ELECTROMAGNETIC FLOW CONTROL: electric current
Isapplied to provide adhesion of theliquid and its acceleration
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Simulations of Flowing Lithium in NSTX using
Newly Developed MHIp Free Surface Tools
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NSTX: Heat flux can be removed with flowing
lithium along the center stack with acceptable
surface temperature (even with 4-mm film at 2m/s)
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Results of Heat Transfer Calculations for NSTX Center
Stack Flowing Lithium Film

Projected NSTX_center stack _heat

flux profile (total power = 10 MW)
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Liquid Wall Science is being Advanced in Several
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Liquid Wall Scienceisimportant in many
scientific pursuits and applications

(For details: * Appendix, * Science presentation on APEX Website)

o Liquid Jet and Film Stability and Dynamics: fud injection,
combustion processes, water jet cutting, ink jet printers, continuous
rod/sheet/ribbon/sphere casting, flood/jet soldering, ocean waves, hull design,
ocean/river hydraulic engineering, surfing, liquid walls for fusion reactors

e Liquid MHD /freesurfaceinteractions. melt/mold stirring
and heating, liquid jet/flow control and shaping, crystal growth, astrophysical
phenomena, liquid metal walls for particle accelerators and fusion reactors

e Liquid MHD / turbulence interactions. microstructure control
in casting, boundary layer control, astrophysical dynamos and plasmas, liquid
walls for particle accelerators and fusion reactors

 Freesurfaceheat and masstransfer: oceanography,

meteorology, global climate change, wetted-wall absorbers/chemical reactor,
condensers, vertical tube evaporator, film cooling of turbine blades, impurity
control in casting, liquid walls for particle accelerators and fusion reactors

Watermark: Turbulent flow effect on dendrite formation in casting - LANL simulation



Progress on Addressing Key Issues for

Promising Advanced Solid Wall Concepts
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5. Reliability

EVOLVE

1. Material | ssues

Assessment of Material Issues for high-temperature refractory
alloys “operating temperature” range and areas of uncertainties

- Sparked great interest in the materials community
(comprehensive Journal Paper by Zinkle, Ghoniem, Sharafat)
- R&D needs identified for the material program
2. Heat Transfer/Transport for 2-phase flow with MHD
- Experiments at Univ. of Wisconsin
- Modeling at UCLA, UW, FZK
3. Engineering I ssues
- Analysis and Innovative Solutions
(GA, FZK, UW, SNL, ORNL, ANL, UCLA)

4. Safety & Environmental
- Decay Heat and Waste Disposal (INEEL)

- Leak Tolerance (Majumdar/ANL)
- Reliability isacritical issue for fusion; discussed often, but very difficult to address




Our EVOLVE Concept stimulated consider able interest
In the material community to investigate high-
temperaturerefractory alloys (e.g. W)
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Progress on Modeling, Analysis & Experiments
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Fatigue and leakage analyses Indicate that the 3 mm W-alloy wall
of EVOLVE could tolerate a large number of Cycles and Cracks

(Initial non-through crack assumption: 25 mm long, 10 um width)
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At a leak rate of 5x10-4 g/s, the leak

Large number of cycles could be would not impact local heat transfer and
tolerated before a through crack large number of cracks can be tolerated
would occur by the plasma depending on the regime

of plasma operation.

» Calculated life is strongly dependent on extrapolated data
* Relevant crack growth data is needed
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Tritium Breeding Ratio

15T

W-alloy shows highest tritium breeding performance and

CCGT thermodynamic efficiency >57%
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Material System
Thermomechanics Interactions

Modeling and Experiments




Material System Thermomechanics Interactions

(Non-Structural Materials Science)

Mission: Advance the engineering science knowledge base necessary
for understanding the thermomechanical performance and material
Interactions, and possibly extending technology limits, of ceramic
breeders and beryllium material systems.
Obijectives: Perform laboratory experiments and modeling for:

a) fundamental thermal-physical-mechanical properties for packed beds

b) material system thermomechanics interactions and deformations

This research is conducted as part of international collaboration
(IEA, JUPITER-II)

- It is part of US strategy to participate in selected areas of R&D to
contribute and gain access to data from the larger international
community (EU and Japan)

Excellent area of research for University




Material System Thermomechanics Interactions Studiesat UCLA

Small Scale Experiments

Phenomenological and Numerical Modeling

Packing characteristics of the bottom layer of packing (mean
particle diameter = 1 mm total number of particles = 26,010)
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Beryllium Handling and Particulate Materials
Thermomechanics Test Stand
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Material System Thermomechanics Interactions

« Remarkable Progress and Achievements

e.g. - 3D Discrete Numerical Simulation micro-mechanics
models/codes to simulate and predict the effective
thermophysics properties and mechanical characteristics of
packed beds under imposed and induced loads.

The models were validated against experiments

The models were used for analysis leading to important conclusions
about the behavior of ceramic breeders and beryllium under fusion
conditions

- Models and experiments to predict the interface heat
conductance between “non-conforming” beryllium and steel
surfaces subject to non-uniform thermal deformation.

Good agreement between model and experiments

Understanding the variation of interface conductance and thermal
deformation with various loading and operating conditions




