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1. Introduction

Making a decision to admit a student into a program is a binary prediction of how well the
individual student will do in the program. By admitting the student, the decision makers believe
there is enough evidence to predict that the student will graduate from the program. Conversely,
by rejecting the student, the decision makers believe there is enough evidence to predict that
the student will not graduate from the program.

In making such decisions, using a statistical (actuarial) method usually results in much more
accurate decisions than clinical judgement (AEisdottir et al., 2006; Grove, Zald, Lebow, Snitz,
& Nelson, 2000). On average, decisions based on statistical models are 10%-13% more accurate
than clinical decisions. In addition, actuarial methods have the added benefit of being 100%
reproducible since they follow defined set of procedures.

In academic settings, often the variables used to make statistical decisions about students
are test scores, broadly defined. These can be scores from an actual test (e.g., SAT), but can
also be a grade from a course, GPA, or some other quantified measure. When using a test to
make a decision, the results usually will not show compelling evidence for or against the decision;
instead, the evidence will be a matter of degree (Swets, 1992). That is, how much better can
the program predict success (i.e., graduation) having the information about contained in the
test scores than without having such information.

1.1. Research Design

The research designs for these projects will typically be made up of archival data, at least at
the initial stages. That is, it will use data from students who were already been admitted into
the program 4-6 years ago, and for whom there is already data on whether they graduated from
the program or not. For example, if a program was looking to implement a test for admissions
starting in the 2014-2015 academic year, they would need to to examine data from cohorts of
students who started the program during the 2009-2010 academic year and before. This gives the
already admitted students (for whom the proposed admission test was not used) the opportunity
to have graduated.

Th research design assumes that the proposed admissions test was already administered to
the students in these years. If the test was not administered, then the research design will have
to start the data collection with a current cohort of students. While graduation will still likely
be the outcome of interest, proxies for this outcome (e.g., retention, changing major) will likely
have to be used for the first 4-6 years.

1.2. Decisions and Outcomes

The binary admissions decisions are probabilistic, made with more or less confidence depend-
ing on the values of the test scores. Thus, making the binary decision in a systematic fashion
requires selecting a threshold along the continuum of test scores such that values above the
threshold uniformly lead to one decision and values below it lead to the opposite decision.?

In the simplest scenario, there are only two decisions (i.e., admit, reject) and two outcomes
(i.e., graduate, not-graduate). This leads to four possible outcomes for a particular student
when making the admission decision. (Appendix A provides definitions of some of the new
terminology.)

2The decision is dependent on how outcome is scaled, but I will assume that values above the threshold lead
to the positive decision (i.e., admission), while values below the threshold lead to the negative decision (i.e.,
rejection).
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1. If the test says to admit and the student graduates, it is counted as a true positive (TP).

2. If the test says to admit and the student does not graduate, it is counted as a false positive

(FP).

3. If the test says to reject and the respondent does not graduate, it is counted as a true
negative (TN).

4. If the test says to reject and the respondent graduates, it is counted as a false negative
(FN).

These four outcomes can be shown using a 2 x 2 contingency table, an example of which is
shown in Table 1. The numbers along the major diagonal represent the correct predictions,
while numbers in the off diagonal represent prediction errors.

Table 1: Ezample Contingency Table for Graduation Outcome.

True Graduation Status
Graduate Not Graduate

Predicted Graduate ‘ True Positive (TP) ‘ False Positive (FP) ‘
Graduation Status Not Graduate ‘ False Negative (FN) ‘ True Negative (TN) ‘

The true positive rate is defined as

TP _ Correctly Predicted to Graduate (1)
TP+ FN Total Graduated

True Positive Rate =

The false positive rate of a predictor is defined as

FpP _Incorrectly Predicted to Graduate

False Positi te = - ’
alse Positive Rate TN + FP Total not Graduated @

Another term for the true positive rate is sensitivity. It tells how many times you will admit
a student who would graduate from the program. The converse of sensitivity is specificity, which
is the proportion of non-graduating students who are correctly predicted to not graduate, which
is defined as

TN _ Correctly Predicted to not Graduate
TN+ FP Total not Graduated

Specificity = = 1 —False Positive Rate (3)

Specificity tells you how many times you did not admit the student (i.e., reject) who did not
graduate from the program.

