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A RESTARTED GMRES METHOD AUGMENTED WITH
EIGENVECTORS *
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Abstract. The GMRES method for solving nonsymmetric linear equations is generally used
with restarting to reduce storage and orthogonalization costs. Restarting slows down the convergence.
However, it is possible to save some important information at the time of the restart. It is proposed
that approximate eigenvectors corresponding to a few of the smallest eigenvalues be formed and
added to the subspace for GMRES. The convergence can be much faster, and the minimum residual
property is retained.
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1. Introduction. The GMRES method [32] is popular for solving the large
nonsymmetric system of linear equations

(1) Ax b.

But GMRES is generally used with restarting, and this slows down the convergence.
We examine a way to retain some of the information lost at the time of the restart.
The convergence can be improved in many situations. This section gives background
material on GMRES. Section 2 gives the new method and analyzes its effectiveness
for certain cases. Section 3 discusses the implementation and the expenses. Examples
and comparisons are given in 4, and 5 looks at the possibility of having a procedure
that selects the number of approximate eigenvectors and decides how long they should
be used.

For symmetric problems, the conjugate gradient method [13], [17] is often the
best iterative method. It extracts an approximate solution from the Krylov subspace
Span{b, Ab, A2b,... ,Am-lb}. There is an efficient recurrence formula for generating
a sequence of orthogonal vectors that span the Krylov subspace. Also the convergence
properties are fairly well understood for a Krylov subspace. They depend on the
eigenvalue distribution, h simple bound for the minimum residual version [15], [17],
[28] of the conjugate gradient method applied to a symmetric positive definite matrix
is

<_2((x/+ 1 m x/-1 m

-) +(+) )
( : )_<2

-1

where r is the residual vector b- Ak, and is the approximate solution. Also a _--
is the condition number, the ratio of largest to smallest eigenvalues. So convergence
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is generally slow if there is an extremely small eigenvalue. But the placement of the
other eigenvalues also influences convergence. Clumping of eigenvalues is favorable.
The actual convergence rate often improves as the method proceeds [4], [5], [7], [35].
This is because some of the outlying eigenvalues are effectively eliminated from the
spectrum once the Krylov subspace contains a good approximation to the correspond-
ing eigenvector. Another good thing about the conjugate gradient method is that
the convergence can usually be improved by preconditioning (multiplying (1) by an

approximate inverse to A) [3], [6], [13], [15], [23].
The conjugate gradient method can be generalized to nonsymmetric problems

in several ways. The three main approaches are the nonsymmetric Lanczos algo-
rithm [19], [20], [37], the conjugate gradient method applied to the normal equations
(CGNE) [8], [16], and GMRES [32]. The nonsymmetric Lanczos method is similar to
the conjugate gradient method in that it uses a Krylov subspace and has a recurrence
formula. The algorithm is unstable, but improvements have been made [11], [12], [14],
[18], [29], [36]. In particular, the QMR version [11], [12] has attracted attention. The
CGNE method transforms to another problem (the normal equations), so the conver-
gence properties are different. Often convergence is much slower. Nevertheless there
are some problems, particularly indefinite and fairly nonsymmetric ones, for which
CGNE is best [26]. GMRES is currently a popular method for large nonsymmetric
problems (see, for example, [21], [27]). It uses the Arnoldi algorithm [1], [30], [31],
[37] to build an orthonormal basis for the Krylov subspace, so full orthogonalization
is needed. The best approximate solution is extracted from the subspace, in that the
norm of the residual vector is minimized.

Because full orthogonalization is used, the method becomes more expensive as
the subspace grows. Also importantly, the storage requirements increase. Restarting
can be used when the subspace reaches a certain size.

RESTARTED GMRES
1. Start: Choose x0 and compute ro b- Axo and Vl ro/llroll.
2. Iterate: For j 1, 2,..., m do:

h (Ave, v), 1, 2,..., j,

i--1 hiivi,+ Av
hi+,j --IIy+lll, and
Vj+l )j+l /hj+l,j.

3. Form the approximate solution: xo + V, where d minimizes Ifel -/dl I, for
all d Rm. Here H is the (m + 1) by ra matrix with elements hii defined in step
2, and IIr0ll.

4. Restart: Compute r b- A&; if satisfied then stop, else let x0 &, Vl r/llrll,
ro r, and go to 2.

The convergence of GMRES is similar to that for the conjugate gradient method if
the matrix is nearly normal. Again the presence of small eigenvalues slows convergence.
Suppose A has spectral decomposition A =_ ZAZ-, with all the eigenvaIues being real
and positive. Assuming that the initial guess x0 is the zero vector, we have

2 m

(3) Ilrll < 211ZIIIIZ-111(1- + 1)
(see [32] for similar but more general results). Again 1’ but here it is not
necessarily the same as the standard condition number. For more highly nonnormal
matrices, convergence properties are more complicated. Some analysis has been done,
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especially if all of the eigenvalues are in an ellipse not containing the origin (see [9],
[22], [30-32]).

The disadvantage with restarting is that some information is lost at the time of
the restart. The subspace is discarded, and this slows down the convergence. Other
methods such as nonsymmetric Lanczos and CGNE avoid restarting. But they have
their own disadvantages as mentioned earlier. Another attempt at avoiding restarting
is incomplete orthogonalization [30], [31], but convergence properties are not well
understood.

