
Computing Interior Eigenvalues of Large Matrices* 

Ronald B. Morgan 

Department of Mathematics 

The University of Missouri 

Columbia. Missouri 65211 

Dedicated to Gene Golub, Richard Varga, and David Young 

Submitted by Robert J. Plemmons 

ABSTRACT 

Computing eigenvalues from the interior of the spectrum of a large matrix is a 

difficult problem. The Rayleigh-Ritz procedure is a standard way of reducing it to a 

smaller problem, but it is not optimal for interior eigenvalues. Here a method is given 

that does a better job. In contrast with standard Rayleigh-Ritz, a priori bounds can be 

given for the accuracy of interior eigenvalue and eigenvector approximations. When 

applied to the Lanczos algorithm, this method yields better approximations at early 

stages. Applied to preconditioning methods, the convergence rate is improved. 

1. INTRODUCTION 

We wish to compute a few eigenvalues from the interior of the spectrum 
of a large matrix. The accompanying eigenvectors may also be desired. The 
eigenvalues of interest are far enough in the middle of the spectrum that it is 
impractical to develop approximations to all of the eigenvalues to either side. 

This problem occurs in a number of different applications. Only certain 
eigenvalues in the middle of the range are wanted when studying tidal 
motion 121. Interior eigenvalues are desired in adaptive polynomial precondi- 
tioning for indefinite linear systems [l]. In some weather forecasting models, 
only eigenvalues with small real parts are wanted, while there are other 
eigenvalues with large positive and with large negative real parts [lS]. 
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Sometimes molecular chemists are only interested in particular vibrational 
levels. And only a certain range of vibrational frequencies of buildings will be 
affected by earthquakes. 

We assume that factorization is impractical due to the size and sparsity 
structure of the matrix. This makes the problem quite difficult. We will 
present a new approach that generally gives better results than the standard 
method. The matrix can be either symmetric or nonsymmetric, but this paper 
discusses only the symmetric case. 

The rest of this section discusses the standard method. Section 2 presents 
the new approach, including two variations, and gives a prim-i bounds on the 
effectiveness. Section 3 gives an interior version of the Lanczos algorithm 
and discusses how long it will take to develop good approximations. Roundoff 
error effects are analyzed. Section 4 has an interior version for precondition- 
ing methods. These methods can give much better results than the Lanczos 
algorithm for interior eigenvalues. 

The Rayleigh-Ritz procedure [13] is the standard way to extract approxi- 
mate eigenvectors from a subspace. Let the eigenvalue problem be 

where A is an n by n symmetric matrix. Suppose a j dimensional subspace 
of R” has been chosen. The Rayleigh-Ritz procedure reduces to a smaller 
problem. Let Q be an n by j orthonormal matrix whose columns span the 
subspace. Then the reduced problem 

QTAQg = eg (1) 

is solved. The approximate eigenvalues, called Ritz values, are the O’s, and 
the approximate eigenvectors or Ritz vectors are y = Qg. For Q not or- 
thonormal, the generalized Rayleigh-Ritz procedure can be used, and the 
reduced problem is 

QTAQg = eQTQg. (2) 

But the Rayleigh-Ritz procedure is not optimal for interior eigenvalues. 
Rayleigh-Ritz is optimal in a global sense and is optimal for exterior 
eigenvalues [13, p. 2151. However, there are no guarantees for interior 
eigenvalues. Also, it is difficult to tell if a Ritz value is meaningful without 
computing the accompanying Ritz vector and testing its accuracy. Spurious 
Ritz values or ghost values [15] can occur. 
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EXAMPLE 1. Consider the 3 by 3 diagonal matrix A with entries - 1, 0 
and 1. Let Q have columns qi = [ - 0.1,0.99,0.1]r and 9s = [l/fi,O, l/fi]r. 
Then the suhspace is good if you want to approximate the eigenpair at 0, 
because q1 is close to the eigenvector e2. However, the Rayleigh-Ritz 
procedure gives Ritz values - 0.14 and 0.14 with Ritz vectors [ -0.57,0.70, 
- 0.431~ and [0.43,0.70,0.57]‘. While both Ritz values appear to be approxi- 
mating the eigenvalue at 0, actually both are ghost values. Their associated 
vectors are not accurate at all. Contributions less than and greater than zero 
cancel out in the Ritz value. 

For interior eigenvalues, Rayleigh-Ritz is best when used with an in- 
verted operator [15], say (A - aI)- ‘. The eigenvalues near (+ are mapped to 
the exterior of the spectrum of the inverted matrix. However, we have 
assumed that the factorization needed to implement this is impractical. 
Another approach is needed. 

