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The lid-driven cavity (LDC) flow is a canonic hydrodynamic problem. Here, a 3D LDC flow of elec-
trically conducting, incompressible fluid is studied numerically in the presence of a strong magnetic
field, which is applied parallel to the lid plane and perpendicular to the direction of the lid motion.
The cavity has electrically conducting walls of finite thickness and an infinitely thin moving lid. The
problem is characterized by three dimensionless parameters: the Reynolds number (Re), the Hartmann
number (Ha), and the magnetic Reynolds number (Rem). The primary research focus is on the effect
of Rem, which was changed in the study from Rem � 1 to the maximal Rem = 2000 at which dynamo
action may be expected, while Ha = 100 and Re = 2000. The computational approach is based on
the utilization of far-field magnetic boundary conditions by solving the full magnetohydrodynamic
(MHD) flow problem at finite Rem for a multi-material domain composed of the inner conducting
liquid, conducting walls, and sufficiently large insulating outer domain called “vacuum” (the induced
magnetic field vanishes at the vacuum boundaries) using a fractional-step method. The computed
results show many interesting features with regard to the effect of Rem on the MHD boundary layer
and the bulk flow, generation of a magnetic field and its penetration into vacuum, energy balance,
tendency of the magnetic field to become frozen in the fluid and associated magnetic flux expulsion,
transition to unsteady flows, and self-excitation of the magnetic field and the associated dynamo-type
action at high Rem. Published by AIP Publishing. https://doi.org/10.1063/1.5036775

I. INTRODUCTION

Electrically conducting liquids such as liquid metals
(LMs), molten salts, and electrolytes, when moving in a
domain of dimension L with the velocity V in the presence of
an externally applied magnetic field (B0), induce an additional
magnetic field (B1). The induced electric currents ( j) asso-
ciated with the induced magnetic field interact with the total
magnetic field (B = B0 + B1), giving rise to an electromagnetic
(EM) Lorentz force (fL = j × B). This EM force can become
appreciable and impact the flow in many ways. Such flows
are termed magnetohydrodynamic (MHD) flows and exist in
nature (e.g., astrophysical and geophysical flows) and engi-
neering applications (e.g., plasma confinement, LM cooling
in fusion reactors, and EM casting). Magnetohydrodynamic
flows are often categorized by the measure of the ratio of mag-
netic field convection to diffusion. A dimensionless parameter,
the magnetic Reynolds number (Rem = V L/νm), is typically
used as an estimate for this measure. Here, νm = (σ−1

l µm
−1)

is the magnetic viscosity, the inverse product of liquid elec-
trical conductivity (σl) and magnetic permeability (µm). The
magnetic Reynolds number appears in the magnetic induction
equation when transformed into a dimensionless form by using
appropriate scales. Low and high Rem MHD flows have been
studied for years (see, e.g., Refs. 1–7). In astrophysical MHD

a)Electronic mail: sergey@fusion.ucla.edu

flows, the Rem is very high (typically Rem ∼ 1010–1020, Ref. 1),
resulting in a convection-dominated regime where magnetic
field lines are frozen into the fluid and have to move along
with it. By contrast, the Rem is typically small (Rem � 1) in
LM applications because the product of the velocity and length
is small compared to the magnetic viscosity. In such diffusion-
dominated regimes, the Rem acts as a ratio between the induced
and applied magnetic fields. Assuming |B1|� |B0| allows for
the so-called “inductionless approximation” (also known as a
low Rem or quasi-static approximation), where the mathemat-
ical complexity of the MHD problem is significantly reduced
by the use of a scalar field—electric potential (φ)—as the main
EM variable.

Although it is widely believed that all LM applications
exhibit Rem � 1, there are a few important cases where
Rem is of the order of unity or even higher. As demonstrated
in the recent past, the helical flow inside one of the MHD
pumps of the fast breeder reactor Superphenix in France (see
Ref. 8) exhibited a Rem of 25, suggesting a possibility of
the dynamo regime, when self-excitation of a magnetic field
occurs. Achieving sufficiently high Rem in the range 101–103

has been the goal of many dynamo experiments (see Molokov
et al., Dynamo Experiments in Ref. 9) tending to elucidate the
origin of the planetary magnetic fields. A flow in a blanket
of a fusion power reactor, where pure lithium or lithium-
containing alloy circulates slowly for power conversion and
tritium breeding in the presence of a strong plasma-confining
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magnetic field, is another example of MHD flows where
Rem > 1 might be possible. Such a flow is likely to happen
in the abnormal conditions of a plasma disruption when the
poloidal component of the plasma-confining magnetic field
suddenly drops from its nominal value [1 (T)] to zero at the
time scale of milliseconds (see Ref. 10). This most extreme and
unsteady event in the fusion plasma can cause high-velocity
flows in the LM of the order of 10 (m/s), resulting in a Rem

of 5-10. These magnitudes of Rem look insufficient to cause
any dynamo action, but many interesting flow features can
be expected that cannot be analyzed using the inductionless
approximation.

A brief discussion on terminology is warranted. We define
the word “finite” as a fixed amount that is not infinitely small
and not infinitely large. This definition indicates that convec-
tion and diffusion both contribute to the induction equation for
finite Rem MHD flows.

When characterizing the MHD flow physics at finite Rem,
we limited our considerations to the well-known ordinary
hydrodynamic lid-driven cavity (LDC) flow problem for the
following reasons. First, the 3D LDC flow configuration was
widely studied under purely hydrodynamic conditions, is well
understood, and thus can serve as a convenient “test-bed” in
the case of MHD flows. Many anticipated flow features in
the LDC flow problem are expected to be common to other
wall-confined MHD flows like those in the blanket conduits
or dynamo experiments. Second, many MHD flow configura-
tions lead to relatively simple quasi-two-dimensional (Q2D)
magnetic field solutions, especially in the case of rectangular
ducts (Ref. 11). Third, the 3D LDC MHD flow may result in
true 3D physics by making the three flow dimensions similar:
Lx ∼ Ly ∼ Lz. Fourth, the associated computer code seems
to be simpler and the computational time lesser compared to
complex geometry flows, thus allowing for detailed studies of
the effect of Rem and other parameters on the flow. Numer-
ical computations of a 3D LDC finite Rem MHD flow were
performed by Ref. 12; however, boundary conditions (BCs)
in this study were inappropriately applied at the fluid domain
boundary. Induced magnetic fields in conducting fluids are, in
general, free to pass beyond the conducting fluid, solid mate-
rial, and even into the vacuum. Hence, results in Ref. 12 for
the LDC MHD flow may be unphysical and unsuited as a
benchmark for experiments and numerical studies.

The three dimensionless parameters that define the LDC
flow in a magnetic field are the hydrodynamic Reynolds num-
ber Re = ρV L/µ, the Hartmann number Ha = B0L

√
σl/(ρν),

and the already mentioned magnetic Reynolds number Rem.
Here, B0, ρ, µ, and ν are the characteristic magnetic field,
density, and dynamic and kinematic viscosity of the fluid,
respectively. The Re and Ha2 estimate the ratio of inertial to
viscous forces and EM to viscous forces, respectively. While
the effects of the Reynolds and Hartmann numbers are well
understood (see, e.g., Refs. 13–15), the influence of Rem has
not been fully evaluated yet. That is why we focus here on LM
MHD flows with finite Rem values that are around or higher
than unity but much smaller than those in the astrophysical
applications. To clearly illustrate the effect of Rem, we start
with Rem� 1 and gradually increase it until the observed finite
Rem effects become pronounced, even dominating. In this way,

the maximal Rem in this study was 2000 that exceeds those in
all LM applications but is necessary from the theoretical and
methodological viewpoints.

When the magnetic field is used as the primary EM vari-
able, the magnetic BCs are another practical issue in construct-
ing the computational model. Magnetic BCs are required to
solve the magnetic induction equation but pose computational
difficulties which, in the past, have been circumvented by mak-
ing simplifying assumptions. The most physically reliable and
widely applicable magnetic BC treatment is to assert that the
induced magnetic field generated in the liquid penetrates into
surrounding vacuum and diffuses to zero at infinity. However,
this is difficult to enforce in practice. These far-field magnetic
BCs are referred to here as real-vacuum (RV) BCs. Due to the
challenges associated with RV BCs, approximate local mag-
netic BCs have been developed to circumvent the formidable
challenges associated with enforcing RV BCs. One of the
most popularly used approximate magnetic BCs is commonly
called pseudo-vacuum (PV) BCs. A wide range of MHD flows
have been successfully described using PV BCs (see, e.g.,
Refs. 16–18). The PV BCs force magnetic field lines per-
pendicular to the conductor boundary and are accurate when
Rem � 1, i.e., when the inductionless approximation holds
(see Ref. 17). It is noteworthy that PV BCs are a particular case
of ensuring magnetic field continuity at the boundary. In this
study, we abandon the approximate PV BCs in favor of RV BCs
as the Rem in the present study is much higher than unity. There
are also difficulties associated with implementing RV BCs
when solving the induction equation continuously across the
large-sized multi-material domain including discontinuities in
the electrical conductivity.