2. Adding approximate eigenvectors to the subspace. We attempt to im-
prove GMRES by reducing the ill effects of restarting. Some information can be
retained at the time of the restart. This is done by saving vectors from the old sub-
space and adding them to the new subspace that is generated. For instance, one could
save the last few Arnoldi vectors (the vi’s). However, there are other vectors that are
more helpful to the convergence.

We note that information about the eigenvalues and eigenvectors of A is available
during GMRES. They can be calculated with the Arnoldi method for eigenvalues [1],
[30], [37]. Eigenvalue calculations have been used before in conjurction with GMRES
to implement hybrid methods (see [10], for example).

We investigate saving approximate eigenvectors of A corresponding to the small-
est eigenvalues in magnitude. These vectors are added to the new subspace. The
motivation for this is that if a converged eigenvector is added to the subspace, the
corresponding eigenvalue is effectively eliminated from the spectrum or deflated. Con-
vergence proceeds according to the modified spectrum. This is demonstrated in the

thefollowing theorem for the case of real and positive eigenvalues. We let
"effective condition number," and assume that the initial guess x0 is zero.

THEOREM 1. Suppose A has spectral decomposition A =_ ZAZ-1, with all the
eigenvalues being real and positive. Assume that the minimum residual solution is
extracted from the subspace Span{b, Ab,..., Am-lb, Zl, z2,..., Zk}, where the zi’s are
columns of Z. Then

IIr[I <_ 211zIIIIZ-l[I (1- 2 m

Ilbli v / 1

where r =- b- A& is the residual vector.
Proof. Any vector 2 from the subspace Span(b, Ab,...,Am-b,z,z2,...,Zk}

can be written in the form
k

2c izi + p(A)b,
i--1

where p is a polynomial of degree m- 1 or less. Expand b in terms of the eigenvectors:

n

i--1

and define the polynomial q as q(x) 1- xp(x). Then we can calculate that

k

r b A2c cAzi -t- q(A)b
i--1

(6) n

+
i=l i=kl
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where % iq(Ai) iAi.
Since the solution minimizes the residual norm, it will be at least as good as any

choice we make. Pick q to be the shifted-and-scaled Chebyshev polynomial that is
small over the interval [Ak+l, An]. Then pick ai

q()
h---j--., so that each /i is zero. Now

r
n

E iq(Ai)zi,
i--k+l

and the desired result follows from the standard bound in (3).
Next, the effect of saving eigenvectors is examined for a couple, of specific distribu-

tions of eigenvalues. First suppose the eigenvalues are distributed 1, 2, 3,..., n. Some
linear equations problems do have a spectrum roughly similar to this (for example,
see the model problem [15] from finite difference descretization of Poisson’s equation).
Suppose the eigenvectors corresponding to the k smallest eigenvalues are added to the
subspace. Then the convergence bound improves from

Ilrl[[[b[[ -< 2[]ZI]]IZ-11] (1 v/2+ 1) m

to
Ilrl] < 211ZIIIIZ-II{ 2v/k+1 ))mI1 [[ + v’a +

We can roughly compare convergence by comparing x/ to x/. The ratio is

v/-d v/-d =v/k/1.
Vk+l

So convergence is roughly v/k + 1 times as fast with the eigenvectors added to the
subspace. For example, with k 3, the rate of convergence is about twice as fast.
However, to get quadruple the convergence requires k 15. The returns are dimin-
ishing as more eigenvectors are added.

-n -2 -1 1 2 nNext, consider the eigenvalue distribution 2 - 1, .
This is a much tougher problem than the previous one, because it is indefinite. The

2 in each iteration [2] [24]. Ifresidual norm is reduced by roughly a factor of 1-
k is even and the k eigenvectors with smallest eigenvalues in magnitude are added
to the subspace, then the factor improves to 1 +2. This means convergence isn

approximately k+2- times better with the eigenvectors. Adding eigenvectors to the
subspace is even more important in this indefinite case than it was in the previous
positive definite example. With k 8, convergence is about five times better. This
compares to three times better in the previous example.

The results in the preceding two paragraphs may not always apply. We will
discuss three problems with them. First, the distribution of eigenvalues may not be so
favorable. For example, there may not be small eigenvalues. Then convergence could
still be slow for indefinite and highly nonsymmetric problems, yet saving approximate
eigenvectors would not be beneficial. Also, if the eigenvalues are not so evenly spaced,
the results may not be as good.

Second, we have only analyzed bounds on convergence and estimates of rates, not
the actual rates of convergence. As mentioned earlier, the convergence of the conjugate
gradient method does not depend strictly on the condition number. An outlying
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eigenvalue does not have a perpetual effect on the covergence rate. It will at most add a
number of iterations, then the outlying eigenvalue is taken care of and the convergence
proceeds according to the other eigenvMues. This is because the underlying polynomial
can have a zero at that eigenvalue. However, Cline [5] observed in some experiments
that adding an extremely smll eigenvMue to a particular distribution of eigenvalues
requires from 5 to 19 extra iterations. With restarted GMRES, reducing the number
of iterations by a few is worthwhile, because this reduction occurs during every restart
cycle.