1.3. Base Rates

Base Rate (i.e., prevalence) is the frequency event of interest in the population.” For the
purposes of program admissions, the BR is the proportion of students who graduate from the

3Here, population represents all the students within a program past, present, and future. Of course, data
cannot be collected on future students in the present; thus the inference part of the data analysis is that data
collected from the past/present students will apply to future students in the program.
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program. Stated differently, what is the probability a randomly selected student in the program
will graduate? It is defined as

(True Positive) + (False Negative)

Base Rate = All Decisions ) (4)

Although they are typically ignored (Meehl & Rosen, 1955), BRs should play a Large part
in these diagnostic types of decisions (Finn & Kamphuis, 1995; Treat & Viken, 2012). This
is worth repeating: BRs should play a Large part in program admissions decisions.
The more rare the outcome (i.e., smaller BR), the more difficult it is to predict the outcome
will occur with accuracy. Likewise, the more common the outcome (i.e., larger BR), the more
difficult it is to predict that the outcome will not occur with accuracy. Thus, when the BR is
low, tests work best at ruling out an outcome; and when a BR is high, tests will work best at
ruling in an outcome. From a different perspective, if the BR is low, then stronger evidence is
needed to be able to predict that the event will occur than when the BR is high. Likewise, if
the BR is high, then stronger evidence is needed to be able to predict that the event will not
occur than when the BR is low.

When the BR for graduating from a program is low, an admissions test will do the best at
determining students who will likely not graduate from the program. Likewise, it will require

stronger evidence to predict that a student will graduate from the program than when the BR
is high.

When the BR for graduating from a program is high, an admissions test will do the best
at determining who will likely graduate from the program. Likewise, it will require stronger
evidence to predict that a student will not graduate from the program than when the BR is
low.

Related to the BR are the odds, which are

Base Rate
dds =
Odds 1 — Base Rate (5)

1.4. Likelihood Ratios

The Positive Likelihood Ratio (LR, 18521% = %) represents the odds that a student
admitted into the program, based on some test’s value, will actually graduate from the program.
It compares how often the test’s threshold value occurs in those who graduate (i.e., sensitivity)
versus its rate in those students who will not graduate (i.e., 1-specificity). For example, a LR+
of 3 can be interpreted as: Being admitted into the program based on the test (at a given

threshold) is 3 times greater for those who will graduate than for those who will not graduate.

... risk factors or tests producing |Likelihood Ratios| of less than 2 are rarely worth
adding to the evaluation process, whereas values around 5 are often helpful, and val-
ues greater than 10 frequently have decisive impact on an evaluation. (Youngstrom,
2012, p. 9)

The Negative Likelihood Ratio (LR-, % = 13) represents the odds that a student

rejected from the program would actually not graduate from the program. As values become
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> 1, it indicates that the admission test is giving more information about not graduating than
guessing (i.e., using the BR alone). For example, a LR~ of 2.5 can be interpreted as: Being
rejected from the program based on the test (at a given threshold) is two and one-half times
greater for those who would not graduate from the program than for those who would graduate
from the program.

1.5. Predictive Values

The Positive Predictive Value (PPV, %) is the probability of graduating when admit-

ted to the program and is BR dependent.

Of all students who are admitted into a program based on the admission test’s threshold,
only the PPV proportion will actually graduate from the program. Another way of thinking of
PPVs is: The probability a student will graduate from the program, given the graduation BR
and the student’s score on the admissions test. When the PPV values are high, it means that
only a few tests indicating the students should be admitted is likely enough information to say
the individual will likely graduate from the program.

The Negative predictive value (NPV, ﬁ

rejected from the program and is BR dependent.

