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We consider magnetohydrodynamic (MHD) rectangular duct flows with volumet-
ric heating. The flows are upward, subject to a strong transverse magnetic field
perpendicular to the temperature gradient, such that the flow dynamics is quasi-
two-dimensional. The internal volumetric heating imitates conditions of a blanket
of a fusion power reactor, where a buoyancy-driven flow is imposed on the forced
flow. Studies of this mixed-convection flow include analysis for the basic flow, linear
stability analysis and Direct Numerical Simulation (DNS)-type computations. The
parameter range covers the Hartmann number (Ha) up to 500, the Reynolds number
(Re) from 1000 to 10 000, and the Grashof number (Gr) from 105 to 5 × 108. The
linear stability analysis predicts two primary instability modes: (i) bulk instability
associated with the inflection point in the velocity profile near the “hot” wall and
(ii) side-wall boundary layer instability. A mixed instability mode is also possible.
An equation for the critical Hartmann number has been obtained as a function of Re
and Gr. Effects of Ha, Re, and Gr on turbulent flows are addressed via nonlinear
computations that demonstrate two characteristic turbulence regimes. In the “weak”
turbulence regime, the induced vortices are localized near the inflection point of the
basic velocity profile, while the boundary layer at the wall parallel to the magnetic
field is slightly disturbed. In the “strong” turbulence regime, the bulk vortices interact
with the boundary layer causing its destabilization and formation of secondary vor-
tices that may travel across the flow, even reaching the opposite wall. In this regime,
the key phenomena are vortex-wall and various vortex-vortex interactions. Flow and
magnetic field effects on heat transfer are also analyzed. C© 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4791605]

I. INTRODUCTION

In this study we focus on instability and turbulence phenomena in rectangular duct flows of
viscous, incompressible, electrically conducting fluid with volumetric heating subject to a strong
uniform transverse magnetic field, such that a quasi-two-dimensional (Q2D) flow regime (see, e.g.,
Ref. 1) is enforced. Such Q2D instabilities and transition to turbulence are likely to occur in conditions
of a liquid metal blanket, in particular, in poloidal ducts of the so-called dual-coolant lead-lithium
(DCLL) blanket (see, e.g., Ref. 2), where eutectic alloy lead-lithium circulates as breeder/coolant in
the presence of a strong plasma-confining magnetic field. The reference flow is sketched in Fig. 1,
which also shows the volumetric heating profile, the coordinate axes and the direction of the applied
magnetic field B0. Present considerations are limited to vertical upward flows (buoyancy-assisted
flows) in a duct with ideally insulating walls, both thermally and electrically. The distribution of the
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FIG. 1. Sketch illustrating the forced flow direction with respect to the gravity vector and magnetic field (left) and volumetric
heating profile (right).

volumetric heat imitates the exponentially decaying heating profile typical to blanket conditions,
due to the slowing down of plasma neutrons, in the form

q ′′′(y) = q0 exp

(
− y + a

l

)
, (1)

where a is half of the duct width in the direction perpendicular to the applied field, l is the decay
length, and q0 is the maximum volumetric heating at the “hot” wall y = −a. This distribution of
the volumetric heat is responsible for buoyancy forces in the liquid, which result in asymmetric
velocity profiles with a higher velocity at the hot wall and lower velocity at the “cold” wall y = a as
shown in Fig. 1. The reference flow is the superposition of a forced flow with the mean bulk velocity
Um and a buoyancy-driven flow, a regime known as a mixed-convection flow. In this regime, the
velocity profile has one or more inflection points and thus the flow is subject to Kelvin-Helmholtz
(inflectional) instability and eventually can transition to turbulence, which in the reference conditions
takes a special Q2D form as described in Ref. 1.

Instabilities and transitions in MHD flows with a symmetric “M-shaped” velocity profile have
recently been studied in Ref. 3 for a family of Q2D flows, where the basic velocity profiles with
near-wall jets and associated points of inflection were produced by imposing an external flow-
opposing force. By varying this force and position of the inflection point, various instability modes
and transition scenarios were modeled. Among the most interesting observations in Ref. 3 is the
interaction of the bulk vortices associated with the inflection point with the boundary layer at the
duct wall parallel to the applied magnetic field (side or Shercliff layer) that causes a secondary
instability and eventually a transition to Q2D turbulence. Similar instabilities can be envisaged in
the reference mixed-convention flow but details can be different, first of all due to strong asymmetry
in the basic velocity profile and also due to the effect of the flow velocity, heating, and the magnetic
field strength on the position of the inflection point with respect to the duct walls. Several studies
of buoyancy-driven MHD flows in vertical ducts have been performed in the recent past (see, e.g.,
Refs. 4–6), but MHD mixed convection in the presence of a transverse magnetic field, in particular
unsteady phenomena, has not been systematically addressed, except for some initial considerations
by the authors themselves (see Refs. 2, 7, and 8). In this paper in order to address this kind of
phenomena, we use analytical and numerical approaches similar to those in Ref. 3, including the
full analytical solution for the basic velocity profile, a linear stability analysis, and a nonlinear
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DNS-type computations. The model and basic assumptions are introduced in Sec. II. An analytical
solution for the unperturbed basic flow is given in Sec. III. Section IV includes the linear stability
analysis of the perturbed flow based on the numerical solution of the associated Orr-Sommerfield
(OS) problem. Nonlinear DNS-type computations are performed in Sec. V. Finally, the obtained
results are summarized in Sec. VI.

II. PROBLEM FORMULATION

Present analysis of instabilities and transitions in the reference MHD mixed-convection flow
sketched in Fig. 1 is based on the idea of a Q2D MHD flow, which in the most complete form is
formulated in Ref. 1. In accordance with this concept, a strong magnetic field enforces the liquid
motion to occur mostly in the planes perpendicular to the applied magnetic field, while the flow
along the magnetic field lines is damped. The important 3D effects are still localized within the
thin Hartmann layers at the duct walls perpendicular to the applied magnetic field, where most of
the dissipation losses occur. The Q2D turbulent structures appear as columnar-like vortices aligned
with the field direction and are subject to an inverse energy cascade. Their intensity is a result of
the balance between the Joule and viscous dissipation in the Hartmann layers, on the one hand, and
the energy feeding mechanism associated with the instability, on the other hand. Such Q2D eddies
can be highly energetic, occupy the whole cross-section of the duct and persist over many eddy
turnovers. In experiments, these striking Q2D properties were first studied in Ref. 9 and later in
many other laboratory experiments and 3D numerical simulations.