A third problem with the earlier analysis is that it may be awhile before the
approximate eigenvectors become very accurate. However, an approximate eigenvector
can have beneficial effects long before it has attained full accuracy. This is shown in
the following theorem for the case of one approximate eigenvector.

THEOREM 2. Suppose A has spectral decomposition A =_ ZAZ-:, with A diag-
onal. Suppose the GMRES with eigenvectors method is used with one approximate
eigenvector y:. Let =_ Z (y, z), and let be the coe]:ficient of z in the expansion
of b; see (5). Then

(8)
i:/:1 A1

where q is a polynomial of degree m or less such that q(O) 1.

Proof. Similar to (6), we can derive

r q(A)b- alAyl,

where q is a polynomial of degree m or less, such that q(0) 1. Decompose y as

yl cos Zl + sine u,

where yl, z1, and u are all unit vectors and u _k Zl. Then

r q(A)b :A:cosCzl alsinCAu
n

Efliq()i)zi + (fl:q(A:) a:A:cos)z: clsinCAu.
i=2

Pick CI
fllq(’l) and use the minimum residual property. Then,X:cos

Ilrll
i:2

fl:q(A:)sinCAu
,1COS

The second term in the right-hand side of (8) occurs because of.the inaccuracy of
the approximate eigenvector. Roughly, it appears that this term will not be significant
as long as the accuracy of the approximate eigenvector is greater than the amount of
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improvement brought by the polynomial q (as long as tanb is somewhat less than
max#

If the eigenvalues are all real and positive, (8) can be made more specific by
choosing the polynomial q to be a shifted and scaled Chebyshev polynomial that is
small over the interval [A2, An]. Then

2 \ m

(9) Ilrll <_ IIZIIIIZ- ll(1, +
where ae --- -. And this can be put in a form more similar to (4)"

(10) Ilrllllbll <- IIZIIlIZ-II (1- ve + 1) -t---tan

3. Implementation. The implementation presented here first generates the
Krylov subspace, then adds the approximate eigenvectors. There is still an upper-
Hessenberg matrix for the linear equations problem, but the eigenvalue problem is
more complicated.

Let m be the dimension of the Krylov subspace, and suppose k approximate
eigenvectors are used. Let m / k. Let W be the n by matrix whose first m
columns are the orthonormalized Arnoldi vectors (the vi vectors in step 2 of GMRES)
and whose last k vectors are the approximate eigenvectors yi, for i 1,..., k. Let Q
be the n by + 1 matrix whose first m + 1 columns are Arnoldi vectors and whose last
k columns are formed by orthogonalizing the vectors Ayi, for i 1,..., k, against the
previous columns of Q. Then

(11) AW-QH,

where H is an (1 + 1) by upper-Hessenberg matrix (this is similar to (3) in [32], for
the standard Arnoldi iteration on which GMRES is based).

The restarted linear equations problem is

A(x xo) to.

The approximate solution 2- x0 is a combination of the columns of W, so

xo Wd.

The minimum residual solution can be calculated in the same way as for standard
GMRES. Let

(12) PH R,

where P is orthogonal and R is upper triangular. Then

(13)
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The minimal solution is then found by solving for that makes the first entries be
zero. Note Q*ro is a multiple of the first coordinate vector. As in standard GMRES,
the residual norm is a byproduct. It is the magnitude of the last entry of PQ*ro.

We wish to find approximate eigenvectors from the subspace spanned by the
columns of W. Since W is not orthonormal, the generalized Rayleigh-Ritz procedure
with reduced eigenvalue problem

W*AWgi OW*Wg

could be used. However, we choose a version of Rayleigh-Ritz that finds good approx-
imations to the eigenvalues nearest to zero [24], [25]. This version uses the reduced
problem

(4)
1
W*A*AWgi.W*A*Wg

Let F W*A*W and G =- W*A*AW. Then the reduced eigenvalue problem is the
by generalized eigenvalue problem

1
(15) Fgi- Ggi.

’s (or the k smallest 0i’s) are needed. AnThe gi’s associated with the k largest
approximate eigenvector is yi Wgi. And Ayi AWgi QHgi. If yi is complex,
the real and imaginary parts are used separately.

Little calculation is required for G, because

(16)

G W*A*AW
H*Q*QH
H*H
R*R.

The first m columns of F are the same as the first m columns of H*. Entries in the
intersection of the last k rows and the last k columns can be cheaply computed using
the previous F, since fij yi A*yj gi WoldA Woldgj gi Foldgj. The remaining
entries are calculated as fly yA*y (Ayi)*yj, so they are more expensive.

The small generalized eigenvalue problem (15) is solved with EISPACK [33] in
the examples in the next section. However an iterative method, such as subspace
iteration, could also be used. Only the eigenvectors associated with the largest values
of are needed, G is already in a factored form, good starting vectors are the last k
coordinate vectors, and full convergence is not necessary.

The implementation is a little different for the first run, before any restart. Stan-
dard GMRES is used, except eigenvector calculations are added on at the end. F is
the same as H* except that the last column is removed, and G can be found with (16).
For simplicity, the listing of the algorithm is given just for the second and subsequent
runs.

