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Vorticity generation in creeping flow past a magnetic obstacle
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The generation of vorticity in the two-dimensional creeping flow of an incompressible, electrically conduct-
ing viscous fluid past a localized magnetic field distribution is analyzed under the low magnetic Reynolds
number approximation. It is shown that the Lorentz force produced by the interaction of the induced electric
currents with the nonuniform magnetic field acts as an obstacle for the flow, creating different steady flow
patterns that are reminiscent of those observed in the flow past bluff bodies. First, analytic solutions are
obtained for a creeping flow past a magnetic point dipole, modeled as a Gaussian distribution. Using a
perturbation scheme, the vorticity is expressed as an expansion in the small Reynolds number, and first- and
second-order approximations are calculated. The induced magnetic field, pressure, and stream function are also
determined. Further, full numerical finite difference solutions are obtained for a uniform creeping flow past a
finite size magnetic field distribution produced by a square magnetized plate. Hartmann numbers in the range
1 <Ha=100 are explored. Depending on the strength of the magnetic force, stagnation zones or steady vortical
structures are obtained. The analysis contributes to the understanding of flows in nonuniform magnetic fields

and flows produced by localized forces.
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I. INTRODUCTION

The generation of vortices in fluid systems is interesting
because of important applications such as, for instance, those
related to mixing and heat transfer enhancement. In tokamak
confinement fusion devices, the promotion of vortical flows
in liquid-metal blankets may lead to a substantial intensifi-
cation of heat transfer [1-3]. In fact, the use of solid ob-
stacles as turbulence promoters in magnetohydrodynamic
(MHD) flows has been explored by several authors, with the
aim of determining the influence of a magnetic field on the
vortices generated in the wake behind the obstacle. It has
been shown both numerically and experimentally that vorti-
ces shed behind a cylinder under a strong uniform magnetic
field parallel to the cylinder axis tend to become aligned to
the field direction [3-5]. This tendency toward quasi-two-
dimensionality is characteristic of MHD flows under strong
magnetic fields [6,7].

In general, vorticity can be created by Lorentz forces
through the interaction of induced or injected electric cur-
rents with applied magnetic fields. Further, the presence of
electromagnetic nonuniformities in the flow promotes the
creation of internal shear layers that may lead to flow insta-
bilities when inertial effects are non-negligible. That is the
case for MHD flow in a duct with a discontinuity in the
electrical conductivity of the walls under a uniform magnetic
field [2,8]. Inhomogeneities in the applied field can also cre-
ate vorticity and produce steady or time-dependent flows.
However, the understanding of these phenomena is far from
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complete, since flows in nonuniform magnetic fields have
been much less explored than flows in uniform fields. The
importance of understanding the nonuniform case is evident,
since any real situation will always involve regions where
the field is nonuniform. Incidentally, this occurs in many
industrial applications (e.g., steel casting). Recently, atten-
tion has been given to flows in nonuniform fields [9,10]. In
the theoretical study by Alboussiére [9] the analogies with
geostrophic flows are stressed. This analysis is restricted to
duct flows with a magnetic field varying in the axial direc-
tion. In turn, Andreev et al. [10] performed an experimental
study of a liquid-metal flow in a rectangular duct under the
influence of an inhomogeneous magnetic field, and identified
different flow regions. Their results may serve as a bench-
mark problem against which numerical simulations can be
tested. In the present contribution, a different kind of situa-
tion is analyzed, namely, flows that occur under strongly lo-
calized magnetic fields. Localized fields produced, for in-
stance, by permanent magnets fixed in the bottom of a
container have been used to generate stirring by injecting
electric currents in thin fluid layers [11,12]. But stirring can
also be created by traveling localized magnetic fields in qui-
escent fluids or, equivalently, uniform flows past fixed local-
ized fields. Actually, flows of this kind exhibit some features
similar to those of ordinary flows around solid obstacles and,
as noted in [10], can shed new light on flows in ordinary
hydrodynamics. In experiments by Honji [13,14] vortical
flows were produced by the interaction of a localized moving
magnetic field with an electric current applied through a thin
layer of an electrolyte. The experiments were performed us-
ing a shallow layer of salt water contained in a long tank,
where an electric current was injected transversally to the
tank’s long axis. A permanent magnet located externally but
close to the salt water layer was moved at a constant velocity
along the center line of the water tank. Depending on the
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velocity of the magnet and the injected electric current, dif-
ferent flow patterns were generated, including a wavy wake,
symmetric vortex pairs, and even periodic vortex shedding.
Honji’s papers provide valuable experimental evidence, but
no theoretical analysis is presented. In turn, Afanasyev and
Korabel [15] used a similar device, but performed a much
more extensive experimental study in a thin layer of a strati-
fied fluid. They considered flows produced by a single mag-
net as well as by two magnets with opposite orientations,
aligned with the direction of motion and separated by a short
distance. For one magnet, they observed the initial formation
of vortex dipoles and their subsequent shedding either in the
form of a regular Karman street or an irregular ejection of
vortex dipoles. For two magnets, the inverted Kdrman vortex
street, consisting of interconnected vortex quadrupoles, was
observed. It appears that the finite size of the forcing region
is a necessary condition for the formation of vortex streets.
They approach the problem from the point of view of the
hydrodynamic effects of localized forces, since their main
interest is the analysis of flows produced by self-propelled
bodies (see also [16,17]). However, a magnetohydrodynamic
description of the flow is not provided. Recently, the inter-
action of a uniform flow with a localized magnetic field was
analyzed numerically by the authors, considering the case
when inertial effects dominate over diffusive ones [18]. Un-
like experimental studies, no injected electric currents were
considered and Lorentz forces were created instead by the
interaction of induced electric currents with a localized field.
It was shown that this field acts as an obstacle for the flow
and, under certain conditions, an instability leading to vortex
shedding can appear. In the present paper, we continue the
analysis of the motion of conducting fluids through localized
nonuniform fields, but we now restrict ourselves to analyzing
the creeping flow regime. It is shown that, even under these
conditions, stirring is produced, and different flow patterns
can be obtained. For the sake of simplicity, a two-
dimensional flow under a localized magnetic field is ana-
lyzed. This is justified by experimental evidence that shows
the possibility of obtaining quasi-two-dimesional flows in the
laboratory [13—15]. First, with the aim of arriving at analytic
solutions, we assume that the applied field is produced by an
approximated magnetic point dipole. This case corresponds
to flows produced by point forces, similar to the far-field
flow that results in self-propelled bodies when details from
the force distribution are not considered [15,16]. In this way,
assuming that the flow is slightly perturbed by the Lorentz
force, a solution is obtained as an expansion in the small
Reynolds number. In the second case, a finite differences
numerical solution is obtained when the applied field is
produced by a finite square magnetic dipole for which
an analytic expresion is available. The strength and finite size
area of the magnetic field distribution introduce important
electromagnetic effects that lead to different flow structures.

