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Much research in the field of School Psychology is conducted within educational institutions. 
Consequently, a large portion of the data school psychologists use is nested, i.e., students nested within 
classrooms, which are nested within schools, which are nested within counties, et cetera.  Because of the 
nature of this type of data, it is frequently a good candidate for Multilevel Analysis. The purpose of the paper 
is to provide a non-technical introduction for school psychology students to the statistical method of 
Multilevel Analysis. Using an actual data set, this paper will give a cursory demonstration of why Ordinary 
Least Squares Regression can often be too restrictive for nested data, and how Multilevel Analysis can allow 
for a better accommodation of the diversity in some school psychology data. 

What We Often Do: Ordinary Least Squares 
Often in school psychological research, when we want to know how independent variables (IV; or 

predictors) predict a dependent variable (DV; or criterion), we use Ordinary Least Squares (OLS) Multiple 
Regression, i.e., 
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where p is the number of IVs used in the study and i is an individual in the study, ranging from 1 to i. (For a 
more in depth explanation of the derivation of the 㬐 and 㬠 coefficients, see Pedhauzer, 1997, Coehn, Coehn, 
Aiken & West, 2003, or most elementary calculus texts). Using equation (1), the researcher assumes that the 
regression coefficients (i.e., intercept, 㬐, and slopes, 㬠) are invariant across all individuals. Consequently, the 
ith individual’s predicted DV value (Yi) is simply the sum of: (a) a constant (㬐, controlled for Xhi); (b) IV 
affects (㬠h); and (c) a random amount of error (㭐i, often called the residual).  

Real Data 
Using an actual data set, a OLS regression was run.1 The data is made up of 3,236 students nested 

within 49 different schools.  The IVs are scores on an IQ test (Ravens Matrices) and a social class ranking, 
which is used in this example as a proxy for SES. The DV is a standardized mathematics achievement test. 
Pertinent OLS output can be seen in Table 1. 
 
Table 1 
 
OLS Regression Output 
 

IV 
Unstandardized 

㬠 Standard Error t-ratio p value 
Constant 8.46 .54   

Ravens (IQ)   .68 .02 34 .000 
SES   .24 .05 4.7 .000 

     
R R2(Full Model) Adjusted R2    

.53 .28 .28   
 

From the OLS analysis, the key points are: (a) both SES and IQ help predict math achievement (i.e., 
have significant t-ratios, as indicated by the p-values), (b) IQ and SES explain 28% of the variance in math 
achievement, and (c) there is a small band of error surrounding the 㬠 coefficients.  

One of the major assumptions in the OLS regression is that the observations are independent. 
Another is that the 㬐 (8.46) and 㬠s (.68 & .24) are the same for all individuals in the data set; put another 
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way, the average math achievement score is appropriate for all students, and IQ and SES have the same 
affect for every student in every school.2 Are these assumptions valid? Possibly, but probably not. Since the 
data are nested in nature (i.e., students are nested within schools) it is probably not valid to assume, a priori, 
that there is no variation. Like most things in statistics, these assumptions can be assessed empirically, using 
the intra-class correlation (ICC). Without going into much detail, the ICC (symbolized as the Greek letter 
rho, 㰐) measures how much of the total variance is made up of the variance between the groups (in this 
example, the schools). The formula is: 

22

2

στ

τ
ρ

+
=   ,    (2) 

where tau (symbolized as 㱀2) is the variance between the schools and sigma (symbolized as 㰰2) is the total 
variance within each school [or, alternatively, the variance surrounding 㭐i in equation (1)]. Obviously then, 
the sum of 㱀2 and 㰰2 is the total variance in the data.3 For our data, the total variance is approximately 58.4 
and the between school variance is approximately 4.13, which produces a 㰐 of .075.  This means that about 
7.5% of the total variance in mathematics achievement scores is due to between school effects. Why is this 
important? If this effect is not taken into account, and an OLS regression is run, the type I error level 
(nominally at .05) is drastically increased (for a more in-depth explanation, see Kreft & De Leeuw, 1998).4 
 Therefore, it seems that the OLS assumption of independent observations does not hold up for this 
particular example (i.e., the scores on the math achievement test are somewhat dependent of the school the 
student is in).  One way to solve this issue is to use Multilevel Analysis. 

