NUCLEAR TESTING REQUIREMENTS FOR FUSION ENGINEERING TESTING FACILITY:

TIME-RELATED PARAMETERS

Mohamed A. Abdou UCLA

Presented at the Bilateral
U.S./Europe Exchange
On Next Fusion Facility
Lawrence Livermore National Laboratory
6-8 April 1987

Role of Non-Fusion Testing (+ Model Development) in FNT Development

Non-Neutron Test Stands Fission Reactors 14 MeV Neutron Sources

- Support Conceptual Design Screening
- Initial Validation of Theory and Models
- Provide Data for Design, Construction and Operation of Test Modules in ETR
- Demonstrate Adequate Level of Reliability

Role of Next Fusion Facility in Nuclear Technology Development

- Data to Verify Theory/Models, Design Codes
- Data for Concept Selection, Verification
- Demonstrate Performance level Extrapolatable to Reactor Conditions
- Demonstrate Adequate Level of Reliability of FNT Components

FUSION TEST MATRIX

<u>Specimen</u>

Material Behavior, Properties

Element

Specific Issues in the Fusion Environment (e.g., liquid metal bulk heating)
Sub-Scale Interactive Effects (swelling/creep, etc.)

Sub-Module

Several Elements
Class of Issues
Interaction Among Elements

Module

Integrated Component Behavior Boundary Conditions May Not Be Prototypic

Sector (all modules in a toroidal segment)

Interactions Among Modules
Proper Poloidal Boundary Conditions
More Prototypic Configuration/Maintenance

FNT Testing Requirements

- Major Parameters of Device
 - Device Cost Drivers
 - Major Impact on Test Usefulness
- Engineering Design of Device

e.g.,

- Access to Place, Remove Test Elements
- Provision for Ancillary Equipment
- Accommodation of Failures in Test Elements

Table 3-6 Examples of Number and Size of Test Articles Required for Fusion Nuclear Technology Testing

	Typical Test	Number
	Article Size	of Test
Tests	(cm x cm x cm)	Articles ^a
Specimen		
Structural material irradiated properties	1 x 1 x 2	30,000
Solid breeder and multiplier irradiated		-
properties	1 x 1 x 2	1,200
Plasma interactive materials irradiated		
properties	1 x 1 x 5	900
Radiation damage indicator cross-sections	1 x 1 x 0.5	500
Long-lived isotope activation cross-sections	1 x 1 x 0.1	200
Element		
Structure thermomechanical response	10 x 10 x 10	50
Effects of bulk heating on heat transfer	10 x 10 x 100	5
Various element tests for solid breeder		
blankets	10 x 10 x 5	50
Weld behavior	10 x 10 x 5	50
Optical component radiation effects	2 x 2 x 2	20
Instrumentation transducer lifetime	1 x 1 x 2	70
Insulator/substrate seal integrity	1 x 1 x 2	20
Submodule		
Unit cell thermal and corrosion behavior	LB_{1}^{b} : 100 x 50 x 30	5
	SB^{b} : 10 x 50 x 30	5
Submodule mechanical responses		
Tritium behavior (e.g., permeation in		
coolant, response to thermal and flow		
transients)	10 x 50 x 10	3
Module		
Verification of neutronic predictions	50 x 50 x 100	4
- Tritium breeding, nuclear heating during	,	
operation, and induced activation		
Full module verification	LB ^c : 100 x 100 x 50	5
- Thermal and corrosion	SB: 100 x 100 x 50	5
- Module thermomechanical lifetime		
- Tritium recovery	50 50 100	
Shield effectiveness in complex geometries	50 x 50 x 100	50
Biological dose rate profile verification	DT device	1
Afterheat profile verification	DT device	1
Sector		
Blanket performance and lifetime	LB: 900 x 300 x 80	3
verification	SB: 300 x 100 x 80	3
Radiation effects on electronic components	1 x 1 x 1	20
Instrumentation performance and lifetime	5 x 5 x 5	100

^aTest article defined as one physical entity tested at one set of conditions. Duplication of tests for statistical purposes, off-normal conditions, data at several time intervals, for high fluence tests, etc., are <u>not</u> included in the number of test articles.

bLB = liquid breeder blankets, SB = solid breeder blankets.

^CSome designs require larger test volume.

MAJOR PARAMETERS

- Neutron Wall Load
- Surface Heat Load
- Plasma Cycle Burn/Dwell Times
- Minimum Continuous Time
- Availability
- Fluence
- Magnetic Field Strength
- Test Area/Size

Selection of Major Parameters

Engineering Scaling

To preserve important phenomena so that data from tests at "scaled-down" conditions can be extrapolated to reactor conditions

- Benefit/Cost/Risk Trade-offs
- "Expert Judgement"

Time-Related Parameters

Fluence

Plasma Burn Time, Dwell Time (Duty Cycle)
 Steady State?