II. FORMULATION

We consider a two-dimensional flow of an electrically
conducting incompressible viscous fluid in an unbounded
region where a nonuniform magnetic field produced by a
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FIG. 1. Sketch of the two-dimensional problem considered.

localized source is present. Far from the source, the fluid
displays a uniform flow of magnitude U in the positive x
direction. We will consider that the magnetic source is of
dipolar nature although different distributions can also be
considered. The motion of the fluid within the applied field
induces electric currents which generate an induced field b,
so that the total magnetic field is given by B=B’+b. The
induced electric currents interact with BY, giving rise to a
nonuniform Lorentz force that modifies the original flow and
creates vorticity. We assume that the induced field is much
smaller than the applied field, b<<B°, which means that the
magnetic Reynolds number Rm=uoUL is much less than
unity. Here, w and o are the magnetic permeability and the
electrical conductivity of the fluid, respectively, and L is a
characteristic length to be defined below. This condition is
satisfied in most laboratory and industrial flows with liquid
metals, molten salts, and electrolytes. We also assume that
the flow is confined to the xy plane and that the magnetic
moment of the dipole source points in the direction normal to
the plane of flow (see Fig. 1). Therefore, the dominant con-
tribution of the applied field comes from the normal compo-
nent (in the positive z direction) and is the only one consid-
ered (i.e., a straight magnetic field approximation [9]). Under
these conditions, induced currents will form loops in the
plane of motion so that the induced magnetic field b points
also in the z direction. In turn, components of the Lorentz
force will appear in the plane of flow. Actually, the Lorentz
force will be negligible everywhere except in the neighbor-
hood of the magnetic dipole. The dimensionless equations of
motion take the form

5+5=0, (1)

o)
—+Re u—+v5> ap+Viu+ (Ha)%,BY, (2)

) ( ) au) P,
—+Relu—+v—|=-— Lv—(Ha)]x (3)
ot o dy ay
where the subindex L denotes the projection of the V opera-
tor on the xy plane. Here, the velocity components u# and v
are normalized by U; the pressure p by pvU/L; the electric
current density components j, and j, by cUB,,; and the ap-
plied field BO by B,,, where B,, is a characteristic strength of
the magnetlc dipole to be deﬁned below. The dimensionless
coordinates x and y are normalized by L, while time ¢ is
normalized by the viscous time L?/v. This normalization is
commonly used in creeping flow problems. The dimension-
less parameter Ha=B,,L\o/pv is the Hartmann number,
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whose square can be interpreted as the ratio of magnetic to
viscous forces, where p and v are the mass density and the
kinematic viscosity of the fluid, respectively. In turn, Re
=UL/v is the Reynolds number, which denotes the ratio of
inertia and viscous forces.

