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TWO-GRID DEFLATED KRYLOV METHODS FOR LINEAR
EQUATIONS

RONALD B. MORGAN† AND ZHAO YANG‡

Abstract. An approach is given for solving large linear systems that combines Krylov methods
with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate
eigenvalues on the fine grid. GMRES-type methods are first used on both the coarse and fine grids.
Then another approach is given that has a restarted BiCGStab (or IDR) method on the fine grid.
While BiCGStab is generally considered to be a non-restarted method, it works well in this context
with deflating and restarting. Tests show this new approach can be very efficient for difficult linear
equations problems.
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1. Introduction. We look at solving large systems of linear equations Ax = b
that come from discretization of partial differential equations. There are a variety of
iterative methods for solving these problems. In particular, multigrid methods [15, 6,
7, 8, 32] are extremely effective under certain conditions. However, there are many
situations for which standard multigrid methods do not work. Here we give a different
approach to using the power of different grid levels for such situations. This will be
done by combining with Krylov subspace methods.

Convergence of iterative methods is generally affected by the conditioning of the
linear equations, or more specifically by the presence of small eigenvalues. One reason
that multigrid methods are effective is that eigenvectors corresponding to small eigen-
values generally have similar shape on different grids levels, and multigrid is able to
handle the small eigenvalues on coarse grids where both the linear equations problem
is better conditioned and the computation is cheaper due to the smaller matrix.

Krylov subspace methods are more robust than multigrid in the sense that they
can be applied to problems for which multigrid fails. However, they can converge
slowly. Work has been done on dealing with the detrimental presence of small eigen-
values for Krylov methods. Restarted methods such as GMRES are particularly
sensitive to the presence of small eigenvalues. Deflated GMRES methods [21, 19,
10, 3, 9, 16, 23, 27, 18, 17] compute approximate eigenvectors and use them to re-
move or deflate the effect of small eigenvalues. In particular, we will use the method
GMRES-DR [23] which both solves linear equations and simultaneously computes
eigenvectors.

Once approximate eigenvectors have already been computed, one deflation tech-
nique is to use them to build a preconditioner for the linear equations [19, 3, 9, 16, 27,
29]. However, such a preconditioner can become expensive if there are many eigen-
values being deflated; each eigenvector is applied at every iteration. Deflation can
be done with less expense outside of the Krylov iteration [25, 31]. We will use such
a method called GMRES-Proj [25] which projects over approximate eigenvectors in
between cycles of regular GMRES.
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The computation of approximate eigenvectors can be expensive for difficult prob-
lems. We look at finding them by computing eigenvectors on a coarse grid and moving
them to the fine grid. GMRES-DR is used on the coarse grid to both find approximate
eigenvectors and generate an approximate linear equations solution. Then GMRES-
Proj takes what has been found by GMRES-DR and solves the fine grid linear equa-
tions.

See Elman, Ernst and O’Leary [11] for another way of combining multigrid and
GMRES. Closer to the current work is Sifuentes’ thesis [28] which has two-grid de-
flation, but with Arnoldi on the coarse grid and with the more expensive approach
of building a deflating preconditioner for GMRES on the fine grid. Instead of using
computed approximate eigenvectors, Erlangga and Nabben [13] deflate using vectors
from the interpolation operator that maps from coarse to fine grid.

For fairly sparse matrices, the orthogonalization expense in GMRES-Proj can
be a major expense. We present an approach that substitutes either BiCGStab or
IDR in place of GMRES. Here we restart BiCGStab and IDR even though they are
normally non-restarted methods. This may seem risky, because of the inconsistent
convergence of these nonsymmetric Lanczos methods. However, in our experiments,
restarted BiCGStab and IDR converge reliably.

Section 2 reviews some of the previous methods that will be used. Section 3
presents the method Two-grid Deflated GMRES. Two-grid Deflated BiCGStab/IDR
is then given in Section 4. Further examples are in Section 5 with a Helmholtz
example that includes multigrid preconditioning and with an example of improving
eigenvectors on the fine grid.

2. Review. Here we very quickly describe methods that will be used in the rest
of the paper.

2.1. GMRES-DR. The GMRES with Deflated Restarting (GMRES-DR) [23]
method uses Krylov subspaces to both solve linear equations and compute the eigen-
pairs with smallest eigenvalues. Once eigenvectors converge far enough, their presence
in the subspace can essentially remove or deflate the effect of the small eigenvalues on
the linear equations. Usually only moderate accuracy is needed before the approxi-
mate eigenvectors have a beneficial effect.