A model for Q2D non-isothermal MHD flows for the case when the applied magnetic field is
perpendicular to the temperature gradient has been formulated in Refs. 5 and 6 for natural-convection
flows and is also adopted here for mixed-convection flows. In the particular case of isothermal Q2D
MHD flows, the velocity profile in the magnetic field direction is known to be of the Hartmann
type, i.e., there are two thin Hartmann boundary layers at the walls perpendicular to the applied
magnetic field where the velocity grows exponentially from zero at the wall to the core value, and
the core region itself where the velocity is uniform. In this case, averaging the full 3D momentum
equation gives rise to the additional friction term linear in the velocity (see Ref. 1). Compared
to purely isothermal MHD flows, in the reference case of buoyancy-driven flows, the original 3D
momentum equation includes an extra term, which arises from the buoyancy force. Moreover, the
Hartmann layers themselves can be modified if the buoyancy forces are present and strong. The
uniformity of the temperature profile in the magnetic field direction may also be questioned since
near the Hartmann walls the balance between volumetric heating and streamwise convective heat
flux is not hold compared to that in the flow in the core region, because the velocity in the boundary
layer is lower. The detailed order of magnitude analysis performed in Refs. 5 and 6 shows, however,
that the Hartmann layers are just slightly modified by the buoyancy forces such that an additional
correction term is of the order of 1/Ha and thus can be neglected for all natural- or mixed-convection
flows as long as Ha � 1. Temperature uniformity in the magnetic field direction has also been
justified in Refs. 5 and 6. In fact, it has been demonstrated that the Q2D model for buoyancy-driven
flows exhibits unsteadiness and turbulence in good agreement with the 3D numerical predictions
and experimental data as soon as Ha > 30. In the present study, some 3D computations were also
performed using the MHD solver HIMAG (Ref. 10), mostly to re-confirm that the basic Q2D model
assumptions are also valid for the reference mixed-convection flows. In these computations, a MHD
mixed-convection flow in a long vertical insulating duct with two radial sections is considered
(Fig. 4(a)). The computed results do confirm that the velocity distribution does not experience
significant variations in the direction of the applied magnetic field except for the thin Hartmann
layers. The temperature distribution is also rather uniform in the field direction, even in the Hartmann
layers. The flow also demonstrates near fully developed behavior over the significant part of the
vertical section.

Providing the applied magnetic field is strong enough, the reference mixed-convection flow
is governed by the following four Q2D equations (2)–(5) written in terms of the bulk velocity
components U(x, y) and V (x, y), pressure P(x, y), and the temperature T(x, y) using the Boussinesq
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approximation for the buoyant force:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= − 1

ρ

∂ P

∂x
+ ν

(
∂2U

∂x2
+ ∂2U

∂y2

)
− U

τ
− g + gβ(T − T̄ ), (2)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= − 1

ρ

∂ P

∂y
+ ν

(
∂2V

∂x2
+ ∂2V

∂y2

)
− V

τ
, (3)

∂U

∂x
+ ∂V

∂y
= 0, (4)

ρC p

(
∂T

∂t
+ U

∂T

∂x
+ V

∂T

∂y

)
= k

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ q ′′′. (5)

Here, ρ, ν, σ , k, Cp, and β are the fluid density, kinematic viscosity, electrical conductivity, thermal
conductivity, specific heat, and the volumetric thermal expansion coefficient correspondingly, g is
the gravitational acceleration, T̄ (x) = 1

2a

∫ a
−a T (x, y)dy is the mean temperature in the liquid, and

τ = bB−1
0

√
ρ

σν
is the so-called “Hartmann braking time” (see Ref. 1), which is a time-scale for

vortex damping due to ohmic and viscous losses in the Hartmann layers. The dimension b is half
of the duct width in the direction of the applied magnetic field. The five dimensionless parame-

ters that characterize the problem are: the Hartmann number Ha = B0b
√

σ
νρ

(Hartmann number

squared is the ratio of the electromagnetic to viscous force), the hydrodynamic Reynolds number Re
= Um a

ν
(the ratio of the inertia to viscous force), the Grashof number Gr = gβ�T a3

ν2 (represents
the ratio of the buoyancy to viscous force), the duct aspect ratio a/b, and the Prandtl number Pr
= νρCp/k. Three more dependent parameters are also used: the interaction parameter (Stuart number)
N = Ha2/Re, the Peclet number Pe = RePr, and the Rayleigh number Ra = GrPr. The tempera-
ture scale is defined here through the average volumetric heating q̄ = (2a)−1

∫ a
−a q ′′′(y)dy as �T

= q̄a2/k. The applicability of this model to unsteady vortical MHD flows generally depends on
the difference between the time needed to establish two-dimensionality and the characteristic eddy
turnover time. Generally, transition from 3D to Q2D flow occurs if the magnetic field is strong
enough. For forced convection MHD flows, this requires N � 1 (Ref. 1), and for natural-convection
MHD flows the requirement is Ha2 > 4

√
Gr as suggested in Ref. 6. One more limitation is related

to the Hartmann layer, which is required to be laminar to assure a simple exponential veloc-
ity distribution near the wall adopted in the model. In accordance with the experimental data in
Ref. 11, the Hartmann boundary layer remains laminar providing Ha/Re > 150–250. In all nonlinear
DNS-type computations shown below in Sec. V, the goal was to keep all the parameters in the range
where the Q2D model is valid. The dominance of Q2D flow dynamics in the reference flow was also
directly confirmed for several combinations of Ha, Re, and Gr numbers via comparisons with the
full 3D numerical solutions in Ref. 12.