) is the probability of not graduating when

Of all students who are rejected from the program based on the admission test’s threshold,
only NPV proportion will actually not graduate. Another way of thinking about NPV is: the
probability a student will not graduating from the program, given the BR of not graduating
(i.e., 1 - Base Rate) and the students’s score on the test. With high NPV values, only a few
tests indicating to reject the student from the program is likely enough information to say the
student will likely not graduate from the program.

Because predictive values are BR dependent, BRs are used in their calculations. Specifically,
the PPV weights the LR+ by the appropriate BR, while the NPV weights the LR~ by the
appropriate BR. This is shown in Equation (6) and Equation (7), respectively.

Base Rate x Sensitivity

PPV =
(Base Rate) x Sensitivity + (1 — Base Rate) x (1 — Specificity)

(6)

1 — Base Rate x Specificity
(1 — Base Rate) x Specificity + (Base Rate) x (1 — Sensitivity)

NPV = (7)

What makes PVs nice is that not only do they incorporate the BR, but they can be combined
across different tests. I show an example of this in Section 2.

The relationship between BRs and predictive values is illustrated in Table 2. Table 2a is
the best case scenario because the program admissions test has both high sensitivity and high
specificity. Except for the extremely low BRs (i.e., < .05) having a test score that meets the
criterion indicates that the student has a non-negligible probability of graduating from the
program. Likewise, except for the extremely high BRs (i.e., > .95) having a test score that
does not meet the criterion indicates that the student has a non-negligible probability of not
graduating from the program.

Table 2b provides a more realistic scenario for higher education. Here, having a test score
meet the criterion increases the student’s probability of graduating from the program, but only
small amount. Likewise, having a test score not meet the criterion increases the student’s
probability of not graduating from the program, but only small amount.
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Table 2: Relationship between base rates and predictive values for certain levels of sensitivity
and specificity of a test’s score.

Base Rate -+ PV -PV

0.99 1.00  0.16
0.95 1.00  0.50
0.90 099  0.68
0.50 095  0.95
0.10 0.68  0.99
0.05 0.50  1.00
0.01 0.16  1.00

(a) Sensitivity=.95 and Specificity = .95.
Base Rate -+ PV -PV

0.99 1.00  0.02
0.95 098 0.11
0.90 0.95 0.21
0.50 0.70  0.70
0.10 021 095
0.05 0.11  0.98
0.01 0.02 1.00

(b) For Sensitivity=.70 and Specificity = .70
Base Rate + PV -PV

0.99 0.99 0.01
0.95 095  0.05
0.90 0.90  0.10
0.50 0.50  0.50
0.10 0.10  0.90
0.05 0.05  0.95
0.01 0.01  0.99

(c) For Sensitivity=.50 and Specificity = .50

Table 2¢ shows what happens when using tests whose scores do not give much information
about program admissions. Irrespective of whether the test score met the criterion or not, the
student’s probability of graduating, or not graduating, from the program is equivalent to the
BR.

As an aside, test scores can have strong reliability and validity evidence, but still not be
useful in making decisions (Hayes, Nelson, & Jarrett, 1987; Wasserman & Bracken, 2003).

Tests whose scores do not give much information (i.e., have low sensitivity and specificity)
do very little to aid in the decision making process above and beyond what is known from the
base rate.

1.6. Receiver Operating Characteristic Curves

One way to examine if a test is able to predict graduation is to use receiver operating
characteristic (ROC; Zweig & Campbell, 1993) curves. ROC curves are two-dimensional
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graphs of the TP rate (Y axis) against the FP rate (X axis). It depicts relative trade-offs
between benefits (TPs) and costs (FP) of using the test. An example is given in Figure 1.
The lower left point (0, 0) in an ROC curve represents the situation of never issuing a positive
prediction (i.e., no student will graduate). While this situation commits no FP errors, it also
gains no TPs. The opposite situation (i.e., unconditionally predicting that all the students will
graduate) is represented by the upper right point (1, 1). The point (0, 1) represents perfect
prediction by the test.

