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State-of-the-Art Computational Techniques
are Required for Intensive LW Simulation
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Lithium Jet start-up without and with grid adaption -
Hyper Comp Simulation



USING MHD FORCES TO CONTROL FLOW

Soaker Hose Concept .
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Exploring Free Surface LM-MHD
In MTOR Experiment

*Study toroidal field and gr adient effects.
Free surface flows are very sensitive to drag from
toroidal field 1/R gradient, and surface-normal fields

«3-component field effects on drag and
stability: Complex stability issues arise with field
gradients, 3-component magnetic fields, and applied
electric currents

sEffect of applied electric currents: Magnetic
Propulsion and other active electromagnetic restraint
and pumping ideas

«Geometric Effects: axisymmetry, expanding /
contacting flow areas, inverted flows, penetrations

*NST X Environment smulation: module
testing and design

MTOR Magnetic Torusand LM Flowloop: \ :
Designed in collaboration between UCLA, PPPL and ORNL s




Liquid Jet Research for IFE Chambers

High-velocity, oscillating
|letsfor liquid “ pocket”

flow trajectory and jet deformation
sprimary breakup / droplet formation
dissembly processes
o[iquid debris interaction / clearance
epartial head recovery

High-velocity, low surface-

ripplejetsfor liguid “grid”
surface smoothness control
epointing accuracy / vibration
eprimary breakup / droplet gection

Graphicsfrom UCB



Oscillating IFE jet
experiments
and simulations

*Single et water experiments
and numerical smulations
demonstrate control of jet
trajectory and liquid pocket
formation at near prototypic
Re

Experimental Data
from UCB
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Understanding mechanisms of flow
iInstability leads to improved control of
jet surface smoothness for IFE

o Upstream turbulence
and nozzle boundary
layer thickness
heavily influence
downstream jet
stability

e Turbulence
conditioning and
boundary layer
trimming in nozzle
dramatically improves A%
Jet qual Ity w/ conditioning w/o conditioning

UC Berkeley data




Modeling of Stationary
Jet Deformation

Initially rectangular jets deform
dueto surface tension and
corner pressurization in nozzle

«Capillary waves from corner
regions fan across jet face - lar gest
sour ce of surface roughness!

Numerica ssmulations and

guantitative surface topology t+33ms 4mmiB t+67ms 4mn
measurements are critical
tools for understanding j et
defor mation, and
controlling jet behavior E =0 W
Wlth ﬂOZZIG Shapl ng L IF measurement of surface topology at Georgia Tech
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Liquid Wall Science isimportant in many
scientific pursuits and applications

e Liquid Jet and Film Stability and Dynamics: fuel injection,

combustion processes, water jet cutting, ink jet printers, continuous
rod/sheet/ribbon/sphere casting, flood/jet soldering, ocean waves, hull design,
ocean/river hydraulic engineering, surfing, liquid walls for fusion reactors

e Liquid MHD /freesurfaceinteractions. melt/mold stirring

and heating, liquid jet/flow control and shaping, crystal growth, astrophysical
phenomena, liquid metal walls for particle accelerators and fusion reactors

e Liquid MHD /turbulence interactions. microstructure control
in casting, boundary layer control, astrophysical dynamos and plasmas, liquid
walls for particle accelerators and fusion reactors

 Freesurface heat and masstransfer: oceanography,
meteorology, global climate change, wetted-wall absorbers/chemical reactor,
condensers, vertical tube evaporator, film cooling of turbine blades, impurity
control in casting, liquid walls for particle accelerators and fusion reactors

Watermark: Turbulent flow effect on dendrite formation in casting - Juric simulation
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What is Global Warming?
] Increasing Green House Gases:
-4£Humidity, COz2, Methane, NOX,J
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