ONE lESTAlTED PUN OF GMRES WITH EIGENVECTORS

i. Initial definitions and calculations: The Krylov subspace has dimension m, k is
the number of approximate eigenvectors, and m + k. Let ql ro/llroll and
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wl ql. Let y, y2,..., Yk be the approximate eigenvectors. Let Wm+i yi, for
i-m/l,i 1,...,k. For j m / 1,...,1 do: fij giFoldgj,

2. Generation of Arnoldi vectors: For j 1, 2,..., m do:
hii Aqy, qi), i 1, 2,..., j,
fji hij 1, 2,..., j,
fj,m+i (Aq,yi),i- 1,2,...,k,
j+l Aqi Yi= hijqi,
hj+,j -II(lj+ll, and
qj/l j+l/hj/l,j.
If j < m, let Wj+l --qj+l and fj,j+ hj+,.

3. Addition of approximate eigenvectors: For j m / 1,..., do:
h (Aw, qi), 1, 2,..., j,
fji hj, 1, 2,..., m,
(j+ Awj i=1 hijqi,
hj+l,j --I](j+lll, and
qj+ Oj+/hj+,j.

4. Form the approximate solution: Let lit011. Find d that minimizes II/el-dll
for all d E RL. The orthofional factorization P/ R, for R upper triangular, is
used. Then & xo + Wd.

Ggi,5. Form the new approximate eigenvectors" Calculate G R*R. Solve Fgi
for the appropriate gi (separate gi into real and complex parts if it is complex and
treat as two distinct vectors). Form yi Qgi and Ayi Q[-Igi. Let Fold F.

6. Restart: Compute r b- A2; if satisfied with the residual norm then stop, else
let x0 & and go to 2.

We now examine the expenses and storage requirements for the GMRES with
eigenvectors method as compared to standard GMRES. We consider only the ma-
jor expenses. Suppose the subspace is currently a Krylov subspace of dimension j.
If we choose the next vector for the subspace to be one more Arnoldi vector, then
there is one matrix-vector product needed. The orthogonalization requires about 2in
multiplications. If instead we let the next vector be an approximate eigenvector, no
matrix-vector product is required. The other costs are approximately 5jn multiplica-
tions. This includes 2in for the orthogonalization of Ayi, jn for computing a portion
of F, and 2in for forming yi and Ayi. This can be reduced to 4jn if a matrix-vector
product is used for Ayi ins.tead of forming it from the columns of Q. It is also possible
to reduce costs by another jn if Ayi is not explicitly orthogonalized (the entries of H
can still be calculated). This last option has not been tested.

We compare the storage for a Krylov subspace of dimension rn / k in standard
GMRES to storage for the GMRES with eigenvectors method using a Krylov subspace
of dimension m and k approximate eigenvectors. The major storage requirement for
GMRES(m + k) is rn + k + 2 vectors of length n. For GMRES with eigenvectors, the
major storage requirement is for m/2k/2 vectors of length n. So using an approximate
eigenvector requires about twice the storage of using an additional Arnoldi vector. This
is because both y and Ayi are stored.

The relative efficiency of the two methods depends on how expensive the matrix-
vector product is compared to the orthogonalization costs. We consider two extreme
cases, although many problems will fall somewhere in between. The first case is where
the matrix-vector product is the main expense, and the second is where the matrix-
vector product is fairly inexpensive and orthogonalization costs dominate. Saving
approximate eigenvectors is particularly worthwhile for the first case, since no matrix-
vector product is required for the approximate eigenvectors. The benefits of the
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approximate eigenvectors are essentially free from expense. However, since storage
is often limited, using one approximate eigenvector means two less Arnoldi vectors
can be used.

For the second case of expensive orthogonalization, a matrix-vector product would
be used to get Ayi. So the expense is about 4jn for an approximate eigenvector.
Therefore using an approximate eigenvector instead of an Arnoldi vector costs about
twice as much. To be useful, an approximate eigenvector must be as effective as two
Arnoldi vectors.

4. Examples. In the following examples, the right-hand sides have all entries
1.0. The first four examples are bidiagonal matrices with 0.1 in each superdiagonal
position. The initial guesses x0 are zero vectors. The calculations are done in double
precision on either an IBM 3090-170J or a Vax 6510. We call the iteration between
restarts a "run."

Example 1. We let the matrix have 1, 2,3,... ,999, 1000 on the main diagonal
and as mentioned above, the super diagonal elements have 0.1’s. For this matrix, the
quantity IIZIIIIZ-111 in (3) and (4) is small (about 1.2). The new GMRES with eigen-
vectors method using m 21 and k 4 (21 Krylov vectors and four approximate
eigenvectors) is compared to GMRES(25). Thus the same size subspaces are used.
After 12 runs, the eigenvector method has a residual norm of 0.42e-9 compared to
0.15e-4 for standard GMRES. See Fig. 1 for a graph of the convergence. After iter-
ation 100, the eigenvector method converges more than twice as fast. This is roughly
as predicted by (7), even though the Krylov portion of the subspace is smaller for the
eigenvector method than for the regular GMRES. At iteration 100, after four runs,
the eigenvector approximations are not very accurate. The approximate eigenvalues
are 1.01, 2.20, 3.86, and 6.10, and the corresponding residual norms range from 0.13
to 1.9. But already the eigenvectors are accurate enough to assist convergence. After
eight runs, the approximate eigenvalues are more accurate with from 8 to 2 significant
digits and.. residual norns from 0.13e-3 to 0.17.

lO

10 i

10-7

lOq

............... GMRES(25)

m=21, k=4

0 50 100 150 200 250 300

iterations

FIG. 1. GMRES vs. GMRES with eigenvectors.