III. BASIC FLOW SOLUTION

In a fully established mixed-convection flow, the velocity component V is zero and both the
pressure and the velocity component U are independent of the cross-axial coordinate y, so that the
mathematical model can further be simplified by decomposing the temperature field into the mean
T̄ (x) and cross-axial θ (y) components:

T (x, y) = T̄ (x) + θ (y). (6)

In turn, the mean temperature can be deduced from the global energy balance in the flow as
T̄ (x) = T0 + q̄

ρC pUm
x , where T0 is the temperature at the flow inlet at x = 0. In addition, the pressure

term can be written as

P(x) = P0 − ρ(G + g)x, (7)
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where P0 is the inlet pressure and G is a constant, which needs to be determined. After substitution
of Eqs. (6) and (7) into Eqs. (2) and (5), the two equations can be combined into one forth-order
ordinary differential equation as follows:

θ I V − Ha
(a

b

)2
θ ′′ + Gr

Re
θ = −G∗ + 2m

1 − e−2m
e−m(y+1)

[
Ha

(a

b

)2
− m2

]
. (8)

Equation (8) is written in a dimensionless form, using �T as a temperature scale and the duct
dimension a as a length scale. Here, G∗ = Ga2/(νUm) and m = a/l are also dimensionless. Once the
temperature θ (y) is known, the velocity can be found using the following formula:

U = θ ′′ + 2m

1 − e−2m
e−m(y+1), (9)

where Um is used as a velocity scale. The boundary conditions come from the no-slip and ideal
thermal insulation conditions:

θ ′∣∣
y=±1 = 0, θ ′′∣∣

y=−1 = − 2m

1 − e−2m
, θ ′′∣∣

y=+1 = − 2m

1 − e−2m
e−2m . (10)

A. Full solution

In accordance with the common theory, a general solution for Eq. (8) is of the form

θ (y) = − Re

Gr
G∗ + 2m/(1 − e−2m)[Ha(a/b)2 − m2]

m4 − Ha(a/b)2m2 + Gr/Re
e−m(y+1) +

4∑
i=1

Ai fi (y + 1). (11)

In this solution, the first two terms represent a particular solution, while fi (i = 1–4) are linearly
independent solutions of the uniform equation obtained from Eq. (8). The four coefficients Ai need
to be found from boundary conditions (10). In turn, the four solutions fi depend on the roots of the
biquadratic characteristic equation:

λ4 − Ha
(a

b

)2
λ2 + Gr

Re
= 0. (12)

The roots themselves depend on the sign of the discriminant D = Ha2 (a/b)4 − 4 Gr
Re , which is

built of two characteristic length scales: 1/
√

Ha stands for the dimensionless thickness of the side
layer in a purely MHD flow, and (Re/Gr)1/4 characterizes the thickness of the boundary layer in a
mixed-convection flow without a magnetic field. In the case D > 0, all roots are real:

λ1,2 = ±[
1

2
(Ha(

a

b
)2 +

√
Ha2(

a

b
)4 − 4

Gr

Re
)]1/2, λ3,4 = ±[

1

2
(Ha(

a

b
)2 −

√
Ha2(

a

b
)4 − 4

Gr

Re
)]1/2,

so that f1 = eλ1(y+1), f2 = eλ2(y+1), f3 = eλ3(y+1), f4 = eλ4(y+1). In the case D = 0, there are two
double real roots λ1,2 = ±

√
2

2

√
Ha a

b and the four solutions are: f1 = eλ1(y+1), f2 = eλ2(y+1), f3

= (y + 1)eλ1(y+1), f4 = (y + 1)eλ2(y+1). In the case D < 0, there are four complex roots λ1,2 = α

± iβ, λ3,4 = −α ± iβ, where α =
√

1
4 Ha(a/b)2 + 1

2

√
Gr/Re, β =

√
4Gr/Re−Ha2(a/b)4

8
√

Gr/Re+4Ha(a/b)2 , so that

f1 = eλ1(y+1) cos[β1(y + 1)], f2 = eλ1(y+1) sin[β1(y + 1)],
f3 = eλ2(y+1) cos[β2(y + 1)], f4 = eλ2(y+1) sin[β2(y + 1)].

The coefficients Ai have been evaluated using Wolfram’s MATHEMATICA (Ref. 13) and the constant
G∗ (not shown here) is calculated using the condition

∫ a
−a θ (y)dy = 0.

B. Approximate solution

At high Hartmann numbers Eq. (8) can be simplified by neglecting the fourth-order derivative
θ I V . Based on the relation between U and θ [see Eq. (9)] neglecting this derivative is equivalent to
neglecting the second derivative U′′ in the momentum equation. The physical reason for dropping
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these terms is the small thickness of the side-wall boundary layer such that the flow rate carried by
the boundary layer is insignificant compared to the bulk flow, and also due to the fact that the viscous
friction here is negligible compared to that in the Hartmann layer. Solving the obtained simplified
problem is straightforward:

θ (y) = 2m2

r (r2 − m2)(1 − e−2m)

(
e−2m cosh [r (y + 1)] − cosh[r (y − 1)]

sinh (2r )

)

+ 2me−m(y+1)

(r2 − m2)(1 − e−2m)
− 1

r2
, (13)

U (y) = 1 + r2θ (y) . (14)

It is notable that the approximate solution includes only two dimensionless parameters:

r =
√

Gr
Ha Re(a/b)2 and m. The shape parameter m affects the steepness of the heating profile. In

the blanket conditions it is fully determined by the interaction of neutrons with the liquid metal.
Parameter r is more related to the liquid metal flow itself as it carries information on the contribution
of various forces acting on the flow. In the particular DCLL blanket design, m ≈ 1 and r = 5–40
(Ref. 2). These values are used in all further computations. Also, a/b = 1 is assumed in all com-
putations. In accordance with the obtained solution, higher velocity occurs at the hot wall, where
volumetric heating reaches its maximum, often in the form of a high-velocity near-wall jet. As seen
from the simplified solution, the difference between the maximum velocity at the hot wall Umax and
the minimum one at the cold wall Umin increases with r approaching the asymptotic value when r
� 1:

Umax − Umin = 2m. (15)

C. Comparisons between full, approximate, and 3D numerical solutions

Typical velocity and temperature profiles calculated with the full and simplified solutions are
shown in Fig. 2 for three special cases: D � 0, D = 0, and D � 0. If D � 0, the solution in the near-
wall region is dominated by the exponential term e

√
Ha(a/b)(1+y), which represents the well-known

distribution in the MHD Shercliff layer. In this case, distinctive Shercliff layers can be seen with
the thickness scaled as 1/

√
Ha. In the bulk, the velocity and the temperature both drop in a similar

manner.
Based on the full solution, the velocity profiles in this case demonstrate two inflection points

located in the flow bulk.
In the opposite case D � 0, the solution near the wall is described by the exponential term

e0.5
√

2(Gr/Re)1/4(1+y) such that the thickness of the boundary layer is scaled as (Re/Gr)1/4. In this case,
a distinctive high-velocity jet can be seen near the hot wall and a smaller jet near the cold wall. The
number of inflection points in this case can vary from 2 to 6. The major inflection point, where the
vorticity is maximum, is always located on the bulk-side leg of the larger jet. Examples of flows
with two or more (up to six) inflection points in the velocity profile, also based on the full solution,
are shown in Table I.