The Maxwell equations in the quasistatic approximation
can be combined to give the induction equation. In the two-
dimensional case, neglecting O(Rm) terms, this equation re-
duces to a single equation for the component b_ [ 18], namely,

5 oBY  JB?
Vib,—u—-v—=0, (4)

ox dy
where the induced magnetic field b, has been normalized by
Rm B,,. Since b, is independent of the z coordinate, the con-
dition V-b=0 is satisfied. Once b is determined, Ampere’s
law VXb=j gives an expression to calculate electric cur-
rents. This equation also guarantees that the electric current

density is divergence-free, V-j=0. Hence, the current
density components are given by
ob, b,
2P P 5
Je=T e (5)

Equations (5) show that the induced magnetic field serves as
a stream function for the electric current in the plane of flow.
Therefore, lines of b,=const are current streamlines.

A. Boundary conditions

We assume that far away from the magnetic dipole, a
steady uniform flow in the positive x direction is imposed.
With the origin of coordinates located at the point of maxi-
mum magnetic field strength, the boundary conditions on the
velocity components are

u—1, v—0 asx,y— xoo, (6)

It is obviously expected that the strength of the induced mag-
netic field is higher near the zone where the applied magnetic
field is strong. As the distance from the source of the applied
field grows, the induced field must decrease and vanish at
infinity. Therefore, it must satisfy

b,—0 asx,y— £, (7)

We now look for analytic solutions of these equations in a
simplified case.

III. CREEPING FLOW PAST A MAGNETIC POINT
DIPOLE

In order to carry out an approximate analytic approach,
we analyze the generation of vorticity when a creeping flow
interacts with a magnetic point dipole. The three-dimensional
expression of the magnetic field produced by a point dipole
is given, for instance, in the book by Good and Nelson [19].
Here we disregard the dependence on the z coordinate; there-
fore, the dimensional normal component of a two-
dimensional point dipole located at the origin with its mag-
netic dipole moment pointing in the positive z direction is
given by
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B =E"

T on X2+ Y2+Mm5(x)5(y) (8)

where B stands for the dimensional magnetic field, m is the
magmtude of the magnetic dipole moment, and X and Y are
the dimensional coordinates. The first term on the right-hand
side of Eq. (8) gives the field outside the source, that is, at
any position except the origin, while the second term ac-
counts for the effect of the singularity through the Dirac &
functions [19]. The field B can be normalized by B,,
=um/L?, where the characteristic length L has to be speci-
fied. For a finite size dipole, the length L can be chosen
without ambiguity, however, there is no natural characteristic
length for a point dipole. For practical purposes we choose L
in such a way the normahzatlon constant um/L* takes a
value of 1, that is, L= \,um

In order to linearize the equations of motion, we assume
that the flow past the magnetic point dipole is only slightly
perturbed by the Lorentz force produced by the interaction of
the induced electric currents with the applied field. There-
fore, the dimensionless velocity components can be
expressed as

v=v', 9)

where u' and v’ are the perturbations in the oncoming uni-
form flow due to the presence of the magnetic dipole. As-
suming that u’,v’ <1, and neglecting products of the deriva-
tives of the field with u’ and v’, the magnetic induction
equation (4) reduces to

u=1+u’,

s aBO
Vib PR (10)
where B? is given by Eq. (8) normalized by B,, Notice
that this equation is uncoupled from the velocity perturba-
tions. In this approximation the induced field b, is generated
by a uniform unperturbed flow. Let us now consider the
associated time-dependent problem, namely,

ob, _,  IB
—=Vip - —. 11
o' P ox (1

The solution of Eq. (11) that satisfies boundary condition (7)
in the infinite domain —o0 < x <o, —co <<y << for ¢’ >0, can
be obtained by the Green’s function method with the initial
condition b,=0 for #'=0 (see Ref. [12]). In fact, only the
term with the Dirac delta function in Eq. (8) gives a nonzero
contribution to the induced field. The result is

X

b.(x,y,t") = Se ~(4y )/4’ (12)

27Tx +y?
which in the limit ' — % reduces to the steady field

X

b(x,y) = (13)