In the present study, the incompressible MHD equations
for finite Rem are solved numerically to simulate a 3D LDC
flow between Rem � 1 and Rem = 2000. A large external
vacuum domain surrounds the conducting fluid and walls
to enforce physically accurate far-field magnetic field BCs.
Velocity, electric current and magnetic field distributions, and
energy balance components are analyzed. Along with deeper
insight into the flow physics, we hope to establish in this paper
a reliable benchmark for future finite Rem studies. The paper is
organized as follows. Sections II–V present our mathematical
formulation, numerical methodology, results and discussion,
and conclusions, respectively.

II. PROBLEM FORMULATION
A. Governing equations

For the reference MHD LDC flow problem, consider a
total domain (Ωt) composed of a conducting fluid (Ωf ), con-
ducting solid wall (Ω4), and vacuum (Ω3) domain. Let Ωc

denote the conducting domain and Γf , Γc, Γt , and Γlid denote
the boundaries of the fluid, conductor, total, and driving lid,
respectively (Fig. 1).

Using half of the cavity width in the applied magnetic
field direction L, velocity U, time L/U, pressure ρU2, mag-
netic field B0, and electric current density σlUB0 as the scales,
the incompressible and isothermal momentum, induction,
mass continuity, and magnetic field continuity equations for
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FIG. 1. (a) Schematic for the LDC MHD flow problem using RV BCs.
(b) Zoomed view.

uniform material properties (except electrical conductivity)
can be written in the dimensionless form,

∂u
∂t

+ (u · ∇)u + ∇p =
1

Re
∇2u +

Ha2

Re
j × B, in Ωf , (1)

j =
1

Rem
∇ × B, in Ωc, (2)

∂B
∂t

+ Re−1
m ∇ ×

(
1
σ
∇ × B

)
= ∇ × u × B, in Ωt , (3)

∇ · u = 0, in Ωf , (4)

∇ · B = 0, in Ωt . (5)

Here, u, p, j, and B = B0 + B1 are velocity, pressure, electric
current density, and the total magnetic field, composed of the
applied plus induced field, respectively. In addition to Re, Ha,
and Rem, the normalized electrical conductivity (σ = σ/σl) is
defined as the local electrical conductivity (σ) divided by the
liquid electrical conductivity.

Equations (4) and (5) are divergence-free constraints that
ensure u and B remain solenoidal, respectively. There is no
guarantee that Eq. (5) will be satisfied when integrating Eq. (3),
especially over long periods, which may lead to unphysical
forces in the momentum equation (Refs. 19–21). Several meth-
ods can be used to enforce Eq. (5) and will be discussed in
Sec. III.

Equation (3) is valid everywhere in space, but inspecting
how it simplifies in the vacuum is insightful. In the vacuum,
Eq. (3) can be written in the following form:

∇ × (∇ × B) = 0, in Ωv . (6)

The convection term has vanished because u = 0, and the
unsteady term has vanished because σ = 0, resulting in the
absence of Rem. The absence of the unsteady term implies that
the magnetic field travels infinitely fast in the vacuum domain.
This equation may be cast into the form of a Poisson equation,
which is more convenient for solving, using the vector iden-
tity ∇ × (∇ × B) = ∇ (∇ · B) − ∇2B and the divergence-free
constraint such that

∇2B = 0, in Ωv . (7)

While there are no electric currents in the vacuum, the
magnetic field permeates into the vacuum, and its strength
decreases with distance from the conductor. Providing that the
electric current is known, the magnetic field at any point in
space can be computed using the Biot-Savart law (Ref. 22).
The Biot-Savart law can be written, using the scales defined
in this study, as

B(x) =
Rem

4π

∫
Ωc

j(x′) ×
r
|r|3

d3x′, r = x − x′. (8)

Here, x, x′, and r are the dimensionless spatial coordinate
vector, dummy variable for integration, and distance vector
from x to x′, respectively. According to Eq. (8), the magnetic
field strength decreases with 1/|r|3 in the vacuum domain. This
decay rate is a useful result to help determine the size of a suf-
ficiently large vacuum domain such that the induced magnetic
field approximately satisfies B1 = 0 at Γt naturally.

B. Velocity and pressure boundary conditions

Equations (1)–(3) require BCs. For velocity, the no-slip
condition was used on Γf . For a LDC flow, this simplifies to
a tangential velocity component of unity at the driving lid,
and zero velocity elsewhere. The pressure Poisson equation,
derived by taking the divergence of Eq. (1), requires BCs
for pressure. Pressure BCs can be determined directly from
Eq. (1). For pressure, we used the commonly applied BCs,
(n · ∇)p = 0 on Γf (see Ref. 23). Here, n is the outward surface
normal unit vector.

C. Magnetic boundary conditions

The RV magnetic BCs are mathematically expressed as

B = 0, at Γt → ∞. (9)

To simulate MHD flows using directly RV BCs in general
geometric domains requires special care and is a formidable
task because the magnetic field can pass the conductor bound-
ary and penetrate deep into the vacuum, where its transport
is infinitely fast. This infinitely fast transport of the magnetic
field in vacuum results in a non-trivial distribution and the
inability to apply point-wise (local) magnetic BCs at the con-
ductor boundary. Several tactics have been used over the years
to enforce RV BCs for general geometries. Some are discussed
here.
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The first method is to formulate special magnetic BCs on
the conductor boundary, when the magnetic field in the vac-
uum is of no interest, and solve the mathematical equations
governing the BCs (see Refs. 24 and 25). The boundary-
element method (BEM) can be applied to enforce these spe-
cial magnetic RV BCs. This approach is elegant and does
not require extending the computational domain; however, it
requires the solution of a dense and non-symmetric partial
integro-differential equation on the conductor boundary.

The second and third methods involve surrounding the
conducting region (fluid and solid) with an electrically insu-
lating exterior and set the magnetic field to zero at a finite
distance sufficiently far from the conductor such that the solu-
tion in the conductor is no longer affected. Reference 26 found
that errors associated with truncating the vacuum domain to
a finite distance were reduced to less than 0.5% for an insu-
lating domain five times larger than the conducting domain.
Equations are then solved separately (method two) and then
iteratively matched between the conductor-insulator interface
or continuously (method three) across a domain of variable
electrical conductivity. Method three is used in the present
paper.

In the cases presented for Rem � 1, PV magnetic BCs are
used, and the exterior vacuum domain is not needed. Pseudo-
vacuum magnetic BCs are mathematically expressed as

(n · ∇)(B · n) = 0, (B × n) = 0, on Γc. (10)

Equation (10) is applied at the conductor boundary and
enforces electric currents tangent to the boundary surface.
These BCs are a valid approximation to RV BCs in the low
Rem limit but do not hold true for arbitrary Rem (Ref. 17).

D. The computational domain configuration
and parameter space

In the present paper, we consider a lid-driven square cavity
MHD flow with a transversely applied magnetic field as shown
in Fig. 1. This flow is an internal circulating one, driven by the
shear stress at the top lid. Momentum is diffused and advected
downstream of the lid and eventually re-circulates back to the
top of the cavity.

The lid-driven cavity flow is a classic hydrodynamic flow
configuration and was used in an enormous number of studies.
This flow configuration has been extensively studied for purely
hydrodynamic flows (see, e.g., Refs. 13, 27, and 28), where Re
is the only dimensionless parameter. The low Rem MHD flow
configuration has been studied fairly well (see, e.g., Refs. 12,
14, and 15) but much less than the purely hydrodynamic case.
Part of this reason is that the parameter space increases signif-
icantly. In addition to Re, Ha enters the momentum equation
and the wall conductance ratio, c4 = σ4t4/(σlL), enters the
problem in the case of a thin conducting wall. Here, t4 and
σ4 are the wall thickness and wall electrical conductivity,
respectively. Furthermore, the orientation and distribution of
the applied magnetic field are additional parameters that sig-
nificantly affect the solution. Allowing for finite Rem increases
the solution space further. Also, this introduces some techni-
cal challenges on implementation of far-field magnetic BCs as
discussed above.

General changes in physical flow features due to changes
in these parameters are well known. Increasing Re thins the
momentum boundary layer (BL) (where viscous forces domi-
nate), increases the hydrodynamic flow development time, and
pushes the flow toward an unsteady (increased further still) and
turbulent regime. Increasing Ha thins the Hartmann BL (where
EM and viscous forces balance), increases the EM force on the
flow, which increases flow damping along the applied mag-
netic field direction, and decreases the flow development time.
Increasing Rem thins the magnetic BL (where the majority of
the electric current is located, see Ref. 1), increases the ratio
of convection to diffusion of the magnetic field, and increases
the flow development time (see Ref. 29).

