Enhanced Surface Heat Removal Using a Porous Tungsten Heat Exchanger

M. Demetriou and S. Sharafat

UCLA

14th Topical Meeting on the Technology of Fusion Energy

> October 15-19, 2000 Park City, Utah

- Nasr Ghoniem (UCLA)
- Brian Williams (Ultramet Inc.)
- Richard Nygren (Sandia National Labs.)

OBJECTIVE

- High Power Density Capability for Fusion Power Plants:
 - Peak Neutron Wall Load ~ 10 MW/m^2
 - Peak Surface Heat Load ~ 2 MW/m^2
- High Power Conversion Efficiency:
 - Greater than 40% (need high coolant exit temperature)
- High Availability:
 - MTBF is greater than 40 MTTR

Need to Improve Heat Load Capability of Plasma-Facing Components

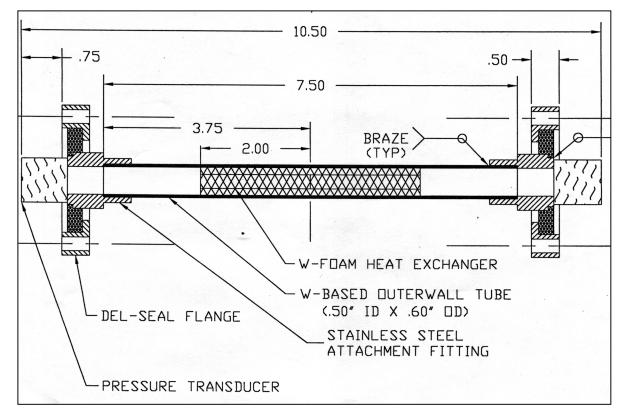
MOTIVIATION

- The SOLID-WALL of the APEX Study is considering a W-alloy tube with W-foam inside to cool the First-Wall (FW) using Transpiration Cooling:
 - Lithium is boiled inside the FW tubes
 - Lithium pressure is low (<0.2 MPa).

• Do exploratory research using Helium coolant to measure the improved heat load capability of W-foam inside a Wtube.

APPROACH

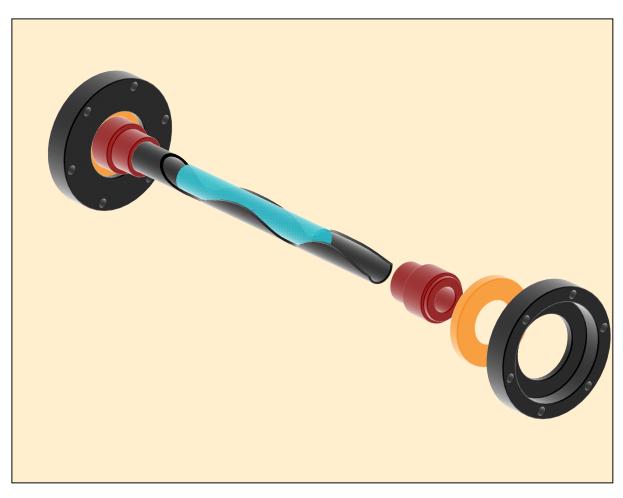
Use Porous Structure inside the tube to Enhance Heat transfer from the Wall to the Coolant.


A Test Section using Chemical Vapor Deposited W-foam inside a W-alloy tube was constructed for testing in the Helium-Cooled E-Beam Facility at Sandia.

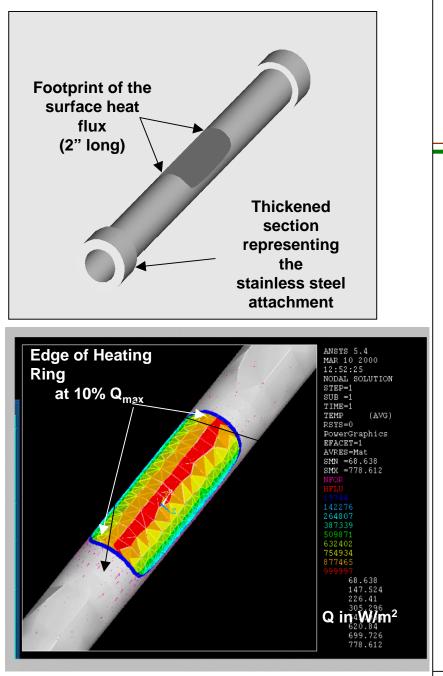
Analyze the Test Section using FEM to model potential heat load capability improvements.