27Tx +y*
Due to the nature of the applied magnetic field source, solu-
tion (13) diverges at the origin. Figure 2(a) shows the iso-
lines of the induced magnetic field given by Eq. (13), while
Fig. 2(b) presents the variation of b, with respect to the
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FIG. 2. (a) Isolines of induced magnetic field in creeping flow
past a magnetic point dipole. (b) Induced field as a function of the
axial coordinate at y=0 and y=0.1.

streamwise coordinate. This reveals that the flow past the
magnetic point dipole generates two symmetric current
loops, upstream and downstream of the location of the ob-
stacle, with clockwise and counterclockwise circulation, re-
spectively. Hence, in the neighborhood of the origin, the flow
of current in the negative direction is intensified. Due to the
direction of the applied field, this produces a localized Lor-
entz force that opposes the fluid motion and causes an abrupt
change in the pressure in the neighborhood of the point
dipole.

A. First-order solution

The perturbation to the flow field can be found through
the solution of Egs. (1)—(3). By introducing Eq. (9) into
(1)=(3) and neglecting second-order products in the per-
turbed velocities, a linearized system of equations is ob-
tained. Taking the curl, we get a transport equation for the
only vorticity component, w,=dv’/dx—du’/dy, namely,

9, BY) LU ,BS))
D) #y .

dw, dw, 2 2(
— +Re— =V’ w. +(Ha
o ot (Ha)

(14)

Note that the convective term Re dw,/dx is similar to the
Oseen term in the flow past a solid obstacle. We now look for
steady state solutions by expanding the vorticity in terms of
the small parameter Re, that is,

0. = 0 +Reo" + O(Re?). (15)

Therefore, at O(Re") the vorticity satisfies the equation
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oB° B’

Viel”= (Ha)2<jx(9—; i ) , (16)
where conservation of current has been used. The right-hand
side of Eq. (16) is known at the leading order of approxima-
tion, since the current density components can be calculated
explicitly from Egs. (5) and (13). Here, with the aim of
arriving at simple analytical solutions, instead of Eq. (8),
the normal component of the applied magnetic field is
approximated through the Gaussian distribution

n
Blxy) =~ n>0. (17)

Equation (17) is a good approximation of the product of
Dirac & functions in the second term of Eq. (8), namely, the
term that contributes to the induced field. In fact, both ex-
pressions present similar distributions arround the origin
when n3> 1. Also, the integral of Eq. (17) in the infinite do-
main is equal to 1, as occurs with the second term of Eq. (8).
Using this expression, Eq. (16) can be written in cylindrical
coordinates in the form

1 a( awgm) 1 Pl
9 2%
" ar o

The solution of this equation is

2 —nr
=(Ha)2<£) ¢ sine. (18)

ror i r

C H 2 —nr?
wio)(r, 0) = lTl + Cyr — ni:z) (e r + nrEi(- nrz)) 1 sin 6,
(19)
where
. T
Ei(z) =- Tdt for z > 0.
-2

From Egs. (6), the condition w,—0 as r— % must be satis-
fied, therefore, C,=0. To avoid further divergence at r=0,
the constant C; is set equal to zero. In Cartesian coordinates
we have

2,2

n(Ha)2 ye—n(x +y%) .

wio)(x,y) == ( 2y +nyEi[—n(x*+y)]].
(20)

Note that wg and, consequently, the velocity perturbations u’
and v’, are O((Ha)?). Therefore, the assumption u’,v’ <1
limits the solution to small values of the Hartmann number.
However, even at small Hartmann numbers the generation
of vorticity is clearly manifested, as can be observed in
Figs. 3(a) and 3(b), where the solution (20) is plotted for
Ha=0.1 and n=100. Figure 3(a) shows the vorticity isolines,
while Fig. 3(b) presents the vorticity as a function of the
streamwise coordinate at different cross-stream positions.
These figures show that symmetric regions of positive and
negative vorticity are created due to the presence of the point
dipole. The symmetry observed in the solution shows the
lack of convective effects and the dominance of diffusion.
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FIG. 3. (a) Vorticity isolines at O(1) in the flow past a magnetic
point dipole. (b) Vorticity as a function of the axial coordinate at
y==%0.01. Ha=0.1, n=100.

