a control volume. A simple conservative interpolation technique is
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Fig. 1. Collocated grid arrangement.
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designed on a rectangular collocated grid to get the current density at the cell center by interpolating the diver-
gence-free current fluxes on the cell faces. This current density conservative scheme can keep the current den-
sity at the cell center conservative, which is used to calculate the Lorentz force. Numerical validations have
been given in [14] to show that the current density conservative scheme has a good resolution at the side layers
and the Hartmann layers, even at high Hartmann numbers.

In the momentum equations, the Lorentz force exists as a source term in an explicit non-conservative form.
We have noted that the Lorentz force in the momentum equations has a similar form as the Coriolis force has
on a rotating coordinate system. The disadvantages of this non-conservative form of the Coriolis force on a
rotating frame were reported in [21], which indicated that the explicit treatment of the Coriolis force may lead
to erroneous results in a rotating frame. Agarwal and Deese [22] have absorbed half of the Coriolis force into
the divergence form. Based on this divergence form of the Coriolis force, Beddhu et al. [23] have successfully
formulated the Navier–Stokes equations in a fully conservative form without the traditional source terms in
the case of a rotating reference frame. Using a similar idea as used in Agarwal and Desse [22], we will cast the
Lorentz force in the globally and locally conservative forms. The formulation is equivalent to the original non-
conservative form from a theoretical point of view, but there exist differences between these formulations from
a numerical point of view. In this paper, we will show how the conservative form of the Lorentz force can help
us construct a consistent and conservative scheme for the calculation of the Lorentz force. Based on this con-
servative formulation of the Lorentz force, a conservative interpolation technique is developed to calculate the
current density at the cell center from the current fluxes on the cell faces of a control volume. We will further
prove that the simple interpolation technique in [14] is conservative in a rectangular coordinate, which can
conserve the total momentum when the applied magnetic field is constant.

The general second-order temporal accuracy projection method [14] developed for MHD flows will be fur-
ther extended on a collocated unstructured mesh (Fig. 1(b)) with the Lorentz force included as a source term in
the Navier–Stokes equations. This projection method can accurately and effectively balance the pressure term
and Lorentz force at the fully developed core flow as shown in [14]. This projection method can also simplify
the pressure boundary conditions for the Navier–Stokes equations with the Lorentz force considered. Since it
has been proven that the SIMPLE-type methods are special cases of this general projection method, the
existed research and commercial codes based on the SIMPLE type methods, such as the commercial codes
of CFX [24], FLUENT [25] and SC/TETRA [26], can be used to conduct the calculation of MHD flows using
the technique developed in this paper and our previous paper [14] by solving the electrical potential equation
for low magnetic Reynolds numbers.

In this paper, a conservative formulation of the Lorentz force is developed in Section 2. The current density
and Lorentz force conservative schemes on an unstructured mesh have been developed in Section 3. Section 4
gives the detailed computational procedures for the simulation of MHD flows on an arbitrary unstructured
mesh based on the general second-order projection method. Several numerical simulations are conducted
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to validate that the consistent and conservative schemes can be employed for high Hartmann MHD flows on
an arbitrary unstructured mesh in Section 5. Section 6 summarizes the contributions of this paper. In Appen-
dix A, Hunt’s and Shercliff’s analytical formulas have been reformulated for accurate computations without
further approximation at high Hartmann numbers.

2. Conservative formula of the Lorentz force

The flow of electrically conducting fluid under the influence of an external magnetic field is governed by the
following Navier–Stokes equation and continuity equation, which represent the conservation of momentum
and mass:
ou

ot
þ u � ru ¼ �rp þ 1

Re
r2uþ NðJ � BÞ ð3Þ

r � u ¼ 0 ð4Þ
where u, p are the non-dimensional velocity vector and kinetic pressure scaled with v0 and qv2
0 respectively.

With L defined as characteristic length, Re = v0L/g is the Reynolds number, Ha ¼ LB0

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
is the Hartmann

number, and N = Ha2/Re is the interaction parameter. J represents the current density, and B is the applied
magnetic field scaled with rv0B0 and B0 respectively. Also we define the magnetic Reynolds number here as
Rem = lrLv0, where g and r are the fluid viscosity and conductivity respectively. l is the permeability of
the fluid and the walls, q is the density of the fluid. The term N(J · B) is the Lorentz force, which is a volume
force in a non-conservative form in the momentum equation (3).

For a low magnetic Reynolds number, the flow of electrically conducting fluid under the influence of an
external magnetic field with negligible induced field, the current density can be calculated through Ohm’s
law [12,13]
J ¼ �ruþ u� B ð5Þ
The current density is conservative, such that
r � J ¼ 0 ð6Þ
From Eqs. (5) and (6), we can get the electrical potential Poisson equation as
r � ðruÞ ¼ r � ðu� BÞ ð7Þ

In a non-inertial rotating reference frame, the Coriolis and centrifugal acceleration terms are produced as

source terms in the Navier–Stokes equation, which is not in the conservative form. The explicit treatment of
the Coriolis force has been reported to lead to erroneous results in a rotating coordinate system [21]. Agarwal
and Deese [22] cast the Coriolis force in the divergence form by noting the following formula:
x� u ¼ u � rðx� rÞ ð8Þ

Here, x is the rotating speed vector of the reference frame relative to the absolute inertial frame, r is the dis-
tance vector. Similarly, when the applied magnetic field is constant, we have a corresponding formula for the
Lorentz force as
B � J ¼ J � rðB � rÞ ð9Þ

Furthermore, when the applied magnetic field is not constant, we can get the following equivalent formulation
of the Lorentz force:
J � B ¼ �J � rðB � rÞ þ ðJ � rBÞ � r ð10Þ

Since the current density is conservative, Eq. (10) can be expressed as a divergence form based on Eq. (6) as
J � B ¼ �r � ðJðB � rÞÞ þ r � ðJBÞ � r ð11Þ

When the applied magnetic field is constant or spatial coordinate independent, we get a strong conservative
formula of the Lorentz force as
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J � B ¼ �r � ðJðB � rÞÞ ð12Þ

Therefore, the Lorentz force in Eq. (11) has been cast into two terms: a globally conservative term of
�$ Æ (J(B · r)) and a locally conservative term of $ Æ (JB) · r. With the applied magnetic field known, it will
be convenient to employ Eq. (11) for the calculation of the Lorentz force without any interpolation of current
density from the cell faces to the cell center of a controlled volume in a cell-centered collocated mesh. We,
then, have the following momentum equation as:
ou

ot
þr � ðuuþ NJðB � rÞÞ ¼ �rp þ 1

Re
r � ruþ Nr � ðJBÞ � r ð13Þ
The momentum equation of Eq. (13) can be reduced to the following strong conservative form when the ap-
plied magnetic field is constant
ou

ot
þr � uuþ NJðB � rÞ þ pI � 1

Re
ru

� �
¼ 0 ð14Þ
The integral formula of Eq. (14) can be given as
Z
X

ou

ot
dXþ

I
S

n � uuþ NJðB � rÞ þ pI � 1

Re
ru

� �
ds ¼ 0 ð15Þ
Furthermore, the integral formula of the Lorentz force can be given as
Z
X
r � ðJðB � rÞÞdX ¼

I
S

n � ðJðB � rÞÞds ¼
I

S
J nðB � rÞds ð16Þ
which is only dependent on the boundary conditions of the flow region and clearly shows that the contribution
on the total momentum from the Lorentz force is null for insulated walls, although the work conducted by the
Lorentz force is non-zero [12]. The work due to the Lorentz force is
ðJ � BÞ � u ¼ �ðu� BÞ � J ¼ �J2 �r � ðuJÞ ð17Þ

The conservation of the total momentum from the Lorentz force (Eq. (16)) is a very important property. We
believe that only the numerical schemes, which can numerically conserve the total momentum when the ap-
plied magnetic field is constant, can get an accurate result for MHD flows. We will prove later that the current
density conservative scheme developed in [14] can conserve the total momentum at a rectangular grid, while
the non-conservative schemes listed in [14] cannot.