Next, methods requiring about the same storage are compared. The eigenvector
method with m 17 and k 4 reaches residual norm of 0.22e-6 after 12 runs (see
Table 1). This is still better than GMRES(25), even though smaller subspaces are used
and far less matrix-vector products are required. If an equal number of matrix-vector
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TABLE 1.
Eigenvalues 1, 2, 3 1000.

Residual norms

After After 300 matrix-
m k Initial 12 runs vector products
25 0 25 0.31e+2 0.15e-4 0.15e-4
21 4 25 0.31e+2 0.42e-9 0.35e-ll
17 4 21 0.31e+2 0.22e-6 0.18e-10
21 2 23 0.31e+2 0.67e-7 0.20e-8
19 3 22 0.31e+2 0.76e-7 0.14e-9
13 6 19 0.31e+2 0.19e-4 0.23e-ll
9 8 17 0.31e+2 0.25e-2 0.40e-ll

products are taken, the eigenvector method with m 17 and k 4 is much further
ahead. After 300 matrix-vector products, it attains 0.18e-10 versus 0.15e-4. Table
1 also gives results with different choices of k but with the same storage (the same
m+ 2k). Using just two approximate eigenvectors gives the lowest residual norm after
12 runs. However, if one is most interested in the number of matrix-vector products,
using six eigenvectors is better, even though the Krylov subspace has dimension of

102

10

10

10-t

10.2

10-3

only m 13.

10-5

10-6

10-7

10"s0 50 100

TQMR

GMRES(25)

GMRES

10 200 250 300

rom
FIG. 2. Comparison for Example 2 (TFQMR uses two mvp per iteration).

Example 2. The next matrix has some very small eigenvalues that make the
problem difficult. The entries on the main diagonal are 0.01, 0.02, 0.03, 0.04, 10, 11, 12,
13,..., 1005 (taking on all integer values frown 10-1005). See Table 2 and Fig. 2 for the
computational results. Figure 2 also includes the TFQMR method; this is discussed
in Example 7. It appears that the regular GMRES method will not converge. Going
past 12 runs, there is no further improvement in the residual norm. The four slnall
eigenvalues make this problem too difficult for Krylov subspaces of dimension 25. The
GMRES with eigenvectors method also stalls out for a while. Considering the case
m 21 and k 4, the residual norm only improves from 0.65-0.63 during runs four
through seven. But finally after run seven, there are .rough approximations to all four
of the small eigenvalues. With the corresponding approximate eigenvectors in the
subspace, the convergence rate is soon fairly rapid.

Example 3. Here an indefinite matrix is used. The diagonal entries are -2,-1, 1, 2,
3, 4,..., 997, 998. In this situation, the eigenvector method is much better ttmn regular
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TABLE 2.
Eigenvalues 0.01, 0.02, 0.03, 0.04,10,11,12,..., 1005.

Residual norms

After After 300 matrix
m k Initial 12 runs vector products
25 0 25 0.32e-2 0.64 0.64
21 4 25 0.32e+2 0.17e-6 0.91e-10
17 4 21 0.32eT2 0.18e-2 0.47e-9

TABLE 3.
Eigenvalues -2, -1,1, 2,..., 998.

Residual norms

After After After After After 500
m k Initial 5 runs 10 runs 15 runs 20runs mvp’s
25 0 25 0.32e-t-2 0.90 0.58 0.38 0.24 0.24
21 4 25 0.32e2 0.22 0.83e-4 0.21e-7 0.54e-ll 0.14e-13
17 4 21 0.32e-2 0.53 0.24e-2 0.50e-5 0.11e-7 0.64e-13

GMRES; see Table 3. With k 4, approximations are developed to the eigenvalues
-2, -1, 1, and 2. This eliminates the two negative eigenvalues and effectively turns
the indefinite problem into a definite one.

Example 4. This example is designed to be difficult for the GMRES with eigenvec-
tors method. Let the matrix have diagonal elements 1, 1.01, 1.02, 1.03, 1.04, 2, 3, 4, 5,

995,996 (see Table 4). Removing the four smallest eigenvalues does not have much
effect on the spread of eigenvalues. The two methods are roughly equivalent when us-

ing the same size subspace. With equal storage, standard GMRES is one order of
magnitude better after 15 runs and the eigenvector method is a little better after each
has taken 375 matrix-vector products. Even in this difficult situation, using eigenvec-
tors does not substantially decrease efficiency. In another test with five approximate
eigenvectors (m 20, k 5), the method does not improve. The reason is that ap-
proximations to the five smallest eigenvalues do not develop in time to substantially
help. The eigenvalues are so close together that they are difficult to compute (after
15 runs, the five approximate eigenpairs have residual norms no smaller than 0.05).

TABLE 4.
Eigenvalues 1, 1.01, 1.02, 1.03, 1.04, 2, 3,..., 996.