Once the vorticity is known, the stream function ¢ can be
determined by solving the equation V2l =—w,. Expanding
the stream function in the form

o=y + Reyt!) + O(Re?), (21)
we get, at first order,
V20 = 0, (22)

The solution of this equation that satisfies the condition of a
uniform flow at infinity, namely, 9/?/dy—1 as x,y— oo, is

(Ha)?
0(x )=y
#Ox,y) =y P

Y —n(x2+y2)

(1+n(x?+y%) €
X" +y

+ny[2+n(x>+y)E[-n(x>+y)]|.  (23)

Figure 4 shows the streamlines given from Eq. (23) for the
case Ha=0.1 and n=100. Recirculation zones are formed up-
and downstream from the point dipole, causing the deflection
of the oncoming flow. The similarities with the flow past
solid obstacles, in particular with the flow past a cylinder, are
close.

The equation for the pressure can be obtained by taking
the divergence of the equations of motion (2) and (3),
namely,

9,BY) ﬁ(/)ﬁ?)) 24)

Vz =(H 2(
1p=(Ha) PN dy

or, explicitly,
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FIG. 4. Stream function at O(1) in creeping flow past a
magnetic point dipole. Ha=0.1, n=100.

o), (25)

2
2 b n X
Vip=(Hy (7_7) x> +y?

The solution of Eq. (25) that satisfies the condition of a con-
stant pressure gradient at infinity, namely, dp/dx=G=const

as x,y—, is the following:

%)

(Ha)? ( xe "y
+ Gx.

2 Tyz + nxEi[ - n(x2 + yz)]

~ —

pley)=- ;

(26)

Solution (26) is plotted in Fig. 5 for Ha=0.1, n=100. It
shows the variation of the pressure with the axial coordinate
at two dfferent cross-stream positions. Notice the abrupt
change in the pressure as the flow crosses the point dipole;
the steep pressure rise and drop is produced by the Lorentz
force created in the neighborhood of the dipole.

B. Second-order solution
At O(Re), the vorticity satisfies the equation
r?w(O)

V2w£1)= Z ,
X

SN

or explicitly

20

15

10 ——y=0 -

........... y=0.001

-20 : '
-0.0050 -0.0025  0.0000  0.0025  0.0050

X

FIG. 5. Pressure as a function of the axial coordinate at y=0 and
y=0.001. Ha=0.1, n=100, G=-1.
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n(Ha)>  x

—n(x2+y?
2w @@

Vzwgl) =—

The solution of Eq. (27) that satisfies the condition wil)HO
as x,y—® is

(Ha)® R
ol = 1612 ([ 1+n(x? +y2)](—y)2 ()
+ n’xyEi[— n(x* + yz)]> . (28)

Note that this solution is not symmetric with respect to the yz
plane. This is due to the effect of the slight convection intro-
duced in the flow. To this order, a parallel can be made with
the solution given by the Oseen approximation in the flow
past a bluff body.

The stream function at O(Re) can be determined by
solving the equation

Vi =- o, (29)

which has to satisfy the condition dyf/dy —0 as x,y— .
The solution is

2
g = %({— L+ n(? +yH)[2 +n(2+yH)T}

Xy 2.2
X ————e") 4 n209[3 + n(x2 + y?
(x2+y2)2 yl ( )]

XEi[- n(x* + yz)]) . (30)

(X+a)(Y+Db)
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For Re <1, the corrections provided by Egs. (28) and (30)
to the vorticity and stream function, respectively, only
modify slightly the results given by the first-order solutions.
It is important to stress that all the analytic solutions ob-
tained in this section diverge at the origin. This behavior can
be explained by the fact that the source of the applied mag-
netic field, that is, the magnetic point dipole, presents a sin-
gularity at the origin. However, solutions present the correct
behavior as the distance from the dipole tends to infinity.
Although these solutions are limited to small values of both
Re and Ha, the effects of the magnetic point dipole on the
flow are shown in a simple manner. This approach is a useful
independent check, within the corresponding limits, of the
results obtained with the finite difference numerical method
presented in the next section.

IV. CREEPING FLOW PAST A FINITE MAGNETIC
DIPOLE

We now consider the creeping flow past a magnetic field
produced by a square magnetized plate uniformly polarized
in the normal direction for which an analytic expression is
available. In dimensional terms, placing the coordinate sys-
tem in the center of a rectangular surface with side lengths
Xy=2a and Yy=2b, the normal component of the field pro-
duced by a single magnetized surface lying on the plane
Z=27, is given by [20]

_tan_,< (X+a)(Y-b)
(Z-Z)[(X+a)* + (Y = b)* +(Z-Zy)*]"?

where BS stands for the dimensional applied magnetic field,
B,..x 1s the maximum magnetic field strength, and y is a
normalization constant. This expression gives the normal
component of the magnetic field generated by a finite size
dipole. For the sake of simplicity, we consider that the mag-
netized surface has a square shape, that is, 2a=2b=L. There-
fore, in this case, this length is taken as the geometrical
length scale used to nondimensionalize the flow variables
while B,,=B,,,.. In addition, we consider that the surface is
separated from the plane of motion by a distance L, being
located at Z=—-L.