2. A MODIFIED RAYLEIGH-RITZ PROCEDURE 

It is possible to use the inverted operator implicitly. Let the columns of P 
span the given subspace. Then the inverted operator can be used with the 
subspace spanned by Q = (A - aZ)P. While Q does not represent the 
desired subspace, once the form of the approximate eigenvectors from Q 
have been determined, equivalent approximate eigenvectors from P can be 
calculated. These are more accurate, at least for eigenvalues near u. 

Here the method is derived. Start with the inverted problem 

(A-cZ)-‘I=&, 

and apply Equation (2) the generalized Rayleigh-Ritz method: 

Ideally we would like to solve Equation (4) with Q representing the desired 
subspace. Since that is not possible, let Q = (A - aZ)P, with P representing 
the desired subspace. Then Equation (4) becomes 

PT(A-crZ)Pg= -&P’(A - oZ)‘Pg. 
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The reduced problem given by Equation (5) yields approximate eigen- 
pairs (l/(0 - a), Qg) for the inverted problem. These approximations are 
optimally chosen from the subspace spanned by Q, since the Rayleigh-Ritz 
procedure is done implicitly with respect to the inverted operator. For the 
matrix A, (0,Qg) is an approximate eigenpair. But actually (p, Z’g) is better, 
where p is the Rayleigh quotient of Pg with respect to A. Pg is equivalent 
to Qg with one step of inverse iteration applied. Q is not needed in the 
calculations, but it is remarkable that in deriving the method, moving to the 
poorer subspace corresponding to Q improves the resolution. 

By starting with 

(A-vZ)-~~= (*T 
u 

)‘z 

instead of Equation (3), another method is derived with reduced problem 

1 
PTPg = (e _ aj2 Pr(A - aZ)‘Z’g. 

This can also be derived by simply applying the generalized Rayleigh-Ritz 
procedure to (A - ~1)~. 

So we have two methods, which we will call method 1 and method 2. 
They are effective at finding eigenvalues near cr. The problem of identifying 
ghost values [I51 is eliminated. 

EXAMPLE 1 (Continued). If these methods are applied to the problem in 
Example 1, much better results are obtained. For method 2, with o = 0, the 
approximate eigenvector [ - 0.10,0.99,0.10]T is obtained. This is the best 
possible. And with u = 0.1, [ -0.08,0.99,0.12]r is about as good. For method 
1, with u = 0, we get [ - 0.20,0.98,O.OO]r. With u = 0.1, the result is about 
the same. This is less accurate than method 2, but far better than standard 
Rayleigh-Ritz. 

Next the methods are outlined. 

METHOD 1. 

1. Choose a subspace of dimension j. Compute P, an 12 by j matrix 
with columns spanning the subspace. 

2. Calculate H, = PT(A - uZ)P and H, = Pr(A - uZ)~P. 
3. Compute the desired number of the largest eigenpairs of H,gi = 

a,Hsgi. 
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4. Compute approximate eigenpairs (pi, yi> of A, where yi = Pgi, and 
where if gi is normalized, pi = o + g’H,gi. Also compute, as desired, the 
norms of the residual vectors, ri = Ayi - piyi, to check the accuracy. 

For numerical considerations, it is preferable if P is orthonormal. See 
[13, pp. 69, 2221 for the significance of the residual norms. 

METHOD 2. Same as method 1, except for step 3: 

3. Compute the desired number of the smallest eigenpairs of H,g, = 

“igi. 

If H, is not calculated, then the pi’s will have to be computed in another 
way. 

Next the optimality properties are examined and some a priori bounds 
are given. First a lemma gives some standard results that will be useful. For 
notation, let e(s; A) = sTAs/sTs, the Rayleigh quotient of s with respect to 
A. Let (A,,z,) be the eigenpair of A with the smallest eigenvalue, and 
(Or, yr) be the smallest Ritz pair from standard Rayleigh-Ritz. 

LEMMA. For standard Rayleigh-Ritz with the matrix A and subspace 4, 

h,<8,<e(s;A) forall SE/, (7) 

and 

0, - 4 
sin’ L( yr,z,) d ___ 

A, -h, . 

Proof. Let N be an orthogonal matrix whose first column is a multiple 
of s and whose first j columns span 4. Then Equation (7) follows from the 
Cauchy interlacing theorem applied to NTAN. For (S), let 4 = L( yr, z,), and 
let yr = zr cos 4 + u sin 4, where u I zr and all vectors are of unit length. 
Then 

4 -A,= yT(A-A,Z)y,=sin2~uT(A-hrZ)u. 

so 

sin’ 4 = 
4 - 4 4 - 4 

u’( A - h,Z)u Q A, - h, . 
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The lemma says that the vector in the subspace with the most negative 
Rayleigh quotient is extracted as a Ritz vector. The same is true for the 
vector with the most positive Rayleigh quotient. Bounds can also be given for 
Ritz approximations to interior eigenvalues in terms of the accuracy of all the 
approximations that are exterior to them [13, p. 2271. 