GMRES-DR(m,k) saves k approximate eigenvectors at the restart and builds out
to a subspace of dimension m. Specifically, for one restarted cycle it uses subspace

Span{y1, . . . , yk, r0, Ar0, A
2r0, . . . A

m−k−1r0},

where yi’s are harmonic Ritz vectors from the previous cycle and r0 is the residual
vector at the start of the cycle. This augmented subspace is actually a Krylov subspace
itself, and it contains Krylov subspaces with each yi as starting vector. This makes
the eigenvectors generally converge along with the linear equations.

GMRES-DR converges faster than restarted GMRES for difficult problems with
small eigenvalues. It also often converges faster than BiCGStab in terms of matrix-
vector products, but has greater orthogonalization costs per matrix-vector product.

2.2. GMRES-Proj. There are situations where approximate eigenvectors are
available at the beginning of the solution of linear equations. For example, if there
are multiple right-hand sides, then eigenvectors could have been computed during
solution of earlier right-hand sides [27, 25, 31]. The method GMRES-Proj [25] uses
these approximate eigenvectors to deflate the corresponding eigenvalues while solving
linear equations. GMRES(m)-Proj(k) assumes that k approximate eigenvectors have
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been previously computed and alternates projection over these vectors with cycles of
GMRES(m).

GMRES(m)-Proj(k)

0. Let k be the number of approximate eigenvectors that are available. Choose m,
the dimension of subspaces generated by restarted GMRES.

1. Alternate between A) and B) until convergence:
A) Apply Galerkin projection over the subspace spanned by the k approxi-

mate eigenvectors.
B) Apply one cycle of GMRES(m).

The algorithm for the projection step is given next.

Galerkin projection over a set of approximate eigenvectors

0. Let the current system of linear equations be A(x− x0) = r0.
1. Let V be an n by k orthonormal matrix whos columns span the set of approximate

eigenvectors.
2. Form H = V TAV and c = V T r0.
3. Solve Hd = c, and let x̂ = V d.
4. New approximate solution is xp = x0 + x̂, and new residual is r = r0 − Ax̂ =

r0 −AV d.

MinRes projection can be used instead of Galerkin. It is the same as Galerkin,
except H = (AV )TAV and c = (AV )T r0. Often Galerkin is best and can even be
much better, however we have seen situations for which MinRes works better. All
experiments in this paper use Galerkin.

2.3. Two-grid Arnoldi. A two-grid method for computing eigenvalues and
eigenvectors is given in [26]. Eigenvectors are computed on a coarse grid with a
standard Arnoldi method, are moved to the fine grid (with spline interpolation), then
are improved on the fine grid with Arnoldi-E [22], a method that can accept initial
approximations.

3. Two-grid Deflated GMRES. Our new methods generate approximate eigen-
vectors from the coarse grid and use them to deflate eigenvalues on the fine grid. In
this section, we give a version using GMRES methods. GMRES-DR is applied on the
coarse grid. This generates eigenvectors, and solves the coarse grid linear equations.
This linear equations solution is moved to the fine grid with spline interpolation and
used there as the initial guess. The eigenvectors are similarly moved to the fine grid
and, if necessary, improved on the fine grid. GMRES-Proj is applied on the fine grid
using these approximate eigenvectors. This can have much faster convergence than
restarted GMRES. Compared to running GMRES-DR on the fine grid, it is cheaper
to implement and can deflate eigenvalues from the beginning.

Two-grid Deflated GMRES

0. Choose m and k for the coarse grid. Pick nev, the number of eigenpairs that are
required to converge to an eigenvalues tolerance, say rtolev. For the fine grid,
pick the linear equations residual tolerance, rtol. Also choose m3 for GMRES
on the fine grid.

1. Apply GMRES-DR(m,k) on the coarse grid. Move the approximate eigenvectors
to the fine grid (we use spline interpolation). Move the solution of the coarse
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grid linear equations problem to the fine grid and use it as an initial guess
for the fine grid problem.

2. (If needed:) Improve approximate eigenvectors on the fine grid using Arnoldi-E
(see Two-grid Arnoldi method in [26]).