The conducting fluid is surrounded by a finite solid con-
ducting wall on all sides of the cavity except the driving lid,
which is infinitely thin (i.e., an interface). The vacuum domain
extends beyond the fluid and wall domains [Fig. 1(a), a zoomed
view in Fig. 1(b)] for arbitrary Rem, and RV BCs are applied
at the outer vacuum boundary. We consider a normalized cav-
ity wall thickness (tw = tw/L) and normalized wall electrical
conductivity (σw = σ/σw) of tw = 0.05 and σw = 1, respec-
tively. Therefore, the wall conductance ratio is c4 = 0.05.
A total domain roughly 7 times larger than the conduct-
ing domain by volume is used: Ωt = {−7 ≤ x, y, z ≤ 7},
Ωf = {−1 ≤ x, y, z ≤ 1}, and Ωc = {−(1 + tw) ≤ x, z ≤
(1 + tw),−(1 + tw) ≤ y ≤ 1}. Initial conditions are u = 0 and
B1 = 0. Velocity BCs are u = (1, 0, 0) at y = 1 and u = 0
elsewhere on Γf . Equation (10) is used when Rem � 1, and
Eq. (9) is used otherwise for the induced magnetic field BCs.

The externally applied magnetic field is in the z direc-
tion, parallel to the driving lid and perpendicular to the lid
motion, to assist a steady flow regime. The other two applied
field directions, along the x and y axes, may result in unstable
flows (Refs. 12 and 15). All computations were performed at
Re = 2000, Ha = 100, and c4 = 0.05. The Rem values considered
were 0, 1, 100, 200, . . ., 1000, 1500, and 2000.

Given this flow configuration, the number, location, and
flow intensity of recirculation zones depend on the dimension-
less parameters. Also, due to B0 aligned along the z direction,
the flow is expected to be nearly uniform along the z direction
due to suppression of motion along the magnetic field lines
(Hartmann damping), at least for low and possibly moderate
Rem.

The flow is also expected to be symmetric with respect to
u, 3, p, and Bz and antisymmetric with respect to 4, Bx, and By

at the z = 0 plane. This symmetry and antisymmetry conditions
were taken advantage of to reduce the computational domain
by half. Additional calculations were performed in a fully 3D
geometry with neither symmetry nor anti-symmetry BCs at
Rem = 1000, 1500, and 2000. Results confirmed that these
symmetry and antisymmetry BCs are valid in the considered
parameter range except for the two highest Rem value cases,
which are discussed in Sec. IV.

The chosen parameter space was selected very carefully.
Reynolds number was chosen large enough such that inertial
effects are not negligible. The Hartmann number was chosen
large enough to let the flow exhibit distinctive Hartmann layers,
but low enough not to cause extra computational challenges
associated with the need for fine resolution of the thin BLs.



067103-5 Kawczynski, Smolentsev, and Abdou Phys. Fluids 30, 067103 (2018)

The Rem was chosen from 0 to sufficiently large (but still mod-
erate compared to astrophysical MHD flows) to see how the
magnetic field convection-dominated regime, and potentially
dynamo physics, begins.

We observed that the purely hydrodynamic flow is
unsteady in the absence of the applied magnetic field but
becomes steady in the presence of the applied magnetic field
for almost all Rem except for Rem = 1500 and Rem = 2000.
Three-dimensional linear stability analysis was performed on
a 2D LDC low Rem MHD flow in Ref. 15 to identify the onset
of instability. Stable and unstable regions were mapped with
respect to the interaction number, N = Ha2/Re (up to 30), and
Reynolds numbers (up to 7500). Several studies (e.g., Ref. 30)
have investigated the critical Reynolds number for Q2D MHD
flows.

If Ha = 0, the flow is 3D. When Ha is increased, the flow
tends to change to Q2D with the Hartmann layers at the walls
perpendicular to the magnetic field and the core where the
velocity components and the pressure exhibit small variations
along the direction of the applied magnetic field.

The effects of Rem are less understood. In general, one
might expect more unsteadiness, more three-dimensionality
(see Ref. 17) and, if Rem is increased high enough, dynamo-
type physics. These Rem effects are investigated in the present
work. Also, we want to see how the fundamental properties
of the low Rem MHD flows such as Hartmann layers and two-
dimensionalization are possibly modified at higher Rem.

III. NUMERICAL METHODOLOGY
A. Spatial discretization

Grid points are clustered in the Hartmann and Shercliff
layers in the liquid near the solid boundaries and at the mov-
ing lid using Roberts coordinate transformation (Ref. 31). The
mesh is also clustered in the wall to provide the smallest grid
cell in the wall to be equal in size to the neighboring cell in
the liquid. This non-uniform grid is necessary to both ensure
a sufficient number of points in the BLs and resolve the large
computational domain efficiently. Each variable is approxi-
mated on a fully staggered mesh system as shown in Fig. 2.
Velocity and magnetic fields are staggered on the face of the
computational cell to avoid checkerboard-type instabilities and
to enforce flux conservation. The electric current and electrical

FIG. 2. Staggered variables on computational cell.

TABLE I. Locations of input scalar fields and output derivatives when
computed on the staggered computational cell.

Location of output vector
Location of input scalar field ( f ) field {∂x f, ∂yf, ∂z f }

Cell center {x-face, y-face, z-face}
Cell corner {x-edge, y-edge, z-edge}
x-face {Cell center, z-edge, y-edge}
y-face {z-edge, cell center, x-edge}
z-face {y-edge, x-edge, cell center}
x-edge {Cell corner, z-face, y-face}
y-edge {z-face, cell corner, x-face}
z-edge {y-face, x-face, cell corner}

conductivity are located at the computational cell edges. Pres-
sure is located in the center of the computational cell. Second-
order spatial accuracy is applied to approximate derivatives
using central finite difference schemes and to compute the
interpolations between different meshes.

Derivatives are calculated in the following systematic
way. The first derivative of a field, positioned on a given loca-
tion on the computational cell, is always computed from neigh-
boring data. The result is that a field and its first derivative are
never collocated (see Table I). The same type of rule is followed
with interpolations along the x, y, and z directions. Ghost points
are used as a means to enforce BCs and allow derivative and
interpolation operators to behave equivalently in the domain
interior as they do in the domain boundaries, which provides
operators with convenient commutative properties (Ref. 32).
Unknowns are decomposed into interior and boundary values.
Second-order boundary treatment is recovered from first-order
derivative stencils by adding the remaining derivative stencils,
required to recover 2nd-order accuracy, to the right-hand side
of the equation (where all source terms are known).

The momentum and induction equations are computed
on the computational cell face, while the pressure and cor-
rection equations (discussed in Sec. III C 1) are computed
on the computational cell center. Additional computational
tests were performed using a collocated grid configuration.
The following general rules were found to produce consistent
results between the staggered and collocated grid configura-
tions. First, the number of interpolations performed to com-
pute terms is minimized—interpolations are only performed
when necessary. Second, interpolations are performed such
that terms naturally land on the location of the governing equa-
tion. For example, the advection term in the induction equation
is calculated as follows: (1) the velocity and magnetic fields
are interpolated from the cell face to the cell edges; (2) u × B
is then computed on the cell edge; and (3) the curl of u × B
is computed from the cell edges, the result of which is natu-
rally located on the cell face (where the induction equation is
computed).

B. Ensuring solenoidality of the magnetic field

Enforcing Eq. (5) can be accomplished using one of the
several techniques. Two such methods, a constrained transport
(CT) method and a projection method, were incorporated in
this study and are discussed here. The CT method naturally
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satisfies Eq. (5) using a special spatial discretization. The pro-
jection method enforces Eq. (5) by estimating a solution and
then “projecting” the estimate onto a divergence-free space.
Both methods were implemented in MOONS, and their com-
putational time was compared before conducting this study.
Trade-offs between the two methods (see Ref. 19) are briefly
described here.

The CT method ensures Eq. (5) within machine accuracy
at each time step (∆t) but requires that the magnetic BCs and
initial magnetic field distribution are compatible with Eq. (5).
The CT method is fast because it requires a single explicit
time update but suffers from a diffusion-explicit time step
restriction. This limitation becomes prohibitively severe for
insulating domains, low Rem flows, and very fine grids. The
projection method relieves the time step restriction with time-
implicit diffusion treatment and is insensitive to initial ∇ · B
conditions. While the projection method requires matrix inver-
sion, due to implicit diffusion treatment, its computational
efficiency was found to be superior to the CT method in most
cases. Therefore, the projection method was used for all com-
putations in the present paper. Both method formulations are
discussed in more detail below.

1. Constrained transport method

The CT method, initially proposed by Ref. 33, prevents
the growth of ∇ · B intrinsically through a staggered variable
conservation scheme (a thorough review is given in Ref. 19). In
this discretization, the electric field, magnetic field, and electric
current are staggered on the computational cell edge, face,
and edge, respectively. A simple proof of how the CT method
enforces ∇ · B = 0 can be derived by writing Faraday’s law,
using the mentioned spatial discretization, and updating the
magnetic field in time (see Sec. 4.1 in Ref. 19). This derivation
reveals a perfect cancellation in the discrete form of∇ ·B. This
scheme relies on diffusion-explicit treatment, limiting the time
step as mentioned above. For the Rem range considered in the
present work, the CT method was found to require a very small
time step, especially with the presence of an outer vacuum
region.