For results on the modified versions of Rayleigh-Ritz, instead of the usual 
eigenvalue ordering, we will number them according to their distance from 
u. Let A, be the eigenvalue nearest (T, A, be the next nearest, and A,, the 
furthest from cr. For method 1, let (O,, gi) be the solution of Equation (5). 
For method 2, (Oi, gi> is the solution of (6). The Bi’s are also ordered 
according to their distance from o. Let wi = Qgi and yi = Pg,. So yi is the 
better approximate eigenvector. Let 9 be the desired subspace, which is 
spanned by the columns of P. Denote by (A - al)9 the subspace spanned 
by the columns of Q. 

THEOREM 1. In method 1, yt minimizes the magnitude of the quantity 

xr(A - aI)% 

xr(A - al)x (9) 

over all x E 4. 

Proof. Assume first that IS # A,. Method 1 is equivalent to standard 
Rayleigh-Ritz with matrix (A - aI)-’ and with subspace (A - oZ)/. From 
Equation (7) and the corresponding result for the largest Ritz value, it 
follows that wi = (A - aZ)y, has the Rayleigh quotient with respect to 
(A - aI)- ’ with maximum magnitude. If 

xT(A-al)(A-VI)-‘(A-crZ)n: xr(A-(+Z)X 

rr(A-oI)(A-aZ)x = rT(A-,+ 

is maximized over all x E 4, then the quantity (9) is minimized. 
As long as zi G 4, the matrix F’r(A - aZ)‘Pg stays away from being 

singular, and the eigenvalues of (5) are continuous with respect to u. For 
u # A, the minimum of (9) is just 8, - u, the reciprocal of an eigenvalue of 
(5). Because of the continuity, the minimum at u = A, is from a solution 
of (5). 

If u = A, and zr E 4, then there is no minimum. n 
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Note in the ideal case where zr E 9, zr minimizes (9), so yr is chosen to 
be zr. This is also true for method 2, as the next theorem shows. 

THEOREM 2. In method 2, y1 minimizes the quantity 

xT(A - IYZ)~X 

XTX (19) 

over all x E J“. So y1 minimizes the norm of this modified residual vector: 

(A - aZ)x 

llxll . 

Proof. Method 2 is equivalent to standard Rayleigh-Ritz applied to 

(A - ~1)~. By th e 1 emma, yr gives the algebraically smallest Rayleigh 
quotient with respect to (A - (~1)~. This Rayleigh quotient is nonnegative, so 
it is also the minimum in magnitude. n 

Some a priori bounds will now be given for the approximation to the 
eigenpair (A,, zr >. Bounds can also be given for approximations to other 
eigenpairs, based on the accuracy of previous approximations. 

THEOREM 3. For convenience, assume that h, < u. For method 1, 

1 

A,-/ 

Proof. 
CT), w,) is a 

&<+(A-d-l) forall VE(A-oZ)./, (11) 

sin’L(zu,,z,) d 

sin2 L( yr, zr) Q 

l/(b - a) -l/CA1 - u> 
l/(/i,-a)-l/(h,-a)' 

(12) 

&--a 2 

( i 
h tan2 L(w,,z,), (13) 
2 

lpl - AlI Q sin2 L( yl,zl)IA,, - AlI. (14) 

Equations (11) and (12) follow from the lemma, since (l/(0, - 

Ritz pair for the operator (A - aI)-’ with subspace (A - uZ)J. 
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For Equation (13), using yr = (A - aI>- ‘wi, one can derive that 

&-a 2 
sin’ L( ~~~2,) G A ( I sin’ L( wl,zl) 

2 

cos2 L( toI, zl) + 

A,-a 2 

i I 

- 
A, - u 

sin’ L( wi, zi) 

Al-a 2 
<- 

i I A, - Cr 
tan’L(w,,z,). 

For (141, let 4 = L(y,, z,), and let yi = zr cos 4 + u sin 4, where u I zi 
and all vectors are of unit length. Then 

and 

Ipl - All < sin2~lA, - AlI. 

THEOREM 4. For method 2, 

(A~-cr)2<(BI-~)2<~(r;(A-crZ)2) for all x E 9, (15) 

sin’ L( yl, zl) Q 
(fll-u)2-(A1-u)2 

(A2-a)2-(A1-a)2’ 
(16) 

Ip1 - A,1 G sin’ L( y,,z,)lA, - AnI. (17) 

Proof. Equations (15) and (16) follow from the lemma, since ((0, - 
a)‘, yl) is a Ritz pair for the operator (A - aI)’ with subspace 9. Equation 
(17) is the same as (14). n 

The bounds in Theorem 3 are not defined when CT equals A,, and they 
may not be good in nearby cases because the subspace (A - aZ)9 is very 
poor. It appears that method 1 may not work as well as method 2 when v is 
near A,. For method 2, the bounds on (pi, yi) decay when the two closest 
eigenvalues to u are nearly the same distance away. This happens even if A, 
and A, are well separated, on opposite sides of u. The eigenvalues A, and 
A, are mapped together by (A - uZ)‘, and the eigenvectors blur together. So 
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method 1 may perform better in this situation. These two cases will be 
discussed further with examples in the next section. 

