David Beazley, beazley@cs.uchicago.edu

A NEW LOOK AT EXPRESSION

SCIENTIFIC PROGRAMMING

Editors: Paul F. Dubois, paul@pfdubois.com

TEMPLATES FOR MATRIX COMPUTATION

By Robert C. Kirby

++ OFFERS PROGRAMMERS THE ABILITY TO
REDEFINE MATHEMATICAL OPERATIONS FOR
THEIR OWN TYPES, SUCH AS MATRICES. ALTHOUGH
OLDER APPROACHES TO THIS CREATED MANY

needless temporary objects, a new approach—expression tem-
plates—has emerged. This approach bypasses many of the
temporary objects and leads to elegant code that’s competi-
tive with traditional implementations in C or Fortran. Such
mathematical syntax is particularly attractive in matrix com-
putations, as indicated by the success of Matlab and its free-
ware variants. Overloaded operators let programmers imple-
ment algorithms in syntax very similar to the mathematical
formulations, which reduces the chance of programmer er-
ror and leads to code that is easier to understand and modify.
Still, achieving the full performance available in optimized,
compiled languages is essential for scientific applications.

In this article, we’ll reinterpret the expression templates for
matrix computation put forward in previous columns' in light
of functional programming ideas. Existing expression template
libraries frequently focus on componentwise operations such
as addition at the expense of matrix multiplication. The ideas
presented here are implemented in a C++ library called
LLANO (for Lazy Linear Algebraic Numerical Objects).

A Functional Approach

to Componentwise Operations

Mathematically, matrix addition is defined as mapping from
pairs of matrices back into themselves. Making a similar def-
inition for matrix addition, however, gives poor performance.
To see this, suppose that for some matrix class we define

Matrix operator+ (const Matrix& A,
const Matrix& B) {
if(A.getNumRows () != B.getNumRows () ||
A.getNumCols() != B.getNumCols()) {
cerr << “nonconforming matrices... +”
<< endl;

exit(-1);
}
Matrix new_mat (A.getNumRows (),
A.getNumCols());
for (int i=0;i<A.getNumRows();i++) {
for (int j=0;j<A.getNumCols();j++) {
new_mat (i, j) = A(i,j) + B(i,J);
}
}
return new_mat;

}
Consider now the behavior of the code

A =B+ C;
where a temporary matrix is created on the right-hand side,
which stores the value of B+ ¢. On assignment, these values
must be copied into A. This causes an extra allocation-deal -
location pair; it also copies #” values relative to a simple loop
such as that imbedded in the definition of +.

The situation worsens as we add additional operands. In

the code

A=B+C+D+E;

three temporaries are created. The cost relative to a hand-

coded loop diverges quickly with an expression’s complexity.
Instead of the mathematical definition, let’s engage in a

bit of functional programming and define addition on n xn

matrices as

+:MxM-{f:[1,n] x[1,n] > R}
according to the rule
A+B—>+,p,
where +, p(1, /) = A(i, j) + B(i, /). Thus, addition now returns

a function that we can evaluate to compute the underlying
matrix sum’ entries. If we (formally) apply this definition to

66 Copublished by the IEEE CS and the AIP

1521-9615/03/$17.00 © 2003 |EEE

COMPUTING IN SCIENCE & ENGINEERING

Dave’s Sideshow

Remembering the CM-5

A few months ago, | was sorting through a
bunch of papers in my office (in a feeble at-
tempt to get organized) and came across
an old photograph of the Connection Ma-
chine 5 at Los Alamos. One of my students
then remarked, “Wow! What is that?”
Shortly thereafter, it struck me that over 10
years had passed since my first exposure to
parallel computing and the CM-5. It also
hit me that | probably could get something
of roughly the same computing power for
a few thousand dollars at the comer store
thanks to Moore’s law. Nevertheless, this
got me thinking about how much fun it
was to use the old parallel machines.