Multilevel Analysis 
Multilevel Analysis (MA) is a statistical method that allows for the incorporation of nesting 

(grouping) into the data analysis model (i.e., the data do not have to be independent observations). Using our 
example, MA can allow for fact that IQ and SES might have different prediction capabilities (i.e., regressions 
coefficients) depending on the school the student attends.  Logically, this would make sense, as IQ would 
tend to predict differently for a student from a school with high average socio-economic status (SES) and 
high average student IQ, than it would for a student from a school with low average SES and low average IQ. 
In other words, MA allows for the IVs in the data to have diverse affects on the DV. 
Random Slope 
 A good first step to model the data’s diversity is to let the intercept vary between groups. This means 
that some groups will start out with higher average scores on the DV, while other will start out with lower 
scores. From our example, it would be expected, based on previous research (Teddlie & Reynolds, 2000), 
that a school with high average SES would have higher average math scores than a school with lower SES. 
 A model that allows the intercept to vary across groups is: 

ijij eY += 0β .     (3) 

In this formula, a given school’s (j) average math score (㬠0j) is allowed to vary across schools. To allow for 
the schools to have different intercepts, the intercept term, 㬠0j , needs to be decomposed into a group average 
(sometime called the grand mean, symbolized as 㬰00) and a group deviation, symbolized as u0j:  

jj u0000 += γβ .      (4) 
When equation (3) and (4) are combined, they lead to the model: 

ijij euY ++= 000γ ,     (5) 
where, again, 㬰00 is the grand mean for every student in every school and u0j is the main effect for school j 
(i.e., how much school j deviates from the grand mean). When 㬰00 and u0j combine, they form the average 
score on the math test for school j. 

Because we are trying to predict both math achievement and the average math score for a given 
school, this is technically known as an intercept-as-outcomes model. To run an analysis using this model, we 
need a statistics program that can incorporate multilevel models.5 For the purposes of this paper, HLM 5 
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(Raudenbush, Bryk, Cheong, & Congdon, 2001) is used. Snijders and Bosker (1999, chapter 15) give a 
comprehensive listing of other available software. 
 After centering the IQ variable (i.e., standardizing it: 0=x , sd =1, see endtnote 11 for further 
elaboration of why centering is needed) the analysis produced the following results:7 

 
Table 2 
 
Results from Unconditional, Intercept-as-Outcome Model 
 
Fixed Effect Coefficient Standard Error t-ratio p value 

Model for school 
means 

    

Intercept, 㬰00 26.53 .32   
     

Random Effect 
Variance 

Component df 㱰2 p value 
School Mean, u0j   4.13 48 285.99 .000 
Within-School  

(level 1) variance, ei 
54.34    

 
From the results, we can see that the average school math score is 26.53, with a range of plausible 

values (i.e., 95% confidence interval) of (22.55, 30.51). 
Explaining the Level-2 Variance 
 Now that we know the variance in schools’ mean math scores (i.e., the level-2 variable’s variance, 
which is 4.13), let’s try to explain some of it. A plausible explanatory variable is school SES. Using the data 
in the current analysis, we do not have a school-level SES variable per se, but we can easily make one. 
Because we have an SES indicator for each student, we can average the SES status for each student in each 
school, and come up with a level-2 SES IV. For those who like equations, here is the equation for what we 
are doing: 

for schools (1, 2, . . . 49)   
n
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where n is the number of students (i) in school (j), and Xij is the SES score for student i in school j. For those 
who do not like equations, this means we will be summing students’ SES scores in a given school and 
dividing this sum by the total number of students in that school. This process will be iterated for j number of 
schools, which is 49 in our example. 
Our new model to fit is then: 

ijij eY += 0β ,      (7) 
which is the same as equation (3); our level-2 model has changed though, now being: 

jj u001000 )SESMean( ++= γγβ .     (8) 
The IV, Mean SES, is our amalgamated SES variable, grand-mean centered.8 Combining equations (7) and 
(8) gives the hierarchical model: 

ijij euY +++= 00100 )SESMean(γγ .    (9) 
Running the current model [equation (9)] in HLM 5 gives the following output: 
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Table 3 
 
Results from Intercept-as-Outcome Model, with SES as Level-2 IV 
 

Fixed Effect Coefficient Standard Error t-ratio p value 
Model for school 

means 
    

Intercept, 㬰00 26.53 .32   
Mean SES, 㬰01    .63 .32 1.98 .05 

     