3. Consistent and conservative schemes

In this section, a consistent and conservative scheme is developed on an arbitrary collocated unstructured
mesh to calculate the current flux on a cell face, and the Lorentz force at the cell center. In Section 3.1, a con-
sistent scheme is developed to calculate the current fluxes on cell faces of a controlled volume, which can
ensure the current density is divergence-free in the controlled volume. In Section 3.2, two schemes are devel-
oped to conservatively calculate the Lorentz force, one is based on the conservative formulation of the force,
and the other one is based on a conservative current density interpolated from the current fluxes. In Section
3.3, for the sake of comparison, an inconsistent and non-conservative scheme is given for the calculation of the
Lorentz force.

3.1. Consistent scheme for calculation of current flux on cell face

Integrating Eq. (6) on a controlled volume of an unstructured mesh, as shown in Fig. 1(b), we have
Z
X
r � J dX ¼

I
S

n � J ds ¼
Xnf

f¼1

ðn � JÞf sf ð18Þ
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Subscript f denotes a cell face, nf and sf denote the outward normal direction and the area of a cell face respec-
tively. nf is the number of cell faces of a controlled volume with nf = 6 for a hexahedral mesh, nf = 4 for a
tetrahedral mesh, and nf = 5 for a prism mesh. It is a natural way to put the current density fluxes on the cell
faces, as shown in Fig. 1(b), which can effectively conserve the current density in a controlled volume. From
Eq. (5) of the Ohm’s law, the current flux on a cell face can be calculated using
ðJ nÞf ¼ ðJ � nÞf ¼ �ðru � nÞf þ nf � ðu� BÞf ð19Þ
As we have emphasized in [14], a consistent scheme is needed to conduct the calculation of ($u)f Æ nf, the gra-
dient of the electrical potential, and the (u · B)f Æ nf on the cell faces, which can ensure that the current density
is divergence-free in a controlled volume. Before we give a consistent scheme for the current density flux on a
cell face, we discretized the Poisson equation (7) on an unstructured mesh. A finite volume representation of
the Poisson equation on such a mesh can be written as
1

X

I
S

n � ruds ¼ 1

X

Xnf

f¼1

ou
on

� �
f

sf ¼
1

X

Xnf

f¼1

nf � ðu� BÞf sf ð20Þ
Considering the situation presented in Fig. 2(a), symbols P and N are used to represent the current cell and
neighboring cell in a finite volume computation. The point F is the centroid of the cell face adjoining P and N.
lf is the unit direction from the cell center P to the neighboring center N, rm is the vector line from point F to
the middle point of the vector line of PN. Using above notations, the electrical potential gradient on the cell
faces can be given as [27]
ou
on

� �
f

¼ af
uN � uP

jxN � xP j
þ 1

2
ðruÞP þ ðruÞN
� �

� nf � af lf

� �
ð21Þ
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P

N

F

x1

x2

d1

d2

r1

r2

1

2

Current
cell

Neighboring
cell

n

(b) for the computing of the value on the cell face

P

N

F

d1

d2

Current
cell

Neighboring
cell

a

r3

Q

(c) for the gradient and cell face value computations

Fig. 2. Vector notation used for non-orthogonal mesh.
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af = nf Æ lf is an optimal value to get an accurate discretization of the gradient at the cell face [27]. The finite
volume expression of Eq. (20) can now be expanded in terms of these vectors and the gradient of u in each cell,
as follows:
Xnf

f¼1

af
uN � uP

jxN � xP j

� �
f

sf þ
Xnf

f¼1

1

2
ððruÞP þ ðruÞNÞf � ðnf � af lf Þf sf ¼

Xnf

f¼1
nf � ðu� BÞf sf ð22Þ
This can be written as an algebraic equation in terms of current cell and neighboring cell quantities, as follows:
aPuP þ
Xnf

f¼1

aNuN ¼ SP ð23Þ
While this expression works well and can be used with successive Gauss–Seidel on an orthogonal mesh, the
correction term on a non-orthogonal mesh (second term in Eq. (22)) included in the source term S of Eq.
(23) would cause it to become numerically unstable. This correction increases the effective stencil size used
in the computation, and decreases diagonal dominance of the system of equations. An approach of under-
relaxation is to over-relax the diagonal terms by modifying the equation as follows:
aPuP

a
þ
Xnf

f¼1

aNuN ¼ SP þ
1� a

a
aPuP ð24Þ
a 2 (0, 1] is an under-relaxation factor. Eq. (23) is solved by Gauss–Seidel procedure and preconditioned Con-
jugate Gradient method with good results for Dirichlet boundary conditions and Neumann-type boundary
conditions. A numerical stability analysis of the underrelaxation technique for the discretized convective-dif-
fusion equation has been made and the solution stability criterion has been given for under-relaxation tech-
nique [28].

A convergent solution of u, the electrical potential, will be used to conduct the calculation of the current
flux on a cell face based on the following formula:
ðJ nÞf ¼ �af
uN � uP

jxN � xP j
� 1

2
ððruÞP þ ðruÞN Þ � ðnf � af lf Þ þ nf � ðu� BÞf ð25Þ
Eq. (25) is a consistent scheme for the calculation of the current flux on a cell face, which can conserve the
current density. Current density will be divergence-free based on the fluxes from Eq. (25) in a control volume
when the electrical potential is obtained from the convergent solution of Eq. (22).

The gradients of the electrical potential at the cell center and its neighbor center, ($u)N and ($u)P are
needed to accurately calculate the current fluxes on the cell faces. The gradient at a cell center P can be eval-
uated from Gauss’ rule as
ðruÞP ¼
1

XP

Xnf

f¼1

uf sf nf ð26Þ
To obtain a face interpolation of u, we first calculate um at the middle point of the vector line of PN as shown
in Fig. 2(a) with um ¼ 1

2
ðuN þ uP Þ. In computing face centered quantities, this interpolate must be relocated to

the face center F using a local value of gradient and the distance vector rm shown in Fig. 2(a). The value of u at
F must be corrected on non-orthogonal meshes where rm is non-zero. We estimate this correction from a local
interpolated value of the gradient of u, as follows:
uf ¼
1