3. Apply GMRES(m3)-Proj(k) on the fine grid.

For the first examples there is no need for the second phase, but it is used in
Subsection 5.3.

Example 1. We consider a system of linear equations from finite difference dis-
cretization of the 2-D convection-diffusion equation − e5xy(uxx+uyy)+40ux+40uy =
c sinx cosx exy on the unit square with zero boundary conditions and c chosen to make
the right-hand side be norm one. The discretization size is h = 1

512 , leading to a ma-
trix of dimension n = 5112 = 262, 121. The coarse grid discretization size is h = 1

64
giving a matrix of dimension 632 = 3969.

The first phase on the coarse grid uses GMRES-DR(150,100) and runs until 80
eigenpairs have converged to a level of residual norm below 10−8. These residual
norms are computed only at the end of cycles. The eigenvectors are moved to the fine
grid and are accurate enough there to be effective in deflating eigenvalues (after the
Rayleigh-Ritz procedure is applied to all 100 vectors that are moved from the coarse
grid, the smallest 80 Ritz pairs have residual norms at or below 1.4 ∗ 10−3). So as
mentioned, the second phase is not needed. The third phase of solving the fine grid
linear equations is stopped when the relative residual norm drops below tolerance of
rtol = 10−10. This is also checked only at the end of each GMRES cycle, but of course
could be easily monitored during the GMRES runs.

The top of Figure 3.1 has convergence of both linear equations and eigenvalues
on the coarse grid. The linear equations converge before any of the eigenvalues,
and it actually takes much longer for all 80 eigenpairs to become accurate. The linear
equations converge in 19 cycles of GMRES-DR(150,100) which use 1050 matrix-vector
products (150 for the first cycle and 50 each for the next 18). The eigenvalues take
107 cycles or 5450 matrix-vector products.

The bottom of the figure shows convergence of the linear equations on both grids
versus the number of fine-grid-equivalent matrix-vector products. The coarse grid
matrix is about 64 times smaller than the the fine grid matrix, so we scale the number
of matrix-vector products by a factor of 64 to get the fine-grid-equivalents. The coarse
grid linear equations then converge so rapidly that the convergence curve is barely
noticeable on the left of the graph. Then there is a small gap before the curve for fine
grid convergence starts. This gap is for both the convergence of the eigenpairs on the
coarse grid and the matrix-vector products needed to form the projection matrix H
for the fine grid. Three different values of m3 are used for GMRES(m3)-Proj(100): 50,
100 and 200. While the fastest convergence is with GMRES(200), the least expensive
is for m3 = 100. We define the approximate cost as cost = 5∗mvp+vops, where mvp
is the number of matrix-vector products, the 5 comes from the approximate number
of non-zeros per row, and vops is the number of length-n vector operations such as
dot-products and daxpy’s. The costs for the entire process, including the first phase
on the coarse grid, is cost = 1.10∗106 for m3 = 50, 1.06∗106 for m3 = 100 and finally
1.30 ∗ 106 with m3 = 200. The orthogonalization cost is high for GMRES(200) and
this is the biggest expensive for a sparse matrix such as this one.

Next, we consider different sizes for the coarse grid. Smaller coarse grid matrices
mean less work is needed to find the eigenpairs, however they may not be as accurate
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Fig. 3.1. This figure has Two-grid Deflated GMRES for the convection-diffusion example.
Fine grid matrix size is n = 261, 121 and coarse grid matrix size is n = 3969. The top portion
has GMRES-DR(150,100) on the coarse grid; linear equations convergence is shown with circles at
the end of each cycle and convergence of 80 eigenpairs is shown with lines. The bottom portion
has both the coarse grid linear equations solution on the very left, scaled by 64 to correspond to
fine-grid matrix-vector products. Then this is followed by GMRES(m3)-Proj(100) on the fine grid,
with m3 = 50, 100, 200.

for the fine grid work. Table 3.1 has coarse grids from size 65, 025 = 2552 down to
49 = 72. All of the tests use the same type coarse grid computation as before and
use GMRES(100)-Proj(100) on the fine grid. The results show that for this matrix,
the fine grid convergence is fairly robust with respect to the coarse grid size. The
number of fine grid cycles increases by less than half as the coarse grid goes from
size 65,025 down to 255. For the 255 case, the accuracy of 80 eigenpairs on the fine
grid is 5.7 ∗ 10−3 or better, and that is enough to be fairly effective. The convergence
is 10 times faster than with no deflation which is on the last row of the table. The
larger coarse grid matrices do give more accurate eigenvectors on the fine grid, for
instance with residual norms 4.4 ∗ 10−5 and below for size 65, 025. However, this
greater accuracy is not really needed and only speeds up the fine grid convergence
from 94 to 85 cycles compared to size 3969.