Residual norms

After After After After 375
m k Initial 5 runs 10 runs 15 runs mvp’s
25 0 25 0.32e+2 0.10e-1 0.58e-4 0.48e-6 0.48e-6
21 4 25 0.32e+2 0.67e-2 0.17e-4 0.12e-6 0.16e-7
17 4 21 0.32e+2 0.22e-1 0.24eo3 0.50e-5 0.77e-7

Example 5. Let the matrix be block diagonal with eigenvalues equally spaced
around a circle in the complex plane with center at (1,0) and radius 0.99, starting at
0.01. The matrix is normal with blocks of size 2 or 1. With n 100, the approximate
eigenvectors are very helpful. Theoretical convergence results for GMRES often con-
sider an ellipse or circle [32] containing the eigenvalues. The smallest circle containing
all of the eigenvalues does not change when a few of the eigenvalues nearest the origin
are eliminated. Nevertheless, the convergence is improved. With a change to n 200,
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TABLE 5.
Eigenvalues in a circle.

Residual norms for n 100

After After After After After 500
m k Initial 5 runs 10 runs 15 runs 20 runs mvp’s
25 0 25 0.10eT2 0.47 0.13 0.38e-1 0.11e-1 0.11e-1
21 4 25 0.10e-t-2 0.52 0.45e-2 0.85e-5 0.16e-7 0.26e-9
17 4 21 0.10eT2 0.65 0.12 0.98e-3 0.77e-5 0.13e-8

Residual norms for n 200

After After After After After 1000
m k Initial 10 runs 20 runs 30 runs 40 runs mvp’s
25 0 25 0.14e+2 0.19 0.1he-1 0.12e-2 0.10e-3 0.10e-3
21 4 25 0.14e+2 0.25 0.30e-1 0.36e-2 0.44eo3 0.92e-4
17 4 21 0.14e+2 0.38 0.68e-1 0.12e-1 0.22e-2 0.94e-4

the problem of finding the eigenvalues is tougher, because they are closer together.
Here the eigenvalue problem is apparently more difficult than the linear equations
problem and the eigenvector approximations never become accurate enough to really
help (see Table 5). After run 10, the approximation to the smallest eigenvalue has
residual norm 0.26e-1 and this does not improve during the next 30 runs. For com-
parison, during the test with n 100, the approximation to the smallest eigenvalue
has residual norm 0.13e-3 after 10 runs, and it slowly improves.

Example 6. This example has a standard test matrix (see Table 6). The problem
is from the finite difference discretization of the partial differential equation uxx +Uyy/
Dux -(41)2 on the unit square with u 0 on the boundary. Central differences are
used. The mesh spacing is h , so n 1600. Tests are done with increasing degrees
of nonsymmetry: D 1, D 41 and D (41)2. For the first two, the results are
similar to Example 1. Using eigenvectors is definitely worthwhile. For the last test,
the approximate eigenvectors are not particularly useful. There are no eigenvalues
near to the origin, and the algorithm has trouble computing the ones that are closest
to the origin. Perhaps this is because there are several about the same distance away.

The rest of this section has comparisons with the quasiminimal residual, or QMR,
method of Freund and Nachtigal [12] and the QMR transpose-free variant, TFQMR
[11]. Because these methods do not restart, they have an advantage for difficult
problems that require large subspaces. The quasiminimization in QMR controls much
of the instability, but it does not insure that the subspace is used as effectively as in
GMRES.

In the tests here, TFQMR uses standard weights [11] and QMR has unit weights.
The right-hand side of all 1.0’s is used for both of the initial vectors. The look-ahead
feature is not used [12], [22]. Convergence of QMR and TFQMR is monitored with
the approximate residual norms given in [11], [12]. The matrices from Example 5 are
left out because of their small size: while QMR reaches convergence faster than the
GMRES methods, it is only after the dimension of the subspace is larger than the size
of the problem (actually QMR is unstable, but it does converge when an initial vector
is changed).

Example 7. Table 7 has comparisons between GMRES(25), the modified ver-
sion of GMRES with 21 Krylov vectors and four approximate eigenvectors, and the
two versions of QMR. Both the number of iterations and the number of matrix-
vector products are given. The QMR methods require two matrix-vector products
per iteration (and one for the residual norm at the end), while GMRES requires one



1166 RONALD B. MORGAN

TABLE 6.
Finite difference matrix.

Residual norms for D=I

After
m k Initial 8 runs
25 0 25 0.40e2 0.13e-3
21 4 25 0.40e2 0.52e-10
17 4 21 0.40e-t-2 0.33e-7

After 200 matrix-
vector products
0.13e-3
0.28e-12
0.12e-ll

Residual norms for D----41

After
m k Initial 8 runs
25 0 25 0.40e+2 0.70e-4
21 4 25 0.40e+2 0.33eo9
17 4 21 0.40e+2 0.95e-7