A. Numerical implementation

Analytic solutions for the flow past the magnetic field
given by Eq. (31) are very difficult to obtain. Therefore, we

) B t‘%‘“_'(a—zo)[(x— )+

(X-a)(Y-D) )

(Z—Zo)[(x+a)2+(Y+b)2+(Z—Zo)2]1/2>+t _<(z ZOl(X-a)* + (Y -b)* + (Z-Z,)*]"?

(X -a)(Y +b)
(Y+b)2+(Z—Z0)2]1/2):|’ (31)

look for numerical solutions using a formulation based on
the primitive variables, the velocity and pressure, and the
induced magnetic field as electromagnetic variable. A finite
difference method on an orthogonal equidistant grid was
used to solve the governing Egs. (1)—(4) under suitable
boundary conditions, assuming a motionless fluid as initial
condition. The standard time-marching procedure described
in [21] was extended to consider MHD flows. The numerical
method is discussed in more detail in [18].

The numerical solution was obtained in a rectangular do-
main with a length of 30 units (measured in terms of the
characteristic length L) in the streamwise direction and
20 units (H=20) in the cross-stream direction. A suitable lo-
cation of the magnetic obstacle was determined so that inlet
effects as well as upstream effects from the outlet could be
minimized. Since for low Reynolds numbers the transport of
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vorticity is mainly diffusive, the center of the magnetic
obstacle, that is, the point of maximum magnetic field
strength, was placed in the geometrical center of the integra-
tion region. It was determined that this location guaranteed
results that are nearly independent of the position of the ob-
stacle. In turn, the separation H between the lateral bound-
aries determines the solid blockage of the confined flow
characterized by the blockage parameter S=1/H, which in
this case was fixed at 5%. A distribution of six and ten nodes
over one unit length in the streamwise and cross-stream
directions, respectively, was used with a 211 X201 grid.

Boundary conditions (6) and (7) were adapted to the nu-
merical implementation. A uniform flow in the x direction
was prescribed at the inlet, namely,

v=0. (32)

u=1,

At the outlet, Neumann conditions were used:
—=—=0. (33)

At the lateral boundaries, symmetry-type conditions simulat-
ing a frictionless wall were imposed, namely,

e =v=0. (34)
ay
Finally, we assume that the induced field is zero at a long
enough finite distance from the source of the applied field.
Therefore, we impose that the single component of the in-
duced field satisfies the condition

b,ls=0, (35)

where the subindex S denotes all the boundaries of the
integration domain.

B. Numerical results

We explored the flow for a Reynolds number of 0.05
while the Hartmann number varied in the range 1=<Ha
<100. (Reynolds numbers 100 and 200 were explored in
[18].) Under these conditions, a balance is established among
pressure, and the Lorentz and viscous forces and the flow
displays only steady laminar solutions.

Due to the similarities with the flow around bluff bodies,
we used the base pressure coefficient to characterize the flow
past a magnetic obstacle. The hydrodynamic base pressure
coefficient is defined as [22]

P18o— Po
Pa ’

c

, (36)

p=1+
where p, and p g, are the pressures at the furthest upstream
and downstream points on the body surface, and p, is the
free stream dynamic pressure pU?/2. Since in our problem
there is no solid obstacle, we consider p, and pg, to be the
pressures on the axial midline at the furthest upstream and
downstream points, respectively, on the perimeter of the pro-
jection of the magnetized surface on the plane of motion. We
found that C,,, or its negative [known as the base suction
coefficient (—C,)], are suitable quantities for the description
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FIG. 6. Base suction coefficient as a function of the Hartmann
number for Re=0.05.

of the present problem. Williamson [23] emphasized that the
base suction coefficient is particularly useful as a basis for
discussion of the various flow regimes. Figure 6 shows the
calculated base suction coefficient versus the Hartmann num-
ber for Re=0.05. Three different steady flow regimes can be
identified as Ha is increased within the explored range. The
transition from one regime to the other is featured by a sign
change in the slope of the curve. The behavior of this coef-
ficient as Ha grows can be explained by the current density
distribution in the obstacle region. For small Hartmann num-
bers, only two current loops exist, and the Lorentz force
opposes the main flow everywhere. As Ha grows, inner cur-
rent loops appear inside the obstacle, and the Lorentz force
opposes the flow at the entrance of the obstacle, while it may
act in favor of or against the flow at the obstacle exit, altering
the pressure distribution. All regimes show quasisymmetric
patterns of vorticity that extend mainly toward the lateral
fringing zones. Thick shear layers are displaced by the ob-
stacle forming symmetric sidewise regions, the extension of
which is strongly affected by the blockage effect, as occurs
in the flow around a cylinder [24]. The diffusive transport of
vorticity embraces a substantial portion of the flow domain
up- and downstream of the center of the obstacle.