ULTRAMET Inc. successfully constructed a test piece with CVD W-Foam inside a W-tube.

• A Test Section (19 cm long W-tube) was fabricated:



Dimensions: inches


FEM MODEL

- A 3-D solid model was constructed based on the fabricated test section.
- The FEM model was built using the 3-D solid model to preserve as much detail as necessary.

- A thin heated rim was included to model the edge of the heated section (<10% q''_{max})
- Tetragonal Solid Elements were used to mesh the 3-D Model into ~3000 elements.
- Heat transfer coefficients inside the tube are estimated in the case of the presence or absence of Wfoam.

MATERIAL PROPERTIES AND FEM ANALYSIS PARAMETERS

W-Thermal Conductivity (RT/2000°C)	130/95	Helium flow rate	7 g/sec
Foam Thermal Conductivity (W/m-K)	4.5	Helium pressure	10 atm
		Helium entrance temperature	30°C
Foam Porosity (%)	90	E-Beam produced heat flux	$1-15 \text{ MW/m}^2$
Foam pores/inches (ppi)	10	Duration of Heating	10 – 30 sec
Foam Ligament diameter (cm)	0.0508	Duration of E-beam heating	$10 - 30 \sec$
		Length of W-tube	19.05 cm
Helium Thermal Conductivity (W/m-K) @ RT/600°C	0.149/0.229	Length of Foam	10.16 cm
Pr Number @ RT/600°C; μ (10 ⁶ kg/m-s) @ RT/600°C	0.70/0.72 20.1/31.7	Inner Tube Diameter	1.27 cm
		Tube Wall Thickness	.254 cm
		Length of Heated Section	5.08 cm

Hydrodynamically Fully Developed Turbulent Flow

$$\operatorname{Re}_{\mathrm{D}} = \frac{4\dot{m}}{\pi D\mu} = 34,000$$

Thermally Developing Turbulent Flow

$$Nu_{D} = \frac{hD}{k} = 0.023 \text{Re}_{D}^{4/5} \text{Pr}^{0.4} + \frac{1.4}{L_{h}/D}$$

TRANSPORT MODEL FOR FOAM FILLED TUBE

1. Conservation of Mass:
$$\dot{m} = \rho VA = \frac{P}{RT}VA = const.$$

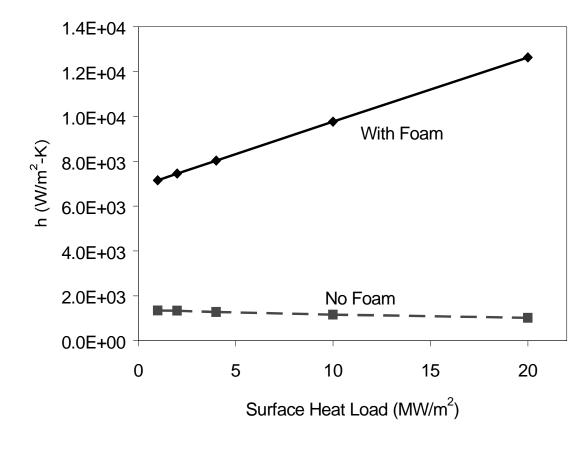
2. Darcy's Law:
$$-\frac{dP}{dx} = -\frac{P_{in} - P_{out}}{L} = \mu \frac{U_{\infty}}{K}$$

Permeability: $K = \frac{D_f^2 \Phi^3}{180 \mu - \Phi f^2}$
3. Steady-Flow Energy Equation: $\dot{m}c_p \frac{dT}{dx} = \int_0^{\pi/2} q'' \sin \theta D d\theta$