The CM-5 really was an interesting ma-
chine for those who used it. For one thing,
it looked really cool—large, black, and with thousands of
red blinking lights. | mean, who wouldn’t want to have a
machine that looked like that? More importantly, no one re-
ally quite knew the most effective way to program it. It
seemed like many of our early programs were adapted from
short examples and experimental use of undocumented fea-
tures found in header files—after all, there was no such
thing as MPL. Even now, | fondly look back at the insanity of
printf debugging on 256 processors. Or, the two months
of head-throbbing pain | endured to learn that one should
never, ever, ever, ever, ever use asynchronous message pass-
ing for anything, no matter how good the idea might sound
at the time. Or, the one CPU board installed in the machine
that seemed to work with everyone else’s code except for
mine. And who could forget the occasional email from the
computer center reporting that “creeping death” had been
detected—a pathological “blue screen of death” effect that
took about a half an hour to reach its full strength? If you're
going to crash, you might as well crash hard.

Looking back, | still chuckle when | think of the TV crew
that came to the lab to do a story about supercomputers
(along with some cool futuristic shots of the CM-5 in action).

a case in which one of the operands is itself a sum, we get

A+B+C—o+,3+C— t pC

We can evaluate this function applied to (i, j) by repeated
substitution to get

++A.B,(4(ivj) = +A.B(jaj) + (“(I,j) = [1(11_/) + B(I,j) + (“(ivj)'

At the time, no one realized that the TV story was really a
lead-in for a discussion in which Pat Robertson compared su-
percomputers to the biblical “beast.” Well, what can you say?
A machine like the CM-5 certainly had personality. Several
years later, | visited a colleague at San-
dia and noticed that he had a manual
for the Intel Paragon mounted on the
wall of his office like a little trophy—and
it was shot full of bullet holes! Appar-
ently the “beast” had a few friends.
The days of special-purpose parallel
machines seem long gone now. Al-
though it is amazing to see what peo-
ple are doing with clusters, it still
doesn’t change the fact they’re mostly
just a bunch of PCs. In many respects,
I long for the days of blinking lights,
creeping death, and programming
problems of, well, biblical magnitude.

“It's aMemory Problem”

Lately, I've been teaching our operating systems course. For
the most part, this is a head-exploding exercise in C pointer
manipulation in which | spend eight weeks telling students
that “it's a memory problem” whenever they have trouble.
Of course, | wouldn’t lie—almost all C programming prob-
lems are, in fact, memory problems. As an instructor, | can
only hope that students get all of this out of their systems

in this one course. Regrettably, the ever increasing number
of worms, viruses, and buffer overload attacks seems to in-
dicate that students aren’t the only ones suffering from
memory problems.

Of Interest

If you're interested in scientific software components, take
a look at the Babel project (www.lInl.gov/CASC/components/
babel.html). On the other hand, if you're too busy chasing
down bugs to even think about components, you might
look at Roundup (http://roundup.sf.net), a nice issue tracker
that has been gaining in popularity. Last, but not least,
the O’Reilly Open Source Software Convention is rapidly
approaching. Details are available at http://conferences.
oreillynet.com/0s2003.

Although C++is not a functional language, several projects
are underway to use its templating system to implement this
approach. Among these are FC+ (www.cc.gatech.edw/
yannis/fc++), FACT! (www.kfa-juelich.de/zan/FACT /start/
index.html), and the Boost lambda library (www.boost.
org/libs/lambda/doc/index.html).

If we define assignment to perform a loop over all entries
and evaluate the right-hand side, we create a mathematical

MAY/JuUNE 2003

67

SCIENTIFIC PROGRAMMING

formalism that models matrix addition without creating tem-
poraries. To translate this into C++, we need two things: one,
a polymorphism that lets the + operator work on matrices
and sums of matrices, and two, the ability to substitute the
body of +4 p(i, /) to squeeze out extra function calls and pro-
duce code similar to a hand-coded loop. This latter ability is
also known as function inlining.

