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In this paper, residual-based a posteriori error bounds are derived for the mixed finite
element method applied to a model second order elliptic problem. A global upper bound for
the error in the scalar variable is established, as well as a local lower bound. In addition, due to
the fact that the scalar and vector variables are approximated to equal order accuracy, the dual
problem may be modified to give an upper bound for the vector variable. Some comments
on estimating more general error quantities are also made. The estimate effectively guides
adaptive refinement for a smooth problem with a boundary layer, as well as detects the need
to refine near a singularity.
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1. Introduction

Mixed finite elements have found successful application in flow and transport prob-
lems in porous media and many other fields. In problems such as contaminant transport
and miscible displacement, the pressure and velocity fields come from Darcy’s law and
conservation of mass. Mixed methods provide a physically relevant, optimal order, lo-
cally conservative approximation to both pressure and velocity fields [15].

Mixed methods are based on writing a second order elliptic equation as a first order
system, in so-called mixed form. For €2 a domain in R2, consider the problem

Veu=f, u=—-KVp, (D)
together with the boundary conditions
p=g" ", u-n=0, 'Y, )

Assume that €2 is a polygonal domain with its boundary partitioned into Dirichlet
and Neumann portions I'® and T'N and that Q, K, f, and gP are sufficient for p €
H”(Q2),r > 2. Here, K is a diagonal, positive-definite tensor.
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Raviart and Thomas [21] propose a variational formulation based on this mixed
form, construct suitable approximating spaces, and prove error estimates for a finite
element method. Among other results, p, u, and V - u are all approximated to the
same order of accuracy in L2. This work has been extended in many directions. For
example, a more complicated linear problem is analyzed by Douglas and Roberts [16]
and a nonlinear problem by Milner [19]. In addition, richer approximating spaces have
been constructed, such as those in [10] which give a higher order flux approximation
than for the scalar variable.

In order to efficiently capture fine-scale details occurring in flow and transport
problems, some sort of local adaptivity, based either on mesh refinement, polynomial
enrichment, or both, should be incorporated in the approximation process. At the heart of
any such adaptive scheme is the notion of estimating the error in the computed solution
a posteriori. Such estimates must be computable, based on the computed solution and
the data of the problem.

Error estimation for standard Galerkin methods is a richly researched field. Surveys
of various approaches appear in [1,12]. One approach of particular interest in this work
is explicit estimation, in which various techniques are applied to bound the error in the
computed solution by a constant times the sum of local residuals. Such estimates grow
out of the work of Babuska and Rheinboldt [3,4]. While these residuals are straightfor-
ward to compute, the constant often is not. Therefore, the estimate tends to function as
an indicator with a tolerance parameter. Still, these estimates can be used to success-
fully guide adaptive computation. Johnson et al. extend these ideas to a discontinuous in
time Galerkin method for parabolic problems and to a streamline diffusion method for
systems of conservation laws [17,18].

In order to control error in more localized quanitities, Becker and Rannacher [6,7]
solve a dual problem numerically and approximate its derivatives to give weights for the
element residuals. This leads to computable estimates for quantities such as the error at a
point or the average error over some set. This approach has been successfully exploited
in the context of boundary element methods by Demkowicz and Walsh [14], where the
(dense) matrix may be factored once and used in both the primal and dual problems.

While error estimation is well understood for Galerkin procedures for elliptic prob-
lems, the literature contains comparably few a posteriori estimates for mixed meth-
ods. Braess and Verfiirth [8] argue that the standard explicit techniques such as used
in [17] cannot give optimal order bounds for the mixed method due to the approxima-
tion properties of the Raviart—-Thomas spaces on the edges. This motivates their use of
certain mesh-dependent norms which do not suffer from these difficulties. Carstensen
[13] avoids such mesh-dependent norms by considering a Helmholtz decomposition of
the flux space, leading to upper and lower bounds in the natural L?> x H (div) norm.
Wohlmuth and Hoppe [23] derive and compare analytically several different estimates.
An estimate similar to [13] is considered, as well as a local subproblem technique akin
to [5] and recovery-based estimates like [24,25].

