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o OBJECTIVE

e High Power Density Capability for Fusion Power Plants:
» Peak Neutron Wall Load ~10 MW/m?
» Peak Surface Heat Load ~ 2 MW/m?2

« High Power Conversion Efficiency:
» Greater than 40% (need high coolant exit temperature)

e High Availability:
 MTBEF is greater than 40 MTTR

Need to Improve Heat Load Capability of
Plasma-Facing Components
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EEE MOTIVIATION

e The SOLID-WALL of the APEX Study Is considering a
W-alloy tube with W-foam inside to cool the First-Wall
(FW) using Transpiration Cooling:

— Lithium is boiled inside the FW tubes
— Lithium pressure is low (<0.2 MPa).

e Do exploratory research using Helium coolant to measure
the improved heat load capability of W-foam inside a W-
tube.
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o APPROACH

Use Porous Structure inside the tube to Enhance
Heat transfer from the Wall to the Coolant.

A Test Section using Chemical Vapor Deposited W-foam inside a
W-alloy tube was constructed for testing in the Helium-Cooled E-Beam
Facility at Sandia.

Analyze the Test Section using FEM to model
potential heat load capability improvements.

ULTRAMET Inc. successfully constructed a test

piece with CVD W-Foam inside a W-tube.
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P EABRICATED TEST SECTION

o A Test Section (19 cm long W-tube) was fabricated:
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EEE FEM MODEL

A 3-D solid model
was constructed
based on the
fabricated test
section.

e The FEM model
was built using the
3-D solid model to
preserve as much
detail as
necessary.
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sl FEM MODEL (CONt.) || roopmotne 2

surface heat

flux
(2” long)

. . . Thickened
* A thin heated rim was included to section
model the edge of the heated representing
i <100 77 stainless steel
section ( 10% g max) attachment

o Tetragonal Solid Elements were g?n@Jge of Heating
used to mesh the 3-D Model into at 10% Q.

~3000 elements.

o Heat transfer coefficients inside
the tube are estimated in the case
of the presence or absence of W-
foam.
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o I MATERIAL PROPERTIES AND FEM

uclA
ANALYSIS PARAMETERS
W-Thermal Conductivity (RT/2000°C) 130/95 Helium flow rate 7 g/sec
. Helium pressure 10 atm

Foam Thermal Conductivity (W/m-K) 4.5
Helium entrance temperature 30°C

Foam Porosity (%) 90 E-Beam produced heat flux 1 - 15 MW/m?

Foam pores/inches (ppi) 10 Duration of Heating 10 - 30 sec

Foam Ligament diameter (cm) 0.0508 Duration of E-beam heating 10 - 30 sec
Length of W-tube 19.05 cm

I(—\If/l/iumK;'rgrg_?_I/G%%r]guctivity 0.149/0.229 Length of Foam 10.16 cm

\ m- 4 .

Pr Number @ RT/600°C; 0.70/0.72 Inner Tube Diameter 1.27 cm
Tube Wall Thickness 254 cm

106 kg/m-s) @ RT/600°C 20.1/31.7
Mo g/m-s) @ Length of Heated Section 5.08 cm
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octd THERMAL MODEL FOR “NO-FOAM” TUBE

Hydrodynamically Fully Developed Turbulent Flow
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uclA TRANSPORT MODEL FOR FOAM FILLED TUBE

. P
1. Conservation of Mass: M = pVA = EVA = const.

2. Darcy’s Law: —f = — B = Four — 'UU?OO

dx L

D? ¢*

Permeability: K=
1801 - &[]

77/ 2
dT
3. Steady-Flow Energy Equation: MC, —— Jq" sin6Dd &
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woldA THERMAL MODEL FOR FOAM FILLED TUBE

Developing Porous Slug Flow Over a Plane Wall

Nu, = =9 L q135gpe12
T K

Peclet Number: Pe, =U,Lyc, /K,

Effective Thermal Conductivity: Ky, = @Kge + Kioan
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ANALYSIS RESULTS

Effect of W-foam on the overall effective heat transfer coefficient.
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[ FEM RESULTS
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* The foam containing W-tube shows a factor of three reduction in
maximum surface temperature from 4788 K down to 1455 K.
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:Ell; EFFECT OF SURFACE HEAT LOAD
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I'lrlclA SUMMARY AND CONCLUSIONS

Improvements in surface heat load capacity of plasma-facing components is
essential for fusion power plant.

» The use of porous material to enhance the heat conduction from the wall to the
coolant is being investigated.

* A W-tube with CVD W-Foam has been fabricated and a thermal FEM analysis
has been performed.

* Enhanced heat transfer coefficient, based on fundamental fluid flow through
porous material was developed and used in the FEM analysis.

* The W-foam has the potential to improve the heat load capabilities of W-alloys
by a factor between 3 and 5 at operating temperatures above 1200°C.
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