Now we discuss other methods. Multigrid is much faster than Krylov when con-
vection is low. However, here with convection terms 40ux + 40uy, standard multigrid
methods do not converge. Next we compare to other Krylov methods. The top part of
Figure 3.2 has convergence in terms of matrix-vector products. GMRES-DR(150,100)
is run just on the fine grid, as are IDR and BiCGStab. The new Two-grid De-
flated GMRES method is given with m3 = 100 and it converges faster than fine grid
GMRES-DR(150,100), because approximate eigenvectors from the coarse grid allow
deflation of small eigenvalues from the beginning. The new method also converges in
many less matrix-vector products than the non-restarted methods BiCGStab [33] and
IDR [30, 34]. However, for this quite sparse matrix, the new method is not necessarily
better overall than the non-restarted methods. The bottom of Figure 3.2 has conver-
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Table 3.1
Effect of Coarse Grid Size

coarse grid coarse grid accuracy of 80 fine grid cost
matrix size cycles eigenpairs on f.g. cycles (millions)

65, 025 = 2552 1023 4.4 ∗ 10−5 85 8.02
16, 129 = 1272 270 3.1 ∗ 10−4 86 1.40

3969 = 632 107 1.4 ∗ 10−3 94 1.06
961 = 312 43 5.8 ∗ 10−3 106 1.15
225 = 152 12 5.7 ∗ 10−3 120 1.30
49 = 72 1 (9.2 ∗ 10−3 for 40) 177 1.91

no coarse grid - - 1255 13.2
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Fig. 3.2. Two-grid deflated GMRES (with GMRES-DR(150,100) on the coarse grid and
GMRES(100)-Proj(100) on the fine grid) compared to GMRES-DR(150,100), BiCGStab and
IDR(4). The top half is plotted against matrix-vector products and the bottom half against the
cost in terms of vector op’s.

gence as a function of the approximate cost and BiCGStab is much faster because of
using only seven vops per mvp. IDR(4) uses 12.8 vops per mvp, but is not effective
for this matrix.

We have seen in this example that Two-grid Deflated GMRES can be better than
BiCGStab in terms of matrix-vector products. So it can be the better method if the
matrix is not very sparse or if an expensive preconditioner is used. Then the number
of iterations is the main factor instead of the GMRES orthogonalization expense.

However, for sparse problems, BiCGStab has an advantage. This motivates the
next method. For the fine-grid portion of the two-grid approach, GMRES is replaced
by BiCGStab. This is designed to have both a low number of matrix-vector products
and low costs for vector operations.

4. Two-grid Deflated BiCGStab.
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4.1. The algorithm. We wish to use approxiate eigenvectors from the coarse
grid to deflate eigenvalues from BiCGStab or IDR on the fine grid. In [1, 24, 2] a
deflated BiCGStab method is given. A single projection is applied before running
BiCGStab using both right and left eigenvectors. Here a single projection will not be
effective, because our eigenvectors are not accurate on the fine grid. So we implement
BiCGStab/IDR as a restarted method with projections at each restart. Not only
does this allow us to use less accurate eigenvectors, but also it does not require left
eigenvectors. We use the same Galerkin projection as for Two-grid Deflated GMRES.

We now give the implementation of this restarted, deflated BiCGStab/IDR method.
It replaces phase 3 in the Two-grid Deflated GMRES algorithm given earlier and thus
is part of a Two-grid Deflated BiCGStab/IDR algorithm. The new BiCGStab(ncyc)-
Proj(k) is similar to GMRES(m3)-Proj(k), but ncyc is the total number of BiCGStab
cycles, not the length of the cycles (so there are ncyc − 1 restarts). As before, the
k gives the number of approximate eigenvectors that are being projected over. The
stopping test for the algorithm uses the minimum of two different quantities, but this
means the maximum convergence between the two criteria. First, we require each cy-
cle to converge to a fraction of the remaining distance to final convergence, in terms of
orders of magnitude. This fraction is determined by the number of remaining cycles
to equalize the amount expected of each cycle. Second, for cycle icyc we want to reach
a point that is at least icyc/ncyc of the way toward convergence (again in orders of
magnitude). The first criteria usually asks for convergence to a further point and so
is the one enforced, but in the case where the residual norm jumps up during the
projection, the second criteria is needed (see Example 6).