C. Regime I: 1=Ha<7

In this regime, the flow passes through the region of
maximum magnetic field intensity, presenting only a slight
deviation from the main streamwise direction. Figure 7
shows results for Ha=1 which are typical for this regime.
The induced field, displaying two symmetric loops, is shown
in Fig. 7(a). The projection of the magnetized surface on the
plane of motion is shown through a unit square (centered at
x=15, y=10) for visualization purposes. Notice the strong
similarity with the analytic solution shown in Fig. 2(a). Since
with a finite size magnetic dipole, singularities disappear, the
induced field takes negative values upstream of the obstacle
and smoothly changes to positive values as it goes down-
stream. Inside the obstacle, the current is distributed uni-
formly and directed in the negative y direction; therefore, the
Lorentz force opposes the fluid motion in this region. The
abrupt rise and fall of the pressure originated by the Lorentz
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FIG. 7. Regime 1. (a) Isolines of induced magnetic field. (b)
Streamwise velocity component vs cross-stream coordinate. (c)
Isolines of vorticity. Re=0.05, Ha=1.

force takes place continuously in a distance on the order of
the characteristic length. The opposing Lorentz force causes
a deficit of less than 10% in the streamwise velocity [see Fig.
7(b)] and the appearance of a small cross-stream component
two orders of magnitude smaller than the streamwise veloc-
ity. The occurrence of a vertical velocity component in the
obstacle region gives rise to a local shear flow that is more
pronounced the higher the Hartmann number. Figure 7(c)
shows the vorticity isolines. Vorticity is concentrated in the
neighborhood of the obstacle, displaying positive and nega-
tive values in the lower and upper zones, respectively, with a
quite symmetric distribution. Again, notice the similarities
with Fig. 3(a). A retarded flow region upstream the obstacle
and a wake are formed, extending as far as eight and ten
units, respectively, at the centerline, where vorticity falls to
1% of its maximum value. The symmetry observed in the
flow and induced magnetic field distributions shows the
negligible effect of convection.

D. Regime II: 7<Ha <50

The second regime is characterized by the appearance
of two small loops of induced magnetic field (i.e., closed
electric current paths) inside the region of the obstacle, in
addition to the pair of external loops also observed in the
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FIG. 8. Regime II. (a) Isolines of induced magnetic field. (b)
Streamwise velocity component vs cross-stream coordinate. (c)
Velocity field near the obstacle zone. Re=0.05, Ha=30.

previous regime. In Fig. 8(a), isolines of induced magnetic
field are shown for the case Ha=30. The existence of inner
current loops modifies the flow dynamics in a noticeable
way. The pressure drop in the neighborhood of the obstacle
does not present a smooth transition as in the previous re-
gime, and the deficit of velocity in the streamwise direction
in this region is more than 100%, presenting negative veloci-
ties inside the obstacle [see Fig. 8(b)]. Vorticity patterns are
very similar to those observed in regime I. Due to the stron-
ger Lorentz force opposing the flow in the upstream fringing
region, the fluid circulates around the obstacle, increasing the
cross-stream velocity components to reach the same order of
magnitude as the streamwise components and intensifying
the shear layers formed in the lateral fringing regions. As a
consequence, two tenuous recirculation zones (counter-
rotating vortices) are formed [see Fig. 8(c)]. The upper and
lower vortices present a clockwise and counterclockwise cir-
culation, respectively. Velocity components in the central re-
gion are of the order 1073. Unlike the separated shear layers
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FIG. 9. Regime III. (a) Isolines of vorticity. (b) Velocity field
near the obstacle zone. Re=0.05, Ha=70.

that form symmetric steady vortices in the near wake of a
cylinder, in this case, vortices appear inside the obstacle. The
vortices grow as Ha increases, and they can extend beyond
the fringing zones.