Because of these problem cases and because of the indirectness of the 
bounds on the approximate eigenvalues pi, the bounds are not as appealing 
as those with standard Rayleigh-Ritz for exterior eigenvalues. However, it is 
nice that with our methods some bounds can be given for approximations to 
interior eigenvalues. If there is information about the subspace, more specific 
bounds can be given by choosing the vector x or v. This will be done in the 
next section with Krylov subspaces. 

3. WITH LANCZOS 

For large symmetric matrices, the symmetric Lanczos algorithm [13] is a 
standard method for computing eigenvalues. The Lanczos algorithm is the 
Rayleigh-Ritz procedure applied to a Krylov subspace [13]. The orthonormal 
matrix spanning this subspace is generated iteratively using an efficient 
three-term recurrence. The reduced matrix in Equation (1) is tridiagonal. 

We now apply the modified versions of Rayleigh-Ritz to Lanczos. Let P 
be the orthonormal matrix generated by the Lanczos iteration. For method 1, 
Equation (5) becomes the j by j generalized eigenvalue problem 

(18) 

where T = PT(A - oZ)Pg is tridiagonal and V= PT(A - aZ)‘Pg is pentadi- 
agonal. T is the standard tridiagonal matrix from the Lanczos method except 
for shifting of the diagonal elements by u. For method 2, Equation (6) 
becomes an eigenvalue problem with V. 

The 0 values have been used before in the case u = 0 for applications 
such as orthogonal polynomials [5, 71. However, we are interested in the 
more accurate p values and in solving eigenvalue problems. 

The subspace that the approximate solutions are extracted from is the 
same as the subspace for the standard Lanczos algorithm. Once the subspace 
is good enough, standard Lanczos will usually give good approximations even 
to interior eigenvalues. So the new interior versions of Lanczos will not give 
faster convergence rates. But they will give better approximations at early 
stages. If eigenvectors are desired and storage is limited, then restarting is 
necessary. In that case, the best possible approximations are important. So 
the interior versions are useful if rough approximations to the eigenvalues are 
desired quickly or if restarting is used. 
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A key point is that in terms of n, the expense of these methods is the 
same as for standard Lanczos. V need not be formed; instead let T = QR be 
an orthogonal QR-type factorization of T. Then use the Ianczos recurrence 

(A - aZ)P = PT + fljpj+,eT, where pj+l will be the next orthonormal col- 
umn of P. Then 

V= PT(A - uZ)~P 

= TTT + @ejejT 

= RTTi + pj2eje,T 

= RTR, (19) 

where R is upper triangular and differs from g only in the jj element. For 
that element, t-A = ?$ + /?f. A similar formula was derived by Paige and 
Saunders [12] with their MINRES routine for solving indefinite systems of 
linear equations. 

The approximate eigenvalues and their residual norms can be computed 
fairly cheaply. For gi of unit length, 

pi = ( Pgi)TAPg, = u + g’Tg,. (20) 

A formula for the residual norm in both method 1 and method 2 is 

where pji is pj times the last component of gi. For method 1 we also have 

Ilrjl12 = ( ei - Pi)( Pi - a) > (22) 

and for method 2, 

llri112 = (t$ - a)2-(pi - cr)2. (23) 

So convergence can be monitored as the iteration progresses. 
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The Lanczos recurrence is independent of u. Only the main diagonal of 
T varies. So u can be easily changed, and there is no additional expense in 
terms of n. It is only necessary to do a QR factorization of the shifted T and 
solve a different reduced eigenvalue problem (18). It is possible to compute 
approximate eigenvalues over a range by letting u vary. 

EXAMPLE 2. For a test matrix, let A be diagonal and of dimension 500. 
The diagonal entries are 240 values equally spaced from 0.0 to 9.0, then an 
entry at 10.0, and then 259 values equally spaced from 11.0 to 20.0. Table 1 
gives the residual norms every 25 steps for the best approximations to the 
eigenvalues at 10.0 and 11.0. The computations were done in double preci- 
sion (about 16 decimal digits) on an IBM 4381-R14. The starting vector has 
all entries the same. Method 1 and method 2 use (+ = 10.1. For computing 
the eigenvalue at 10.0, they give about the same results, and both are better 
than standard Lanczos. For example, at j = 100, the interior methods give 
residual norms that are more than an order of magnitude better than 
standard Lanczos. On the other hand, while the convergence of standard 
Lanczos is not as steady, it is at about the same rate as for the interior 
methods. It is interesting that at steps where Lanczos lags behind the most, 
there is a ghost Ritz value between 9 and 11. The interior methods also give 
better results for calculating the eigenvalue at 11.0. But here method 1 is 