BiCGStab(ncyc)-Proj(k) and IDR(ncyc)-Proj(k)
0. Assume k approximate eigenvectors are provided. Let rtol be the specified rel-

ative residual tolerance for the linear equations solution. Choose ncyc, the
requested number of cycles of BiCGStab/IDR. Let r0 be the initial residual
for the fine grid iteration.

1. For icyc = 1 : ncyc
a) Apply Galerkin projection over approximate eigenvectors.
b) Let ‖r‖ is the current residual. Set the relative residual tolerance for

this cycle, rticyc, to be the minimum (the further convergence point) of

(rtol ∗ ‖r0‖/‖r‖)(
1

ncyc−icyc+1 ) and (‖r0‖/‖r‖) ∗ (rtol)
icyc
ncyc .

c) Run BiCGStab or IDR with relative residual tolerance of rticyc.
d) Break out of the loop if ‖r‖ is already below rtol.

For our tests, the Matlab BiCGStab program is called. For IDR, we use the
program described by van Gijzen and Sonneveld in [34] and available in MATLAB
code from the authors. The default version IDR(4) is called.

Example 2. We return to the same convection-diffusion problem as in Example
1 that has n = 262, 121 and coarse grid matrix of size 3969. Figure 4.1 has plots of
BiCGStab(ncyc)-Proj(100) with ncyc = 5, 10 and 20. The more frequent restarts,
and thus more deflations of the eigenvalues, allow ncyc = 20 to converge faster. It is
surprising that in spite of the very jagged behavior of the residual norms of BiCGStab,
the overall convergence with ncyc = 20 is quite consistent. With even more frequent
restarts, the convergence is similar to ncyc = 20. These tests are not shown on the
figure, because they mostly overlie the ncyc = 20 curve. However, see Table 4.1 for
the number of matrix-vector products needed with some other values of ncyc. Note
that with large values of ncyc, there may be convergence before all cycles are used
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Fig. 4.1. Two-grid Deflated BiCGStab with GMRES-DR(150,100) on the coarse grid and
BiCGStab(ncyc)-Proj(100) on the fine grid. The number of cycles for the restarted BiCGStab phase
is ncyc = 5, 10 and 20. The color changes with each new cycle.

and the break out of the loop in part d) of the algorithm is activated. This is shown
in parentheses in the table. For example, only 168 runs are needed when 200 are
specified. We also tried restarting BiCGStab after 272 matrix-vector products (the
average length for the ncyc = 20 test), and the convergence was a little slower than
the ncyc = 20 method, using 5865 matrix-vector products instead of 5421. Probably
the ncyc = 20 test has an advantage because it often restarts after an iteration where
the residual norm comes down significantly.

Figure 4.2 has a comparison of different methods. The top portion has con-
vergence with respect to matrix-vector products. Two-grid Deflated BiCGStab uses
ncyc = 20 and has projection over 100 approximate eigenvectors. These vectors come
from the same run of GMRES-DR(150,100) on the coarse grid as is used for Two-grid
GMRES. This deflated BiCGStab converges faster than Two-grid Deflated GMRES.
Both deflated methods are much better than regular BiCGStab. Also given is a Two-
grid Deflated BiCGStab result for solving a second system of linear equations with
the same matrix but a different right-hand side (this right-hand side is generated
randomly). It converges similarly to the first right-hand side, but does not need the
coarse-grid work or forming of the projection matrix. The bottom of Figure 4.2 has
a plot of convergence versus cost. Two-grid BiCGStab converges faster than regular
BiCGStab in spite of getting a late start due to the cost of the coarse grid phase. The
second right-hand side does not have this cost and so has less than half the expense.