2
ðuN þ uP Þ �

1

2
ððruÞP þ ðruÞN Þ � rm ð27Þ
Initially, uf is estimated from linear interpolation between cell centers. A gradient is computed by Gauss sum-
mation over cell faces. This gradient is successively refined by correcting it using the second term in Eq. (27)
using the last computed gradient. This process has been seen to converge in four to five steps to near machine
zero on several skewed meshes studied.
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We would like to list another formula to calculate the electrical potential gradient on the cell faces and the
cell center of a control volume [29]. Considering the situation presented in Fig. 2(b), points 1 and 2 are con-
structed by extending perpendiculars d1 and d2 from F to intersect the planes parallel to the cell face passing
through P and N respectively. Using the above notation, we have u1 = uP +r1 Æ $uP, u2 = uN +r2 Æ $uN. If
the mesh were orthogonal, P and 1 would be the same point, just as N and 2 would be the same. The vectors
r1 and r2 would be zero in an orthogonal mesh and the finite volume representation would be simplified con-
siderably. The vectors x1 and x2 are distance vectors joining cell centers to face centers in the directions shown.
From these vectors, we can compute d1 and d2 (their normal components) and r1 and r2 as: d1 = �(x1 Æ nf)nf,
d2 = �(x2 Æ nf)nf, r1 = x1 + d1, r2 = x2 + d2, and we have
ou
on

� �
f

¼ u2 � u1

d1 þ d2

� �
f

¼ uN � uP

d1 þ d2

� �
f|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

orthogonal

þ r2 � ruN � r1 � ruP

d1 þ d2

� �
f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

non-orthogonal

ð28Þ
d1 and d2 are the modules of d1 and d2 respectively. It includes an orthogonal part and a non-orthogonal cor-
rection part.

Using Gauss’ law to evaluate the electrical potential gradient at a cell center, we need the value of pressure
or electrical potential at the cell faces. Referring to Fig. 2(c), the value of the electrical potential at f can be
corrected on non-orthogonal meshes where r3 is non-zero. We estimate this correction from a local interpo-
lated value of the gradient of u, as follows:
uf ¼
d2uP þ d1uN

d1 þ d2

þ d2ðruÞP þ d1ðruÞN
d1 þ d2

� r3 ð29Þ
Four to five steps iteration between uf and the gradient is needed on several skewed meshes studied. Eq. (28)
can then be employed to calculate the current flux using the consistent scheme as
ðJ nÞf ¼ �
uN � uP

d1 þ d2

� �
f

� r2 � ruN � r1 � ruP

d1 þ d2

� �
f

þ nf � ðu� BÞf ð30Þ
3.2. Conservative scheme for calculation of the Lorentz Force

In this subsection, we will develop two techniques to conservatively calculate the Lorentz force. The first
one is developed in Section 3.2.1 based on the conservative formulation of the Lorentz force. The second
one is developed in Section 3.2.2 based on a conservative interpolation of the current density at the cell center
from the cell faces of a controlled volume. The conservative current density at the cell center will be used to
calculate the Lorentz force. These two techniques are equivalent when the applied magnetic field is constant,
and both can conserve the total momentum from the Lorentz force.

3.2.1. Based on a conservative formula of the Lorentz force

Now the conservative current fluxes on the cell faces will be used to conduct the calculation of the Lorentz
force in a control volume. Applied Eq. (11) on a controlled volume Xc, we have
Z

Xc

J � B dX ¼ �
Z

Xc

r � ðJðB � rÞÞdXþ
Z

Xc

r � ðJBÞ � rdX ð31Þ
The terms at the right hand side of Eq. (31) can then be approximated as
Xcðr � ðJðB � rÞÞÞc ¼
Z

Xc

r � ðJðB � rÞÞdX ¼
I

S
n � ðJðB � rÞÞds ¼

Xnf

f¼1

ðJnÞf ðB � rÞf sf ð32Þ

Xcðr � ðJBÞ � rÞc ¼ Xcðr � ðJBÞÞc � rc ¼
Z

Xc

r � ðJBÞdX� rc ¼
I

S
n � ðJBÞds� rc ¼ �rc �

Xnf

f¼1

ðJ nÞf Bf sf

ð33Þ
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Therefore, we have the following approximation of Eq. (31) as:
ðJ � BÞc ¼ �ðr � ðJB � rÞÞc þ ðr � ðJBÞÞc � ðrÞc ð34Þ

In detail, we have
ðJ � BÞc ¼ �
1

Xc

Xnf

f¼1

ðJ nÞf ðB � rÞf sf � rc �
1

Xc

Xnf

f¼1

ðJ nÞf Bf sf ð35Þ
The subscript c denotes the cell center. In this scheme, the Lorentz force at the cell center has been calculated
based on the conservative formula of Eq. (11). When the applied magnetic field is constant, the second term on
the right hand side of Eq. (35) will disappear since a consistent scheme has been employed to ensure the diver-
gence free of current density in a control volume. In other words, the consistent scheme can ensurePnf

f¼1ðJ nÞf sf ¼ 0 to near machine precision. The total momentum contribution from the Lorentz force only
depends on the boundary conditions and is conservative using Eq. (35) to conduct the calculation of the
Lorentz force. Moreover, the calculation of the Lorentz force in a control volume using Eq. (35) only needs
the current fluxes on the cell faces. Any interpolation to obtain the current density at the cell center from the
current fluxes on the cell faces is not needed. It is convenient and useful to use the conservative formula of Eq.
(35) to reduce the numerical error from the interpolation. When the applied magnetic field is spatially varying,
the total momentum due to the contribution of the Lorentz force is not conservative. The second-term on the
right hand side of Eq. (35) is a first-order approximation of Eq. (11) since rc has been moved out of the integral
formula of Eq. (31).

3.2.2. Based on a conservative interpolation of current density

To direct calculate the Lorentz force at the cell center based on an non-conservative formulation of Jc · Bc,
we need the current density at the cell center by an interpolation from the current fluxes on the cell faces. The
simple interpolation in [14] can get accurate results for MHD at high Hartmann numbers on a rectangular
collocated mesh. A straight forward extension of the simple interpolation on an unstructured mesh can be
given as
ðjxÞc ¼
Pnf

f¼1ðjxjsxjÞfPnf
f¼1jsxjf

; ðjyÞc ¼
Pnf

f¼1ðjy jsy jÞfPnf
f¼1jsy jf

; ðjzÞc ¼
Pnf

f¼1ðjzjszjÞfPnf
f¼1jszjf

ð36Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where s = (sx, sy, sz) is the dimensional face normal area vector with sf ¼ ðsxÞ2 þ ðsyÞ2 þ ðszÞ2. The interpo-
lation of Eq. (36) is based on an area average. This average can conserve the current density only on a rect-
angular collocated mesh. Indeed, Eq. (36) will be reduced to the conservative interpolation scheme on a
rectangular grid system in [14], which can conduct the MHD calculation at high Hartmann numbers with
good accuracy. However the scheme of Eq. (36) cannot conserve the total momentum on a skewed mesh when
the applied magnetic field is constant. This interpolation introduces numerical error for the calculation of the
Lorentz force on a skewed mesh.