Minimum Continuous Operating Time

(100% availability)

<u>Note</u>

- Time-related parameters have large impact on the device design, cost, required R&D and usefulness of testing information
- Area of largest difference among NET, FER and TIBER

Neutron Fluence

- Higher Fluence is Costly
 - Device Availability (Reliability)
 - Tritium Supply
- Higher Fluence is Very Beneficial
 - Many interactive effects will occur at higher fluence
 - True concept verification for components requires fusion testing data on these interactive effects
 - (Note: While "end-of-life" material irradiation is very useful, it is assumed to be beyond the capability of ETR)

Device Life Vs. Test Module Fluence

- Fluence achievable at test module (φt)_m
- Test facility "lifetime fluence" (φt)_f

$$(\phi t)_f > 2(\phi t)_m$$
 in general

- Attenuation in device first wall and other in-vessel components reduces flux at test modules (most test modules must be isolated from the device "vacuum")
- There is inevitably a long period of fail/replace/fix for test module (remember: first time to test in fusion environment)
- Time for concept selection testing prior to concept verification testing

Fluence-Related Effects in Solid Breeders and Other Ceramics

Fluence Recommendations

Concept Verification Requires "Moderately High" Fluence

At Test Module > $3 \text{ MW} \cdot \text{y/m}^2$

(Device life: $\sim 6 \text{ MW} \cdot \text{y/m}^2$)

Examples of Key FNT Issues

- Mechanical Interactions
 e.g., Solid Breeder/Clad Interactions
- Tritium Inventory in Solid Breeders
- Burnup Effects on Chemistry, Compatibility and Breeding
- · Corrosion/Redeposition
- Failure Modes, Rates

(Can not wait for DEMO: DEMO needs to operate reliably and safely. Reliability growth is the key in DEMO)

Motivation for Steady State Operation as Design Basis for ITER

- 1. To Explore Long Term Reactor Potential
- 2. To Reduce the Failure Rate and Improve the Reliability of Many of the Basic ITER Components
- 3. To Substantially Increase the Capability for Nuclear Technology Testing

Effects of Pulsed Plasma Operation on Nuclear Technology Testing

- Time-Dependent Changes in <u>Environmental Conditions</u> for Testing:
 - Nuclear (volumetric) heating
 - Surface heating
 - Poloidal magnetic field
 - Tritium production rate
- Result in Time-Dependent Changes and Effects in <u>Response</u> of Test Elements that:
 - Can be more dominant than the steady-state effects for which testing is desired
 - Can complicate tests and make results difficult to model and understand

Length of Burn Time?

Length of Dwell Time?

Response (e.g., Temperature):

Burn: $F = F_0 (1 - e^{-t/\tau})$

Dwell: $F = F_0 e^{-t/\tau}$

 τ = characteristic Time Constant

Allowable Variation (During a Specific Test)

- The goal is not just reaching equilibrium. It is to stay at equilibrium during test
- Small changes in some fundamental quantities result in large changes in key parameters
 - e.g., 5% change in SB temperature results in a factor of 5 change in Tritium Diffusion Time Constant

Note: Doubling or tripling the allowable variation will <u>not</u> significantly alter conclusions

Table 3-5 Approximate Characteristic Time Constants in Representative Blankets

Flow	
Solid Breeder Purge Residence	6 ѕ
Liquid Breeder Coolant Residence	30 s
Liquid Breeder Cooling Circuit Transit	60 s
Thermal Thermal	
Structure Conduction	4 s
Structure Bulk Temperature Rise	20 s
Liquid Breeder Conduction (Li)	30 s
Solid Breeder Conduction ($\frac{1}{2}$ -cm plate) (1-cm plate)	50-100 s 200-400 s
Coolant Bulk Temperature Rise (200 K at 4000 MW _t) Li LiPb	100 s 1500 s
Solid Breeder Bulk Temperature Rise (LiA10 ₂ , 300-1000°C) Front (Near Plasma) Back (Away from Plasma)	120 s 1800 s
Material Interactions Dissolution of Fe in Li (500°C)	40 days
Tritium	
Diffusion Through Solid Breeder (LiAlO ₂ , 0.2 μm grains) 1250 K 750 K	8-200 s 13-300 hours
Surface Adsorption (LiA10 ₂)	3-10 hours
Diffusion Through SS316 800 K 600 K	10 days 150 days
Inventory in Solid Breeder (Water-Cooled LiA10 ₂ , 0.2 µm grains) 67% of equilibrium 99% of equilibrium	6 months 4 years
Inventory in Liquid Breeder LiPb Li	30 minutes 30 days