In this case, the temperature profile demonstrates an almost flat distribution in the bulk and two
asymmetric peaks near the walls.

The case D = 0 demonstrates intermediate features between the cases D � 0 and D � 0. Taking
into account that the nature of the boundary layer at the side wall is not necessarily fully controlled
by MHD effects, in what follows we will refer to this layer as just a boundary layer or a side-wall
boundary layer rather than side or Shercliff layer, which applies to purely isothermal MHD flows.
In all three cases, there is a fair match between the simplified and the full solutions in the bulk. This
allows for using the simplified solution for a kind of express analysis since it is much more compact
compared to the lengthy full solution. The importance of the simplified solution is also in a reduction
of four dimensionless parameters into one dimensionless group r as discussed above.
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FIG. 2. Comparison of velocity and temperature profiles calculated with the full (solid line) and simplified (dashed line)
solutions: (a) D � 0: Ha = 40, Gr = 109, Re = 1000, r = 158.1; (b) D = 0: Ha = 100, Gr = 2.5 × 107, Re = 10,000,
r = 5; and (c) D � 0: Ha = 200, Gr = 107, Re = 10 000, r = 2.23.



024102-8 Vetcha et al. Phys. Fluids 25, 024102 (2013)

TABLE I. Location of inflection points and associated vorticity in the basic velocity profile.

Ha Gr Re Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

50 108 5000 y = −0.726 y = 0.740 . . . . . . . . . . . .
ω = 3.927 ω = 0.089

100 2.5 × 107 10 000 y = −0.574 y = 0.646 . . . . . . . . . . . .
ω = 1.948 ω = 0.291

75 8 × 108 2000 y = −0.866 y = −0.666 y = −0.606 y = 0.866 . . . . . .
ω = 7.208 ω = 1.489 ω = 1.507 ω = −0.353

100 3 × 109 5000 y = −0.880 y = −0.700 y = −0.633 y = 0.880 . . . . . .
ω = 7.760 ω = 1.529 ω = 1.563 ω = −0.429

40 109 1000 y = −0.896 y = −0.746 y = −0.666 y = 0.694 y = 0.738 y = 0.896
ω = 8.879 ω = 1.524 ω = 1.632 ω = 0.437 ω = 0.440 ω = −0.575

75 2 × 109 2000 y = −0.893 y = −0.740 y = −0.666 y = 0.700 y = 0.733 y = 0.893
ω = 8.717 ω = 1.543 ω = 1.631 ω = 0.437 ω = 0.439 ω = −0.556

The location of the major inflection point d where the vorticity is maximum with respect to the
wall and associated maximum vorticity ωmax are of particular interest since these two parameters
can affect flow stability and, as shown in Ref. 3, be responsible for the transition scenario. The
associated data are extracted from the full solution and plotted in Fig. 3 to illustrate the effect of
Gr, Re, and Ha. The increase in Re results in shifting the inflection point from the wall towards
the axis and reduces the vorticity. The effect of the Hartmann number on vorticity is similar. The
position of the inflection point itself is however only slightly affected by Ha. Increasing Gr results
in a significant increase of vorticity while the inflection point moves from the axis to the wall.

FIG. 3. Effect of the flow parameters on the location of the major inflection point (top row) and the vorticity (bottom row):
(a) effect of Re: Ha = 100, Gr = 108; (b) effect of Ha: Gr = 108, Re = 10 000; and (c) effect of Gr: Ha = 100, Re = 5000.
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FIG. 4. MHD mixed-convection flow in a square vertical duct: (a) 3D velocity vectors and temperature counters for
Ha = 70, Re = 104, and Gr = 108; (b) comparison between 3D at x = 4 (solid line) and full 1D analytical (dashed line)
solutions.

In addition, comparisons for the basic velocity profile are made between the 1D full analytical
solution and 3D numerical results (Fig. 4(b)) for several combinations of the flow parameters. Within
the duct length where the 3D flow is fully developed, these comparisons demonstrate fair agreement.

IV. LINEAR STABILITY ANALYSIS

Equations (2), (3), and (5) are changed to the equivalent form using the vorticity ω (ω = ∂V
∂x −

∂U
∂y ), the streamfunction ψ (U = ∂ψ

∂y , V = − ∂ψ

∂x ), and the cross-axial temperature θ (θ = T − T̄ ).
Written in a dimensionless form, these equations are as follows:

∂ω

∂t
+ ∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= 1

Re

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
− Ha

Re

(a

b

)2
ω − Gr

Re2

∂θ

∂y
, (16)

∂2ψ

∂x2
+ ∂2ψ

∂y2
= −ω, (17)

∂θ

∂t
+ ∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= 1

RePr

(
∂2ω

∂x2
+ ∂2ω

∂y2
− U

)
+ 1

RePr

2m

1 − e−2m
e−m(y+1). (18)

The time-dependent solution can be expanded in normal modes such that

[ψ(x, y, t), ω(x, y, t), θ (x, y, t)] = [ψ0(y), ω0(y), θ0(y)] + [ψ1(y), ω1(y), θ1(y)]ei(αx−βt).