The present paper derives residual-based duality estimates for mixed finite element
methods. After describing the variational setting and finite element discretization in
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section 2, the error estimates are derived in section 3. These estimates include an upper
bound for the L? error in the scalar variable in terms of simple residuals and a projection
error in the Dirichlet boundary conditions. The element residuals also serve as a lower
bound for the error in a mesh-dependent perturbation of the L? norm. In addition, an
upper bound for the flux variable is also computed in L2, While these estimates control
the error in somewhat weaker norms than do [13,23], two noteworthy points should be
made. First, they show that the duality theory indeed may be applied in a mixed context
when the proper interpolation operators are used. Second, the residuals are simpler
than many other estimates, so substantial error control is possible even with very simple
indicators. Also included is a discussion of how more general error quantities can be
controlled by this approach, much in line with the work in [6,7,14]. Finally, numerical
results combining the estimate with adaptive mesh refinement are presented in section 4
and some conclusions are made at the end of the paper.

2.  Variational formulation and discretization

Let {7}, },, be a family of conforming, quasiuniform triangulation of  and &, be the
union of all edges of the triangles on a given mesh. Let &7, C &, be the set of all interior
edges, and let £p ;, C &, be the set of all edges coinciding with the Dirichlet boundary
and £y, be the set of all Neumann edges. It is assumed here that the triangulation is
such that no edge intersects both I'® and I'N. For each T, let ny denote the unique
outward normal unit vector. For each y, let n,, denote a fixed, unique unit vector with
the assumption that n, points outward if y € £€p, U Ey ;. The jump of some function
across some interiori edge y is defined in the normal way.

Throughout this paper, let C, C;, etc. denote generic positive constants independent
of the mesh parameter 4. For each triangle T, let A7 denote its diameter, and let £,
denote the length of edge . The following condition is assumed to hold between the
edges and diameters

Cih, < hy < Coh, Vy C T, ¥T €T,

Let the space W = L?(Q) and V = H(div; Q) be the standard spaces. Further,
let V° be the set of functions with vanishing normal trace in the sense defined by, for
example, [11]. Let A = L*(T'P).

The pairing (-,-)s shall denote the standard L>(S) inner product over a two-
dimensional set S, with S omitted if § = Q. Similarly, let (-, -), be the one-dimensional
L? inner product. Let || - |; s denote the standard Sobolev norm with i omitted if it is
zero and § omitted if it is §2. Finally, let || - [|giv.s denote the standard H (div;S) norm.

Now, several finite-dimensional spaces are defined. First, let P, (S) denote the set
of polynomials of total degree less than or equal k over the open two-dimensional set S
and let R, (s) be the set of polynomials of degree less than or equal k& over some open
line segment s. Then, the set W), = {w € W: w|y € Pu(T) VT € 7} denotes the set
of possibly discontinuous piecewise polynomials over the mesh 7,. Also, let V), be the
standard Raviart-Thomas space of order k. Although there are multiple definitions of
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this space, to fix ideas, let V), = {v € V: v|; € (Pu(T))?> + xP,(T)}. Let V? ={v e
Vi (v-n)|ry = 0} be the finite-dimensional set of functions with vanishing normal trace
onTN. Let A, = {u € A: wly € Re(y), v € Ep). On this space, define the norm

Wl ame= D hyllul?. 3)

v€€p.n

Two projections shall play a crucial role in establishing the error estimates in this
paper. First, let P, : H"(2) — W), be defined by

(p=Pup,wy) =0, w, €W, “4)
which is the standard L? projection. The error in the projection satisfies
Ip = Pupll < CRlIplls, s < min(r,k + 1). 5

The second projection is the divergence projection into the mixed finite element
space, thoroughly described in [11]. This projection IT;,: (H"(2))¢ — V, is defined by

(V(u —Tpu), wy) =0,  wy € W, (6)
it commutes with the divergence operator in the sense that
V-M,v =P,V -, (7N
and it preserves the discrete normal trace
(=) - n,pwp)y =0,y € Ri(y), v € Epan. (8)
This projection has the approximation property
e — Hyu| < Chlully, s < min(r, k + 1). 9)

The solution to (1)—(2) may be phrased in a variational setting as: Find p € W,
u € VO such that

V-u,w)=(f, w), weWw,

10
(K’lu,v)—(p,V-v):—(gD,v-n)FD, ve Vo (19)