When the applied magnetic field is constant, the conservative formulation of the Lorentz force can be given
as
J � B ¼ r � ðJðr� BÞÞ ¼ r � ðJrÞ � B ð37Þ

$ Æ (Jr) can be regarded as an interpolation of the current density. In fact, since the current density is conser-
vative with $ Æ J = 0, we have following equation for the current density:
J ¼ r � ðJrÞ ð38Þ

Therefore, no matter the applied magnetic field is constant or not, the Lorentz force can be expressed as
J � B ¼ ðr � ðJrÞÞ � B ð39Þ

Eq. (39) returns to the conservative formula of the Lorentz force in Eq. (11) when the applied magnetic field is
spatial invariant, which can conserve the total momentum due to the contribution of the Lorentz force. Eq.
(38) can be used to interpolate the current density at the cell center from the current fluxes at cell faces. The
detailed discretized formulation is
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J c ¼
1

Xc

Z
Xc

J dX ¼ 1

Xc

Z
Xc

r � ðJrÞdX ¼ 1

Xc

I
Sc

J nrds ¼ 1

Xc

Xnf

f¼1

ðJ nÞf rf sf ð40Þ
Corresponding to the non-conservative interpolation of Eq. (36), the conservative interpolation of Eq. (40)
can be rewritten as
ðjxÞc ¼
1

Xc

Xnf

f¼1

ðJ nÞf sf xf ; ðjyÞc ¼
1

Xc

Xnf

f¼1

ðJ nÞf sf yf ; ðjzÞc ¼
1

Xc

Xnf

f¼1

ðJ nÞf sf zf ð41Þ
Unlike the non-conservative interpolation of Eq. (36), which is based on an area average, the conservative
interpolation of Eq. (40) is based on a volume average. In fact, Eq. (40) can be discretized in a different
way as
J c ¼
1

Xc

Z
Xc

r � ðJðr� rcÞÞdX ¼ 1

Xc

I
Sc

J nðr� rcÞds ¼ 1

Xc

Xnf

f¼1

ðJ nÞf ðrf � rcÞsf ð42Þ
Considering a circum-center based unstructured grid as shown in Fig. 3. We have
rf � rc ¼ df nf ð43Þ

Here, df denotes the distance from the cell center to the cell face. Substitute Eq. (43) into Eq. (42), we, there-
fore, have
J c ¼
1

Xc

Xnf

f¼1

ðJ nÞf df sf nf ð44Þ
For a circum-center hexahedral or tetrahedral grid, we have Xc ¼
Pnf

f¼1
1
3
sf df . Eq. (44) is, in fact, a volume

average of (Jn)fnf. When the grid is rectangular, we have
sf df

Xc
¼ 1

2
, and Eq. (44) can be reduced as
J c ¼
Xnf

f¼1

ðJ nÞf
sf df

Xc

nf ¼
1

2

Xnf

f¼1

ðJ nÞf nf ð45Þ
This is the simple interpolation scheme we used for the calculation of the current density at the cell center from
the current fluxes at the cell faces in [14], which means the simple interpolation in [14] meets the conservative
condition of $ Æ J = 0 and J = $ Æ (Jr) = 0. The Lorentz force’s calculation using this simple interpolation is
equivalent to the discretized conservative formulation of Eq. (35) on a rectangular grid with constant applied
magnetic field, in which the Lorentz force is in a conservative form. Therefore, the total momentum contri-
bution from the Lorentz force using the simple interpolation on a rectangular grid [14] is conservative. The
simple interpolation can be used to simulate MHD at high Hartmann numbers with good accuracy on a rect-
angular mesh as shown in [14].
c nbr

(a) Circumcenter triangular grid

c nbr

(b) Circumcenter quadrilateral grid

Fig. 3. Schematic circum-center grid.



M.-J. Ni et al. / Journal of Computational Physics 227 (2007) 205–228 215
3.3. A non-conservative scheme for calculation of the Lorentz force

The current density at the cell center is needed to directly calculate the Lorentz force at the cell center based
on a non-conservative formulation of Jc · Bc. Section 3.2.2 gives a way to get the current density at the cell
center conservatively interpolated from the current fluxes on the cell faces. The current density at the cell cen-
ter can also be directly calculated from the gradient of electrical potential and velocity at the cell center based
on Ohm’s law as
Jc ¼ �ðruÞc þ ðu� BÞc ð46Þ
The gradient of the electrical potential ($u)c at the cell center will be calculated based on the Gauss’ rule as
described in Eq. (26). uf can be iteratively calculated using Eq. (27). We then have the detailed formula for the
calculation of the current density at the cell center as
Jc ¼ �
1

Xc

Xnf

f¼1

uf sf nf þ uc � Bc ð47Þ
The Lorentz force will be calculated based on the current density using Eq. (47) as
ðJ � BÞc ¼ Jc � Bc ¼ � 1

Xc

Xnf

f¼1

uf sf nf þ uc � Bc

 !
� Bc ð48Þ
As we have analyzed for a rectangular mesh [14], the current density calculated using Eq. (47) and the Lorentz
force calculated based on Eq. (48) are not conservative. In fact, the Lorentz force calculated using Eq. (48)
cannot conserve the total momentum when the applied magnetic field is constant. This non-conservative cur-
rent density from Eq. (47) cannot be used to accurately calculate the Lorentz force, and it will introduce a
numerical error for the calculation of the total momentum.

4. Projection method and detailed calculation procedures for MHD

A general second-order temporal accuracy of projection method [30] has been extended for MHD flows
[14]. We now summarize the consistent and conservative schemes developed for an unstructured collocated
mesh, and give a detailed computation procedure for MHD flows based on the general four-step projection
method in [14]. For the sake of the simulations of MHD flows with solid walls included, we will describe
our detailed computational procedure based on the dimensional incompressible MHD equations with variable
coefficients. The dimensional incompressible Navier–Stokes equations and Ohm’s law with variable coeffi-
cients can be given here as
ou

ot
þ u � ru ¼ 1

q
ð�rp þr � ðgruÞ þ ðJ � BÞÞ ð49Þ

J ¼ rð�ruþ u� BÞ ð50Þ
Based on the dimensional Navier–Stokes equation and continuity equation, the first predictor step can be gi-
ven as
ûc � uk
c

Dt
¼ �ðu � ruÞkþ1=2

c þ 1

qkþ1=2
c

ðr � ðgruÞÞkþ1=2
c þ 1

qk
c

�rc pk
c

� �
þ ðJ � BÞkc

� 	
ð51Þ
The superscript k denotes the kth time level. The convective term is updated as �ðu � ruÞkþ1=2
c and the diffusion

term is updated as ðr � ðgruÞÞkþ1=2
c =qkþ1=2

c . Usually an explicit Runge–Kutta technique can be employed for
update of the convective term for simplicity, and an implicit technique is used for update of the diffusion term
for stability. In our simulation, we use the semi-implicit Crank–Nicholson scheme to update both the convec-
tive term and the diffusion term. When the semi-implicit Crank–Nicholson scheme is employed, we have the
update of the diffusion term as
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1

qkþ1=2
c

ðr � ðgruÞÞkþ1=2
c ¼ 1

2

1

qkþ1
c

ðr � ðgruÞÞkþ1
c þ 1

qk
c

ðr � ðgruÞÞkc
� �
The second predictor velocity at the cell center can be given using the following equation:
~uc ¼ ûc þ DtHk
c

1

qk
c

rc pk
c

� �
ð52Þ
Here Hk ¼ diag hk
x; h

k
y ; h

k
z

� 	
is a diagonal coefficient matrix with elements hk

x; h
k
y ; h

k
z , which may depend on the

grid size, time step and even velocity [30]. Usually, we employ the same scheme to discretize the convective
terms and/or the diffusion terms for the x-directional, y-directional, and z-directional momentum equations.
We then have hk

x ¼ hk
y ¼ hk

z ¼ hk, and Hk = hkI. Here, I is the unit matrix. In this paper, we only consider the
projection method with Hk = hkI, and Eq. (52) can be reduced as
~uc ¼ ûc þ Dthk
c