(19)
Here, ψ0(y), ω0(y), θ0(y) are the basic solutions, while ψ1(y), ω1(y), θ1(y) are the infinitesimal
amplitudes of the perturbations. The wavelength of the disturbance λ is related to the wavenumber
α, which is real, as λ = 2π /α. The parameter β as well as the ratio s = β/α are complex: β = βr

+ iβ i and s = sr + isi. The real part sr is the phase velocity of the disturbance in the axial direction.
The imaginary part si determines whether the perturbation is amplified or damped with time, if si

> 0 (β i > 0) or si < 0 (β i < 0), respectively. After substituting solution (19) into the linearized
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streamfunction-vorticity-energy equations, the following two ordinary differential equations are
obtained:

iαRe[(U0 − s)(ψ ′′
1 − α2ψ1) − U ′′

0 ψ1] =

ψ
(I V )
1 − 2α2ψ ′′

1 + α4ψ1 − Ha
(a

b

)2
(ψ ′′

1 − α2ψ1) − Gr

Re
θ ′,

(20)

iαRePr
[
(U0 − s) θ1 − θ ′

0ψ1
] = θ ′′

1 − α2θ1 − ψ ′
1, (21)

which, along with the no-slip and thermal insulation boundary conditions,

y = ±1 : ψ1 = ψ ′
1 = θ ′

1 = 0 (22)

constitute an eigenvalue problem for the complex parameter s. For a pure hydrodynamic isothermal
flow Eqs. (20)–(22) transform to the classical OS problem for the plane Poiseuille flow. The main
goals of the linear stability analysis are then to find conditions where si = 0 to determine the stability
limit, and to find the wavelength giving the highest amplification rate. It is also useful to derive an
equation for the kinetic energy of the pulsating motion, K = 0.5

〈
U 2

1 + V 2
1

〉
(“〈〉” denotes averaging),

and then to look at different terms on its right-hand side:

∂K

∂t
+ U0

∂K

∂x
+ V0

∂K

∂y
= PK 1 + PK 2 + D + εv + εHa . (23)

The first term PK1 represents the shear production of kinetic energy, which is the product of the
Reynolds stress and the mean flow strain rate. This shear production is identical to that in isothermal
flows. The second term PK2, whose main part is 〈U′θ ′〉, is another production term associated with
temperature pulsations. The third term D is diffusion. The two last terms stand for dissipation losses:
εv represents viscous dissipation in the bulk flow, while εHa represents ohmic and viscous losses
at the Hartmann walls, which are specific to Q2D MHD flows. In relation to the two production
terms, in hydrodynamic buoyancy-driven flows, there have been identified two instability types (for
references see Ref. 14). In the first type, which was found primarily for lower Prandtl-number fluids,
the instability is initiated when the basic velocity profile is distorted sufficiently by buoyant forces to
form an inflection point such that most of the kinetic energy for the instability comes from the shear
production. This mode is termed as thermal-shear instability. The second type, which dominates in
higher Prandtl-number fluids, obtains its energy primarily from temperature fluctuations. This type
is called thermal-buoyant instability. The reason that lower Prandtl-number fluids do not exhibit
thermal-buoyant instability is damping of temperature fluctuations due to high thermal conductivity
of the fluid. In liquid metals, which are primarily coolants in fusion applications, Pr � 1. This
suggests domination by thermal-shear instability in the blanket flows. All results computed in this
paper are in fact limited to a particular value of the Prandtl number (0.01) typical to most liquid
metals. For such a low Prandtl number both linear and nonlinear computations have confirmed that
the dominating instability type is thermal-shear instability.

A pseudospectral MATLAB code, which eliminates spurious eigenvalues (Ref. 15), is used to
solve the present OS problem. The code has been validated against available literature results,
including linear stability of a plane Poiseuille flow (Ref. 16) as well as stability of the Hartmann
(Ref. 17) and Shercliff layers (Ref. 18). A similar code was also used by authors of the present paper
in Ref. 3. The neutral stability curves for two Hartmann numbers (50 and 100) and three Grashof
numbers (107, 108, and 109) are shown in Fig. 5. Depending on Ha and Gr there can be one, two,
or even three branches of the neutral curve. The flow is linearly unstable within the area bounded
by the neutral curves and linearly stable outside. The figure also shows values of the amplification
factor β i inside each instability area. Similar to Ref. 3, two instability modes have been observed
that are associated either with the inflection point in the basic velocity profile in the flow bulk
(bulk instability, BI) or with the boundary layer at each side wall (side-wall instability, SWI). The
bulk instability is of the Kelvin-Helmholtz type (also known as inflectional instability), whereas the
side-wall instability is related to propagation of Tollmien–Schlichting waves. The SWI branches in
Fig. 5 are always situated to the right of the BI branch. This means that SWI starts at higher
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FIG. 5. Neutral stability curves with indication of bulk (BI) and side-wall (SWI) instabilities at: (a) Ha = 50, Gr = 107; (b)
Ha = 100, Gr = 107; (c) Ha = 50, Gr = 108; (d) Ha = 100, Gr = 108; (e) Ha = 50, Gr = 109; and (f) Ha = 100, Gr = 109.

Reynolds numbers compared to BI when the basic velocity profile is only slightly deformed by
buoyancy effects such that there are no inflection points, or if such points are nevertheless formed,
the vorticity level at the inflection points is not high enough for inflectional instability to form.

The two branches in Fig. 5(a) located at Re ∼ 106 stand for the SWI mode. The lower branch
of these two exhibits longer wavelengths (smaller α) but a smaller amplification rate compared to
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FIG. 6. Vorticity (left) and streamfunction (right) distributions in the reference mixed-convection flow based on the linear
analysis for the most amplified perturbation mode: (a) bulk instability at Ha = 100, Gr = 108, Re = 104; (b) side-wall
instability at Ha = 100, Gr = 108, Re = 106.

the other SWI branch. This branch fully disappears at higher Hartmann or Grashof numbers. The
observed two SWI branches are consistent with similar observations in Ref. 18, where the case of
purely Shercliff layers was studied using the same linear approach.

The differences between BI and SWI modes are well seen, for instance, in the vorticity distribu-
tion shown in Fig. 6. In the case of the side-wall instability, there is just one row of counter-rotating
vortices, all localized at the wall within the boundary layer. This instability typically occurs at higher
Reynolds numbers and has about one order of magnitude lower amplification factor compared to
the bulk instability. In the case of the bulk instability, there are two rows, one to the right and one to
the left of the inflection point. Usually, the inflection point is located on the bulk side of the velocity
jet, close to the wall, such that the outer row of vortices is located in the near-wall region, where the
velocity changes from zero at the wall to the maximum. Figure 6 also shows significant asymmetry
in the vorticity distribution. Typically, instability happens at both the hot and cold walls but it is
always more intensive at the hot wall in both SWI and BI cases. The significant differences between
SWI and BI modes can also be observed in the streamfunction distributions also shown in Fig. 6.