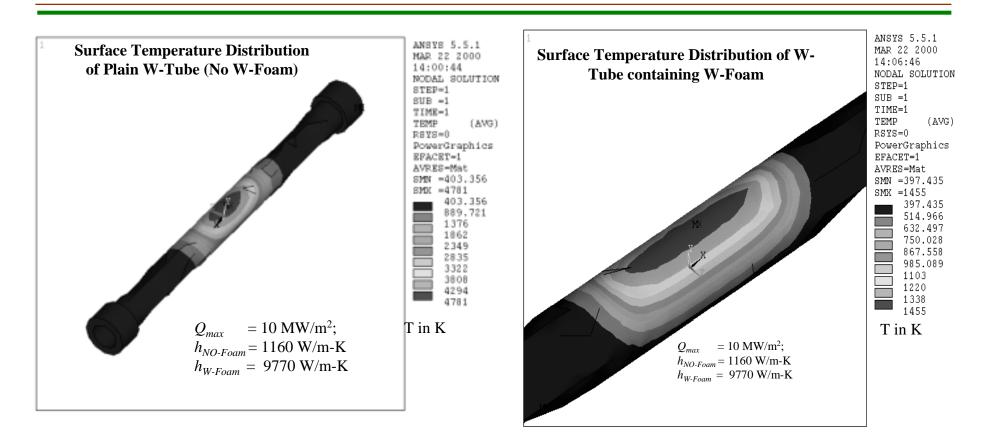
Developing Porous Slug Flow Over a Plane Wall

$$\overline{\mathrm{N}}\mathrm{u}_{\mathrm{L}} = \frac{\overline{h}L_{h}}{k_{m}} = \frac{q''}{\overline{T}_{w} - \overline{T}_{b}} \frac{L}{k_{m}} = 1.329 \mathrm{Pe}_{\mathrm{L}}^{1/2}$$

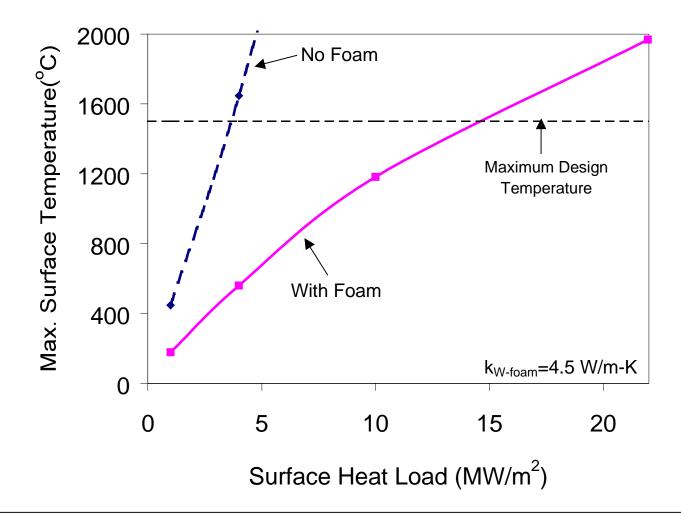
Peclet Number: $\operatorname{Pe}_{\mathrm{L}} = U_{\infty} L_h c_p / k_m$


Effective Thermal Conductivity: $k_m = \Phi k_{He} + k_{foam}$

ANALYSIS RESULTS


Effect of W-foam on the overall effective heat transfer coefficient.

• The foam covered region shows an order of magnitude improved *h* at high heat loads.



FEM RESULTS

• The foam containing W-tube shows a factor of three reduction in maximum surface temperature from 4788 K down to 1455 K.

- Improvements in surface heat load capacity of plasma-facing components is essential for fusion power plant.
- The use of porous material to enhance the heat conduction from the wall to the coolant is being investigated.
- A W-tube with CVD W-Foam has been fabricated and a thermal FEM analysis has been performed.
- Enhanced heat transfer coefficient, based on fundamental fluid flow through porous material was developed and used in the FEM analysis.
- The W-foam has the potential to improve the heat load capabilities of W-alloys by a factor between 3 and 5 at operating temperatures above 1200°C.