better than method 2. For example at j = 100, Lanczos has residual norm 
0.22, method 1 has 0.62~ - 1, and method 2 has 0.12. The eigenvalue at 9.0 is 
not given in the table, but method 2 has even greater problems there. At 
j = 100, the residual norms are 0.18 for Lanczos, 0.67~ - 1 for method 1, and 

j 

TABLE 1 
u = 10.1 i. 
Residual norm 

Ritz value near 10.0 Ritz value near 11.0 

Ianczos Method 1 Method 2 Ianczos Method 1 Method 2 

25 2.51 0.52 
50 1.98 0.25 
75 0.33E-1 0.19E - 1 

100 0.34E- 1 0.17E - 2 
125 0.20E - 3 0.12E - 3 
150 0.81~ - 4 0.96E - 5 
175 0.113-5 0.6oE - 6 
200 O.lQE-6 0.45E - 7 

1.07 
0.24 
O.lQE - 1 
0.173-2 
0.12E -3 
0.97E - 5 
0.60~ - 6 
0.45E - 7 

1.10 1.00 3.64 
0.66 0.38 0.51 
0.26 0.10 0.17 
0.22 0.62~ - 1 0.12 
0.993 - 1 0.39~ - 1 0.62~ - 1 
0.11 0.26~ - 1 0.47E - 1 
0.353 - 1 0.15E-1 0.23~ - 1 
0.62~ - 1 0.90~ - 2 0.15E - 1 
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0.35 for method 2. Method 2 has trouble because of the nearness of 19.0 - ol 
to lhi - ol for several Ai near 11.2. 

EXAMPLE 3. Method 1 with the case where u is equal or near to an 
eigenvalue is now examined. First the same test as in Example 1 is 
performed, except with u = 10.0. Instead of just one approximation to the 
eigenpair a; 10.0, there are many of them. At j = 100, the most accurate 
approximation has residual norm 0.67~ - 2, compared to 0.17~ -2 in the 
previous example with o = 10.1. Approximations to other eigenvalues do not 
appear. This is because the eigenvalue problem 

(A-al)z= &(A-cI)“i 

that is approximated in Equation (5) has a continuous spectrum. The symme- 
try around 10.0 is not the reason. Results are similar with eigenvalues 
between 12 and 21 instead of between 11 and 20. Also, for (+ = 11.0, extra 
approximations to the eigenvalue 11.0 show up, though not until the sub- 
space is larger (around j = 150). In several other tests we let u move away 
from A, and fix j. Table 2 has residual norms for the eigenvalues at 10.0 and 
11.0, for j = 100 and 150. For j = 100, by u = 10.00001, the residual norm of 
the approximation to 10.0 improves to 0.17~ -2. Approximations to other 
eigenvalues appear soon after that, and at u = 10.01 they attain almost the 
same accuracy as for u = 10.1. The situation for u near but not equal to the 

TABLE 2 
(T CHANCING 

Residual norm 

j = 100 j = 150 

V Ritz value 10 11 10 11 

10.0 0.67~ - 2 - 0.45E-4 - 

10.000000001 0.67~ - 2 - O.O6E-5 - 

10.000001 0.60~ - 2 - 0.96E - 5 .25 

10.00001 0.173-2 - 0.963 - 5 0.35E - 1 

10.0001 0.17E-2 0.51 0.96E - 5 0.27~ - 1 

10.01 0.17E-2 0.65~ - 1 0.96E - 5 0.26~ - 1 

10.1 0.17~-2 0.62~ - 1 0.96E - 5 0.26~ - 1 
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eigenvalue should improve as the iteration progresses, because as the sub- 
space 9 improves, the subspace (A - ~114 also improves. And then the 
ability of Rayleigh-Ritz with (A - al)-’ to extract the correct vectors from 
that subspace improves. For j = 150, the interval of difficulty around 10.0 
shrinks. The approximation to A, is as accurate for u = 10.000000001 as for 
(+ = 10.1. The approximation to the eigenpair at 11.0 is about as accurate for 
u = 10.0001 as for u = 10.1. 

We conclude that method 1 is useful even for u near an eigenvalue, and 
that any ill effects will diminish as j increases. If there is some reason to be 
particularly concerned, it is possible to monitor the behavior of the method 
and, when needed, either change u or switch to method 2 or standard 
Lanczos. All of these can be done with the same Lanczos iteration. 

The problems of method 2 when eigenvalues are about the same distance 
away from u but on opposite sides were shown in Example 1 with the 
second and third eigenvalues. Another case where this happens is for u near 
10.5. At u = 10.5 and j = 100, the approximation to A, has residual norm 
0.52~ -2 instead of 0.17~ -2. This does not seem too bad, but at u = 10.51, 
the result is 0.33~ - 1. The problem case for method 2 does not seem as easy 
to detect as that for method 1. Generally, we favor method 1 over method 2. 