As seen in Fig. 5, the BI and SWI can happen under the same conditions, for example, at the
same Reynolds number. In such cases, the SWI mode always exhibits shorter wavelengths. This
suggests that in real flows, these two instability modes can co-exist since original disturbances can
be of any frequency. In some cases, however, the two neutral curve branches are fully separated
suggesting only one instability mode as also demonstrated in Fig. 7, where the neutral curves are
plotted in the 3D form.

The differences between BI and SWI are further illustrated in Fig. 8 in the form of dispersion
curves. This figure clearly demonstrates either two instability modes happening at the same Reynolds
number but at different wavelengths or just one mode.

The rate of growth of infinitesimal disturbances with time in the linear phase is best characterized
with the parameter β i. The effect of Gr, Re, and Ha numbers on this parameter is illustrated in Fig. 9.
As the Hartmann number is increased, the amplification rate always drops. The Grashof number has
the opposite effect: the higher the Gr, the higher is the amplification rate. The effect of the Reynolds
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FIG. 7. Neutral surfaces (instability balloon) at Ha = 100 showing two types of instability regions (BI and SWI). The flow
is linearly unstable inside each balloon and stable outside.
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FIG. 8. Typical dispersion curves at Ha = 100, Re = 106: (a) Gr = 107, (b) Gr = 108, and (c) Gr = 109.
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(c) Ha = 100, Re = 10,000.
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FIG. 10. Variation of the critical Hartmann number versus Grashof number at several Re numbers. Symbols stand for
computations and lines for the best fit.

number is more complex. For example, for Ha = 100 and Gr = 108, β i first increases with Re,
then decreases to zero and after that starts increasing again. Such a complex behavior is related to
changes in the instability type from BI to SWI. Finally, Fig. 10 shows the critical Hartmann number
Hacr as a function of Grashof number at several Re numbers. For all Ha numbers greater than Hacr,
the flow is linearly stable, whereas it is unstable if Ha < Hacr. The obtained data for Hacr can be
approximated with the following formula:

Hacr = P1(log Gr )2 + P2 log Gr + P3, (24)

where

P1 = −5.98 × 10−8 Re2 + 2.284 × 10−3 Re + 2.308,

P2 = 1.8277 × 10−6 Re2 − 7.3037 × 10−2 Re − 22.787,

P3 = −1.37 × 10−5 Re2 + 0.57516Re − 95.8.

Notice that applicability of this formula is guaranteed under specific conditions assumed in the
present study, namely, for 5000 < Re < 20 000 and Gr from 106 to 109. It should be mentioned that
the proposed correlation is just the best fit to the obtained numerical data and this particular form,
using logarithms, is not supported by any physical arguments.

V. NONLINEAR COMPUTATIONS

Once the amplitude of perturbations becomes big enough, the nonlinear flow behavior often
turns out to be very different from that predicted by the linear theory. To address nonlinear features
we perform DNS-like computations by solving time-dependent Eqs. (16)–(18) over a long period
of time and applying periodic boundary conditions at the flow inlet/outlet. A computer code, briefly
described in Ref. 3, extends a standard time-marching ψ − ω approach to the reference case to
take into account MHD and buoyancy effects. The governing equations are approximated with
finite-volume formulas on a mesh, which is uniform in the axial direction and non-uniform in the
cross-axial direction. The mesh clusters point near the wall within the side-wall boundary layers.
At least ten points are placed within each boundary layer. The discretization is of a second-order
accuracy in time and space. Advancing in time is performed using an Adams-Bashforth scheme.
Central-difference formulas are used for the discretization of the diffusive terms in the ω-, ψ-, and
θ -equations. For the convective terms, a conservative scheme proposed by Arakawa (Ref. 19) is used.
This scheme, which conserves the basic quadratic quantities, such as the mean kinetic energy and
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FIG. 11. Typical variation of the kinetic energy of the fluctuating flow versus time at Ha = 50, Gr = 108, and Re = 5000.

the mean enstrophy, allows for accurate computations of the nonlinear terms in 2D turbulent flows.
Periodic boundary conditions are applied at the flow inlet and outlet, while no-slip and zero-heat-flux
boundary conditions are used at the walls y = ±1. Using periodic boundary conditions when solving
the elliptic equation for the streamfunction allows for implementation of a direct algorithm based
on the fast Fourier transform (FFT), which is much faster and more accurate compared to most of
the relaxation techniques.

FIG. 12. Vorticity snapshots in the nonlinear saturation phase showing the effect of Ha number at Re = 5000 and Gr = 108:
(a) Ha = 50, (b) Ha = 60, (c) Ha = 100, and (d) Ha = 120.
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FIG. 13. Vorticity snapshots in the nonlinear saturation phase showing the effect of Re number at Ha = 50 and
Gr = 1 × 108: (a) Re = 2000, (b) Re = 3000, (c) Re = 4000, and (d) Re = 5000.

The nonlinear computations have been performed for 40 < Ha < 200, 2000 < Re < 10 000,
and 106 < Gr < 5 × 108 to address the effect of these parameters on the flow. For these parameters
D < 0, suggesting basic velocity profiles with a distinctive high-velocity jet near the hot wall. These
relatively low values of Re, Ha, and especially Gr compared to those in fusion applications are
explained by computational limitations, on the one hand and, on the other hand, by limitations of the
Q2D model itself as discussed in Sec. II. However, it seems to be appropriate to extrapolate observed
tendencies in the flow to higher values relevant to blanket conditions, providing the major limitations
of the Q2D theory are still met. Although the Q2D approach is very economical compared to full
3D computations, still there are limitations on Q2D computations for high Grashof numbers. In fact,
the maximum Grashof number achieved in the Q2D computations is 5 × 108. This limitation turns
out to be related to the well-known CFD problem (see, e.g., Ref. 20) of “mesh Reynolds/Peclet
number” (in the context of the reference buoyancy-driven flows “mesh Grashof number”). On the
other hand, limitations on Ha numbers are not critical such that high Hartmann number computations
can be performed, providing the side-wall boundary layers are properly resolved. Limitations on the
Reynolds number are mostly related to the Q2D model itself (not to the code), which requires the
Hartmann layers to remain laminar.