TIME CONSTANTS FOR KEY NUCLEAR PROCESSES RANGE FROM VERY FAST TO VERY SLOW

	Time Constants	
	Fast	
Heat Conduction	Seconds	
Flow Processes		
Thermal Processes	Minutes	
Tritium Processes	Hours	
Material Interactions Other Important Processes	Days	
Tritium Inventory	Slow	

Most Critical Nuclear Issues for Testing in the Fusion Environment Have <u>Two</u> Characteristics:

- 1) Processes with long time constants
- 2) Crucial dependence on other processes with short time constants(It takes a long time to establish equilibrium; a short time to ruin it)

Significant Plasma Dwell Time Impacts Many Critical Nuclear Tests

Fast Changes (e.g.)

- Nuclear Heating
- Temperature
- Temperature Gradients
- Stresses

- Tritium Production
- Tritium Concentration Profiles

Impact on Processes with Long Time Constants (e.g.)

- Tritium Processes
 - Slow
 - Strong Dependence on Temperature and Fluid Flow
- Corrosion and Redeposition Processes
 - Slow
 - Strong Dependence on Temperature and Fluid Flow
- Ferritic DBTT
- Plasma Dwell Time Should be Near Zero
- Dwell Time of 5 s Results in Too Large Changes in Temperature-Dependent Processes

THE HEAT SOURCE (MAGNITUDE AND TIME DEPENDENCE)
DETERMINES TEMPERATURES IN THE BLANKET, WHICH
ACTIVATES MANY IMPORTANT ENGINEERING PROCESSES

Pulsing strongly affects the solid breeder temperature distribution.

TIME-DEPENDENT TRITIUM CONCENTRATION (DIFFUSIVE) PROFILES IN GRAIN, GRAIN BOUNDARY AND PORE

ESTIMATED H2O DESORPTION TIME FROM AL2O3 AS A FUNCTION OF COVERAGE AND TEMPERATURE

TYPICAL SOLID BREEDER NON-DIMENSIONAL TEMPERATURE AND TEMPERATURE GRADIENT VARIATION WITH TIME

TYPICAL SOLID BREEDER NON-DIMENSIONAL TEMPERATURE AND TEMPERATURE GRADIENT VARIATION WITH TIME

Suggestions

As Design Basis for the Nuclear Testing Phase in ITER

- 1. Steady State Plasma Operation
- 2. Test Module Fluence > 3 MW \cdot y/m² (i.e., Device Lifetime ~ 6 MW \cdot y/m²)

Note:

From Nuclear Testing Standpoint, Presently Quantifiable Specifications for Pulse Times are:

Dwell time: < 1 s

(key: temperature)

Burn time: > 1 month

(key: e.g., tritium recovery from SB)

This is equivalent to steady state

TYPICAL VARIATION OF TEMPERATURE AND TEMPERATURE GRADIENT (NON-DIMENSIONAL) WITH TIME (LIALO2)

VARIATION OF TEMPERATURE WITH TIME FOR DIFFERENT DWELL TIMES (LIALO2 BREEDER)

VARIATION OF TEMPERATURE WITH TIME FOR DIFFERENT DWELL TIMES (LIALO2 BREEDER)

VARIATION OF TEMPERATURE WITH TIME FOR DIFFERENT FRACTIONS OF FULL POWER DURING TRANSIT TIME (LIALO2 BREEDER)

Reaching tritium inventory and recovery equilibrium may require long test times

Effect of Time-Dependent Changes in Poloidal Magnetic Field on Pressure Drop in Liquid Metal Tests

Effect of Time-Dependent Changes in Poloidal Magnetic Field on Velocity Profile for Liquid Metal Tests

FNT RECOMMENDED PARAMETERS

	ETR		Reference
Parameters	Minimum	Recommended	Reactor
Neutron Wall Load, MW/m ²	1	2-3	5
Surface Heat Load, MW/m ²	0.2	0.5	1
Plasma Burn Time, s	>500	steady ^a	steady
Magnetic Field ^b , T	3	5	7
Continuous Operating Time Availability, %	days 20	weeks 30-50	months 70
Fluence ^b , MW-y/m ²	1-2	3-6	15-20
Test Port Size, m ² x m	0.5 x 0.3	1 x 0.5	
Total Test Area, m ²	5	10-20	

^aSee text

bAt test article (device lifetime fluence is larger)

MANY OF THE CRITICAL NUCLEAR ISSUES THAT REQUIRE TESTING IN THE FUSION ENVIRONMENT NEED LONG PLASMA BURN TIME