Similarly, this problem is discretized by seeking a solution in the finite-dimensional
subspaces. That is, find p;, € Wy, u;, € V) such that

(Vup, wy) = (f, wy), w, € Wy,

(11)
(K™ up,vn) = (o V- op) = =8 v - )y, vy € V).
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3. Residual a posteriori error estimate

In this section, a computable (up to a multiplicative constant) a posteriori bound
for the error quantities & = p — p;, and n = u — u,, is established. Of first importance in
error estimation are the error orthogonality relations

(Vn,wp) =0, w, € W,

(K7177, Uh) - (S, V. Uh) = O, vy € Vh, (12)

which follow readily by subtracting (11) from (10).

This section begins with a minor remark about computing the error in the H (div)
seminorm. Then, duality is employed to compute an upper bound for £. A lower bound
also is derived with an additional hypothesis and the help of a lemma from [13]. The
next subsection develops an estimate for the error in # with a saturation-like hypothesis.
Finally, this section is concluded with some comments on error estimation in quantities
defined by general linear functionals.

3.1. H(div) seminorm error

It is a trivial observation that the error in the H (div) seminorm is exactly (up to
quadrature, machine roundoff, etc.) computable. Note that

Veng=f—-V-u,. (13)

Since both quantities on the right hand side are known, the error is directly computable

3.2. Pressure error
The estimate for £ proceeds by a typical duality argument. Let the functions w and
v satisfy
V.v=¢§& v=—-KVu, (14)
on €2 with the boundary conditions
w=0, I'°, v-n=0, 'Y, (15)
From elliptic regularity theory, |[w|, < ||€]|. These functions satisfy the variational
problem
(V-v,0)=(¢), deW,
(K", ¢) — (w, V¢) =0, VeV
Now, let ¢ = & and v = n in (16). By subtracting the second equation in (16)
from the first and using the orthogonality relation (12)
(Ss é) :(V ’ U9$) - (K_lv’ Tl) s (ws V- 77)
=(V-n,w)— (K_ln, v) + (&, V-v)
=(V-nw—Pw — (K 'n,v—T) + (£, Vo —Tw). (A7)

(16)
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The last line can then be written as a sum over triangles, and integrating each
(&, V(v — I,v))r by parts yields

&.&)=> [(V-nw—Puw)r— (K~'n+ V& v— ), ]

TcT,
+ Y {EL@-T) n) + Y (=T n,) . (18)
]/Egj,h VE'SD,h

The sum over interior edges vanishes. To see this, note first that p € H 2 s0itis
continuous and thus [p] = 0 on each edge interior edge. Second, [p;ll, € R((y) over
each edge y. Thus, (v — I1,v) - n,, is orthogonal to it by (8).

Next, let d be the best approximation to gP in Aj,. Replacing & with gP — 3P in
(18) is permitted again because of (8). Putting this together with (1) in (18) means that
the error can be represented exactly as

I€1> = Z [(f =V up,w—Pyw)r + (K™ uy + Vpp v — o), ]
TeTy

+ Y (= =) ny) . (19)
v€€pn

Using the Cauchy—Schwarz inequality, the error can be bounded by

€11 < 01 + 62, (20)
where
0= [If = V-uslr lw=Powlr + |K " un + Vpu|, v = Molr] @D
TeT,
and
b= [e”=3"], Iv— Tl (22)

v€€p

Let 1, = min{k, 1}, where k is the degree of the approximating space. Now, 6,
may be bounded by

6<C S (W I f = V- unllr wlliser +hr | K™ uy+ Vpu | lvlr)
TeTy

<C Y (NS = - unlly + by | K+ Vou| )] Plwll (23)
TeT,

Since w € H?, it may be approximated to second order. However, the lowest order space
is only capable of first order approximation, and hence the p, power of / in this bound.
Next, 6, may be bounded by

6, < Clg® —&°|_ ), vl (24)
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where a trace theorem, the approximation properties of I1,, and quasiuniformity of 7,
have been applied. Now,

1/2 1/2
[HEES C[(Z w%) +< > wi) }llwllz (25)

TeT, ve€pp
where
wr = (/zlerHf — Vouplr +hr | K™ uy + Vi) (26)
and
Wy Eh)l//2||gD_§D”y' @7

Finally, using the elliptic regularity result ||w||; < ||§]], the following theorem is
established.