A natural first choice for an object-oriented programmer
would be a class hierarchy in which both matrices and sums
are derived from some common base type with a pure virtual
indexing operator. The matrix sum class would contain (ref-
erences to) elements of the base class. The loss of type infor-
mation in this genericity prevents the compiler from inlin-
ing the index functions, so all indexing must be resolved via
the virtual function table at runtime. This leads to problems
comparable to creating or destroying all the temporaries.

Of course, C++ provides another type of genericity that
preserves type information: the template system. In addition
to a regular dense matrix class, we can introduce a class for
matrix sums in which the operands are generic (the addition
operator is likewise generic). Then, an appropriate class of
matrix sums is instantiated for each pair of types of operands:

template<class U,class V>
class MatrixSum {
public:
MatrixSum(const U&u, const V&v) :
u(u), v(v) {}
int getNumRows () const {return u.
return u.getNumRows () ;
int getNumCols() const {return u.
return u.getNumCols() ;
double operator()(int i, int j) const
{return u(i,j) + v(i,3j);}
private:
const U&u;
const V&v;

template<class U,class V>
MatrixSum<U,V> operator+ (const U&u, const
vV&ev) {
// check for conforming
// dimensions...and then
return Matrix Sum<U,V>(u,v);

InthecodeD = A + B + C;,several things happen. First,

aMatrixSum<Matrix,Matrix> objectiscreated that rep-
resents A+B. This is then combined into a Mat rixSum<Ma-
trixSum<Matrix,Matrix>,Matrix> object that repre-
sents the entire right-hand side. The assignment operator
forces the computation via a loop over rows and columns, in-
dexing the top-level matrix sum and assigning the result to the
corresponding entry of D. However, because the exact type is
known, this indexing operator could be inlined, resulting in
the sum of the 7, j entry of another matrix sum (a+B) with the
i,j entry of ¢. Again, knowledge of type information lets the
compiler inline this matrix sum’s indexing, leading to aloop
over rows and columns such that the inner computation is just
D(i,3) = A(i,J)+B(i,3)+C(1,3);.

However, each of the indexing functions into matrices can
be inlined as well, meaning that the compiled code is read-
ing from and writing directly to the underlying arrays and
not going through any intermediate functions. Hence, the
total cost of the operator overloaded code is the cost of the
standard C code plus the cost of instantiating and destroy-
ing the expression objects (this is O(1) and, hence, asymp-
totically negligible).

Implementing this Mat rixSum<U, v> class, which com-
putes an entry of the sum upon being indexed, mimics the
functional programming idea nicely. In another language, we
could use actual functional programming, but for our pur-
poses, the functional inspiration translates into C++ satisfac-
torily. Note that once this is understood for addition, all other
componentwise operations follow. This is the driving force

behind, for example, the highly developed Blitz++ library.*

Incorporating Matrix Multiplication

Although this formalism makes the idea of expression tem-
plates clearer, we still need an expression template system
capable of efficiently supporting operations such as

Z = (A + B) * C - D.transpose() * E;
where * is not componentwise multiplication but the actual
matrix product. Few matrix expression template packages
have addressed this. For example, Blitz++ originally did
componentwise operator overloading but handled matrix
multiplication through a simple matmu1l routine. Now, it
supports actual matrix multiplication via tensor operations
rather than through a multiplication operator.

Deferring * in the same manner as + also can have serious
consequences. First, it necessarily uses the zjk ordering to
compute each entry of the matrix product. This produces
the worst possible memory access patterns when column-

COMPUTING IN SCIENCE & ENGINEERING

oriented storage is used.’ Second, deferring operations leads
to an increased operation count for many problems. Evalu-
ating the producta * B * c by this technique, for exam-
ple, is an O(n*) process. Finally, libraries such as BLAS (Ba-
sic Linear Algebra Subroutines) require the actual data for
their arguments, not code for evaluating those operands.
This approach thus precludes the use of such libraries.