C. Temporal discretization

Equations (1) and (3) are solved separately at each time
step. A θ-implicit Crank-Nicholson-type method is used for
the diffusion terms, a second-order Adams-Bashforth method
is used for the advection terms, and pressure is treated purely
implicitly. The momentum and induction time-discretized
equations, from time level n to n + 1, are

un+1 − un

∆t
− θuRe−1∇2un+1 = −∇pn+1 +

3
2

Kn −
1
2

Kn−1,

Kn = (1 − θu)Re−1∇2un + (un · ∇)un +
Ha2

Re
jn × Bn,

(11)

Bn+1 − Bn

∆t
+ θBRe−1

m ∇ × (σ−1
∇ × Bn+1) =

3
2

Tn −
1
2

Tn−1,

Tn = −(1 − θB)Re−1
m ∇ × (σ−1

∇ × Bn) + ∇ × (un × Bn).
(12)

Here, θ is a parameter that controls the degree of explicit-to-
implicit treatment of the diffusion terms. Diffusion is treated
purely explicitly, centered in time, and exclusively implicitly
for θ = 0, 0.5, and 1, respectively. Equation (11) is demon-
strated to be 2nd-order accurate in time (see Ref. 17). Equa-
tions (11) and (12) closely resemble the time discretization
used in Ref. 17.

1. Fractional-step method

The fractional-step method, or more generally the pro-
jection method, is a technique used to solve coupled
equations—e.g., velocity and pressure—by decoupling them.
The fractional-step method is common in the CFD literature
(see, e.g., Refs. 17, 32, 34, and 35) and was first proposed by
Chorin in 1968 (see Ref. 36).

A brief overview of how the fractional-step method is
applied to Eqs. (11) and (12) and the resulting time-marching
procedure are given here. The following discussion is similar
to that in Ref. 32, except that the coupled MHD equations are
considered here rather than the purely hydrodynamic equa-
tions. Therefore, in applying the projection method to the
MHD equations, a new scalar field (ξ) is introduced to the
induction equation to enforce magnetic field conservation.

Equations (11) and (12) can be exactly cast into a matrix
form. The matrix operator that includes the diffusion terms
and operates on the unknowns (u, B, p, and ξ) can be approx-
imated with a 2nd-order time accurate approximation (see
Ref. 32). The advantage of applying this approximation is that
the approximated matrix can be factorized, which permits the
system of equations to be solved as a sequence of operations.
Using discrete gradient (G), divergence (D), Laplacian (L),
and curl (C) operators, this sequence of operations may be
written as(

I − ∆tθuRe−1L
)
û = un + ∆t

(
3
2

K̄n −
1
2

K̄n−1 + BC1

)
, (13)

∆tLζn+1 = Dû − BC2, (14)

un+1 = û − ∆tGζn+1, (15)

(
I + ∆tθBRe−1

m C(σ−1C)
)
B̂ = Bn + ∆t

(
3
2

T̄n −
1
2

T̄n−1 + BC3

)
,

(16)

∆tLξn+1 = DB̂ − BC4, (17)

Bn+1 = B̂ − ∆tGξn+1. (18)

Here, I, û, B̂, K̄, T̄, and BC1,2,3,4 are the identity matrix,
intermediate fields for u and B, spatially discrete forms of
K, T in Eqs. (11) and (12), and BCs for un+1, pn+1, Bn+1,
and ξn+1, respectively. The scalar field ζ enters the equations
as a result of the time-splitting error, due to the previously
mentioned matrix approximation, and relates to pressure via
p = ζ − θu∆tRe−1∇2ζ (see Ref. 32). The p − ζ relation holds
only in the case that the gradient and Laplacian operators are
commutative, which is valid for continuous operators but is
not guaranteed for discrete operators. Note that there are no
requirements for BCs on û and B̂ since BCs for the unknowns
have already been absorbed into BC1,2,3,4 (see Ref. 32).
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Our procedure in Eqs. (13)–(18) resembles the popular
fractional-step method, proposed by Ref. 34, applied to the
incompressible momentum and solenoidal induction equa-
tions separately. A matrix-free, diagonally preconditioned
conjugate gradient (CG) method is used to iteratively solve
Eqs. (13)–(18), using 20 iterations for Eqs. (13) and (16) and
5 iterations for Eqs. (14) and (17) at each time level, respec-
tively. If Eq. (16) is solved by a matrix inversion, then the
matrix to be inverted has a complicated structure due to the
non-uniform grid, variable electrical conductivity and stag-
gered magnetic field configuration, resulting in slanted non-
zero elements (see Fig. 3). The advantages of the matrix-free
method include ease of implementation and less computational
memory consumption compared to storing the entire curl-curl
operator. The disadvantage, however, is that the matrix-free
method is less computationally efficient as storing the curl-curl
operator—one test performed resulted in a ∼5% difference in
computational time.

Due to the stiffness in Eq. (16) and numerical tests yielding
faster and more stable computations for time-implicit diffusion
treatment, θu = 1 and θB = 1 were used exclusively in this study.

D. Modeling the infinitely large
computational domain

The computational domain consists of the conducting LM,
conducting wall, and vacuum domains. In the present study,
a sufficiently large computational vacuum domain is used to
model an infinitely large one. The size is large enough when, as
the domain is further increased in size, the solution no longer
significantly changes. The size of the vacuum domain can be
estimated using Eq. (8). The equation reveals that the induced
magnetic field strength decays proportionally to Rem/|r|3 in
vacuum sufficiently far from the conductor. So, the size of the
domain should be roughly proportional to Rem. In this paper,
the domain size was tested for Rem = 1000 in light of this
information.

FIG. 3. Matrix visualization (non-zero elements) of curl-curl operator
Eq. (16).

The MHD LDC flow was simulated at Rem = 1000 using
total domain sizes of volumes {Ωt ,1, Ωt ,2, Ωt ,3, Ωt ,4} = {3.53,
73, 143, 283}. The percent difference in the total kinetic energy
between Ωt ,1 and Ωt ,2, Ωt ,2 and Ωt ,3, and Ωt ,3 and Ωt ,4 was
0.31%, 5.4 × 10−4%, and 6.5 × 10−5%, respectively. The final
chosen total domain size was that of volume 143 and is used
for the remainder of this study.

E. Modeling the multi-material domain

In general, the computational domain includes three elec-
trical conductivities for the liquid, electrically conducting wall,
and vacuum. In fact, the electrical conductivity of the vacuum
domain in the computations is not set to zero but to a small
enough value to prevent electrical currents from leaving the
conducting domain. The computational domain is, therefore,
a multi-material structure, resulting in the conductance ratio
that may vary by several orders of magnitude. The need to
simulate the magnetic field in the vacuum results in a poorly
conditioned system when solving Eq. (3) since σ dramatically
changes across the conductor-insulator interface. This feature
requires a special treatment of the diffusion term in the induc-
tion equation to avoid unphysical solutions that might appear
due to non-conservative flux approximations at the material
interfaces (see Ref. 37). The electrical conductivity is kept
inside the derivative to perform this particular diffusion term
treatment and maintain a conservative scheme.

F. Testing the code

Several tests, some of which were already performed in
Ref. 38, are briefly summarized here. Purely hydrodynamic
LDC flows between 400 ≤ Re ≤ 1000 showed excellent
matches with existing numerical data. Low Rem conducting
and insulating duct MHD flows, and a LDC MHD flow, all
showed an excellent match up to Hartmann 15 000 with ana-
lytic solutions and numerical data, respectively. A finite Rem

MHD periodic channel flow showed an excellent match at high
Hartmann numbers and a fair match at low Hartmann num-
bers with existing numerical data. Also, a 1D finite Rem MHD
channel flow, induced by a constant and transversely applied
magnetic field and a constant, time-varying applied magnetic
field, was compared at steady state, and an excellent match was
found with analytic solutions. All computations qualitatively
and quantitatively agree with analytic solutions and existing
numerical data.

IV. RESULTS AND DISCUSSION
A. Selecting the electrical conductivity
of the insulating outer domain

The electrical conductivity of the outer domain, σv , is
ideally zero, but because Eq. (3) is solved continuously across
Γc, σv cannot be set to zero because it appears in the denom-
inator. Moreover, the computational effort is increased as σ
becomes more discontinuous across Γc. Therefore, the largest
σv approaching zero must be determined such that the solution
no longer significantly changes asσv is further decreased. The
preliminary study to identify a suitable σv was performed at
Rem = 1000. The high Rem case was used because the induced
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magnetic field would likely reach far intoΩ3 . Performing com-
putations at very low σv would not have been possible with
explicit time-marching because the stiffness of the matrix to
be inverted in Eq. (12) becomes too severe. As σ becomes
more discontinuous across Γc, the matrix inversion in Eq. (12)
becomes increasingly ill-conditioned, greatly benefits from
preconditioning, and requires tens of iterations to converge.
Changing from explicit to implicit time-marching still requires
tens of iterations to solve Eq. (12) at each time step, but the time
step restriction is significantly relieved. For example, the time
step was relieved by four orders of magnitude for σv = 10−4

and resulted in considerably faster computations.
Equations (13)–(18) are solved until the velocity and mag-

netic fields reached a steady state. To determine when a steady
state is reached, the integral dimensionless kinetic energy Eu
and induced magnetic field energy EB1 were monitored as a
function of time,

Eu(t) =
∫
Ωf

EK dΩ, EK =
1
2

u · u, (19)

EB1 (Ω∗, t) =
∫
Ω∗

EMdΩ, EM =
1
2

AlB1 · B1. (20)

Here, Ω∗, Al = Ha2/(ReRem), EK , and EM are the domain of
integration, Alfven number, and local dimensionless kinetic
and magnetic energy, respectively. The Alfven number esti-
mates the ratio of magnetic to kinetic energy. In addition, the
integral dimensionless Joule heating was computed,

Ej(Ω
∗, t) =

∫
Ω∗

EJdΩ, EJ =
Ha2

Re
j2

σ
. (21)

Here, EJ is the Joule heating. Eu, EB1 , and Ej can be directly
compared because they all require the multiplication of the
same physical scale, ρU2L3, to recover energy in Joules.
The steady-state percent difference between EB1 (Ωf , t) at
σv = 4 × 10−3, 2 × 10−3, 1 × 10−3, and 5 × 10−4 was
2.3%, 1.2%, and 0.4%, respectively (see Fig. 4). From here
on, σv = 10−3 was used for the vacuum domain.