A priori bounds similar to the Kaniel-Saad bounds [9, 13, 141 for standard 
Lanczos can be given. We will just give the bound for 8, from method 1. 
Bounds for u)i, y,, and p1 then follow from Equations (12) through (14), and 
bounds for method 2 can be similarly derived. 

THEOREM 5. For convenience, assume that A, < u and A, > u. Let f be 
the starting vector. For method 1, 

0 Q A, - 8, Q (u - 8,) (5+1) 

where p is any polynomial of degree j - 1 or less such that p(A,) = 1. 

Proof. Let h = (A - uZ>f, qf~ = L(h,z,), and h = z1 cos C$ + u sin4, 
where u is orthogonal to zi and h, U, and zi are all unit vectors. 4 is a 
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Krylov subspace. So all v E (A - aZ)9 can be written as p(A)h, for p a 
polynomial of degree j - 1 or less. Now 

p(A)h;(A - aI)-‘- 1Z 
A,-a 

1 
< --- 

*I-V 

lI~(A)ull~sin~+ 

1 1 
--- 
A,-a A, - u 

tan4F+y IdAd IlpT 

using that ]]p(A)u]] < maxizllp(A,)l and ]]p(A)h]] > p(h,)cos 4 = cos 4. For 
Equation (24), apply this to Equation (11) and use a little algebra. m 

For a good result, the polynomial p in Theorem 5 must be much larger at 
h, than at the other eigenvalues. In the Kaniel-Saad bounds, the polynomial 
is chosen to be a shifted Chebyshev polynomial. The steep climb of the 
Chebyshev polynomial outside of the specified interval explains why conver- 
gence is rapid for a well-separated smallest eigenvalue. However, we must 
have a polynomial that is small on the two intervals containing h, through A, 
and is large in the middle at A,. To demonstrate the difficulty of this task, we 
will look at a special case. Let A, = 0, and assume that the two intervals 
containing the other eigenvalues are symmetric about 0. For results about 
optimum polynomials over more complicated pairs of intervals, see [4] and its 
references. 

THEOREM 6. The polynomial p of degree 2k satisfying p(O) = 1 that 
minimizes 

max 
xE[a,plor[-P,-(Yl 

P(X) 
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is 

P(X) = 
Tk( 6X2 + d) 

T,(d) ’ 

where Tk is the degree k Chebyshev polynomial on [ - 1,11, and where 

c = - 2/(p2 - a21 and d = (p2 + (u2>/(p2 - (u2>. The maximum of p on the 

two intervals is 1/ T,(d). 

Proof. The proof is similar to that for standard Chebyshev results. The 
polynomial p attains its maximum or minimum k + 1 times in both of the 
two intervals (this follows from properties of Tk). If there is a polynomial q 
that satisfies the same conditions and has a lower maximum over the 
intervals, then p - q has 2k + 1 zeros. Since p - q is of degree 2k, it must 
be identically zero. So p is the minimal polynomial. n 

To compare this with a corresponding result for exterior eigenvalues, let 
the smallest eigenvalue of A be 0 and all of the other eigenvalues be in the 
interval [q p]. For p(x) of degree k such that p(O) = 1, the minimum of 

maxX,t,,P1 P(r) is 

Comparing (p + a>/@ - cu) with (p2 + (u2)/Q12 - a’) shows that con- 
vergence will be much slower for an interior eigenvalue. The convergence 
factors are roughly 

for the exterior problem and 

for the interior problem. Approximately 
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times as many iterations are required for the interior problem as for the 
exterior problem. 

So Krylov subspaces are more appropriate for exterior eigenvalues. The 
best way to find interior eigenvalues is to use the shift-and-invert Lanczos 
method [6]. The subspace is generated by an inverted operator and is much 
better. So not only are inverted operators better with the Rayleigh-Ritz 
extraction from the subspace, they also produce a better subspace. But as 
before, we are assuming that implementation of the inverted operator is 
impractical. 

EXAMPLE 4. To demonstrate the difficulty of computing interior eigen- 
values, let A = diag{O.I, 0.2,. . . , 29.9,30.0}. Let u = 15.02. To simulate the 
situation where the eigenvector is needed and the storage is limited, let the 
maximum size subspace be of dimension 100. The method is then restarted. 
Table 3 gives the results for 10 such runs to j = 100. The interior methods 
not only give better results, but they also show steady improvement, unlike 
standard Lanczos. Perhaps more significant is the fact that convergence is 
extremely slow for all methods. This problem is addressed in the next 
section. 