Theorem 1. With data K, gP, f and domain 2 as assumed above and with error indica-
tors as defined above, the error in the pressure variable for (11) is bounded a posteriori

by

Hl <c[(2w%>1/2+< > @)”T. (28)

TeTy, y€€p.n

A few comments about the estimate are in order. First, it is typically the case
that the residual /7 || K ~'u;, — Vp,||7 drives the estimate. To see this, consider just the
lowest order case. In this case, || f — V-uy|| < Ch globally, and thus the element residual
hr || f =V - uy]l is actually a higher order term compared to iz || K ~'u, — Vp,||7. The
boundary term is also a higher order term. Additionally, V(p,|r) = 0 for each T in the
lowest order case, and so the estimator can be approximated by

1/2 1/2 ) 1/2
(Z w;) + ( ) wg) a (Z h2T||K1uh||T) . (29)
TeTy vye€€pn TeTy

Since K ~'uy, is an approximation to V p, this estimator is essentially a gradient-based
estimator. Also note that with higher degree approximating spaces, the first residual is
even smaller since p; = 1if k > 0. More generally, the estimator is approximately

1/2 1/2 3 1/2
( Z a)%) + ( Z wi) ~ ( Z hzT ||K71u,1 -V, ||T> . (30)
TeT, ye€pn TeTy

3.3. A lower bound

The element error indicators serve as a local lower bound for a mesh-dependent
perturbation of ||&] if K| € Py(T). First, recall that

f=V-u,=V-n. 31)



204 R. Kirby / Error estimates for the mixed methods

Then, Carstensen [13] shows that if K~'|; € P, (T), then
hr | K~ wy + Vpu |, < C(1Elr + hr Inlir). (32)

Putting these two things together gives the result

Theorem 2. If K~ !|; € P, (T), the element error indicator wy satisfies

lorllr < C(I€NTr + hr lInllav.r)- (33)

If K=Yy ¢ Pu(T), then it is possible to derive a similar estimate which includes
an additional term due to approximating K ~! locally by a polynomial.

3.4. Flux error

With an additional assumption, similar to a saturation assumption, a similar esti-
mate applies to the error in the flux variable as well. This assumption is well-motivated
by the standard a priori estimates for the Raviart-Thomas spaces, which say that the
scalar variable, the flux variable, and the divergence of the flux variable all converge
with equal order accuracy. Therefore, assume that there exists some constant C ¢, inde-
pendent of &, such that

IV-nll < Cylinll- (34)
Let w and v solve the equation
V.v=0, v+ KVw =1, 35)
on €2 with the homogeneous boundary conditions
w=0, I'°, v-n=0, 'V, (36)
Equation (35) can be rewritten as
V. (KVw)=V.pg 37

by eliminating v.
Therefore, elliptic regularity theory gives

lwll2 < ClIV -, (3%)
so by the previous assumption,
lwl2 < Clinll. (39)

In addition, v € H(div)(Q) and v|; € H'(T) and so approximation properties
will hold elementwise.
The functions w, v satisfy the variational problem

(V-v,0)=0, peW,

40
(K_IU,¢)—(an'¢):(U,¢)’ 1//6 VO' ( )
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The representation of the error equations and bounding residuals works exactly as
before. Thus,

Inl> < 61 + 6, (41)
172 172
<C[(Zwi) +( > wi) }llwllz- 42)
TeTy ve€pn

Now, using the regularity result (38) gives:

Theorem 3. With the assumptions of theorem 1 and (34) holding as well, the following
error bound holds

Inll < C[( > w2T>1/2+ ( > wi)l/z}. (43)

TeTy v€€pn

The remarks regarding simplification of the pressure estimate also apply to the flux
extimate as well.

3.5. Remarks on other approximating spaces

The question arises regarding the applicability of this and other estimates, to the
other mixed approximating spaces. The upper bound on the pressure used no specific
information regarding the Raviart—-Thomas spaces, so it holds for other valid pairs of
mixed spaces. Also, Carstensen’s result used to derive the lower bound was for general
mixed spaces as well. On the other hand, the flux estimate assumes that the pressure and
velocity converge at the same rate, and thus requires modification to apply to the BDM
spaces.