In the computations, the flow domain is as long as 60 length units, which is sufficiently large
to accommodate many wavelengths as computed with the linear stability analysis for the most
amplified modes. Tests computations were also performed for a flow domain of 120 length units.
No pronounced differences in flow patterns, characteristic wavelengths, and integral and statistically
averaged flow parameters between these two computations were observed. As a result of sensitivity
tests, a mesh of 512 (along the flow) by 201 points (across the flow) and the integration time step
�t = 0.0005 were chosen. In these tests, other meshes, such as 256 by 201, 256 by 401, 512
by 201, 512 by 101, and 1024 by 201 as well as two more time increments �t = 0.001 and
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FIG. 14. Vorticity snapshots in the nonlinear saturation phase showing the effect of Gr number at Ha = 50 and Re = 5000:
(a) Gr = 107, (b) Gr = 5 × 107, (c) Gr = 7 × 107, and (d) Gr = 108.

�t = 0.00025 were used. At the initial moment the flow is disturbed by small perturbations, random
in space, which are imposed on the basic flow streamfunction, without disturbing the vorticity field.
For undisturbed flows, the Q2D solutions fully coincide with the 1D solution of Sec. III.

Typical changes of the mean kinetic energy defined as

E(t) = 1

2l

l∫
0

dx

1∫
−1

0.5
[
(U − Um)2 + V 2

1

]
dy (25)

versus the computational time are shown in Fig. 11.
During a short initial phase (t < 30) the kinetic energy is small and fluctuating. The fluctuations

in E seem to be related to the effect of the initial condition, where perturbation modes are randomly
distributed. In the next phase (30 < t < 60), the flow demonstrates nearly linear behavior that
corresponds to the exponential growth in time of the most amplified mode. This linear behavior is
followed by a transitional phase (60 < t < 100), where nonlinear effects become more and more
dominant, manifested, for example, by various vortex-vortex and vortex-wall interactions. Finally,
as a result of intensive vortex formation and simultaneous energy dissipation, the flow reaches a
nonlinear saturation phase (t > 100), where the averaged energy E remains at about the same level
E*, whereas the flow demonstrates pulsating near-periodic behavior in both time and space. This
regime can be considered as a new dynamic equilibrium state in which the averaged flow no longer
varies.

Examples of flows in the nonlinear saturation phase are given in Fig. 12, where the vorticity
snapshots are shown at several Hartmann numbers.



024102-18 Vetcha et al. Phys. Fluids 25, 024102 (2013)

FIG. 15. (Bottom) Flow map showing laminar and two turbulent regimes in the Ha–Re plane for Gr = 5 × 107. S—stable
laminar flow, WT—weak turbulence, and ST—strong turbulence. (Top) Predictions of the critical Hartmann number with the
linear theory.

These and other similar snapshots in Figs. 13 and 14 clearly demonstrate two different turbulence
regimes, which we call “strong turbulence” (ST, e.g., Figs. 12(a) and 12(b)) and “weak turbulence”
(WT, e.g., Fig. 12(c) and 12(d)). In the WT regime, the vortices are mostly formed from the original
shear layer in the bulk flow near the hot wall. They remain localized in the same near-wall area where
the basic velocity profile has an inflection point. Although the flow in the WT regime is not linear,
the typical length scales associated with the bulk vortices can be predicted with the linear theory.
Some nonlinear vortex-wall interactions are nevertheless clearly seen resulting in destabilization
of the side-wall boundary layer, but neither separation of the boundary layer from the wall nor
formation of isolated vortices can be seen.

In the ST regime, the most peculiar phenomenon is formation of turbulent streaks, which are
clearly seen in Figs. 12(a), 13(c), 13(d), and 14(d). These processes are essentially nonlinear such
that characteristic length scales, for example, the distance between two streaks, cannot be predicted
with the linear theory. In this regime, the two characteristic features are intensive vortex-vortex and
vortex-wall interactions. The vortex-wall interactions occur between the primary bulk vortices and
the near-wall liquid. These interactions cause destabilization of the boundary layer and eventually
its detachment from the wall at several locations along the flow path. This process involves a few
characteristic stages. It is initiated first by a local concentration of the vorticity field within the
side-wall boundary layer as a single bulk vortex or a group of vortices move along the wall. This
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FIG. 16. (Bottom) Flow map showing laminar and two turbulence regimes in the Ha–Re plane for Gr = 108. (Top) Predictions
of the critical Hartmann number with the linear theory. See also notations in Fig. 14 caption.

stimulates rapidly rising thin spires (streaks) of fluid that ultimately interact strongly with the external
flow. These structures typically contain concentrated vorticity and often roll up into new, secondary,
vortex structures. These newly developed vortices can travel far from their original location reaching
sometimes the opposite wall and destabilizing its boundary layer.

The vortex-vortex interactions in the ST regime occur between various vortices, including
primarily bulk vortices and secondary vortices, which are formed due to the destabilization of the
side-wall boundary layer by the bulk vortices. These interactions are typical to Q2D turbulence as
required by the inverse energy cascade and include pairing vortices of opposite signs and merging
two or more vortices of the same sign into a bigger compound vortex structure, comparable in size
with the duct width, as also seen in Figs. 12–14.

Changing the other two parameters, Re and Gr (Figs. 13 and 14), has not revealed any new pecu-
liarities in the vorticity field in addition to those observed in Fig. 12. Depending on the 3 parameters
either WT or ST regimes can be seen. However, increasing Ha always leads to the reduction of the
kinetic energy, transition from strong to weak turbulence and finally to flow laminarization. Unlike
the Hartmann number effect, increasing Re and Gr leads to more turbulent flows. Visualization of
vorticity snapshots (e.g., shown in Figs. 12–14) along with the analysis of the mean kinetic energy
E* in the nonlinear saturation phase suggest that the turbulence can be considered as strong if
E* > Ecr = 2 × 10−2. This threshold value is not affected by the size of the flow domain, providing
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FIG. 17. Variation of the kinetic energy with Ha for different Re at Gr = 108.

the domain is long enough as in the computed cases of 60 length units. This criterion is further used
in order to characterize the effect of these parameters on the turbulent flow regime. Two flow maps
are shown in Figs. 15 and 16, where regions corresponding to ST and WT regimes are shown in the
Ha–Re plane for two Grashof numbers. Also, at the top of these two figures the critical Hartmann
number Hacr calculated with Eq. (24) is shown.