After 200 matrix-
vector products
0.70e-4
0.64e-11
0.90e-11

Residual norms for D--(41)2

After After 500 matrix-
m k Initial 20 runs vector products
25 0 25 0.40e-2 0.98e-7 0.98e-7
21 4 25 0.40e+2 0.71e-8 0.16e-9
17 4 21 0.40e+2 0.57e-6 0.32e-9

matrix-vector product per iteration, and the GMRES with eigenvectors method re-
quires one for each Krylov vector but no matrix-vector products for the approximate
eigenvectors. For these examples, TFQMR always converges in the least number of
iterations, while GMRES with eigenvectors always uses the fewest matrix-vector prod-
ucts. Figure 2 also shows TFQMR converging in less iterations for the matrix from
Example 2, but GMRES with eigenvectors uses less than half the number of matrix-
vector products (see Table 7). For one more comparison not included in the table,
the matrix in Example 2 is modified to have ten small eigenvalues from 0.01-0.10 and
the rest from 10-999. For this problem, GMRES with eigenvectors using m 15
and k 10 was compared to TFQMR. The modified GMRES approach required
fewer iterations, 707 compared to 1109, and it used less than one-fifth the number
of matrix-vector products, 437-2219. These tests do not indicate that one method
is better than the other, but they do show that GMRES with eigenvectors is worth
considering, especially in situations where the matrix-vector product is expensive.

Example 8. The GMRES with eigenvectors method may also be particularly use-
ful when there are several similar systems of linear equations or several right-hand
sides. One such case occurs in solving time-dependent differential equations. In the
following tests, a simple time-dependent problem is considered. Let the differential
equation be ut Uxx + Uyy --ux, on the unit square with t going from 0.0-1.0. The
initial condition is u(x,y,0) 1.0, the boundary condition is u 0 on the boundary.
The backward difference method is used with time steps of 0.1, and discretization of
the spacial variables is as in Example 6. The termination criterion while solving the
systems of linear equations is llrll < 10-4. Table 8 gives the mlmber of iterations at
each time step and the total number of iterations and natrix-vector products for the
QMR methods, GMRES(20), and GMRES with eigenvectors with m=17 and k=3.
The QMR methods have a tendency to start slowly, then converge rapidly. This can
be a disadvantage when several systens are solved to low accuracy. Meanwhile the
GMRES with eigenvectors method has an advantage, because it can use the approx-
imate eigenvectors frown the previous time step to help at the current one. GMRES
with eigenvectors performs better than the QMR methods for this problem.



RESTARTING GMRES 1167

TABLE 7.
Comparison to QMR.

Iterations and matrix-vector products to reach Ilrll < 10-6

Ex. 1 it’s
mvp’s

GMRES GMRES QMR
m=25, k-0 w/e.vectors

m--21, k--4
370 214 180
370 186 361

Ex. 2 it’s 286 339
mvp’s 246 679

Ex. 3 it’s 339 215
mvp’s 291 431

Ex. 4 it’s 355 325 252
mvp’s 355 277 505

Ex. 6 D--1 it’s 278 132 125
mvp’s 278 116 251

D--41 it’s 300 149 100
mvp’s 300 134 201

D--412 it’s 441 382 366
mvp’s 441 326 733

Because of instability, a different left initial vector was used.

TFQMR

119
239

250
501

160
321

162
325

95
191

(83)*
(167)

218
437

TABLE 8.
Time-dependent problem.

Iterations for each time step

GMRES GMRES
m--20, k--0 w/e.vectors

m----17, k--3

QMR TFQMR

0.1 130 91 92 62
t 0.2 113 34 71 70

0.3 48 27 60 67
0.4 28 20 38 49
0.5 14 14 29 44
0.6 15 12 22 27

t 0.7 13 14 11 24
0.8 11 11 13 16
0.9 6 6 11 18

t 1.0 1 2 2

Total
iter.’s 379 231 349 378

Total
mvp’s 379 213 708 766

5. Attempt at an automatic procedure, ttere we deal with two questions.
How many approximate eigenvectors should be used, and should the approximate
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eigenvectors be discarded at some point? However, it is difficult to give answers that
apply to all matrices.

For determining the proper number of approximate eigenvectors to use, we con-
sider the model eigenvalue distribution 1, 2,..., n. If we assume that the storage is
fixed, then methods with the same value of m -b 2k should be compared. We compute
k that gives the lowest value of

1) / 1)
)" This formula comes from Theorem 1, but with the more accuratewhere ;e Nk+.

bound given in the first part of (2). After doing some comparisons, we find that if
m + 2k is given, the best value is approximately

m+2k
7

or values of m + 2k greater than g0, slightly more should be used, and for values less
than 20, the number should be rounded down.

It would be desirable to have a code that adaptively increes or decreases the
number of approximate eigenvectors being used. However, it is dicult to determine
if adding another eigenvector will help when no accurate approximation is available
for he next eigenvalue. or now we just consider the possibility of releasing the
approximate eigenvectors and going back to standard GMRES. his switch should
be done if the eigenvectors are not helping. Even beneficial eigenvectors may lose
their effectiveness once components of the residual vector in the directions of those
eigenvectors have been purged.