It is well known that roundoff error causes the Lanczos recurrence to 
behave very differently in practice than it does in theory. Nevertheless, the 
standard Lanczos method produces accurate eigenvalue estimates. In the 
examples that have been given, the interior version of Lanczos also per- 
formed well in the presence of roundoff error. We conclude the section with 
an explanation of this. However, the explanation relies on theory developed 

TABLE 3 

DIFFICULT EXAMPLE 

Residual norm for Ritz value near 15.0 

Run Lanczos Method 1 Method 2 

1 1.02 0.23 

2 1.06 0.12 

3 0.81 0.83~ - 1 

4 1.02 0.67~ - 1 

5 1.21 0.58~ - 1 

6 0.90 0.49E - 1 

7 0.87 0.403 - 1 

8 0.50 0.32~ - 1 

9 0.54 0.26~ - 1 

10 0.35 0.21E - 1 

0.23 

0.12 

0.86~ - 1 

0.70E - 1 

0.60~ - 1 

0.51E - 1 

0.43E - 1 

0.36~ - 1 

0.303 - 1 

0.24~ - 1 
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by Greenbaum [8], which in turn uses work by Paige [ll]. The details will be 

left out here. 
The basic idea is that while T differs from what it would be in exact 

arithmetic, it can be theoretically extended to a larger tridiagonal matrix 
whose eigenvalues all are near those of A. Now the pentadiagonal matrix V 
can also be extended, and then Equation (18) will have the same eigensolu- 
tion as does the extended T. So while the solution of (18) is not the same as 
it would be in exact arithmetic, it is an intermediate step of an accurate 
answer. 

LEMMA (Greenbaum). Let m be the number of converged Ritz vectors at 
step j of a perturbed Lanczos recurrence. The tridiagonal matrix T is the same 
as one generated by an exact Lanczos recurrence applied to a matrix with 
eigenvalues close to those of A that has dimension n + m or less (for- 
convenience, assume n -I- m>. The recurrence can be theoretically extended, 

and P,+, will be zero. T,, + m then will have eigenvalues close to those of A. 

THEOREM 7. Equation (18) generated by a perturbed Lanczos recur- 
rence is the same as that generated by an exact Lanczos recurrence applied to 
a matrix whose eigenvalues are all close to those of A. The Lanczos recurrence 
can be theoretically extended so that the extended Equation (18) gives only 
pi’s close to the eigenvalues of A. 

Proof. Extend the Lanczos recurrence as is done in the lemma. Then 
note that V = T2 + fiTeTej. Thus V,,, = Tn2+,, since /3”+,,, = 0. So Equation 
(18) gives the same eigensolution as does T,,,,, [the (pi, gj)‘s are eigenpairs 
of T,,,]. _&rid by the lemma, the eigenvalues of T,,,, are all near those 
ofA. n 

4. WITH PRECONDITIONING METHODS 

Krylov subspaces are usually not very good for computing interior eigen- 
values. Convergence can be very slow, as in Example 4. This section looks at 
methods that build a subspace to target specific eigenvalues. 

Here we apply interior Rayleigh-Ritz method 1 to Davidson’s method 131 
and the GD method [lo]. These methods use preconditioning to improve the 
convergence. Davidson’s method has diagonal preconditioning. In GD, the 
preconditioning techniques developed for linear equations can be applied to 
eigenvalue problems. 
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Davidson’s method and GD develop their subspace iteratively, using 
information at one step to find a new vector for the next step. The new trial 
vectors for the subspace are 

“=(M-cur)-‘(A-pI)y, 

where (p, y) is the current Ritz pair approximating the desired eigenpair, 
where M is an approximation to A, and where CY is usually chosen to be p or 
u. The matrix M - al is a preconditioner for A - pl. As p approaches A,, 
(M - al)-‘(A - pZ) h as an eigenvector approaching zi, and the eigenvalue 
is generally better separated in the spectrum of this preconditioned matrix 
than A, is in the spectrum of A. 

These methods are more expensive than the Lanczos algorithm, because 
there is no three-term recurrence. Also, the cost of an approximate factoriza- 
tion for the preconditioner may be significant. But this cost is less than for 
the complete factorization necessary for the shift-and-invert Lanczos method. 

When the interior Rayleigh-Ritz method is used, there are better approxi- 
mate eigenpairs developed at early stages. These are used to generate a 
better subspace. So the method can actually converge faster. 

Full Gram-Schmidt orthogonalization is needed. Both P and (A - aI)P 
are saved to keep the number of matrix-vector products to one per iteration. 
There are three ways to perform the orthogonalization of P: with respect to 
the standard inner product, with respect to the (A - aI)’ inner product, and 
with respect to the indefinite A - al inner product. The first way is probably 
best, because it is straightforward and it allows easy changing of u. The 
expense is approximately 6jn multiplications per step for all length n 
operations except the matrix-vector product and the preconditioning. The 
regular Davidson’s method and GD require 5jn. Equation (5) becomes a j 
by j generalized eigenvalue problem. The second way yields a standard 
eigenvalue for Equation (5). The cost in terms of n is the same, but the 
orthogonalization is a little more complicated. The third way of orthogonaliz- 
ing is less expensive at approximately 5~71 multiplications per step, but 
stability is not guaranteed. It gives a generalized eigenvalue problem. 