Usually, a point on an ROC curve graph is better than another if it is to the northwest
(TP rate is higher, FP rate is lower, or both) of the other point. Points appearing on the left
hand-side of an ROC graph, near the X axis, are conservative because a positive prediction is
made only with strong evidence. While there are few FPs at this cutoff of the predictor, they
often have low TP rates as well. Points on the upper right-hand side of an ROC graph are
more liberal as they make positive predictions with weak evidence; thus, they classify nearly all
positives correctly, but they often have a high FP rate.

The diagonal line y = = represents the strategy of randomly guessing membership, (i.e., it
can be expected to correctly predict half the students who graduate and half the students who
do not graduate). Thus a test that does not do any better than random will produce a ROC
point that hovers around the diagonal. Any test that appears in the lower right triangle performs
worse than random guessing, and is usually empty in ROC graphs.

One way to reduce ROC performance to a single value, for comparisons across predictors, is
to calculate the area under the ROC curve, abbreviated AUC. Its value will always be between
0 and 1.0. Random guessing produces lines along the diagonal line between (0, 0) and (1, 1),
which has an AUC of 0.5; thus, no AUC values should be less than 0.5.

1.7. Setting the Test’s Threshold

The optimal value on a test to use as the threshold (i.e., cut score) varies from one situation
to another, and will depend on the BRs as well as the costs and benefits of the TPs and FPs.

With a Liberal threshold, it : (a) is easier to get admitted to the program; (b) lowers
specificity; and (c) raises sensitivity. Liberal test thresholds cast a wide net. Thus, they make
it more likely to admit everyone who would graduate from the program (TP), but also make it
more likely to admit more students who will not graduate (FP).

With a Conservative criterion, it: (a) is harder to get admitted to the program; (b) raises
specificity; and (c) lowers sensitivity. Conservative test thresholds cast a narrow net. Thus, they
make it is more likely to reject everyone who would not graduate (TN), but also make it more
likely to reject more individuals who would have graduated (FN).

1.7.1. Incorporating Costs and Benefits in Determining Test Thresholds

The decision of where to set the test threshold for decision making needs to take into account
both the BRs and the costs and benefits of correct and incorrect predictions (Swets, 1992).*
One method of incorporating costs and benefits is to make a ratio of the benefits related to
admission vs. rejection. One such ratio is

BR Brp — Crn

ROC Optimal Threshold = (8)

4This is not the same as a cost-benefit analysis as is typically done with program evaluations (Yates, 1994;
Yates & Taub, 2003). Instead, this section refers to the cost and benefit associated with setting a test’s threshold.
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Figure 1: Ezample receiver operating characteristic (ROC) curve.

where Bry and Brp are the benefits of correct decisions and Cpp and Cgy are the costs of
incorrect decisions (Metz, 1978). The ROC optimal threshold (OTgroc) is the value on the
ROC curve that best balances the weight of the costs and benefits. To use it, one needs to find
the slope of the ROC curve (Somoza, Steer, Beck, & Clark, 1994) that matches the OTgoc and
then map that value onto the test threshold that gives the appropriate FP and TP rates.

For a fixed set of benefits and costs, the OTgroc will be relatively large when 1 — BR (the base
rate for the event [i.e., graduation| not occurring) is appreciably greater than the BR. In other
words, one needs very strong evidence to predict a student will graduate from a program when
the probability of not graduating from the program is high. With a higher BR, the OTgoc will
be smaller and more lenient. This allows for a higher FP rate, but this can be tolerated because
the number of students not graduating is relatively small.

If the two kinds of wrong decisions are equally bad and the two kinds of correct decision are
equally good (i.e., Bry = Brp and Crp = Cpy), then the OTgroc will be determined solely by

the BRs and will be the place on the ROC curve where the slope equals 173%1%.

When the BRs are constant, the OTgoc is large when the numerator of the benefit-cost part
of Equation (8) (Bry — Crp) is large compared to the denominator (Brp — Cry), which is the
case when more importance is attached to the accuracy of predicting who will not graduate.
Conversely, the OTroc is small and lenient when the benefit-cost denominator is large relative
to its numerator, which is the case when it is more important to make correct decisions about
predicting who will graduate than predicting who will not graduate.