FIG. 4. Effect of the electrical conductivity of the insulating outer domain on
the computed magnetic energy.

B. Mesh independence study

Additionally, a mesh refinement study has been con-
ducted to ensure that a sufficient number of grid points were
used to resolve the flow and accurately depict the energy of
the system. These tests were carried out at Rem = 200 with
four grid resolutions: coarse Ncells = 51 and 840, medium
Ncells = 278 and 528, and two fine grids Ncells = 1, 614, and
720 and Ncells = 10, 264, and 320. Cells were concentrated near
the cavity walls where the BLs are formed and at the moving
lid, due to the velocity discontinuity at the intersection of the
stationary walls and moving lid. The steady-state percent dif-
ference in integral kinetic and magnetic energies between the
second finest and finest grids was 0.66% and 1.1% (see Fig. 5),
respectively. The second finest grid was used for the remainder
of this study.

C. Steady to unsteady flow comparison

Initially, the flow is at rest, and the induced magnetic
field is zero everywhere. As the lid starts moving, the fluid
starts circulating around the cavity and induces a magnetic
field whose distribution and magnitude change in time until
the velocity and the induced magnetic field reach a steady
state. Steady-state velocity and induced magnetic field distri-
butions will exist or not exist depending on Rem, Ha, Re, and
c4. Also, we caution that due to the possibility of hysteresis
(see Ref. 17), the uniqueness of the solution is not in gen-
eral guaranteed for finite Rem MHD flows, but here, only one
solution is observed. Steady-state solutions are more likely to
exist at lower Re, lower Rem, and higher Ha. This fluid flow
regime is typically characterized as being laminar, with a small
induced-to-applied magnetic field ratio, and strong damping
effect on the flow due to Joule dissipation that occurs mostly
in the Hartmann layers and in the walls.

For unsteady or transitioning MHD flows, there are three
time scales if the flow is inductionless and four time scales in
the case of finite Rem. These convective, diffusive, Hartmann
damping, and magnetic diffusion times are tc = L/U, tν = L2/ν,
tj = ρ/(σlB2), and tm = L2σlµm, respectively (see Refs. 29
and 39). The convective, or eddy turn-over, time estimates the
time for the largest scale eddy to perform a full 360◦ revolu-
tion. The diffusion time is the time for momentum to diffuse
a distance L in a single diffusive time unit. The Hartmann
damping time is the time for the magnetic field to change the

FIG. 5. Grid independence study at Rem = 200.
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FIG. 6. Kinetic energy over time.

originally three-dimensional flow to a Q2D configuration. The
magnetic diffusive time, or resistive decay time, is the time for
the magnetic field to diffuse a distance L in a single magnetic
diffusive time unit.

In the present context of finite Rem MHD flows, the effect
of increasing tm by increasing Rem is of particular interest.
This effect is shown in Figs. 6 and 7 in the form of the kinetic
and magnetic energy versus time using Rem as a parame-
ter. First, the integral kinetic energy increases from zero to
a local maximum, then decreases, and saturates to an asymp-
totic steady-state value. Interestingly, the steady-state kinetic
energy is nearly the same across almost all Rem range despite
an increasing difference in the kinetic energy with increas-
ing Rem during the transition period (Fig. 6). Obviously, the
flow reaches a steady state more quickly at low Rem. This
agrees with observations seen in kinematic MHD studies at
Rem = 1000 by Ref. 29. Despite having nearly the same
steady-state integral kinetic energy, the steady-state veloc-
ity and magnetic field distributions vary across the range of
Rem, as will be shown in later sections. This suggests that at
Rem . 1000, the integral kinetic energy serves as an invariant
in this MHD LDC flow problem. At the highest Rem of 1500
and 2000 in the study, the steady state was not achieved such
that the effect of Rem on the integral kinetic energy was always
present.

FIG. 7. Induced magnetic field energy over time.

FIG. 8. Ratio of steady-state induced to applied magnetic field energy vs.
Rem.

The behavior of the integral magnetic field energy as
Rem increases is different (Fig. 7). The magnetic field energy
is always dependent on Rem regardless of whether the flow
reaches a steady state or is in a transitional phase. The tempo-
rally asymptotic integral induced magnetic field energy in the
fluid and its components are plotted in Fig. 8 versus Rem in
the form of a Root-Mean-Square (RMS), scaled by either the
total or applied magnetic field. The RMS is computed using
the following formula:

RMS(χ,Υ) =

√
∫Ωf luid

χdΩ√
∫Ωf luid

ΥdΩ
. (22)

Here, χ and Υ are dummy scalar fields. Figure 8 clearly
demonstrates that the magnetic field behavior is nearly linear
in a range of Rem up to roughly 500 and then begins to resemble
an exponential growth. Another useful observation is that the
induced magnetic field reaches the magnitude of the applied
one at Rem ≈ 850. Interestingly, the non-linear behavior and
unsteadiness also become pronounced at about the same Rem,
possibly indicating that the most substantial modifications of
the flow start as soon as the induced and applied magnetic
fields become nearly equal.

D. Applicability of the inductionless approximation

In the MHD flows where the Rem is small, the induced
magnetic field is small and can be neglected compared to the
applied one. Also, convection of the magnetic field is negligi-
bly small compared to diffusion and can be neglected. In such
conditions, the governing equations are simplified to the induc-
tionless form as briefly discussed in Sec. I. The applicability
of the inductionless approximation depends on the magnitude
of Rem. Typically, the inductionless approximation is valid
if Rem � 1 (see Refs. 17 and 40). However, some authors
claim that accurate results can be obtained using the induc-
tionless approximation even for Rem of the order of unity (see
Refs. 40 and 41). The results of the present study demonstrate
that for the reference MHD LDC flow, the range of applica-
bility of the inductionless approximation depends on whether
or not the flow is in a steady state. For unsteady flows, as
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shown in Sec. IV C, the effect of Rem on the flow can be
neglected only if Rem � 1. If the flow reaches the steady state,
the situation is different. Namely, the steady-state integral
kinetic energy becomes independent of the Rem for even high
Rem ∼ 102, while the induced magnetic field changes linearly
with Rem values up to ∼500. This may suggest that the induc-
tionless approximation is still valid, but this idea cannot be
fully justified without looking carefully at the distributions
of the velocity, induced magnetic field, and induced currents.
This was done in the present section for Rem � 1, Rem = 1,
100, 500, and 1000, for which the solution had converged to
the steady state.

The effect of Rem on the steady-state velocity distribu-
tions as a function of x and y is illustrated in Fig. 9. Clearly,
for 0 < Rem < 100, the effect of Rem is very small. In fact,
differences between velocity curves plotted at Rem � 1 and
Rem = 1 are nearly indistinguishable, and differences between
Rem = 1 and Rem = 100 are very small. Significant changes
in both u and 3 velocity components are, however, seen at
Rem = 500 and 1000. The u component has a larger overshoot
at higher Rem compared to lower Rem near the lid [Fig. 9(a)].
The 3 component of velocity is more oscillatory along the
x-direction [Fig. 9(c)] at higher Rem values compared to lower
ones.

A normalized induced magnetic field was computed,

β1 =
B1−min(B1)

max(B1)−min(B1)
, to compare the relative values of the dis-

tributions at various Rem. Due to anti-symmetry of the x and y
components of the magnetic field, and the existence of a steady
solution, the minimum and maximum are equal with opposite

sign [min(Bx) = −max(Bx) and min(By) = −max(By)]. The
shape of the magnetic field distribution does not significantly
change between Rem � 1 and Rem = 100 [Figs. 10(a), 11(a),
12(a), 10(b), 11(b), and 12(b)], suggesting a solution with
pronounced self-similarity. However, the magnetic field dis-
tribution does change shape at larger Rem values [Figs. 10(c),
11(c), 12(c), 10(d), 11(d), and 12(d)], indicating a change in
electric current paths and the transition out of the self-similar
solution regime.