4.2. Effectiveness of restarted BiCGStab. Figure 4.1 and Table 4.1 show
something remarkable for deflated, restarted BiCGStab. For ncyc ≥ 20, the results
are fairly close to being invariant of the number of cycles. This is in spite of much
smaller subspaces being used for the larger values of ncyc. Also, the convergence
is at a very consistent pace considering the usual erratic convergence of BiCGStab.
Deflated GMRES in Figure 3.1 is very sensitive to the subspace sizes, with m3 = 50
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Fig. 4.2. Two-grid Deflated BiCGStab, with GMRES-DR(150,100) on the coarse grid and
BiCGStab(20)-Proj(100) on the fine grid, compared to other methods. The Two-grid Deflated GM-
RES has GMRES-DR(150,100) on the coarse grid and GMRES(100)-Proj(100) on the fine grid. A
test of deflated BiCGStab with a second right-hand side is also shown.

Table 4.1
Comparing different values of ncyc for BiCGStab(ncyc)-Proj(100). The number of matrix-

vector products is given.

ncyc 5 10 15 20 30 50 100 150 200
(use 99) (140) (168)

mvp’s 9638 7606 6390 5421 5357 5278 5262 5591 5541

converging three times slower than for m3 = 200. Deflated BiCGStab with 20 cycles
uses an average of 271 matrix-vector products per cycle, while with ncyc = 100, an
average of 53 per cycle converges slightly faster.

We next investigate the reason for this effectiveness of restarted BiCGStab. First,
it is not due to the deflation. To show this, the next example does not use deflation
and has a similar phenomenon for restarted BiCGStab.

Example 3. The matrix is the same as in the previous examples, except the size
is 1272 = 16, 129 and there is not a coarse grid matrix. We use a random right-hand
side to try to make the example more general, though generally there is not much
effect from the right-hand side. We run the restarted BiCGStab with no deflation
between cycles. Table 4.2 shows tests with different numbers of cycles. Surprisingly,
even for large numbers of cycles, the results are similar and often better than for
regular non-restarted BiCGStab. This behavior is reminiscent of Tortoise and the
Hare behavior for GMRES [12] where smaller subspaces give faster convergence. This
is less surprising for BiCGStab, because of the lack of the minimal residual property.
However, in one way the behavior here is more extreme than Tortoise and the Hare
for GMRES, because the convergence with frequent restarts can be even better than
with no restarting. For example, with ncyc specified to be 400, the method ends
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Table 4.2
Restarted BiCGStab with different numbers of cycles (no deflation is used). The number of

matrix-vector products is given.

ncyc 1 (no 5 10 25 50 75 150 250 400
restart) (use 74) (118) (171) (198)

mvp’s 3969 3755 4371 3968 3386 3578 4049 3764 3452

up using 198 cycles, 3452 matrix-vector products and the average number of matrix-
vector products per cycle of 17 1

2 . This compares to 3969 matrix-vector products with
non-restarted BiCGStab. Also for GMRES(18), 28,838 matrix-vector products are
required.

It has been proposed that GMRES should use changing cycle lengths [4]. We
suggest that variable cycle lengths is the main reason that restarted BiCGStab is so
effective even with small subspace sizes. Table 4.3 has results for restarted BiCGStab
with average subspace dimensions of approximately 50, 35 and 18 (the lowest we
could get was about 18, because when a high number of cycles is specified, the al-
gorithm finishes in many fewer cycles than requested). The number of matrix-vector
products is similar for each of the three average subspace sizes (these three numbers
come from Table 4.2 with ncyc requested to be 75, 150 and 400). The next column
has GMRES(m) for m = 50, 35 and 18. As mentioned, the number of matrix-vector
products is very large for small m. The third result is for GMRES restarted exactly as
BiCGStab is (so with the same number of matrix-vector products for each correspond-
ing cycle, though it does not necessarily need all of the cycles). Now GMRES uses
even less matrix-vector products than BiCGStab. This is a remarkable improvement
over regular restarted GMRES. Regular GMRES(m) can get stuck in a pattern [5, 35]
and changing the sizes of the subspaces can break the pattern. The final column
of the table has a different way of implementing variable restarting for GMRES. A
maximum cycle length is specified and the length of each individual cycle is randomly
chosen between 1 and the max length (for example, max cycle length of 36 is used in
the test because it gives an average of 18). This approach performs much better than
the fixed cycle length approach, but is not as good as using the BiCGStab lengths.
We conclude from these tests that our BiCGStab method restarts in a surprisingly
effective way. It is important for the new Two-grid Deflated BiCGStab method that
frequent restarts still give an effective method, because if only a few restarts were
used, there may not be frequent enough deflations, as seen in Figure 4.1 with the
ncyc = 5 and 10 cases.