Although the creation of temporaries in componentwise op-
erations destroys efficiency (the extra memory traffic is O()),
the extra memory traffic associated with multiplication is of
lower order. As we saw earlier, the cost of avoiding temporaries
by deferring evaluation can be much larger than creating them.
So, the question arises of how to automate the creation and de-
struction of temporaries. For large matrices, the approach
need not be optimal because it's a lower-order term. However,
many matrix applications use computations on medium-size
matrices, so we really should optimize this regime.

Let’s use the following approach for simplicity’s sake. As-
sign a mutable cache to each expression object (sums, prod-
ucts, differences, and so on). When the expression appears
as an operand for multiplication, the multiplication allocates
the cache, evaluates the expression into the cache, and passes
it to the library routine. The expression object destructor
then deallocates this cache. Likewise, when multiplication
appears as an operand, it is evaluated into its cache before
the expression is evaluated.

The introduction of local caching requires new methods and
properties for each expression class. Each class needs a
fill (int) method that takes a message indicating the kind of
forcing applied to it. If the message is “strong enough,” then
the object responds by filling its cache with the value of the ex-
pression it represents. The method Matrix: :fill (int) is
empty, regardless of the argument. The fil1 method for com-
ponentwise operations such as addition pass when called by
other componentwise operations, but evaluate themselves
when called by multiplication. Matrix products always fill their
cache when they are forced.

In addition to this i1l method, the illInto () method
writes the expression’s results into a target matrix. This lets us
evaluate “in place” by making = a wrapper to the underlying
fillInto () method. We have two such fillInto() meth-
ods to allow for the operation 4 <~ Band A «a*A+b* B,
which is useful in implementing update operators such as +=.

As an example, the £i11Into (Matrix&) method of the
MatrixSum class is

template{class U, class V>
void MatrixSum<U,V>::fillInto (Matrix&A) const {

// evaluate arguments if necessary
u.fill (MU) ;
v.fill (MU) ;
// evaluate
for (int j=0;j<A.getNumCols();j++) {
for (int i=0;i<A.getNumRows ();i++) {
A(i,j) = operator()(i,j);

}

Here, messages are passed to the sum’s arguments; they
fill their cache only if they are products. Otherwise, these
calls are empty, and we maintain the inlining discussed ear-
lier. Now, assignment is implemented as

template<class U>

Matrix& Matrix::operator=(const U&u) {
//dimension check here
u.fillInto(*this);
return (*this);

This abstraction of separating assignment from computa-
tion by the layer of fil1Into gives us the freedom to evalu-
ate componentwise operations via a loop with inlined in-
dexing and also to pass the pointer to a matrix’s storage into
BLAS to evaluate multiplication.

Let’s look at the process of evaluating D = (a+B) *C.
First, the MatrixSum object is created, followed by the
MatrixProduct object (with the first argument being a
matrix sum). The assignment operator begins a chain of
evaluation, calling first the £i11Into () method of the
MatrixProduct object to write into the buffer of D.
Then, the £i11Into () method calls the arguments’
£i11 () method. The first argument is a matrix sum. Be-
cause products force sums to be evaluated, the matrix
sum’s cache is allocated and filled with the result. The
second argument of the product’s £111 () method does
nothing because £111 () is always a pass for matrices. Af-
ter the arguments are filled, the caches and buffers are
passed to the library routine to execute the multiplication
into the storage for D. At the destruction of the Matrix-
Product, its arguments are destroyed, deallocating their
caches.

More generally, we generate an expression tree; calling
the fillInto () method of the top node leads to a tree re-
cursion of sending messages down the branches. These mes-

MAY/JuNE 2003

69

SCIENTIFIC PROGRAMMING

Table 1. Timing results for 3*A-B+C, n x n matrices.

m n LLANO Hand-coded

25 25 0.27 0.13

50 50 0.47 0.32
100 100 1.06 0.96
200 200 1.32 1.29
400 400 1.30 1.32
800 800 1.34 1.28

Table 2. Timing results (in seconds) forD =
+ A * B + C;.