3.6. Some notes on general error quantities

This duality approach has also been applied to error quantities derived from general
linear functionals in the case of Galerkin methods and boundary element methods [6,14].
This section sketches how such estimates might be obtained in the mixed setting. Let
fi € Wand f, € (V% be two continuous linear functionals. Now, rather than posing
the dual problem (16) or (40), let w and v satisfy the more general problem

(V-v.9)=fi($), ¢eW,
(K. v) — (w, V) = —fo(¥), ¢ € VO,

Of course, (16) and (40) are special cases of (44). As in (19), selecting ¢ = & and
Y = n and using (12), integration by parts, and the duality relations yields

A@ + =Y (f =V upw—iD)r (49)

TeT;

(44)
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+ Z (K™'wp + Vppv—19),
TeTy

+ Y (- w-D)n), (46)

v<€pn

which exactly expresses the the error as measured by the functionals fi, f». Here,
w € W, and § € V, are possibly the projections defined above, but possibly some other
convenient interpolant as well.

Rather than using elliptic regularity to bound the dual solution in terms of the error,
the dual problem is solved approximately. Then, the difference between the dual solution
and its approximation must either be bounded by approximation theoretic results, or
computed directly if possible. The information from the dual problem then appears as
local weights for the residuals in the error estimate.

Note that this approach has some limitations compared to Galerkin methods. The
mixed method uses weaker spaces than the standard Galerkin method, and so the set of
acceptable linear functionals to pose the dual problem is smaller. Most notably, point-
wise estimates are not covered in this framework.

4. Numerical results
The a posteriori error estimate derived above provides the basis for an adaptive
algorithm. This section presents numerical results for two problems. In the first, the

solution has a boundary layer but still lies in H2. In addition, a model from single phase

True Solution, Boundary Layer

CEX
0935991
0873591
0811192
0.748793
0.686393
— 0.6239%
B 0.561594
i:l 0.499195
B 0.436796
B 0.374396
= 0311997

0.2439598
0.187198
0.124799
0.0623994

0 0.5 1
X

Figure 1. True solution with boundary layer in upper right corner.
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flow with lower regularity is considered. All solutions are computed using the lowest
order Raviart—Thomas spaces.

4.1. A smooth problem with a boundary layer

Let the permeability K = Z, the identity matrix. Pose homogeneous Dirichlet
conditions on the unit square and choose the source function f chosen such that

1
P, ¥) = grmasx(1 —0y(l —y)etel®. 47)
This solution has a boundary layer in the upper right corner of the domain. It is smooth
but steep in this region. The true solution appears in figure 1.

Like most adaptive mesh procedures for elliptic problems, the code begins by solv-
ing the problem on a coarse mesh. Then, if the local error indicator exceeds some
user-defined tolerance, that element undergoes longest edge bisection. In order to avoid
hanging nodes, which require the introduction of mortar spaces, the element sharing that
longest edge is also bisected. Then, the problem is solved again on the new mesh. The
code repeats this procedure a fixed number of times or until no indicators exceed the
tolerance. Since the local error estimate is only proportional to the actual error, the tol-
erance can require tuning for each particular domain and permeability (the constant in
the regularity result does not depend on the source function).

The error indicator accomplishes two important things. First, although the solution
on a very coarse mesh does not reveal the boundary layer at all, the solution displayed in
figure 2 begins to capture it with only three iterations of local mesh refinement. In addi-

p, 3 Refinements

0.9
0.8
0.7
0.6
N
> 0.5 0.9340486
0871776
0808507
0.4 0.747238
. 0684969
— 06227
= 0560431
0.3 B o4ss62
B 0435803
B oarases
0.2 = 0311355
0.249085
0186816
01 0124547
0.0622781
0
0 0.5 1

X

Figure 2. The boundary layer fairly refined after six refinements.
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tion, the error indicator predicts the qualitative distribution of the error in both variables,
as evidenced in figures 3-5.

This improvement of error in both variables per degrees of freedom is quantified
in figures 6 and 7. Notice how the the adaptive refinement procedure gives a lower

total error than the uniform mesh with about an eighth of the degrees of freedom as the
uniform mesh.