Random Effect 
Variance 

Component df 㱰2 p value 
School Mean, u0j   3.78 47 257.44 .000 
Within-School  

(level 1), ei 
54.34    

 
It is noteworthy that the between schools variance has dropped from 4.13 (Table 3) to 3.78.  Using the 

formula 
U

CU

τ

ττ −
, where 㱀u is variance between schools in the unconditional model (i.e., 4.13 in our 

example) and 㱀c is the variance between schools in the conditional model (i.e., 3.78 in our example), gives 
the proportion of variance between schools explained by the model with Mean SES in it. With our data, the 
value is.085, which means 8.5% of the true between-school variance in math achievement is accounted for 

by Mean SES. Similarly, the conditional ICC (i.e., conditional on Mean SES) is 
34.5478.3

78.3
+

, or .065.9 

 When Mean IQ is used as the Level-2 explanatory IV [forming the level-2 variable using the same 
formula as in equation (6)], the HLM 5 results are as follows: 
 
Table 4 
 
Results from Intercept-as-Outcome Model, with IQ as Level-2 IV 
 

Fixed Effect Coefficient Standard Error t-ratio p value 
Model for school 

means 
    

Intercept, 㬰00 26.53 .27   
Mean IQ, 㬰01 .59 .12 4.95 .000 

     

Random Effect 
Variance 

Component df 㱰2 p value 
School Mean, u0j 2.61 47 205.83 .000 
Within-School  

(level 1), ei 
54.34    

 
The amount of variance explained (above and beyond the unconditional model, i.e., the results in Table 2) is 
36.8% and the conditional ICC is .046. Based on the explained variance and reduction in ICC, mean IQ is a 
better explanatory variable for the variance in school mean math score, and will be used instead of Mean 
SES.10 
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Explaining the Results 
 From the Mean-IQ as a level-2 predictor model, we can say that the average math achievement score 
for a school with an average group IQ is 26.53 (95% Confidence Interval: 23.4, 29.7). When the school’s 
average IQ increases, the average math achievement also significantly increases. Additionally, we can say 
that IQ explains a significant amount of the between school variance (36.8%) in math achievement; but, there 
is still significant variance (i.e., 63.2%) left over between schools, even when accounting for school IQ. Last, 
the standard errors are more accurately estimated, and are larger than those given by the OLS estimation. 
I’ve Seen this Before, Haven’t I? 

For those familiar with Generalized Linear Models, equation (5) should look familiar because it is 
the formula for one-way, random-effects ANOVA. In the ANOVA conceptualization, 㬠0j is the coefficient 
for the randomly selected groups, and its variance, 㱀2, is the between group variance. Consequently, the 
variance of ei, 㰰2, is then the within-groups variance. If a level-1 IV was also included in the model, then 
equation (5) would then look like the linear formula for random effects ANCOVA. 
Hierarchical Linear Model (HLM) 
 In the last section, we allowed each school to have its own average math achievement score, and we 
found that the average school IQ significantly predicted that average math score. Now we are going to 
divulge for a brief section and forget about what we found. To make things easier, we are going to focus first 
on an unconditional (i.e., no IVs included in the level-2 model), full hierarchical model by allowing both the 
intercept (㬠0j) and the level-1 slope (㬠1j) to vary (randomly) for each school. Specifically, the model is as 
follows: 

iijjjij eSESY ++= 10 ββ ,      (10) 
where SES is the standardized SES score for student i in school j.11 A student’s math achievement score is 
now predicted by two parameters: the intercept (i.e., the performance of an average student in an average 
school), and the slope (i.e., the student’s IQ’s effect). Because both the intercept and slope have been 
centered, 㬠0j is school j’s mean math score. Allowing both the intercept and the slope to vary for a given 
school gives us the following equations: 

jj u0000 += γβ ,     (11a) 

jj u1101 += γβ ,     (11b) 
where  

㬰00 is the average of the school math achievement scores across all the schools; 
㬰10 is the average SES-math achievement regression slope across all the schools; 
u0j is the unique increment to the intercept (average math achievement) associated 

with school j; and 
u1j is the unique increment to the slope associated with school j. 

A caveat in having two randomly varying parameters is that not only is there between-group variance (㱀00) 
and within-group variance (㱀11), but there is also covariance between the two parameters (㱀10 and 㱀01). This 
issues involved in having a covariance term will not be explained more in this paper; for those interested, see 
Raudenbush and Bryk (2002). 
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Analyzing the data in this unconditional HLM, we will be able to estimate the unconditional 

parameter variability in both intercepts and slopes. Combining equations (10) and (11) yields: 
iijjjijij eSESuuSESY ++++= 101000 γγ ,      (12) 

which produces the following estimates when run in HLM 5: 
 