Similar trends were observed in the distributions of the
induced electric current in Figs. 13 and 14. The x and y com-
ponents of electric current along the x and y directions have
very complicated distributions and follow very similar behav-
ior for 0 < Rem < 100 cases [see Figs. 13(a)–13(d)]. The x and
y components of electric current are nearly zero in the fluid
domain along the z direction but are significantly larger in the
conducting walls [Figs. 14(a) and 14(b)]. The z component of
electric current varies quite rapidly, even between Rem � 1
and Rem = 100, along the z direction [Fig. 14(c)] demonstrat-
ing one or two inflection points depending on Rem. However,
the sensitivity of the electric current distribution with respect
to Rem may be high due to the low magnitude of the electric
current in this particular cut-line.

To conclude this section, it appears that the inductionless
approximation is applicable in the range 0 < Rem . 100, pro-
vided that the flow is in steady state. In this range, the Rem

has almost no effect on the velocity field and induced electric
current distributions, while the induced magnetic field demon-
strates similarity and changes linearly in magnitude with Rem.

FIG. 9. The u component of velocity
along the x (a) and y (b) directions and
3 component of velocity along the x (c)
and y (d) directions in the cavity center.
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FIG. 10. The x component of the normalized induced magnetic field contours
at x = 0 for (a) Rem � 1, (b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

E. Two-dimensionality

The tendency of low Rem MHD flows to become Q2D
under the influence of a strong magnetic field is well known
(see Ref. 42); however, whether or not the same tendency
remains at higher Rem, compared to inductionless flows, is
not clear, neither in general nor in the particular case of
the MHD LDC flow. Typically, at Rem � 1, applying a
strong magnetic field to a wall-bounded flow results in flat-
tening of the velocity profile along the magnetic field lines,
suppression of the velocity component in the direction of the

FIG. 11. The y component of the normalized induced magnetic field contours
at x = 0 for (a) Rem � 1, (b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

FIG. 12. The z component of the normalized induced magnetic field con-
tours at x = 0 for (a) Rem � 1, (b) Rem = 100, (c) Rem = 500, and
(d) Rem = 1000.

applied magnetic field, and formation of thin boundary Hart-
mann layers. The thickness of the Hartmann layer at the walls
perpendicular to the applied magnetic field scales as 1/Ha.
Eventually, if the magnetic field is strong enough, such a flow
exhibits a 2D core where the velocity is fairly uniform, while
the 3D effects are localized within a small portion of the flow,
including the BLs at the flow confining walls and possibly in
thin internal shear layers. At high or even moderate Rem, the
induced magnetic field becomes comparable with the applied
one and can even exceed the applied field as demonstrated in
the present study (Fig. 8). Obviously, the Q2D flow structure
typical to low Rem flows is no longer necessarily compati-
ble with the electric current, magnetic field, and associated
Lorentz force distributions at sufficiently higher Rem as more
complex flow features might be expected.

Present computations for the MHD LDC flow clearly
indicate that as Rem increases, the flow becomes more three-
dimensional [Figs. 15(c), 15(d), 16(c), 16(d), 17(c), 17(d), and
18]. This effect is in agreement with two-dimensionalization
due to decreasing Rem in turbulent duct MHD flows at
finite Rem seen in Ref. 17. In the present study, the local
two-dimensionality was measured by computing a parameter
P2D = |u − ucenter |, where ucenter is the velocity at the cavity
center (the z = 0 plane) and is a function of x and y. P2D was
plotted as a function of z at x = 0 and y = 0 in Figs. 19(a)–19(c).
Results show that the flow is mostly two-dimensional when
Rem = 0 and becomes more three-dimensional as Rem

increases.
The two-dimensionality at low Rem can also be observed

via the induced magnetic field. From the central plane in the
x-direction of the driven cavity flow, the induced magnetic
field appears similar to that in two duct flows in oppos-
ing directions [Figs. 10(a) and 10(b)], and from this, the
two-dimensionality can clearly be observed. Similar to the
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FIG. 13. The x component electric current along the x
(a) and y (b) directions and y component electric current
along the x (c) and y (d) directions in the cavity center.

velocity field, the induced magnetic field shows more three-
dimensionality [Figs. 10(c) and 10(d)] at Rem higher than
∼100.

Formation of Hartmann layers is another peculiarity of
wall-bounded MHD flows at low Rem. The 3 component of
velocity, plotted along z at x = 0 and y = ±0.8 in Figs. 20(a)

FIG. 14. The x (a), y (b), and z (c) components of electric
current along the z direction in the cavity center for half
of the domain.
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FIG. 15. The u component of velocity contours at x = 0 for (a) Rem � 1,
(b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

and 20(b), respectively, demonstrates the classic MHD veloc-
ity profile with a uniform core and distinctive Hartmann layers
for 0 < Rem . 100. While a Hartmann BL still seems to exist
at the wall for higher Rem cases, due to the no-slip condition,
the distribution in the center of the cavity no longer resembles
a “core flow.” As a result, it is difficult to draw general conclu-
sions about how the Hartmann BL is affected by the change in
Rem in the range presented.

F. Frozen magnetic field lines and flux expulsion

In the high Rem limit, the total magnetic field becomes
frozen to the velocity field and, therefore, magnetic field

FIG. 16. The 3 component of velocity contours at x = 0 for (a) Rem � 1,
(b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

FIG. 17. The 4 component of velocity contours at x = 0 for (a) Rem � 1,
(b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

lines become purely tangential at the driving lid (see Ref. 1).
This trend is clearly observed in the present computations
as shown in Fig. 21, where total magnetic field lines are
traced in a grid of 10 × 10 points at z = −1.05 and fol-
low the path to the other end of the cavity at z = 1.05.
Naturally, in Fig. 21(a), the induced magnetic field strength
is negligible at Rem � 1, so the total applied magnetic
field lines pass straight through the cavity. Alternatively, at
higher Rem, in Figs. 21(b)–21(d), the induced magnetic field
is non-zero and distorts the total magnetic field lines as
they pass through the cavity. Expectedly, the severity of the
magnetic field line stretching is proportional to Rem. Inter-
estingly, stretching of the total magnetic field lines appears
to be most apparent near the (x, y) = (1, −1) corner at
Rem = 100, rather than regions of largest velocity (near
the lid).

It is noteworthy that the z component of the induced
magnetic field is primarily negative in the fluid domain
[Figs. 22(a), 22(b), and 23(c)]. This negative magnitude of the
induced magnetic field conceptually agrees with the magnetic
flux expulsion at high Rem, where the total magnetic field is
expelled from the moving conducting fluid. Even at high Rem,
the z component of the induced magnetic field only reaches
approximately −0.2, which is only 20% of full expulsion
(of B1

z = −1) in the fluid domain.

G. Magnetic field penetration into the vacuum

The induced magnetic field can penetrate far beyond the
conductor and even into the vacuum. The depth at which the
induced magnetic field penetrates into the vacuum is of inter-
est because this provides useful information about the validity
range of approximate local magnetic BCs, in particular of
the PV BCs as discussed in this paper earlier. In the case
of a dipole magnetic field, very far from the center of the
dipole, the field strength decreases with the inverse-cube of the
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FIG. 18. The u (a), 3 (b), and 4 (c) components of veloc-
ity along the z direction in the cavity center for half of the
domain.

distance (1/|r|3) but may differ for more complicated magnetic
field distributions as in the reference case of the MHD LDC
flow.

The farther the magnetic field penetrates into the vac-
uum, the larger the computational domain must be to sat-
isfy the physically accurate far-field magnetic BCs B1 = 0

FIG. 19. The two-dimensionality parameter P2D of the
u (a), 3 (b), and 4 (c) components of velocity along the z
direction in the cavity center for half of the domain.



067103-15 Kawczynski, Smolentsev, and Abdou Phys. Fluids 30, 067103 (2018)

FIG. 20. The 3 component of velocity near along the z
direction at y = 0.8 (a) and y =−0.8 (b) in the cavity center
for half of the domain.

FIG. 21. Total magnetic field lines
traced in a grid of 10 × 10 points from
z = −1.05 to z = 1.05, along the applied
magnetic field direction for (a) Rem � 1,
(b) Rem = 100, (c) Rem = 500, and (d)
Rem = 1000. The magnetic field lines
begin to become frozen to the flow as
Rem increases.

FIG. 22. Magnetic field distributions along the x (a) and
y (b) directions in the cavity center.
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FIG. 23. The x (a) y (b), and z (c) components of mag-
netic field along the z direction in the cavity center for
half of the domain.

at “infinity.” Furthermore, there is interest in how the mag-
netic field penetrates into the vacuum and what is the amount
of energy associated with the magnetic field penetrating into
the vacuum domain. That is, the induced magnetic field has
interface-normal and tangential components, while the tan-
gential component is fully ignored in the approximate PV
BCs. Therefore, the ratio of tangential to perpendicular com-
ponents of the induced magnetic field across the interface
is of interest to better understand the range of validity of
approximate induced magnetic field BCs against the full RV
BCs.