Indicator, 3 Refinements

0.9
> i X .
0.7

0.6

> 05

0.4

0.3

0.2

0.1

0 0.5 1
X

Figure 3. Large error detected in the corner.

Press. Error, 3 Refinements

0.9
0.8 N
0.7

0.6

> 0.5

0.4

0.3

0.2

0.1

0 0.5 1
X

Figure 4. Logarithmic distribution of the pressure error.
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Flux Error, 3 Refinements

0.9
0.8 G
0.7 ~
0.6 .
EV
> 05 !4}.7992&
-1.01534
128145
0.4 = 144787
-1.66369
| oosee
0.3 231203
-2.52815
0.2 T 274428
B L oee
-3.30261
0.1 -3.60873
-3, 82484
OO 0.5 1

X
Figure 5. Logarithmic distribution of the velocity error.

Convergence of pressure with global and adaptive refinement
T

-0.8 T T T T T T T
— Uniferm
—  Adaptive
=AF o
121 8
S -1.41 .
@
o
=
=]
8-16F .
-1.8 i
o+ o
o2 | L I I I | | ! 1

22 24 26 238 3 3.2 3.4 36 38 4
log10(nelem)

Figure 6. Convergence history for pressure.
4.2. A single-phase flow problem

Here, adaptive mesh refinement is applied to a pressure-driven, single phase flow
problem. Let K be as pictured in figure 8. Let homogeneous Neumann conditions be
applied along y = land y = 0. Let p = 1 alongx = 0 and p = 0 along x = 1.
This pressure difference drives the flow from left to right, and the permeability field
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Convergence of velocity with global and adaptive refinement

0.3 T T T T T T T T
— Uniform
02 : -

log10(L2 error)
s
N
T

-0.3F q
—04fF 4
-0.5 i
0.6 4 1
\

07 I L I I I L I L L

2 2.2 2.4 2.6 2.8 3 3.2 3.4 36 38 4

log10(nelem)

Figure 7. Convergence history for velocity.

Log Permeability, 4 blocks
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E 0875
| 075
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0,125
0

0 0.5 1
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Figure 8. Block permeability field.

gives rise to singularity in the center of the domain. For a more precise discussion of the
singularity, including which function space the solution lies in, see [22].

The computed pressure on a uniform mesh of 512 elements is shown in figure 9.
The pressure on a uniform mesh of 4096 elements is shown in 10. Notice the under-
refinement of the singularity on the coarse mesh compared to the fine. Starting from a
coarse mesh, the error indicator is able to detect the need for refinement near the center
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Coarse mesh, 512 elements

0.8
0.8
0.7
0.6
P
> 05 I 0935988
0873704
081142
0.4 = 0740138
- 0.686852
|| 0624568
0.3 0562284
05
% 0.437716
0375432
0.2 | 0313148
| 0250864
0.18858
0'1 0.12629%6
0.0640121
0 1
Figure 9. Coarse mesh underresolves center.
Uniform mesh, 4096 elements
1
0.9
0.8
0.7
0.6
B
> 0.5 I 0528693
0.867518
0.806339
0.4 = 0745162
| 0683985
1 0622800
— 0561632
03 0.500455
B 0430278
02 e
| 0.256747
0.194571
0.1 0.133394
00722169
0

Figure 10. Pressure on a fine mesh resolves the center.
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of the domain. In addition, the pressure drops are accurately modeled in the low perme-
ability areas. Figure 11 shows the pressure on the locally refined mesh consisting of 808

elements. The mesh itself is shown in figure 12.
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Refined mesh, 808 elements

0.8
0.8
4
0.7 A
0.6 3
o
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X

Figure 11. Local refinement captures the interesting features with only 808 elements.

Refined mesh, 808 elements

0.9

0.8

T

0.7

0sF
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0.4

0.3 |

0.2

0.1

0 0.5 1
X

Figure 12. Local refinement concentrates the elements in the center of the domain.
5. Conclusion

Residual-based estimates have been derived for the Raviart—Thomas element. The
estimates rely heavily on duality and the standard projections into the finite element
spaces. Upper bounds are given for both pressure and flux variables, and a perturbed
lower bound is derived for the pressure error. These estimates effectively drive adaptive
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mesh refinement, both for smooth problems as well as for an example problem which
violates the smoothness requirements of the theory.
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