E. Regime III: 50<Ha<100

In the third regime, the inner current loops persist, but
they are increasingly distorted the larger the Hartmann
number. As Ha is increased, the flow zone that is substan-
tially affected by the magnetic obstacle grows to about three
times the size of the magnetized plates. In Fig. 9 the vorticity
isolines [Fig. 9(a)] and the velocity field in the neighborhood
of the magnetic obstacle [Fig. 9(b)] are shown for Ha=70.
The Lorentz force opposing the flow upstream causes its
deviation from the streamwise direction within a distance of
about two units from the point of maximum magnetic field
strength [see Fig. 9(b)]. The fluid flows around the obstacle,
creating a very small velocity region in its interior [O(107%)]
characterized by four recirculation zones. In fact, the pair of
vortices that originally appeared in regime II are expelled to
the lateral fringing zones while a new pair of small counter-
rotating vortices appear in the central region.

At the extremes of the steady symmetric vortices that ap-
pear inside the obstacle region in regimes II and III, stagna-
tion points can be identified. The location of these points
depends on the Hartmann number and their separation gives
an estimate of the size of the vortices or, in some sense, of
the size of the obstacle. Figure 10(a) shows the distance Ly,
between the upstream and downstream stagnation points as a
function of the Hartmann number. For Ha<<50, the stagna-
tion point lies on the axial centerline; however, it is slightly
displaced in the negative y direction as Ha grows. It can be
observed that, for Ha=20, Lg grows linearly with Ha and
approximately satisfies the relation Lg=0.02Ha. Also, the
width of the vortices as Ha increases is about the same as
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FIG. 10. (a) Distance between stagnation points as a function of
the Hartmann number. (b) Stagnation pressure coefficient as a
function of the Hartmann number. Re=0.05.

their elongation. Therefore, the size of the vortices grows as
(Ha)?.

A stagnation pressure coefficient can also be defined in
the following form:

C,, ==, (37)

" Da

where p, is the pressure at the upstream stagnation point and
D is the free stream static pressure. Figure 10(b) shows the
stagnation pressure coefficient as a function of the Hartmann
number. It displays a monotonic decrease with increasing Ha
and approaches a constant value slightly smaller than 1 as Ha
grows. In the flow around a cylinder the stagnation pressure
coefficient is expected to be 1 according to the inviscid
Bernoulli equation. In practice, however, at low Reynolds
numbers it deviates from this value [24].

V. CONCLUSIONS

Most of the studies of flows under nonuniform magnetic
fields have been devoted to duct flows with a field that varies
in the streamwise direction, as approximately occurs at the
entrance or exit of the poles of a magnet. Instead, the present
contribution offers a theoretical treatment of a different prob-
lem: the flow past strongly localized magnetic fields. The
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main objective of the work is to stress the possibility of
generating vorticity in creeping flows under localized fields.
This may be of importance in applications where mixing or
heat transfer enhancement is needed. But this problem can
also shed new light on flows in ordinary hydrodynamics
[10], as in the analysis of hydrodynamic effects of localized
forces, which is of importance in flows produced by self-
propelled bodies [16,17]. We have analyzed the interaction
of a uniform two-dimensional creeping flow with a localized
magnetic field produced by a dipolar distribution. First, an
approximated magnetic point dipole was considered and ana-
lytic solutions were found using a perturbation expansion in
the small Reynolds number that is valid only for small Hart-
mann numbers. Since the magnetic point dipole presents
a singularity at the origin, the analytic solutions diverge at
this point but present the correct behavior as the distance
from the dipole tends to infinity. These solutions show in a
simple manner how the Lorentz force created by the interac-
tion of the induced electric currents with the dipolar field
acts as an obstacle for the flow and generates vorticity.
The interaction of the uniform flow with a finite magnetic
dipolar distribution was explored numerically for Re=0.05,
using a finite difference method in the range of Hartmann
numbers 1 <Ha= 100. Different flow regimes were observed

PHYSICAL REVIEW E 74, 056301 (2006)

according to the value of the Hartmann number. In fact, the
analysis of the induced electric current paths allows an ex-
planation of the different flow patterns. For small Ha, the
flow is only slightly deviated from its oncoming direction,
while an increase in its value creates stagnation zones or
steady vortical structures. It is remarkable that the creeping
flow past a localized magnetic field presents many similari-
ties with the flow past bluff bodies, particularly for Hartmann
numbers smaller than 50. For instance, when Ha=30, a pair
of counter-rotating vortices appears inside the magnetic ob-
stacle zone. But important differences arise when the Hart-
mann number reaches values higher than 50. In fact, a new
pair of counter-rotating vortices appears in the central region
of the magnetic obstacle, expelling the other pair to the ex-
terior zone. This effect appears to be related not only to the
strength of the applied field, but also to the finite area of the
magnetic obstacle. Evidently, this kind of vortical structures
has no analogies with the flow past bluff bodies.
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