First, we analyzed the decay of the induced magnetic field
in vacuum. The 1/|r|3 decay of the induced magnetic field in the
vacuum domain was confirmed using a least-square fit of the
induced magnetic field magnitude along the x-direction, which
resulted in exponents (3.22, 3.15, 3.13, 3.13, 3.16, 3.21, 3.29,
3.41, 3.54, and 3.52) for Rem = 100, . . ., 1000, respectively.
This result suggests that the induced magnetic field in the ref-
erence LDC problem is of a dipole type and confirms that our
model of the physical system is accurately capturing the decay
of the induced magnetic field. Furthermore, this is additional
evidence that the domain size used is sufficiently large such
that formulating the magnetic field BC at the boundaries of a
truncated domain does not disturb the induced magnetic field
nor the velocity distribution in the flow domain.

H. Energy balance and distribution
as Rem increases

The only power input to the system is via the shear-driven
lid (Ref. 43),

P =
∫
Γlid

uτwdΓ. (23)

Here, τ4 = Re−1∂yu is the driving lid shear stress. Therefore,
the power input depends on Re and ∂yu (i.e., depends on the
solution) and is therefore variable in time and space on the
driving lid.

This power input is a continuous source for kinetic and
magnetic energy and also accounts for dissipation losses as
seen from the following equations showing the energy balance
in the entire domain, including moving liquid, solid conducting
wall, and surrounding vacuum:

∂tEK = ĖCK + Ėp + ĖDK + ĖΦ + ĖKE
CM

+ ĖKE
MS

, (24)

∂tEM = Ėj + ĖP + ĖME
CM

+ ĖME
MS

. (25)

Here, Ėp, ĖCK , ĖDK , ĖΦ, ĖCM , ĖMS , Ėj, and ĖP are the com-
ponents of the energy balance associated with pressure, con-
vection of kinetic energy, diffusion of kinetic energy, viscous
dissipation, convection of magnetic energy, Maxwell stresses,
Joule heat, and radiation (Poynting term), respectively. The
mathematical definitions of these terms are

ĖP = Al∇ ·

[(
u × B −

j
σ

)
× B

]
, Ėp = ∇ · (up),

ĖME
CM
= (u · ∇)EM , ĖCK = −(u · ∇)EK ,

ĖME
MS
= −Alu · (B · ∇B), ĖDK =

1
Re
∇2EK ,

Ėj = −AlRem
j2

σ
, (26)

ĖΦ = −
1

Re
(∇u) : (∇u),

ĖKE
CM
= −(u · ∇)EM ,

ĖKE
MS
= Alu · (B · ∇B).

(27)
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It is worth noting that ĖKE
MS

and ĖME
MS

, and ĖKE
CM

and ĖME
CM

are
equal with opposite signs, respectively.

Equations (24) and (25) are written in a dimensionless
form using the same scales such that all energy, dissipation,
and other terms can be directly compared. The physical repre-
sentation of most terms in Eq. (25) are discussed in Ref. 1 and
not repeated here.

The convection and pressure terms spatially integrate
(over the entire domain) to zero and do not add nor remove
energy from the system. At steady state, the unsteady terms
are zero. The volume integral of the Poynting term can be
converted into a surface integral and thus can be viewed as
a source of magnetic energy to penetrate into the vacuum,
Al ∫Γc

[(u × B − j
σ ) × B] · ndΓ. The Poynting term is zero

at steady state also, with the following explanation. Consider
Eq. (25) in the vacuum in proximity to a conductor. No elec-
tric currents exist, and no material is moving, so the only
remaining terms are the unsteady and Poynting terms. There-
fore, the Poynting term spatially integrates to zero at steady
state. Thus, the only remaining non-zero terms in Eqs. (24)
and (25) after spatially integrating at steady state are ĖDK , ĖΦ,
ĖMS , and Ėj. These remaining terms were plotted in Fig. 24(a).
Interestingly, the Joule heat varies noticeably with changes in
Rem and reaches a local maximum at Rem = 1000. This also
means, however, that more energy is converted from kinetic
energy to magnetic energy, through the Maxwell stress term, at
Rem = 1000 compared to Rem = 2000. Also, the steady-
state integral kinetic and induced magnetic field energies were
plotted together as a function of Rem in Fig. 24(b).

The striking result from Fig. 24(b) is that the kinetic
energy varies very little across a large range of Rem (up to
Rem = 1000). The magnetic energy grows most rapidly, and the
Joule heating also increases noticeably, but for Rem < 900, the
kinetic energy of the moving liquid is always higher than that
of the induced magnetic field. Based on the computations up
to Rem = 1000, the steady-state induced magnetic field energy
in the fluid can be roughly estimated using the following cubic
formula:

ME(Rem)|Ωf = 2.1 × 10−11Re3
m − 2 × 10−8Re2

m

+ 2.8 × 10−5Rem − 5.6 × 10−5. (28)

Using this formula, the kinetic and magnetic energies can be
estimated to become equal at Rem = 1320.13. Additional com-
putations were carried out at Rem = 1500 and Rem = 2000,

FIG. 25. The steady-state magnetic energy in different domains.

which revealed that the transition from the kinetic energy-
dominated regime to the magnetic energy-dominated regime
does not occur due to significant growth in the kinetic energy
and a decrease in the nominal growth of the induced magnetic
field energy. Besides, these additional computations resulted
in non-symmetric (with respect to the z = 0 plane) and unsteady
flows. Due to the non-symmetric flow, both computed cases
for Rem = 1500 and Rem = 2000 were computed using the
full three-dimensional geometry, unlike many computed cases
at lower Rem, which utilized symmetric and anti-symmetric
BCs.

Another interesting feature of the energy balance is the
distribution of the magnetic energy between the conducting
domain (fluid and containing walls) and the vacuum. The mag-
netic energy was computed in each of the domains and is
plotted in Fig. 25. Interestingly, the magnetic energy in the
fluid is between 1 and 2 orders of magnitude larger than that
of the wall and vacuum, which are within an order of magni-
tude of each other, for all Rem, and the magnetic energy seems
to increase with Rem at the same rate in all of the domains
equally.

Iso-surfaces of the steady-state kinetic energy and induced
magnetic field energy are plotted in Figs. 26 and 27, respec-
tively, to analyze the energy in more detail. The velocity
streamtraces (Fig. 26) show a contorted path, which changes
shape with increasing Rem. Obviously, most of the kinetic and
magnetic energy is localized near the driving lid. In the liq-
uid, the kinetic and magnetic energies resemble a “j”-shape
and roughly coincide with each other at lower Rem (Figs. 26
and 27). At higher Rem, the “j”-shape structure of kinetic and
magnetic energy breaks down.

FIG. 24. Graphical representation of energy and energy
components. The flows at Rem = 1500 and Rem = 2000
are unsteady. Values were computed at the last time step
for points shown without variation bars. (a) Spatially inte-
grated energy balance components in Eqs. (24) and (25).
(b) The steady-state kinetic and induced magnetic field
energies.
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FIG. 26. Kinetic energy iso-surfaces and 3D velocity streamlines for (a) Rem = 1, (b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

I. Linear and non-linear dynamo tests

In this section, tests for a kinematic and full dynamo are
presented. For the kinematic dynamo test, the fluid flow equa-
tions are solved first in the absence of the Lorentz force until the
flow has reached a statistically steady state. Then, the veloc-
ity is fixed in time, and the induction equation is solved for
the given instantaneous velocity distribution. In the dynamo
theory, MHD flow is considered to be a kinematic dynamo if
the induced magnetic field increases without bound. Based on
the computed results in Fig. 28, the magnetic field first grows
in time and then reaches a steady-state value for Rem . 700.
For all Rem & 700, the induced magnetic field keeps growing
in time without reaching a steady state for maximal compu-
tational time of 600. For all computed cases, the maximum
induced magnetic field is significantly higher than the applied
one. For example, in the highest Rem case of Rem = 2000,
the maximum induced magnetic field is more than 200 times
higher than the applied one. Based on these observations, we
believe that this flow has ingredients for a kinematic dynamo.

The growth rate of the induced magnetic field increases
with Rem. It is, however, difficult to precisely determine the
critical magnetic Reynolds number, Remcrit , above which the
flow demonstrates kinematic dynamo action because only a
few cases were computed. The number of cases was limited
due to a high computational cost and a need for very long
computations until the magnetic field reaches the asymptotic
behavior. Another limitation for Rem values above 2000 is
that the induced magnetic field penetrates further into the vac-
uum, requiring an even larger computational domain to permit
B1 = 0 at Γt .

For the full dynamo test, the coupled MHD equations
are solved until the flow reaches a statistically steady state,
and then, the applied magnetic field is abruptly turned off.
The MHD flow is considered to be a full dynamo if the
induced magnetic field is sustained after the applied field is
turned off. A full dynamo occurs when the transfer of kinetic
energy, which is injected into the system via the driving lid,
into magnetic energy persists when the applied field is turned
off. To our knowledge, a LDC flow has never been shown to
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FIG. 27. Induced magnetic field energy iso-surfaces and streamtraces for (a) Rem = 1, (b) Rem = 100, (c) Rem = 500, and (d) Rem = 1000.

demonstrate, let alone tested for, dynamo physics. This test
was only performed at Rem = 2000 (see Fig. 29) since these
computations are very expensive. The applied magnetic field
was turned off at t = 543.255. Interestingly, there is a region of

FIG. 28. Induced magnetic field energy vs. time for kinematic dynamo test.