Treat and Viken (2012) suggests two other ways to incorporate costs and benefits when
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determining a test’s threshold. One is utility and the other is information.

1.7.1.1. Utility

This approach requires specifying the differential utility (i.e., place different values) of TPs,
FPs, TNs, and FNs. As with OTgroc, this approach takes into account the BRs and assigns a
value to each of the four possible outcomes. The overall utility (Uoyerau) weights the probability
of a outcome (i.e., BR X rate of occurrence) by the outcome’s utility, and then sums over the
four outcomes, as shown in Equation (9).

Overall Utility = (BR)(T'Pg)(TPy) + (BR)(F Ng)(FNy)
+ (1 = BR)(FPg)(FFy) 4+ (1 — BR)(T'Ng)(T'Ny), (9)

where the U subscripts represents the utility value and the R subscript represents the rate. As
FNr=1—TPg and TN = 1 — FPg, Equation (9) can be simplified to

Overall Utility = (BR)(TPg)(TPy) + (BR)(1 — TPr)(FNy) (9b)
+ (1 — BR)(FPg)(FPy)+ (1 —BR)(1 — FPg)(TNy).

To make things easier, utility values are typically set to range between 0 (least desired) and
1 (most desired). Thus, correct decisions (i.e., TPs and TNs) are assigned utilities > .5 while
incorrect decisions (i.e., FPs and FNs) are assigned utilities < .5.

To maximize the proportion of correct decisions using the Upyeran criterion, set TPy =
TNy =1 and FNy = FPy = 0. Doing this caries the major assumptions that correctly admit-
ting and correctly rejecting students is of equal benefit. Likewise, it also assumes that incorrectly
admitting and incorrectly rejecting students is of equal cost. Neither of these assumptions might
actually be the case, however, so the values assigned to the utilities should be done with care.

1.7.1.2. Information Gain

A third criterion that can be used in setting the test’s threshold is the information gain
(Igain) function (Metz, Goodenough, & Rossmann, 1973), shown in Equation (10).° Here, the
information gained refers to the reduction of uncertainty about the student’s true graduation
status of a student that results from knowing the student’s score on the test. As with OTgroc
and Uoyeralis Laain takes into account the BRs and assigns a value to each of the four outcomes.
With Iguin, however, there are no subjective values set for the outcomes.

°This is also referred to as the Kullback-Leibler divergence function (Kullback & Leibler, 1951).
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Information Gain = (BR)(T Pg)(log, [Q;;ﬂ )

+ (BR)(1 — T'Pg)(log, {%__—ZP];))})
+ (1= BR)(FPa)og, | Z)

(10)

+u—Bmu—F&m%{“‘F&ﬂ»

(1-SR)

where the R subscript represents the rate, log, is the base 2 logarithm, and SR is the Selection
Ratio: the proportion of a sample predicted to have the characteristic of interest based on the
test’s threshold.

2. Example

As an example of implementing the procedures outlined in this document, I simulated a
dataset that has the following variables: (a) SAT-Math, (b) Course grade (A=4, B=3, C=2,
D=1, F=0), (c) First-year GPA, and (d) Graduation status (yes=1, no=0). I sampled n = 1000
observations (students). The correlations of the sample data are shown in Table 3.

The BR for the sample is 0.45. A contingency table for the data before using any admissions
test is shown in Table 4. If T had no test data, then I would predict 45 out of every 100 students
in the program would graduate, and 55 would not. Alternatively, the odds of graduating from

. . BaseRate __ 045 __
this program are: =g "= = 5 = 0.83.

I plotted the ROC as well as sensitivity and specificity for multiple SAT scores in Figure 2.
I'll use a SAT score of 600 as the initial threshold, as that appears to be where sensitivity and
specificity are both about equal. The results of using a SAT (Math) score of 600 as the threshold
produces the results shown in Table 5 and Figure 3.