Table 5 
Unconditional HLM 

Fixed Effects Coefficient 
Standard 

Error t-ratio p value 
Average mean math 
achievement score, 㬰00 

26.48 .32   

Average SES-
achievement slope, 㬰10 

    .42 .09 4.68 .000 

     
Random Effects Variance 

Components df 㱰2 p value 
School average Math 
score, u0j 

  3.94 48 273.17 .000 

SES-achievement slope    .20 48 110.43 .000 
Within-School  
(level 1), ei 

52.61    

 
From this output, we can see that, on average, SES is significantly related to math achievement (i.e., 

㬰10 is significant). Additionally, because the variance components for both the intercept and slope are 
significant, we infer that significant differences exist among average math achievement between the schools, 
and that the relationship between SES and math achievement within each school varies across the population 
of schools. We can find 95% confidence intervals for the intercepts and slope, (22.54, 30.42) and (-.48, 1.32), 
respectively. Last, because we have a level-1 IV (SES), we can calculate the proportion reduction in variance 

using the formula we used earlier, (i.e., 
U

CU

τ

ττ −
), which yields (

34.54
61.5234.54 −

), which in turn, equals 

approximately 04.  From this, we see that adding SES as a predictor of math achievement reduced the within-
school variance by about 4%, and we can conclude that SES accounts for about 4% of the student-level 
variance in math achievement scores. Remembering that SES also explained about 8.5% of the between–
school variance in math scores in the first intercept-as-outcomes model, it looks as if SES has a more cogent 
effect at the school level than at the student level, but, when it is the model by itself at both levels, it is 
significant both places. 
Slopes- and Intercepts-as-Outcomes Model 
Keeping equation (10) as the level-1 model, we know try to account for the between-school variance by 
adding IVs [Standardized IQ, (SIQ), and SES] to the level-2 equations. Specifically, we are going to fit the 
following models for the intercept and slope, respectively: 

jjj uSIQ 001000 ++= γγβ , and     (13a) 

jjj uSES 111101 ++= γγβ ,     (13b) 
where u0j and u1j are the random effects of the intercept and slope, respectively, and have variances (㱀00) and 
(㱀11), respectively, and a covariance of 㱀10.12 Combining equation (10) and (13) yields the model: 
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iijjijjijjjij eSESuSESSESSESuSIQY ++++++= 1111000100 γγγγ . (14) 
Table 6 contains the output when using equation 14 to model our data in HLM 5. 
 
Table 6 
 
Intercepts-and Slopes-as-Outcomes Model 
 

Fixed Effects Coefficient 
Standard 

Error t-Ratio p value 
Model for school math achievement 
means 

   

Intercept, 㬰00 26.42 .29   
Mean IQ, 㬰01     .56 .14 4.1 .000 
Model for SES-math achievement slopes    
Intercept, 㬰10 .43 .09   
Mean SES .21 .1 2.1 .000 
     

Random Effects 
Variance 

Components df 㱰2 p value 
School mean, u0j   2.8 47 214.1 .000 
SES-achievement 
Slope, u10 

     .17 47 100.4 .000 

Within-School  
(level 1), ei 

52.6    

 
As we did earlier, we can assess the reduction in variance to see how much variance these level-2 

predictors helps explain. For the intercept, we have the equation 
94.3

75.294.3 −
, which equals .30, and for the 

slope we have the equation 
20.

17.20. −
, which equals .15.  Consequently, from adding IQ to the level-2 

intercept model we explain about 30% of the between-school variance in average math score; likewise, 
adding average SES to the level-2 achievement-SES slope, we explain 15% of the between-school variance. 
All this is in addition to the 4% of the within-school variance explained by adding SES to the level-1 model. 
If we had more variables, this procedure could be iterated and more variance could be explained at both 
levels.  For this didactic exercise though, we will end at this point and give a more thorough discussion of the 
findings. 

Discussion 
 It is hoped that the previous cursory walking-through of Multilevel Analysis has shown the readers 
some of its unique and desirous capabilities.  For instance, while the Ordinary Least Squares method of 
Multiple Regression can tell the researcher of the omnibus amount of variance explained in the dependent 
variable by independent variables, it does not have the capability of splitting it up into within and between 
group variance.  Further, when data are nested, OLS methods are unreliable as they reject the null hypothesis 
at a level too liberal by most researchers’ standards (which also makes the regression confidents have too-
small standard errors). Multilevel Analysis, on the other hand, can combat these problems by allowing a 
splitting of within and between group variance as well as allowing data to be nested and still having 
appropriate alpha levels. 