B1 energy growth at around t = 600, which seems to be a turn-
ing point where the B1 energy drops below the B0 energy. The
B1 energy reaches a minimum of EB1 (Ωf , t = 598.5) = 0.011

FIG. 29. Kinetic and induced magnetic field energies vs. time for the full
dynamo test at Rem = 2000. B0 was turned off at t = 543.255.
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and starts to significantly increase to a local maximum of
EB1 (Ωf , t = 607.3) = 0.0123, after which the B1 energy
continues on its nearly monotonic decent to zero.

V. CONCLUDING REMARKS

In this study, we numerically solved the coupled fluid flow
and electromagnetic equations using the full induction MHD
formulation for a LDC flow of viscous, incompressible liquid
subject to a strong magnetic field, which is parallel to the mov-
ing lid and perpendicular to the lid velocity vector. The primary
focus in the study was on the effect of the magnetic Reynolds
number on the flow inside an electrically conducting square
cavity driven by a moving lid and on the magnetic field gen-
erated by the flowing liquid. To address such effects, the Rem

was changed in the computations from low values typical to the
inductionless approximation (Rem � 1) to moderate and even
high Rem (up to 2000) for which dynamo-type physics might
be expected, while the hydrodynamic Reynolds number and
the Hartmann number were constant, at 2000 and 100, respec-
tively. The computational domain included the electrically
conducting fluid, surrounding solid walls, and an outer vac-
uum domain, which is sufficiently large to ensure physically
correct far-field magnetic BCs. First, a new three-dimensional
numerical code was developed and carefully tested using the
induced magnetic field as the primary electromagnetic vari-
able, and then, the code was applied to the LDC flow to reveal
for the first time specific flow physics associated with finite
Rem, which was found to be very different from both the
purely hydrodynamic flows and MHD flows at low Rem. Many
new interesting features have been observed with regard to the
effect of Rem on the MHD BL and the bulk flow, generation
of a magnetic field and its penetration into vacuum, energy
balance (including kinetic and magnetic field energy distribu-
tions), frozen magnetic field behavior and associated magnetic
field expulsion from the fluid domain, transition to unsteady
flows, and self-excitation of the magnetic field and the asso-
ciated dynamo-type action at high Rem. In addition to these
interesting observations, we expect that the detailed velocity
and magnetic field distributions obtained in this study for the
variety of Rem will help to establish a new database necessary
for the benchmarking of existing and new full induction MHD
codes, which are needed for successful advancement of several
important applications such as liquid metal blankets of fusion
power reactors.

A summary of changes that happen in the flow and associ-
ated flow and magnetic field features as Rem is increased from
much less than unity to the maximum value (Rem = 2000)
employed in the present computations is the following. First
of all, we have noticed a significant difference in the effect
of Rem on the flow between steady and time-dependent flows,
including truly unsteady flows and those transitioning from
the initial condition to a steady state. In steady-state flows,
we observed that the Rem effect on the flow is negligible for
Rem . 100 as seen from the integral kinetic energy versus Rem

plotted in Fig. 24(b) and from the velocity distributions shown
in Fig. 9 for several Rem values. At the same time, the induced
magnetic field in this range of Rem changes linearly in mag-
nitude with Rem, but its distribution is qualitatively the same.

Moreover, the induced magnetic field is much smaller com-
pared to the applied one in this Rem range. These observations
suggest that the inductionless approximation is still valid (at
least for particular values of Re and Ha used in this study)
even for Rem ∼ 1 and higher, 1 < Rem . 100. This conclu-
sion, however, is not applicable to time-dependent flows, for
which the validity of the inductionless approximation seems
to be limited to the conventional restriction Rem � 1. Similar
trends can be expected for time-periodic flows, i.e., the induc-
tionless approximation for such time-dependent flows should
be limited to Rem � 1.

All computed solutions eventually converged to a steady
state except for two cases at the highest Rem = 1500 and
Rem = 2000. The flow is steady for 100 . Rem . 1000, but
the magnetic Reynolds number has a non-linear effect on the
flow as seen from the magnetic field plot in Fig. 24(b) and
Eq. (28), which approximates the integral induced magnetic
field in the flow domain as a cubic polynomial of Rem. Clearly,
the inductionless approximation is not valid for Rem > 100.
The magnetic energy grows fast as Rem is increased, while
the kinetic energy almost does not significantly change. The
kinetic energy and the magnetic energy were estimated to
become equal at Rem = 1320 [based on Eq. (28)], based
on the behavior of the induced magnetic field in the range
0 ≤ Rem ≤ 1000. However, additional computations revealed
that the flow remains in the kinetic energy-dominated regime at
Rem = 1500 and even Rem = 1500, where a significant increase
in the integral kinetic energy and a nominally lower increase in
the induced magnetic field energy occur. In addition, the flow
becomes unsteady and results in full three-dimensional (non-
symmetric with respect to the z = 0 plane) solutions. Another
characteristic value is Rem ≈ 850 such that for all Rem higher
than 850, the averaged magnetic field in the flow domain is
higher than the applied one as seen in Fig. 8.

Magnetic Reynolds numbers higher than 100 were found
to have a substantial effect on the flow structure. Both the Hart-
mann layers and the 2D bulk flow typical to low Rem, or high
Ha, MHD flows seem to experience significant modifications
compared to the flows for which the inductionless approxi-
mation is valid. In particular, our results show that the flow
is mostly two-dimensional (except for the Hartmann layers)
when Rem < 100 but becomes more three-dimensional as Rem

increases. Although the analysis was limited to Ha = 100, we
expect that increasing Ha would result in returning 2D features
even at high Rem, but this needs to be further studied.

A distinguished feature of the induced magnetic field is its
penetration into the vacuum domain. The computations show
that the behavior of the magnetic field in the insulating outer
domain is similar to that of the magnetic dipole. Namely, far
from the liquid domain where the magnetic field is generated,
the magnetic field strength drops very fast—as one divided
by the cubic distance from the conductor, in agreement with
the Biot-Savart law. In doing so, about 97% of the induced
magnetic energy is located in the conducting domain for all
Rem. About 4% of the energy is located in the conducting wall,
and at most 3% of the energy is located in the vacuum (Fig. 25).

The observed changes in the flow and magnetic field
behavior at high Rem ∼ 102–103 (non-linearity, unsteadiness,
kinetic energy dominating over magnetic energy, and high
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magnitudes of the induced magnetic field) motivated us to
perform special tests to see whether or not the LDC flow
can exhibit a dynamo action. Two particular numerical exper-
iments were conducted to check for linear (kinematic) and
non-linear dynamos. In the kinematic dynamo test, the full
induction problem was solved for a given hydrodynamic veloc-
ity field computed in the absence of the Lorentz force. Results
suggest that the MHD LDC flow may exhibit a kinematic
dynamo action above a critical Rem. In the non-linear dynamo
test, the coupled MHD equations are solved until the flow
reaches a statistically steady state, and then, the applied mag-
netic field is abruptly turned off. This test was only performed
at Rem = 2000 since such computations are costly. Although no
dynamo action was demonstrated, a local peak in the magnetic
energy was observed, suggesting that the full dynamo might
be possible at higher Rem.

The results obtained in this study for moderate and high
Rem are also useful for implementation of approximate PV
BCs as briefly discussed in Sec. II C. It is important to note
that PV BCs are the true BCs for Rem� 1 (Ref. 17) but incom-
patible with the moving lid BC in the high Rem limit. In this
limit, magnetic field lines become frozen to the velocity field
and, therefore, magnetic field lines become purely tangential
at the driving lid. Pseudo-vacuum magnetic BCs enforce the
magnetic field lines to stretch perpendicular to the boundary.
The Rem = 1 case [see Fig. 27(a)] nearly matches the case of
PV BCs. Contrastively, RV BCs allow non-zero tangential field
components [Figs. 27(b)–27(d)]; therefore, we can expect to
see significantly larger differences in the results between PV
and RV BCs as Rem is increased. Obtaining the Rem limits
for the use of the approximate PV BCs is an important practi-
cal goal as utilization of such BCs would allow much cheaper
computations that do not require solving the induction equa-
tion in the outer domain. Although no full systematic studies
on the comparison of different BC types were performed in
the present study, our results suggest that the PV BCs should
be applicable to steady-state flows for Rem up to several hun-
dreds until frozen magnetic field effects become pronounced.
A dedicated, detailed study is needed in the future to address
this issue for different flows and flow regimes, in particular, for
unsteady flows, for which applicability of the PV BCs seems
to be more limited compared to steady-state flows.

Regarding the use of BCs, another useful observation is
the electric current distribution in the thin conducting wall.
Namely, for inductionless flows, it is typical to use thin con-
ducting wall approximation. It is most likely that the thin
conducting wall approximation still holds at finite Rem as the
validity of this approximation is based on the specific current
distribution associated with a small wall thickness when the
current enters the wall from the liquid and then turns and flows
almost tangentially through the wall. The thin-wall BCs are a
geometric constraint on the system, which in our case remains
unchanged regardless of Rem.
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