The PPV of 0.52 means that in a random sample of students in the program that were
predicted to graduate based on having a SAT score > 600, 52% will actually graduate (TPs).
Conversely, 48% of those predicted to graduate will not (FPs). As the graduation BR for this
program is 0.45, using the SAT score of 600 as the admission threshold is doing better than chance
at predicting graduation. Stated differently, before knowing students’ scores on the admissions
test, their probability of graduating from the program was 0.45. After knowing the students
have a score on the SAT > 600, their probability of graduating from the program increases to
0.52.

Table 3: Correlations for Simulated Student Data from a Single Program (n=1000).

GPA SAT-M Course Grade Graduate

GPA  1.00 0.38 0.25 0.51
SAT-M  0.38 1.00 0.32 0.20
Course Grade 0.25 0.32 1.00 0.22

Graduate 0.51 0.20 0.22 1.00
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Table 4: Program’s Known Graduation Data Before using an Admissions Test.

Reality Predicted
Graduate Not Graduate Totals
Prediction from Graduate True + False +
Data Not Graduate False - True -
Reality Totals 453 547

2.1. Combining Test Results

The PPVs can be combined across multiple tests. In the current example, the original BR
is 0.45. For students whose SAT scores are > 600, their PPV is 0.52. We can use this PPV as
their new BR for graduation. That is, the BR of graduating form the program for students with
SAT scores > 600 is 0.52.

In addition to SAT scores, the data also contains the students’ grades in an introductory
course in the major. Arbitrarily, I set the threshold for this test to earning a grade of B- or
higher. The sensitivity and specificity for this new test at the the B- threshold are 0.65 and 0.52,
respectively. This makes the LR+ 1.37. Using a BR of 0.52, the PPV for students who met the
thresholds for both the SAT and course grade tests is 0.52><8:g§i8:4612><0.48 = 0.6. Thus, for students
with SAT scores > 600 and who earned grades of B- or higher in the introductory course, their

probability of graduating from the program is 0.6.

2.2. Determining the Optimal Test Threshold

In Table 6 I show the optimal test thresholds under the different criteria I discussed in Sec-
tion 1.7.1. The table makes it obvious that the optimal value to use for the SAT’s threshold
is dependent on both the BR and the importance of different costs and benefits of the admis-
sion/rejection decisions.

1.0
1.0

0.8
|
0.8

0.6

—— Sensitivity
—— Specificity

True positive rate
Proportion

0.4
0.4

0.2
|
0.2
|

0.0
|
0.0
|

0.0 0.2 0.4 0.6 0.8 1.0 400 500 600 700 800
False positive rate Cutoff
(a) ROC Curve. (b) Sensitivity and Specificity.

Figure 2: Plots for SAT scores.
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Table 5: Program’s Graduation Data After using a SAT Score of 600 for the Admission Thresh-
old.

Reality Predicted
Graduate Not Graduate Totals
Prediction from Graduate 267 243 510
Data Not Graduate 186 304 ‘ 490
Reality Totals 453 54T | 1000
piosio 267
e Sensitivity: =z = 0.59
oo 304
e Specificity: £z = 0.56
. _Sensitivity __ 059 __
e LR+: lf%n;;cliﬁlci}éy = 7086 — 133
. Specificity ___0.56  __
o LR-: =iy = 1059 = 1:30-
. 267 _ Base Ratex Sensitivit _ 0.45x0.59 _
e PPV: 510 ~ Base Rate><Sensiti?;si:y—l—?le—BS;IeSlRla;e})]><(I—Speciﬁcity) o 0.45><0.59—>4(-0.55><0.44 = 0.52.
. 304 (1—Base Rate) x Specificity o 0.55%0.56 o
o NPV 490 — (1—Base Rate) xSpecificity+Base Ratex (1—Sensitivity) O.55><O.5610.45><0.41 = 0.62

Figure 3: Results from using a SAT score of 600 as the test threshold.



Table 6: SAT Threshold Values as a Function of Base Rates and Optimization Function.