1

qk
c

rc pk
c

� �
ð53Þ
The predictor velocity fluxes on the cell faces can then be obtained by interpolation from the second predictor
velocities at the cell centers
eU f ¼ ~uf � nf ¼ ~uc � nf ð54Þ
~uc represents an average or interpolation from the velocity ~uc at the neighboring cell centers of the face f to the
velocity ~uf on the face f. The similar technique as that for uf in Eq. (27) can be used to get the ~uf . The predictor
velocity fluxes on the cell faces of a control volume are used to calculate the source term of the pressure Pois-
son equation which is solved to get the pressure at the next time level. Using the Gauss’ rule, the discretized
Poisson equation can then be written as
Dt
Xnf

f¼1

hk
f

1

qkþ1
f

opkþ1
c

on

� �
f

sf ¼
Xnf

f¼1

eU f sf ð55Þ
In this discretized pressure Poisson equation, pressure gradients at cell faces along the normal directions and
predictor velocity’s fluxes are needed. From Eq. (55), the pressure at the time level of k + 1 is obtained, which
is used to calculate the normal pressure gradient on the cell faces based on either Eq. (21) or (28). The normal
pressure gradient at the cell face is used to conduct the calculation of the velocity flux at time level k + 1 using
the following equation:
U kþ1
f ¼ eU f � Dthk

f

1

qkþ1
f

opkþ1
c

on

� �
f

ð56Þ
The velocity of the time level k + 1 at a cell center is calculated from the following equation:
ukþ1
c ¼ ~uc � Dthk

c

1

qkþ1
c

rc pkþ1
c

� �
ð57Þ
where the pressure gradient of rc pkþ1
c

� �
at the cell center is calculated based on Gauss’ rule. The velocities at

cell centers from Eq. (57) can then be used to get the velocity at a cell face by an interpolation
ukþ1
f ¼ ukþ1

c ð58Þ
ukþ1
c denotes an average or interpolation from the velocity ukþ1

c at the neighbor cell centers of the face f to the
velocity ukþ1

f on the face f. The similar technique as that for uf in Eq. (27) can be used to get the ukþ1
f . This

velocity is then used to calculate
ðu� BÞkþ1
f ¼ ukþ1

f � Bkþ1
f ð59Þ
and the discretized electrical potential Poisson equation can be given in a controlled volume using the Gauss’
rule as
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Xnf

f¼1

rf
oukþ1

c

on

� �
f

sf ¼
Xnf

f¼1

rf ðu� BÞkþ1
f � nf sf ð60Þ
The current flux on a cell face can then be calculated using the consistent scheme based on the Ohm’s law
ðJ nÞkþ1
f ¼ rf �

oukþ1
c

on

� �
f

þ ðu� BÞkþ1
f � nf

 !
ð61Þ
The consistent scheme requires that oukþ1
c

on

� 	
f

in Eqs. (60) and (61) is discretized using the same scheme. Eq. (21)

and/or (28) can be used to discretize oukþ1
c

on

� 	
f

with a second-order spatial accuracy.

The Lorentz force will be calculated using the following three schemes:

� Based on the divergence form of the Lorentz force of Eq. (35)
ðJ � BÞkþ1
c ¼ � 1

Xc

Xnf

f¼1

ðJ nÞkþ1
f Bkþ1

f � rf

� 	
sf � rc �

1

Xc

Xnf

f¼1

ðJ nÞkþ1
f Bkþ1

f sf ð62Þ
� Based on the conservative interpolation of Eq. (42)
ðJ � BÞkþ1
c ¼ 1

Xc

Xnf

f¼1

ðJ nÞkþ1
f ðrf � rcÞsf

 !
� Bkþ1

c ð63Þ
� Based on the non-conservative scheme developed in Eq. (48)
ðJ � BÞkþ1
c ¼ rc �

1

Xc

Xnf

f¼1

uf sf nf þ uc � Bc

 !
� Bc ð64Þ
It is already shown in [14,30] that some classical projection methods [31,32] can be acquired from the general
projection method with a different coefficient matrix. And SIMPLE [33] and SIMPLEC [34] methods can also
be acquired from the general projection method with a nonlinear coefficient matrix, which is dependent on
velocity, grid size and time step. The SIMPLE and SIMPLEC methods have been proven to have second-
order temporal accuracy [35]. On the collocated mesh, the technique developed in [36] is applied for the gen-
eral projection method to overcome the checkboard phenomena of pressure.

The boundary conditions for the projection method with the Lorentz force included have been given in
[14]. The second-order temporally accurate velocity boundary condition for the predictor-step of Eq. (51)
is
ûBC ¼ ukþ1
BC ð65Þ
and the pressure boundary conditions for the pressure Poisson equation of Eq. (55) is
opkþ1
c

on

� �
BC

¼ opk
c

on

� �
BC

ð66Þ
The complete algorithm from time step k to time step k + 1 can be summarized based on the four-step pro-
jection method on a collocated mesh as:

(1) Evaluate Lorentz force ðJ � BÞkc at time level k using a scheme from Eqs. 62, 63, 63, and calculate the
pressure gradient rc pk

c

� �
at the cell center using the Gauss’ rule.

(2) Evaluate coefficient hk
c and hk

f (here we choose hk
c ¼ 1 and hk

f ¼ 1).
(3) Solve the predictor step of Eq. (51) for ûc with the boundary conditions from Eq. (65); obtain the second

intermediate velocity ~uc’ using Eq. (53); transfer the cell center velocity ~uc to the face center velocity ~uf

using ~uf ¼ ~uc and calculate the velocity flux eU f on the cell faces of a control volume using Eq. (54).
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(4) Solve the pressure Poisson equation of Eq. (55) for pkþ1
c using the preconditioned conjugate gradient

method with the boundary conditions from Eq. (66); calculate rc pkþ1
c

� �
using Eq. (26) and opkþ1

c

on

� 	
using

Eq. (21) or (28).
(5) Correct the velocity ukþ1

c at cell center based on ~uc andrc pkþ1
c

� �
using Eq. (57); correct the velocity flux at

the face center based on eU f and opkþ1
c

on

� 	
using Eq. (56), calculate the cell face velocity based on the neigh

boring centers’ velocity using ukþ1
f ¼ ukþ1

c of Eq. (58).

(6) Calculate ðu� BÞkþ1
f using Eq. (59); solve the electrical potential Poisson equation (60) for ukþ1

c using the
preconditioned conjugate gradient method.

(7) Calculate oukþ1
c

on

� 	
using Eq. (21) or (28) and calculate the current density flux of ðJ nÞkþ1

f at the cell face
using the corresponding consistent scheme of Eq. (25) or (30); calculate the gradient of the electrical
potential rc ukþ1

c

� �
at the cell center using Eq. (26).

(8) Calculate Lorentz force of ðJ � BÞkþ1
c at the cell center based on the conservative formula of Eq. (62) or

the conservative interpolation of Eq. (63) or the non-conservative interpolation of Eq. (64).
(9) Repeat above steps from (2) to (8) by setting k = k + 1 for the next time level.

