

Task III

Practical Engineering Issues Associated with the Design of a Liquid Wall

Status of Configuration Studies for CLiFF / Flibe System in ARIES - RS

P. Fogarty, B. Nelson

APEX Electronic Meeting March 24, 2000

Presentation Outline

- Goals and Requirements
- Overall Configuration
- Components and systems
 - Fast Flow

APEX

- Blankets and piping
- Divertor, Penetrations, and Pumping
- Assembly and maintenance

Issues and Summary

Why do we need a damage resistant blanket & first wall?

- Goals for First Wall and Blanket design include:
- High power density
- High tritium breeding ratio
- High temperature for good power conversion efficiency
- High availability (tolerant of some failures, long life, quick repair times, etc.)
- Low activation

- Conventional designs using solid walls do not presently meet all goals
- Power density may be too low or
- Walls are too thin or
- Refractory materials are not low activation

APEX

"Bag" concept with thin liquid layer addresses most issues

First Wall:

- Thin layer of fast moving Flibe (~ 2 cm thick at 10 m/s)
- Temperature ~ 465 C to minimize vapor pressure

Blanket

- Thick zone of slower moving Flibe
- Flibe contained in flexible structure woven from SiC fibers ("bags")
- Temperature ~ 600C, with multiple zones for better flow control
- Bags fed from bottom
- Any hot liquid that leaks from bag is cooled by fast liquid layer
- Bags expand to close sector to sector gaps
- No halo currents into structure (and minimal load asymmetry) with SiC Flibe system
- Extra beryllium included in 10 cm zone, 10 cm from front of bag to improve breeding
- Passive stabilizers woven into bag around Be zone

CLiFF Configuration showing coolant flows & vacuum pumping regions

APEX

TF Coil Vacuum Vessel Shield Zone 2 Bags Zone 1 Bags Fast Flow First Wall Antenna Divertor

CLiFF "Bag" Concept Configuration and Assembly Sequence

Sector Installation / Maintenance

APEX

Sector Module is shown withdrawn from its vacuum vessel port location

Except for removable divertor & film former cassettes, all other components are an integral part of the Shield Assembly

Vacuum Vessel

Removable support track for Divertor Cassette maintenance

Vacuum Vessel Module 22.5 degree Segment

APEX

Drain / Pump Duct Shield Sleeve

> Structural rib with mounting holes that attach the Shield Modules together on the outboard side

Assembly Sequence

Shield Module

Assembly Stage 1

APEX

Structural flange for attaching the Shield Modules together on the outboard side

SiC "bag" is damage resistant and it has low activation

• Bag is woven from Sic fibers

- Structure remains flexible, even though material is very brittle
- No, or very minimal thermal stress
- SiC fabric is commercially available
- Small leaks from bag should not be a fatal problem, since vapor pressure is suppressed by cooler flow over surface

Inboard Bags

Assembly Stage 2

(10) Inboard Blanket "Bags" with each having separate temperature zones and individual coolant piping for adjusting flow rates when needed

Coolant Flows

Inboard Bags Installed in Shield Module

Inboard Lower Piping Configuration

Flat to Round Piping Transition

Outboard Bag Assembly Shown Installed

Film Forming Cassette

APEX

Assembly Stage 4

Film Forming Cassette Assembly

Film Forming Cassette Shown Installed

Complete Segment Assembly

Underneath View Showing Drain / Vacuum Pumping Duct

Piping Arrangement

I.B. Shield Outlet I.B. Bags Outlet Film Forming Cassette I.B. Fast Flow Inlet O.B. Fast Flow Inlet O.B. Bags Outlet O.B. Shield Outlet Shield Module O.B. Bags Inlet O.B. Shield Inlet Antenna **Divertor Cassette** Vacuum Pump Duct I.B. Bags Inlet I.B. Shield Inlet Drain / Vacuum Duct