Specifically, in the example worked in this paper, it was shown that an Ordinary Least Squares 
analysis of the affects of IQ and SES on math achievement explained about 28% of the total variance.  When 
the same data were put into a hierarchical model, it was shown that SES explains about 4% of the within-
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schools variance on math scores, while IQ explains about 30% of the between-schools average score, and 
school-average SES explains about 15% of the individual affect of SES on math achievement.  Put more 
simply, from the current data, it seems that students with higher SES perform better on the math achievement 
test, and part of this can be explained by the fact that richer schools tend to have, on the average, higher math 
achievement. Additionally, schools with higher average IQs tend to have students who have higher math 
achievement, when SES is controlled. This is not a complete explanation of the data (after all, there was a 
significant amount of variance still left over in both level-1 and level-2 variances), but it does show that math 
achievement is a complex phenomenon that needs both individual- and group- variable explanation. Using 
Multilevel Analysis, the diversity inherent in this data was allowed to come through a lot more clearly than 
when OLS was used. 

Further Reading 
 For those who are interested in MA, here is a list of good introductory texts. 
Hox, J. (1995). Applied multilevel analysis. Amsterdam: T-T Publikaties. [Available free 

at: http://www.fss.uu.nl/ms/jh/publist/amaboek.pdf ] 
Kreft, I. & de Leeuw, J  (1998).  Introducing multilevel modeling.  Thousand Oaks: Sage. 
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and 

data analysis methods (2nd ed.). Thousand Oaks, CA: Sage. 
Raudenbush, S., Bryk, A., Cheong, Y. F., & Congdon, R. (2001). HLM 5: Hierarchal 

linear and nonlinear modeling. Lincolnwood, IL: Scientific Software International. 
Snijders, T. & Bosker, R. (1999). Multilevel analysis: An introduction to basic and 

advanced multilevel modeling. London: Sage. 
 

Footnotes 
1. The data set is available freely on the Internet from the Centre for Multilevel Modelling 
[http://multilevel.ioe.ac.uk/intro/datasets.html]. Original data are from Mortimore, Sammons, Stoll, Lewis, & 
Ecob (1988). For the purpose of this paper, the SES variable was reordered so that a low value equals low 
SES and vice versa for high SES values. A caveat to using this data is that it is for didactic purposes only, 
i.e., no inferences about IQ, SES, or math achievement should be made from the results of the analyses. 
 
2. There are more assumptions than these in regression analysis. For more information, see Coehn, Coehn, 
Aiken & West (2003); Pedhauzer (1997). 
 
3. The intra-class correlation can be computed in SPSS (v. 10) under Variance Components in the General 
Linear Model option using math achievement as the DV and school number as the random factor. 
 
4. Type-I error happens when one rejects the null-hypothesis when it is true and, therefore, should be 
retained. 
 
5. Technically, SPSS v.10 and above can analyze intercepts-as-outcomes models. For more information on 
this, see chapter 15 of Snijders and Bosker (1999).  
 
6. A free, although limited, version of HLM 5 is available on the Internet 
[http://www.ssicentral.com/other/hlmstu.htm]. The data used for this paper’s analysis are purposely truncated 
so anyone can use the free version of HLM 5 to run their own analysis. 
 
7. From this point on, instead of OLS, the analysis will use Full Maximum Likelihood. Raudenbush and 
Bryk (2002, chapters 3, 13, & 14) explain the formulae and theory behind this estimation method. 
 
8. This is the only centering option available for level-2 variables in HLM 5. For further explanation on the 
differences in centering at their meaning at different levels, see Raudenbush and Byrk (2002, pp. 31-35). 
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9. The conditional intraclass correlation (ICC) is the amount of the total variance that is due to the between 
groups variance, after controlling for various IVs. In our example, 6.5% of the total variance is between 
schools, after controlling for the schools’ SES level. 
 
10. Mean SES looses most of its explanatory power when Mean IQ is also in the level-2 model. 
Consequently, for the sake of parsimony, only Mean IQ is  kept. 
 
11. When using IVs that have no real value at 0 (such as IQ and SES), it is important to transform them so 
that 0 has meaning. An easy way of doing this is to standardize the score, which means 0 is interpreted as a 
student with an average SES score. Another way, which the HLM 5 program will do for you, is to grand-
mean center the variable, which means person i’s score will be a deviation from the grand mean, or 
( ..XX ij − ). Consequently, a score of 0 means an average SES status. 
 
12. A model with both average SES and average IQ in both level-2 equations was fit, but the model 
presented (i.e., equation (14)] fit better. For the sake of brevity, only the better-fitting model is presented. 
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