The above projection method can balance the pressure term and the Lorentz force in the fully developed
core flow when the conservative formula of Eq. (62) or the conservative interpolation of Eq. (63) are employed
to calculate the Lorentz force. The consistent and conservative scheme developed in this paper is used to cal-
culate the Lorentz force at the cell center. This includes the calculation of current density fluxes at the cell faces
using a consistent scheme, which will ensure the divergence free of current density, and the calculation of the
Lorentz force based on the conservative formula of Eq. (62) or the conservative interpolation of Eq. (63). We
will numerically show that the non-conservative scheme of Eq. (64) cannot get accurate results.
5. Validation of consistent and conservative schemes

There exist some exact solutions for fully developed incompressible laminar flows in ducts with transverse
magnetic fields. Shercliff’s solution for rectangular ducts with non-conducting walls and the field perpendicular
to one side [6] and Hunt’s solution for rectangular ducts with two non-conductive side walls and two conduc-
tive Hartmann walls [7] have been used to validate the consistent and conservative scheme developed for rect-
angular grids in [14]. These solutions are also used to validate the consistent and conservative schemes
developed here for an unstructured mesh with skewed grids. Shercliff’s case will be simulated on an orthogonal
mesh with core perturbation. Hunt’s case will be simulated on a triangular mesh and a prism mesh. Hunt’s
formula has been reformulated in Appendix A for the sake of numerical calculation using a computer code
at high Hartmann numbers without further approximation. Considering that Shercliff’s case is a special case
of Hunt’s case, the reformulated Hunt’s formula can also be used to get the exact solution for Shercliff’s case.
Experimental data for a 3D circular pipe flow in a spatially variable magnetic field is used to further validate
the scheme on a fully three-dimensional unstructured mesh.
5.1. Conservation of current density

5.1.1. Shercliff’s case on a rectangular mesh with core perturbation

We simulate Shercliff’s case of a fully developed flow in a square channel with all of the walls electrically
insulated. We present some preliminary results from a fully developed flow calculation on an orthogonal mesh
with core perturbation (Fig. 4(a)) at Ha = 300 and Re = 10 with a pressure gradient of �31.662 specified,
which corresponds to a mass flow rate of 4 from Shercliff’s solution.

On rectangular grids, this case has been simulated with good accuracy by using the consistent and
conservative scheme in [14]. On the mesh of Fig. 4(a) with core perturbation, the consistent scheme is used
to conduct the calculation of the current fluxes on the cell faces, which meet the condition of the divergence
free of the current density in a controlled volume. The Lorentz force is calculated based on the conservative
formulation of Eq. (62) represented as ‘‘NGRAD = 5’’, the simple interpolation of Eq. (36) represented as



Fig. 4. Shercliff’s case with Ha = 300 on an orthogonal mesh with core-perturbation.
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‘‘NGRAD = 4’’, and the non-conservative scheme of Eq. (64) represented as ‘‘NGRAD = 3’’ in Fig. 4(b).
Fig. 4(b) tells us the Lorentz force calculated based on the conservative formulation of Eq. (62) can be used
to get an accurate result, which matches well with the analytical results on the skewed grids. However, the
simple interpolation of Eq. (36) cannot get an accurate result for MHD even at Ha = 300; while the Lorentz
force from the non-conservative scheme of Eq. (64) gives the value of flow rate with the most deviation from
the actual result as shown in Fig. 4(b) and lowest velocity distribution.

Let us give a detailed analysis on these results. The simple interpolation of Eq. (36) is equivalent to the con-
servative interpolation of Eq. (63) on a rectangular grid. However, on a skewed grid, the simple interpolation
of Eq. (36) cannot conserve the current. In other words, the simple interpolation can conserve the current near
the boundary with rectangular grids used there but not at the core with skewed grids used. The non-conser-
vative current at the core will introduce numerical errors on the calculation of the Lorentz force there. The
inaccurate Lorentz force cannot effectively balance the pressure gradient at the core, which should be balanced
as shown in Eq. (2). The flow rate as shown in Fig. 4(b) cannot be accurately calculated due to the imbalance
between the Lorentz force and the pressure gradient at the core. The non-conservative scheme of Eq. (64) can-
not conserve current at any kind of grid, which will introduce numerical errors for the calculation of the Lor-
entz force at the whole computation region. Therefore, the non-conservative scheme gives the worst result as
shown in Fig. 4(b).

For the constant applied magnetic field, calculation of the Lorentz force using the conservative interpola-
tion of Eq. (63) can get the same accurate result as that from the conservative formulation of Eq. (62).

5.1.2. Hunt’s case on a triangular mesh and a prism mesh

We now consider the fully developed flow in a square channel with Re = 10, Ha = 300 of the Hunt’s case.
The walls perpendicular to the applied magnetic field are assumed to be conducting with a wall conductance
ratio cw = 0.05 and those parallel to the applied magnetic field are electrically insulated. The pressure gradient
is given as �374.897, which corresponds to the mass flow rate of 4 based on the Hunt’s analytical solution. In
the numerical result, the presented consistent scheme is used to conduct the calculation of the current fluxes on
the cell faces. The Lorentz force is calculated based on the conservative formulation of Eq. (62). The Lorentz
force can also be calculated based on the conservative interpolation of Eq. (63).

A triangular mesh is generated with fine grids in the side layers and finer grids in the Hartmann layers. In
detail, the mesh in the two times thickness of Hartmann layers is resolved with cells having minimum size 1/
(3Ha), and maximum size 1/Ha. The mesh in the 2.5 times thickness of the side layers is resolved with cells
having minimum size 1/(3Ha1/2), and maximum size 1/Ha1/2. The mesh is shown in Fig. 5(a). With a close



Fig. 5. Vector notation used for non-orthogonal mesh.
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look at the grids near a corner as shown in Fig. 5(b), we can clearly see that the grids are non-uniform with
coarse grids in the core, fine grids in the side layer and finer grids in the Hartmann layer.

The iteration history of divergence of the current density is shown in Fig. 6. The consistent scheme used in
the calculation can keep the calculated current fluxes conserved since the maximum divergence of the current
calculated based on the fluxes in a control volume is reduced as time marching. The flow rate converges to the
exact value of 4 with an error less than 1% when it reaches the convergent result as shown in Fig. 6(b). The
streamlines of current at cell centers illustrated in Fig. 5(a) and (b) are closed, which shows that the current at
the cell center calculated using the conservative interpolation of Eq. (42) is conservative. This conservative cur-
rent can be used to calculate the Lorentz force at the cell center with good accuracy.

Velocity distributions calculated on the triangular grid using the consistent and conservative scheme are
shown in Fig. 7(a). We present a comparison between the exact solution from the Hunt’s analysis and the
numerical solution in Fig. 7(b). This figure illustrates the comparison in the Hartmann layers and side layers.
The results on triangular mesh match the analytical results well. The comparison demonstrates a very good
computational accuracy.

Numerical simulation is also done for the fully developed flow with Ha = 1000. The pressure gradient is
given as �1000. The triangle mesh is refined in the two times thickness of Hartmann layers with minimum
Fig. 6. Convergent history for the calculation of Ha = 300.



Fig. 7. Calculated velocity for Ha = 300.
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size 1/(3Ha), and maximum size 1/Ha. The mesh is also refined in the 3 times thickness of the side layers with
minimum size 1/(3Ha1/2), and maximum size equal to 1/Ha1/2. The comparison between the numerical results
and the Hunt’s analytical solution is illustrated in Fig. 8. Fig. 8(a) presents the comparison of the velocity
along the middle line normal to the Hartmann walls. Fig. 8(b) presents the comparison of the velocity along
the middle line normal to the side walls. The numerical results match well with the analytical results. The
velocity profile and the current distribution are given in Fig. 9. Fig. 9(b) clearly shows the calculated current
is conservative on the triangular mesh.