These figures clearly demonstrate that the linear theory significantly overpredicts the stability
threshold. The tendency of the OS theory to overpredict critical parameters in the duct flows that
characterize flow stability and poor agreement with experimental and numerical data is well known
(see, e.g., Ref. 21), so that the present observation is fully consistent with previous conclusions.

Figures 17–19 illustrate changes in the kinetic energy E* in the nonlinear saturation phase
as a function of Re, Gr, and Ha. As the Hartmann number is increased, the kinetic energy drops
monotonically to zero (Fig. 17). The increase in Re leads to the kinetic energy growing until the
saturation level is achieved, which depends on the other two parameters (Fig. 18). The kinetic energy
also grows as the Gr number is increased; however, any saturation in E* with Gr for Grashof numbers
up to 3 × 108 has not been observed (Fig. 19).

Figure 20 illustrates differences between the basic and turbulent flows where comparisons
are shown for the velocity and temperature distributions. In the strong turbulence regime, such
differences are much more pronounced compared to weak turbulence. In the weak turbulence
regime, the changes in the velocity profile are mostly localized at the velocity peak associated with
the near-wall jet, while in the strong turbulence regime the whole velocity profile is changed, not
only near the hot wall but also in the bulk flow and at the cold wall. In both cases, turbulence results
in a decrease of the maximum velocity and corresponding increase of the temperature near the hot
wall.

Finally, Fig. 21 shows some heat transfer results. In this figure the space- (over the duct
length) and time-averaged temperature difference between the temperature at the “hot” wall, θw,
and that at the axis, θ0, is plotted versus the Hartmann number. The figure also shows results
from the analytical solution using 1D formulas derived in Sec. III. In the laminar flow case, the
temperature difference increases with the Hartmann number due to reduction of the near-wall jet.
The turbulent case demonstrates more complicated behavior, including both increase and decrease
in the temperature differences as Ha number is increased. This behavior is related to two opposite
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FIG. 18. Variation of the kinetic energy with Re for different Ha at Gr = 108.

heat transfer mechanisms. First, the temperature at the wall can drop as a result of the bulk vortex
formation, their interactions with the side-wall boundary layer and turbulent streaks. Second, the
temperature increases as the near-wall jet amplitude is reduced due to cross-axial turbulent transport
of momentum. At high enough Ha the turbulent curve approaches the asymptotic laminar values.
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FIG. 19. Variation of the kinetic energy with Gr for different Re at Ha = 50.
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FIG. 20. Comparison of temperature and velocity profiles between basic (solid line) and turbulent (dotted line) flows:
(a) strong turbulence at Ha = 50, Gr = 108, Re = 5000; (b) weak turbulence at Ha = 100, Gr = 108, Re = 5000.
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VI. CONCLUDING REMARKS

The linear theory predicts two instability modes: the bulk (inflectional) instability and the side-
wall boundary layer instability. The instabilities mostly occur at the hot wall but in some cases also
at the cold one. The instability mode is strongly dependent on the shape of the basic velocity profile,
which can be characterized by parameters D and/or r introduced in Sec. III based on the analytical
solution for the unperturbed flow. The side-wall boundary layer instability is more typical to high
Reynolds number flows, where the basic velocity profile is just slightly distorted by the buoyancy
forces. The observed instability is similar to the instability of the Shercliff layer in purely MHD flows.
The bulk instability is more typical to MHD mixed-convection flows at relatively low Reynolds and
high Grashof numbers such that the basic velocity profile demonstrates a high velocity jet near the
hot wall and two or more inflection points. Typically, the bulk instability has a higher amplification
rate than the side-wall instability (one order of magnitude higher) and smaller wavenumbers. In
some cases, the linear theory suggests two instability modes can appear simultaneously. The bulk
instability seems to be the most dominant linear instability type in the conditions of a fusion blanket.
An important result from the linear stability analysis is Eq. (24), which allows for predicting a
critical Hartmann number as a function of Gr and Re, above which the flow is linearly stable. Notice
that applicability of this equation is not guaranteed far beyond the parameter range introduced
in Sec. IV.

The nonlinear DNS-type computations allowed for the turbulent flow analysis. Upon reaching
the nonlinear saturation phase in time, the flow demonstrates features typical to Q2D turbulence.
Depending on Re, Ha, and Gr numbers, two characteristic turbulence regimes have been identified:
(i) weak and (ii) strong turbulence. In the weak-turbulence regime, the vortices are mostly formed
from the original shear layer in the bulk flow near the hot wall. They remain localized in the same
near-wall area where the basic velocity profile has an inflection point. Some vortex-wall interactions
are clearly seen but the boundary layer remains weakly disturbed. In the strong-turbulence regime,
the two characteristic features are intensive vortex-vortex and vortex-wall interactions. The vortex-
wall interactions cause the boundary layer destabilization and eventually its detachment from the
wall at several locations along the flow path. The detached boundary layer and its interaction with the
outer flow stimulate further formation of secondary vortices, which can travel across the whole flow
reaching the opposite wall. The vortex-vortex interactions occur between various vortices, including
primarily bulk vortices and secondary vortices in the form of pairing vortices of the opposite sign and
merging two or more vortices of the same sign into a bigger compound vortex structure, comparable
in size with the duct size. The transition from weak to strong turbulence can be characterized by the
threshold kinetic energy [Eq. (25)] of 2 × 10−2.

The observed two turbulence regimes seem to be similar to two instability types previously
observed in other studies of MHD flows with the inflectional basic velocity profile, including Refs. 3
and 22–25. This suggests that the inflectional instability followed by the vortex-wall interactions are
the two principal mechanisms in this type of MHD flow. However, the case of the mixed-convection
flows demonstrates some differences from other studies, mostly due to a strong asymmetry in the
velocity profile caused by the buoyancy forces and due to close proximity of the inflection point to
the wall. This difference can be seen, for example, in the changes of the kinetic energy once one of
the parameters associated with unstable behavior, either Reynolds or Grashof number, is increased.
Even in a weak turbulence regime the perturbed flows seem to demonstrate nonlinear behavior. In
previous studies (Refs. 3 and 22–25) the transition from one to another instability type occurred as a
jump in the kinetic energy once the Reynolds number reached a critical value. This does not happen
in the reference case, where the kinetic energy demonstrates sharp but continues changes.
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