(A + B) *C

m n LLANO Hand-coded
25 25 0.1825 0.1575
50 50 0.3675 0.3475
100 100 1.21 1.1675
200 200 1.88 1.8575
400 400 3.2375 3.23
800 800 5.795 5.85

sages either defer or force the evaluation of each node, de-
pending on the type of operations.

LLANO
All these ideas are implemented in LLANO (available on-
line at http://people.cs.uchicago.edu/~kirby/LLANO.html).
Table 1 shows some timing results comparing LLANO to
hand-coded C implementations of the same operations. The
table shows that the cost of the operator template system in
LLANO does notinterfere with the code’s asymptotic per-
formance. For componentwise operations at least, Blitz++
produces similar convergence to the C code. All results are
computed on a Macintosh iBook with a 600-MHz G3
processor and 640 Mbytes of RAM. The code is compiled
with g++ version 2.95 using -O3 optimization. Matrix mul-
tiplication is handled through the Atlas-generated CBLAS
library routine cblas_dgemm.

Now consider the LLANO statement

D= (A+B) *C+A*B+ C;
where a, B, ¢, and D are all # x n. Computing this without
overloaded operators requires several steps. First, A + B must
be stored in a temporary, which must then be multiplied by ¢
and stored in another temporary. Then, A * B must be stored
into a third temporary. Finally, the second and third tempo-
raries must be added to a loop. Table 2 compares LLANO
code against C code that manually calls the BLAS routines
and handles temporary storage and reading or writing.

A n elegant and efficient implementation of operator
overloading shows great promise in allowing pro-
grammers to write code at a natural level, yet still get good
performance. LLANO shows that memory management
can even automatically include temporaries necessary for
matrix multiplication.

However, C++ (at least in its current state) still produces
several obstacles as a language for this endeavor. Although
the compiled code’s performance no longer seems an im-
pediment to using C++, the lack of support among com-
pilers for the export keyword is disturbing. Including a
header file separately in each file of a large code leads to
platform-dependent issues regarding multiply defined
symbols. Also, template syntax is far from natural in some
circumstances.

Matlab’s success has demonstrated that users are willing
to learn a new system provided it supplies sufficient power
and expressivity. Perhaps the time is right to explore other
compiled languages with functional features for making code
more elegant. This could be a step toward the goal of com-
bining high performance and ease of use (both in terms of
natural syntax and portability) into a single programming
environment.

Acknowledgments

I thank Stuart Kurtz for many helpful discussions. The Cli-
mate Systems Center at the University of Chicago sup-
ported this work under NSF grant AP/ITR 0121028.

References
1. S.W. Haney, “Is C++ Fast Enough for Scientific Computing?” Computers
in Physics, vol. 8, no. 6, 1994, pp. 690-695.
2. S.W. Haney, “Beating the Abstraction Penalty in C++ Using Expression
Templates,” Computers in Physics, vol. 10, no. 6, 1996, pp. 552-557.
3. A.D. Robison, "C++ Cets Faster for Scientific Computing?” Computers in
Physics, vol. 10, no. 6, 1996, pp. 458-462.

4. T.Veldhuizen, “Arrays in Blitz++,” 2nd Int’l Scientific Computing in Object
Oriented Parallel Environments (ISCOPE '98), Springer-Verlag, 1998;
www.oonumerics.org/blitz.

5. G. Golub and C. van Loan, Matrix Computations, Johns Hopkins Univ.
Press, 1996.

Robert C. Kirby is an assistant professor of computer science at the Uni-
versity of Chicago. His technical interests include numerical analysis, sci-
entific computing, and mathematical software. He received his PhD in
computational and applied mathematics from the University of Texas,
Austin. Contact him at the Dept. of Computer Science, Univ. of Chicago,
1100 E. 58th St., Chicago, IL 60637; kirby@cs.uchicago.edu.

70

COMPUTING IN SCIENCE & ENGINEERING