From the simulations for the fully developed MHD flows of the Shercliff’s case and the Hunt’s case in a
duct, we can conclude that the consistent scheme can keep the calculated current fluxes divergence free on
Fig. 8. Comparison with Hunt’s analytical solution for Ha = 1000.



Fig. 9. Velocity profile and current streamlines for Ha = 1000 on a triangular mesh.
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an arbitrary unstructured mesh. The divergence-free current flux can be used to conduct the calculation of the
Lorentz force using the conservative formula of Eq. (62). It also can be used to get the conservative current
density at the cell center using the conservative interpolation of Eq. (42). The current density at the cell center
using the conservative interpolation can be further employed to calculate the Lorentz force using Eq. (63). The
Lorentz force calculated using the conservative formula of Eq. (62) and conservative interpolation of Eq. (63)
can balance the pressure gradient in the fully developed core flow on an arbitrary unstructured mesh. The Lor-
entz force calculated using the conservative method can conserve the total momentum supposing the applied
magnetic field is constant, which can ensure the simulated results accurate on an arbitrary mesh. The non-con-
servative scheme of Eq. (64) cannot ensure the total momentum contributed from the Lorentz force is conser-
vative. The non-conservative Lorentz force from Eq. (64) cannot give an accurate prediction for MHD flows.
Also it has been shown that the simple interpolation of Eq. (36) cannot conserve the current density at the cell
center on a skewed grid, although it can conserve the current on a rectangular grid.

It is of interest to test our approach in a three-dimensional simulation with different interaction parameters.
We choose here the same cross section as above and extend it in the x-direction to 30 units (channel half-width
is 1). An unstructured prism mesh was used in this simulation with the mesh in a cross section same as that we
generated for 2D fully developed MHD flows. The mesh number in the flow direction is 31. The 3D prism
mesh is partitioned to run on 16 different processors.

A bi-parabolic inflow velocity distribution with flow rate of 4 is given and used as an initial flow condition in
the channel. Magnetic field with a value of 1 is applied in the y-direction. The flow quickly adjusts from ordin-
ary laminar flow profile to the fully developed MHD state, converges rapidly and is virtually indistinguishable
from the exact solution. With Ha = 300 and cw = 0.05, we use the conservative scheme of Eq. (62) to calculate
the Lorentz force. The direct simulations of the 3D MHD flows are conducted at Re = 10 (N = 9000), Re = 100
(N = 900), Re = 500 (N = 180) and Re = 1000 (N = 90). The calculated pressure gradient is compared with
Hunt’s exact solution. Table 1 listed the calculated and analytical pressure gradient. The relative error in this

table is calculated based on the formula of Error ¼ ðrpÞAnal�ðrpÞCalc

ðrpÞAnal




 


. The calculated pressure gradients matches
well with the analytical solution when the interaction parameters changed from 9000 to 90.

5.2. Fully 3D simulation – comparing with an experiment for circular pipe

In the fusion blanket, 3-D effects are virtually unavoidable and the flow profiles have a strong influence
on heat transfer and corrosion rates. It is essential to validate the fully three-dimensional prediction of the



Table 1
Computed pressure gradient at Ha = 300 and cw = 0.05

Reynolds number 10 100 500 1000

Interaction parameter 9000 900 180 90
Calc. $p �374.597 �37.462 �7.491 �3.752
Anal. $p �374.897 �37.490 �7.498 �3.749
Calc. error 0.080% 0.075% 0.093% 0.080%
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developed algorithm for a fully 3D MHD flow. While no exact analytical solution exists for 3D MHD flows of
interest, experimental data from [37,38] with an axial distribution of the magnetic field varying with either
rapid or slow spatial variations is used to compare with the computational results from the consistent and con-
servative scheme for MHD flows. Fig. 10(a) is a schematic figure of the geometry, and Fig. 10(b) is a compar-
ison of the normalized axial field distributions used for each of the round and rectangular ducts. The
coordinate X is an axial distance from the edge of the magnet pole face, non-dimensionalized by the duct
half-width.

In [37], two sets of experimental data are reported on the MHD flows in a circular pipe. We simulate the
case with a higher Hartmann number and a higher interaction number MHD flow. The detailed parameters
corresponding to this case are listed here. The radius is a = 0.0541 m. The working fluid has density
q = 865 kg/m3, electrical conductivity r = 2.86106/(m), viscosity g = 8.2175 · 10�4 kg/(m s). The thickness
of the wall is tw = 3.01 · 10�3 m, and the conductivity of the wall is rw = 1.39 · 106/(m). The conductance
is cw = 0.027. The applied magnetic field is shown in Fig. 10(b) with the maximum value Bmax = 2.08 T.
The inlet average velocity is U = 0.07 m/s. The non-dimensional parameters can be calculated as:
Ha = 6640, N = 11061, Re = 3986.

We conduct the calculations on a skewed unstructured hexahedral mesh with a fine grid arrangement near
the wall. The flow is regarded as a laminar flow, and no turbulence model is employed in the calculation. The
velocity on a cell face is interpolated by central averaging the velocities of neighbor cells, which is used to dis-
cretize the convective term. No upwind-biased scheme is used to conduct the discretization of the convective
term. The discretization of the convective term and the diffusion term has second-order spatial accuracy. The
calculated results and experimental results are shown in Figs. 11–14. The solid curves in Figs. 11–13 are the
results of the 3-D simulations. This 3D simulation is done using the parallel code of HIMAG [39] implemented
with the consistent and conservative scheme developed in this paper for the calculation of the current density
and the Lorentz force.
a = 0.0541m t = 0.00301 

x = -20a 

x = 15a 

xy
z

B

(a) Computational region and sizes (b) experimental applied magnetic fields

Fig. 10. Computation for Ha = 6640 in a circular pipe.



Fig. 11. Pressure gradient comparison along a side layer and a Hartmann layer.

Fig. 12. Transverse pressure difference comparison of computation with measurement.
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Fig. 11 presents the axial pressure gradient distribution in a side layer. The pressure gradient in the Hart-
mann layer is higher than it in the side layer in the fringing region. Fig. 12 presents the transverse pressure
difference distributions for roughly the same conditions covered in Fig. 11. The transverse pressure difference
is the pressure difference at the wall between the top and the side of the pipe (12 and 3 o’clock) measured at the
same axial cross section. In an ordinary fluid flow without a magnetic field, or in a fully developed flow inside a
uniform field, the transverse pressure difference is zero. The two behaviors can be asymptotical observed in
Fig. 11 at large absolute values of X. The agreement between the experimental data and the 3-D code predic-
tions is very good. The computed maximum pressure difference is slightly smaller than it from the experimen-
tal data, which shows that the computed axial pressure gradient in the Hartmann layer is smaller than it from
the experiment. Fig. 13 shows the 3D velocity profiles at different positions along the axial direction, which
illustrates the processing of the MHD flow from inlet developing flow to outlet fully developed flows. From
this velocity profile, we can see that the velocity near the wall is much higher than the velocity at the center.



Fig. 14. Velocity profiles comparison against measurement.