Pipe summary for CLIFF Flibe case

	Power to							
	Circuits per			Flow rate	# Circuits	Pipe size (I.D.)		
Circuit type	sector	T inlet	T outlet	/ sector	per sector			Velocity
	(MW)	(C)	(C)	(m^3/s)		(cm)	(inches)	(m/s)
First wall fast flow								
IB (inboard)	30.4	500	529	.251	3	15.2	6.0	4.6
OB (outboard)	57.1	500	527	.511	3	20.3	8.0	5.2
Flow under penetration	3.47	500	516	.0524	1	12.7	5.0	4.1
"Bag" blankets								
IB, plasma side	17.6	530	601	.0509	10	5.08	2.0	2.5
IB, coil side	19.4	530	601	.0562	10	4.62	1.8	3.4
OB, plasma side	34.9	530	600	.102	15	4.88	1.9	3.6
OB, coil side	43.3	530	600	.127	15	5.08	2.0	4.2
IB, divertor, plasma side	4.47	530	600	.0132	2	5.08	2.0	3.2
IB divertor, coil side	2.32	530	601	.00673	2	3.81	1.5	3.0
OB divertor, plasma side	12.7	530	601	.0368	2	8.89	3.5	3.0
OB divertor, coil side	14.6	530	601	.042	2	10.2	4.0	2.6
Divertor sled								
IB structure	2.76	530	550	.029	1	10.2	4.0	3.6
OB structure	.0783	530	550	.0008	1	5.08	2.0	0.4
Film former cassette body	10.2	530	550	.105	1	20.3	8.0	3.2
Penetration	16.3	530	600	.0480	1	20.3	8.0	1.5
Main shield								
IB shield	.319	530	540	.0065	1	7.62	3.0	1.4
OB shield	.0977	530	540	.002	1	5.08	2.0	1.0
Vacuum vessel								
IB Vessel	.0861	530	535	.0035	1	7.62	3.0	0.8
OB Vessel	.0166	530	535	.0007	1	5.08	2.0	0.3
Total power per Total power all s	sector 270 sectors 4320) MW 0 MW						

General Design Requirements

Function	Requirement	Value/Goal		
Power Extraction	Neutron Wall Load Surface Heat Flux	7 MW/m ^ 2 avg* 10 MW/m ^ 2 peak* 2 MW/m ^ 2*		
Tritium Breeding	Self Sufficient	TBR > 1		
Shielding	Radiation exposure of coils (insulation) Nuclear heating of coils (sc cable) Re-weldable confinement boundary	< 1x10 ⁹ Rad < 1kW/m ³ < 1 appm He		
Vacuum	Compatible with plasma - Base partial pressure, non-fuel - Base pressure, fuel (H,D,T)	< 1x10 ⁻⁹ Torr < 1x10 ⁻⁷ Torr		
Plasma Exhaust	Divertor required	to remove helium		

Design Requirements (cont'd)

Penetrations	Plasma Heating Power Density - NBI - ICH Diagnostics	2 ~4 MW/m 2 ~6 MW/ m viewing through Labyrinth / mirrors		
Operating Parameters	Pulse Length Number of pulses Disruptions	Steady State < 3,000 TBD		
Availability	Maximize total availability	A _{plant} > .75 A _{blanket} / _{FW} > .98		
Safety	Confinement Boundaries	At least 2		

* Values are minimum goals for steady state operation

Estimated IB Blanket Heating Most heat is deposited in first 10 cm

Integrated Power (MW) in Zones of the IB Blanket Flibe Coolant, SiC Weave, ARIES-RS Configuration

Estimated OB Blanket Heating

APEX

Nuclear heating in zones of the OB bag blanket Flibe coolant, SiC weave, ARIES-RS configuration

Integrated Power (MW) in zones of the OB bag blanket Flibe coolant, SiC weave, ARIES-RS configuration

APEX

Issues

Integration of Be in front region of blanket

Integration of Passive stabilizer structure with blanket

Damage limit for SiC

Divertor and vacuum pumping integration

Divertor flow modifier structure

Fast Flow nozzle design and placement

Split between blanket / shield / vv

Flow temperature / flow details

Plans

Work with Mahmoud, Mohamed Sawan on Be form, quantity

Work with ARIES-RS team on requirements

Work with Steve Zinkle & Mtls Grp

Work with Richard Nygren

Work with Richard Nygren

Work with Karani and Sergey on nozzle models

Work with Mahmoud, Mohamed Sawan

Work with Dai Kai

Tasks for May 8th Meeting

- Strawman set of CliFF design parameters tabulated
- Divertor integrated with pumping duct and liquid flow
- CliFF CAD model completed for strawman design
- Model of Film forming nozzles completed, including first stereolithography model

Summary

- **First Wall** Thin layer of fast moving Flibe ~ 2 cm thick @10 m/s, 465 C minimal vapor pressure
 - Blanket Thick zone of slow moving Flibe ~ 47 cm thick @ 5 m/s, 600 C, with multiple radial zones for better flow / temperature control
 - Flexible "Bags" woven from SiC fibers with passive stabilizers and extra 10 cm zone of Be at front of bag improves breeding
 - Hot liquid leaking from bags is cooled by fast flow layer
 - Bags expand to close any sector to sector gaps
 - No halo currents, minimal load asymmetry, low thermal stress

APEX

Maintenance - Removable, high-maintenance divertor and film former cassettes while all other components are maintained outside of the device when the sector module (1 of 16) is completely removed