EXAMPLE 5. Here A is the tridiagonal matrix with 0.2,0.4,. . . ,59.8,60.0 
on the main diagonal and l’s on the super- and subdiagonal. The distribution 
of eigenvalues makes computation of interior eigenvalues as difficult as in 
Example 4. Let M = diag(A), (+ = 27.05, and CY = (T. The convergence crite- 
rion is that the residual norm be less than 10m6. First a poor starting vector 
with all entries the same is used. Table 4 gives residual norms for computing 
the eigenvalue 27.0 with two versions of Davidson’s method. Davidson’s 
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TABLE 4 
PRECONDITIONING METHODS 

Residual norm for Ritz value near 27.0 

Poor starting vector Good starting vector 

_i Standard Interior Standard Interior 

1 17.3 17.3 
5 2.38 0.56 

10 1.02 0.31 
15 0.86 0.23 
20 1.55 0.40E - 1 
25 0.49 0.12E - 1 
30 1.98 0.88~ - 3 
35 0.29 0.35E - 5 
37 2.73 0.45E - 6 

0.67~ - 2 
0.45E - 3 
0.63~ - 3 
0.12E-2 
0.16~-2 

0.18~-3 

0.30E-2 

0.13E-6 

0.12E-6 

0.67~ - 2 
0.12~-3 
0.43E - 4 
O.l5lZ-4 
0.45E - 5 
0.143-5 
0.13E -6 
0.88~ - 8 
0.748-g 

method with the interior Rayleigh-Ritz method converges by step 37. This is 
quite rapid compared to the convergence of Lanczos methods. Standard 
Lanczos gives a residual norm of only 1.6 at step 150, while interior Lanczos 
has 0.30 at j = 150. If interior Davidson is allowed to continue, three 
eigenvalues converge by step 53. Now for the standard Davidson method, 
the approximate eigenpair nearest to but less than 27.05 is chosen to be 
(p, y). But the method flounders because this choice does not give the proper 
approximate eigenpair. Ghost Ritz values interfere. 

If there is an accurate starting vector, the situation is different. The 
selection of the proper Ritz value is not difficult in the standard Davidson 
method. Pick the solution gi of the reduced problem (1) with the largest first 
component, so that the approximate eigenvector yi will have the largest 
component in the direction of the starting vector. Table 4 also compares the 
standard and interior Davidson methods with an accurate starting vector. 
Standard Davidson finds the eigenvalue 27.0 in 33 steps, but the conver- 
gence is uneven. Nearby ghost values decrease the accuracy of the best 
approximation. Interior Davidson converges in 26 iterations. It appears that 
the interior method helps not only in the selection of the proper Ritz pair, 
but also in the development of a good subspace. 

5. CONCLUSION 

For finding interior eigenvalues, the Raleigh-Ritz procedure is best with 
an inverted operator. But often implementation of the inverted operator is 
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too expensive or requires too much storage. Given a subspace spanned by the 
columns of P, it is possible to implicitly use the inverted operator or the 
inverted operator squared on the subspace spanned by Q = (A - aI)P. And 
approximations from the subspace spanned by P can be formed. The results 
are generally better than for the standard Rayleigh-Ritz procedure, and the 
additional costs are small. 

The two variations of interior Rayleigh-Ritz are fairly comparable. Both 
have problems if u is unfortunately located. Method 1 may compute approxi- 
mations to an eigenvalue problem with a continuous spectrum. Method 2 
may alias distinct eigenvalues. But even then, results may be better than for 
standard Rayleigh-Ritz. It is possible to adjust u dynamically to avoid the 
problem areas. We prefer method 1 because the problem case seems less 
likely and easier to determine. 

The interior version of the Lanczos algorithm uses the same subspace as 
does standard Lanczos, but extracts the solution better. Interior Lanczos is 
worthwhile if rough approximations are desired quickly or if restarting is 
used. 

With preconditioning methods, the interior Rayleigh-Ritz method is 
particularly important because the development of the subspace depends on 
having accurate approximate eigenpairs along the way. It is also worth noting 
that the preconditioning methods can be much more effective than Lanczos 
for finding interior eigenvalues. The approximate factorization generally used 
for a preconditioner can provide a compromise between the often slow 
convergence of Lanczos with A and the great factorization expense of 
shift-and-invert Lanczos. 

The author wishes to thank the referees for their insightful suggestions that 

improved the presentation. 
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