Fig. 13. Velocity profiles along the channel.
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Fig. 14 presents two axial velocity distributions from the numerical simulations compared with the experimen-
tal data. The lower data in the figure were taken at the duct centerline z = 0 (z = 1.0 at the duct wall). The
upper data were taken at z = 0.9. The agreement between the experimental data and the simulation results
is excellent. This figure shows dramatically the low velocity core region near the inlet to the magnet, the fring-
ing field area (lower data set) and the high velocity jet region near the walls (upper data set).

Fully three-dimensional computational results were presented and compared to the experimental results
from [37,38] of a circular duct geometry on an unstructured mesh. Overall agreement between data and anal-
ysis is judged excellent.

6. Conclusion

A conservative formulation in divergence form of the Lorentz force is given in the Navier–Stokes equation.
Based on this conservative formula of the Lorentz force, a consistent and conservative scheme has been
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designed to simulate MHD flows by solving the electrical potential equations at low magnetic Reynolds num-
bers on an arbitrary collocated unstructured mesh. The consistent scheme can ensure the calculated current
density fluxes on the cell faces of a control volume are divergence-free. The conservative current density fluxes
are used to accurately calculate the Lorentz force based on the conservative formulation without any interpo-
lation of the current density from the fluxes on the cell faces to the cell center. Also a conservative interpola-
tion scheme is given to obtain the current density at a cell center from the current fluxes on cell faces. The
Lorentz force can also be accurately calculated from the conservative current density at cell centers.

The Lorentz force from the conservative formulation and/or from the conservative current density is con-
servative, which can ensure the total momentum contributed from the Lorentz force is conservative when the
applied magnetic field is spatially independent. The fact that the contribution from the Lorentz force to the
total momentum is null for MHD with insulated walls is an important constraint to the scheme design. A
scheme, which meets this constraint, can get an accurate result for MHD flows at high Hartmann numbers.
The consistent and conservative scheme developed in this paper for an arbitrary collocated unstructured mesh,
and in our previous paper [14] for a rectangular collocated mesh meets this constraint, and can be applied for
the simulation of MHD flows at low magnetic Reynolds numbers with good accuracy.
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Appendix A

In Hunt’s case II of his paper [7], side walls with lengths 2a are non-conducting, and Hartmann walls with
lengths 2b have arbitrary conductivity with dB = (twrw)/(ar). rw is the conductivity of the wall, r is the con-
ductivity of the liquid and tw is its thickness. Let l = b/a and suppose that a magnetic field is applied in the y-
direction; Hunt [7] gave the analytical solution as a Fourier series in n = x/a 2 [�l, l], with coefficient functions
of g = y/a 2 [�l, l]
V ¼
X1
k¼0

2ð�1Þk cosðaknÞ
la3

k

ð1� V 2� V 3Þ ð67Þ

V 2 ¼ ð1þ tanhðr2kÞ=ðdBr2kÞÞ coshðr1kgÞ
coshðr1kgÞN=r2k þ sinhðr1k þ r2kÞ=ðdBr2k coshðr2kÞ

ð68Þ

V 3 ¼ ð1þ tanhðr1kÞ=ðdBr1kÞÞ coshðr2kgÞ
coshðr2kgÞN=r1k þ sinhðr1k þ r2kÞ=ðdBr1k coshðr1kÞ

ð69Þ

H ¼
X1
k¼0

2ð�1Þk cosðaknÞ
la3

k

ðH2� H3Þ ð70Þ

H2 ¼ ð1þ tanhðr2kÞ=ðdBr2kÞÞ sinhðr1kgÞ
coshðr1kgÞN=r2k þ sinhðr1k þ r2kÞ=ðdBr2k coshðr2kÞ

ð71Þ

H3 ¼ ð1þ tanhðr1kÞ=ðdBr1kÞÞ sinhðr2kgÞ
coshðr2kgÞN=r1k þ sinhðr1k þ r2kÞ=ðdBr1k coshðr1kÞ

ð72Þ
In Hunt’s formula above
N ¼ Ha2 þ 4a2
k

� �1
2 ð73Þ

r1k; r2k ¼
1

2
�Haþ Ha2 þ 4a2

k

� �� �
ð74Þ
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ak ¼ k þ 1

2

� �
p
l

ð75Þ
Hunt’s formula cannot be directly applied for the calculation using computer code at high Hartmann num-
bers, since the value of hyperbolic function is out of the range of any existing computer. Considering both
r1k and r2k are greater than 0, we reformulate Hunt’s formula as
V 2 ¼
dBr2k þ 1�expð�2r2kÞ

1þexpð�2r2kÞ

� 	
expð�r1kð1�gÞÞþexpð�r1kð1þgÞÞ

2

1þexpð�2r1kÞ
2

dBN þ 1þexpð�2ðr1kþr2kÞÞ
1þexpð�2r2kÞ

ð76Þ

V 3 ¼
dBr1k þ 1�expð�2r1kÞ

1þexpð�2r1kÞ

� 	
expð�r2kð1�gÞÞþexpð�r2kð1þgÞÞ

2

1þexpð�2r2kÞ
2

dBN þ 1þexpð�2ðr1kþr2kÞÞ
1þexpð�2r1kÞ

ð77Þ

H2 ¼
dBr2k þ 1�expð�2r2kÞ

1þexpð�2r2kÞ

� 	
expð�r1kð1�gÞÞ�expð�r1kð1þgÞÞ

2

1þexpð�2r1kÞ
2

dBN þ 1þexpð�2ðr1kþr2kÞÞ
1þexpð�2r2kÞ

ð78Þ

H3 ¼
dBr1k þ 1�expð�2r1kÞ

1þexpð�2r1kÞ

� 	
expð�r2kð1�gÞÞ�expð�r2kð1þgÞÞ

2

1þexpð�2r2kÞ
2

dBN þ 1þexpð�2ðr1kþr2kÞÞ
1þexpð�2r1kÞ

ð79Þ
In a computer code, exp(�x) can be directly calculated using an intrinsic function in Fortran language, no
matter how big a positive value x is. Therefore the above reformulated analytical solution of Eqs. (67),
(70), (76)–(79) can be directly applied for the calculation of Hunt’s case II at any Hartmann number. With
dB = 0 in the above equations, the reformulated Hunt’s formula can also be used to analyze Shercliff’s case.
The calculated V can therefore be used to get the velocity distribution of a fully developed MHD flow, with
detailed formula given in [7] as
V z ¼ l�1V � op
oz

� �
a2 ð80Þ
Here l is the viscosity of liquid. The calculated H can therefore be used to get the current density distribution
through the following formula:
jx ¼
oH z

oy
; jy ¼ �

oH z

ox
ð81Þ

Hz ¼ l�
1
2H � op

oz

� �
a2r

1
2 ð82Þ
For Shercliff’s case, the mean velocity is
V 0 ¼ �
2a2

l2g

dp
dz

X1
k¼0

1

a4
k

V 3 with V 3 ¼ 1� NðcoshðNÞ � coshðHaÞÞ
2a2

k sinhðNÞ ð83Þ
V3 can be reformulated as
V 3 ¼ 1� N
2a2

k

1þ expð�2NÞ
1� expð�2NÞ � expðHa� NÞ 1þ expð�2HaÞ

1� expð�2NÞ

� �
ð84Þ
which can be directly applied for the computation using a computer code without limitation on the Hartmann
numbers.
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