One possibility is to check how effective the addition of the approximate eigen-
vectors is in lowering the residual norm. This information is, readily available. The
amount the eigenvectors lower the residual norm can be compared with the amount
the residual norm decreases in the previous Krylov iterations. This suggests the
test" switch when

However, it turns out that the beneficial effect of the eigenvectors is not fully reflected
in how they lower the residual norm. They also enable he Krylov vectors to be more
effective. This makes it dicult to deermine whether the eigenvectors are useful or
not. A factor can be added in

(17)

This is effective for Examples 1 and 2, but it releases much too early for Example 3.
We consider the addition of some more complicated tests that involve the accuracy

of the eigenvectors. For the approximate eigenvector yi, denote the eigenvector residual
norm by rnei. Then

[Ay piy I[

where
yAyi gF*gi
yyi yi yi

The eigenvector residual norm can be computed explicitly since Ayi and yi have been
formed, and there is also a formula involving F*, G, pi, and gi. To determine if the
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eigenvectors are not helpful, we check that the improvement of the best approximate
eigenvector is at least one-tenth as much as the improvement of the linear equations
approximate solution during a restarted run of the method. So the criterion is

(18) -lOgl0(r?zel)new q-loglo(rnel)old < 0.1(--lOglOl[rm+k[[new -b lOglo[[rm+k[[old).

The switch is done if both (17) and (18) are satisfied.
In addition, we check to see if the eigenvectors are no longer useful. We use the

test

(19) rne(k_l) matrix) -lglo[[rm+k[[ > --lgl(rtl)-lg (largest element in

where rtol is the desired residual norm for the linear equations problem and rne(k_)
is the residual norm of the eigenvector that is second to last in accuracy. This test
roughly follows from Theorem 2. The idea is that the magnitudes of the components
of the solution to the restarted problem are approximately [Irm+}[[. If an approximate
eigenvector is fully used, then the component in that direction will be reduced from
this size by approximately the accuracy of the eigenvector. So the resulting size of the
component is reflected in the left-hand side of inequality (19). Once these components
have been reduced to the desired magnitude specified by rtol, the approximimate
eigenvectors are no longer needed. The switch is done if both (17) and (19) are
satisfied.

In the tests that follow, the method begins with m 21 and k 4, then switches
to GMRES(25). However, we note that if storage is the limiting factor, the switch
could have been to GMRES(29). For the problem in Example 1 with rtol 1.e- 9,
the switch is made when (17) and (19) are satisfied after eight runs. Then after 12
runs the residual norm is 0.26e-9. This is just as good as if eigenvectors are kept for all
of the runs. See Table 9. For Example 2 with rtol 1.e- 6, the switch is made after
11 of 12 runs, and the method does better on the last run without the eigenvalues. For
Example 3 with rtol 1.e- 10, the switch is after 11 runs. The residual norm after
20 runs is 0.47e-8, not as good as the residual norm of 0.54e-ll without switching. In
this case the eigevectors are very important and the switch test is triggered too soon.
For Example 5 with n 100 and for Example 6 with D 1 and D 41, the switch
is not particularly significant.

Next for Example 4, Example 5 with n 200, and Example 6 with D (41)2,
the eigenvectors are not particularly useful and the switch is done when (17) and (18)
are both satisfied. For Example 5, this happens after just 11 of 40 runs, because the
approximate eigenvectors are not improving. The switch also works well for Example
6 with D (41)2.

More complicated adaptive procedures can be implemented. One possibility is
to adaptively choose the number of eigenvectors to be used. Also the eigenvectors
could be released individually as they converge. However, even the simpler procedures
described in this section may not work for all problems.

6. Conclusion. Forming and using approximate eigenvectors can improve the
convergence of restarted GMRES. Even just a few eigenvectors can make a big dif-
ference if the matrix has both small and large eigenvMues. Once the eigenvectors
converge, the corresponding eigenvalues are essentially removed or deflated from the
spectrum. And the approximate eigenvectors can improve convergence even before
they are accurate.
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TABLE 9.
Discarding eigenvectors.

total switch res. norm
rtol runs after res. norm w/o switch

Ex. 1 1.e-9 12 8 0.26e-9 0.50eo9
Ex. 2 1.e-6 12 11 0.36e-8 0.17e-6
Ex. 3 1.e-10 20 11 0.47e-8 0.54e-ll
Ex. 5, n----100 1.e-8 20 17 0.81e-8 0.16e-7
Ex. 6, D----1 1.e-10 8 6 0.30e-9 0.52e-10
Ex. 6, D--41 1.e-10 8 8 0.33e-9 0.33e-9

Ex. 4 15 9 0.84e-7 0.12e-6
Ex. 5, n--200 40 11 0.13e-3 0.44e-3
Ex. 6, D--(41)2 20 5 0.94e-8 0.71e-8

This method is useful for any problem that is difficult because of small eigenvalues.
However, there are several situations where it is particularly beneficial. If the matrix-
vector product is expensive, approximate eigenvectors can be used with relatively
little extra expense. The method is also particularly effective when the spectrum of
the matrix is well-behaved except for a few eigenvalues, such as in the case of having
only a few negative eigenvalues or only a few eigenvalues with negative real parts.
Also, if GMRES is used with a problem that has more than one right-hand side, then
the eigenvectors can be computed once and used efficiently for all of the right-hand
sides.

The method is not really needed for easy problems where few restarts are used.
It also may not help if the problem is hard because of eigenvalues scattered around
the complex plane. Another possibly related situation is when the small eigenvalues
are less separated from rest of the spectrum than the spectrum is separated from zero.
Then the eigenvalue problem is tougher than the linear equations problem. If the
eigenvectors are not converging, then they probably should be discarded.
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