Base Rate (Graduation)

Optimizing Function 30 .40 .45 50 .60 .70 .80
OTRroc, with admission and rejection of equal importance 752 713 634 628 538 452 424
OTRroc, with rejection twice the importance of admission 771 75T 75T 713 634 567 480
OTRroc, with admission twice the importance of rejection 634 538 480 480 447 424 367
Uoverail, with admission and rejection of equal importance 752 713 634 628 538 452 424
Uoveral, With rejection twice the importance of admission 771 757 757 713 634 567 480
Uoverail, with admission twice the importance of rejection 634 538 480 480 447 424 367
Iaain 634 634 634 634 628 628 628

Note. The base rate for the current sample is 0.45. OTgroc
IGain: Information gain.

: ROC optimal threshold. Ugyerqn: Overall utility.

proyseay [, 1897, rewnd() o) SUIUIULIAR(  §'C

€T
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3. Recommendations

Admission steps and criteria need to be documented in great detail so that the same
procedures are applied to every applicant. While this does not remove the possibility
of clinically-informed decisions (e.g., making a decision based on an interview), it should
make their occurrences rare.

Before a program’s faculty can determine admissions criteria, they need to figure out (a) the
current graduation BR for their program, and (b) the relative importance of acceptance
vs. rejection decisions. This information should be incorporated into their decision-making
process for the thresholds used for their admissions tests. Perhaps better that using a single
BR, however, is to allow the BR to vary across a range of plausible values (Treat & Viken,
2012), as I did in Table 6.

As BRs tend to fluctuate, the BR used to develop the admission test’s threshold, as well
as the test threshold itself, should be examined at least every third year.

Admission test thresholds should be based on at least three cohorts of students; this
number will likely need to increase (sometimes greatly) for programs with small cohorts.
If possible, the cohort data should be be analyzed both separately and combined to see
if the optimal test thresholds differ (i.e., sensitivity analysis). This should minimize the
influence of flukes in the data.

In addition to the methods described here, program faculty should include a projected
cost-benefit analysis of implementing the admissions decisions. Using the criteria outlined
in this document, programs can predict the number of students admitted and number of
students who will graduate from a given cohort using the proposed test. This informa-
tion can then be used as part of a more traditional cost-benefit analysis to predict the
impact using the proposed test will have on the program. Yates (2012) provides a gentle
introduction to this topic.
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A. Terminology

Term

Definition

Area under the curve (AUC)

Base rate (BR, Prevalence)
False negatives (FN, Miss)

False positives (FP, False
alarms)

Negative predictive value
(NPV)

Positive predictive value

(PPV)

Sensitivity

Specificity

Test threshold
True positive (TP, Hit)

True negative (TN, Correct
rejection)

The probability that a randomly selected pair of positive and
negative cases will be ranked correctly by the test.
Proportion of cases that have the characteristic of interest.
Cases that have that have the characteristic of interest that
the test classified as not having the characteristic.

Cases that do not have the characteristic of interest that the
test classified as having the characteristic.

Proportion of cases classified as not having the characteristic
who actually do not have the characteristic.

Proportion of cases classified as having the characteristic who
actually have the characteristic.

Proportion of cases that actually have the characteristic that
the test classifies as having the characteristic.

Proportion of cases that actually do not have the
characteristic that the test classifies as not having the
characteristic.

Value of test that distinguishes cases classified as having and
not having the characteristic of interest.

Cases that have the characteristic of interest that the test
classified as having the characteristic.

Cases that do not have the characteristic of interest that the
test classified as not having the characteristic.




Index
Area Under the Curve, 7, 17

Base Rate, 3, 17

False Negative, 3, 17
False Positive, 3, 17
False Positive Rate, 3

Information Gain, see Test Threshold

Negative Likelihood Ratio, 4
Negative Predictive Value, 5, 17

Odds, 4
Overall Utility, see Test Threshold

Positive Likelihood Ratio, 4
Positive Predictive Value, 5, 17

Sensitivity, 3, 17
Specificity, 3, 17

Test Threshold, 17

Test Threshold Criteria, 7
Costs and Benefits, 7
Information Gain, 9
Overall Utility, 9
ROC Optimal Threshold, 7

True Negative, 3, 17

True Positive, 3, 17

True Positive Rate, 3
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