Tables 4.2 and 4.3 make it seem like the sizes of the subspaces used for BiCGStab
and GMRES, restarted as for BiCGStab, do not have much effect for this example.
This would be surprising, since it is well known that large subspaces can be an ad-
vantage for Krylov methods. And indeed, even though GMRES does well with these
small subspaces, it is significantly better without restarting, using 1383 matrix-vector
products. Since non-restarted BiCGStab has 3969 matrix-vector products, we see
that here GMRES is better able to take advantage of a large non-restarted Krylov
subspace.

5. Further Experiments.

5.1. Helmholtz matrix.



Two-grid Deflated Krylov Methods 11

Table 4.3
Matrix-vector products for restarting BiCGStab and GMRES.

average restarted GMRES(m), GMRES restarted GMRES with
cycle length BiCGStab m fixed as was BiCGStab random restarts

50 3578 6250 3266 3498
35 4049 11,760 3244 3733
18 3452 28,838 3411 5013

Example 4. We next test the Helmholtz matrix from finite difference discretization
of the differential equation −uxx − uyy − 1002u = f on the unit square with zero
boundary conditions. The discretization size is again h = 1

512 and again n = 262, 121.
The rtol is 10−10. The right-hand side is generated random normal. The coarse
grid discretization size is h = 1

128 , giving a matrix of dimension 1272 = 16, 129.
This problem is difficult because of the significantly indefinite spectrum. Standard
multigrid methods do not converge, however multigrid can be used as a preconditioner;
see the next example. Figure 5.1 has results for Krylov methods plotted against
matrix-vector products. We have found that IDR performs better than BiCGStab
for indefinite matrices and only it is shown on the figure, but here even IDR does
not converge. GMRES-DR(200,150) converges eventually (though not quite to the
requested rtol), however it is expensive due to orthogonalization costs. Our Two-grid
Deflated GMRES method first uses GMRES-DR(200,150) on the coarse grid until 120
eigenvalues converge to residual norm below 10−8. This takes 285 cycles. Then on the
fine grid it has GMRES(100)-Proj(150). This method converges faster than GMRES-
DR(200,150) and is much less expensive, because on the fine grid GMRES(100) has
less orthogonalization. However, Two-grid Deflated IDR is the best method. It uses
IDR(20)-Proj(150) on the fine grid. It converges faster in terms of matrix-vector
products and also is much less expensive per matrix-vector product.

We did try only deflating 100 eigenvalues as in Examples 1 and 2. However,
deflated IDR converges more than twice as slow. For this difficult indefinite problem,
many eigenvalues are needed for effective deflation.

Helmholtz problems are fairly complicated. For example, if the wave number is
increased and the fine grid uses the same discretization, then the coarse grid may need
to be finer than in Example 4 in order to have good enough eigenvector approxima-
tions. Our goal here is merely to show potential for the new approach; much more
work is needed on Helmholtz problems for a thorough study.

Example 5. For this example, the problem is the same as in the previous one,
but we now use multigrid preconditioning. Since multigrid does not converge for this
matrix, the preconditioner has solution of linear equations from the positive shifted
Laplacian with operator −uxx − uyy + 1002u [20]. With this positive shift, multi-
grid easily converges and thus can precondition the Helmholtz matrix (the negatively
shifted Laplacian). This preconditioning is used on both the fine grid and the coarse
grid and makes the problem easier to solve; see Figure 5.2. The problem is still indef-
inite and while BiCGStab still does not converge, now IDR does converge. GMRES-
DR(150,100) converges in less than half the number of matrix+preconditioner appli-
cations than IDR, but has more orthogonalization expense. The two-grid deflated
methods use GMRES-DR(150,100) on the coarse grid, stopping when 80 eigenpairs
have converged to residual norm 10−8. Then on the fine grid, deflated GMRES uses
GMRES(100)-Proj(100) and deflated IDR uses IDR(5)-Proj(100) (the IDR converges
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Fig. 5.1. Matrix is from the simple Helmholtz equation with κ = 100. Two-grid deflated
GMRES uses GMRES-DR(200,150) on the coarse grid and GMRES(100)-Proj(150) on the fine
grid. Two-grid deflated IDR uses GMRES-DR(200,150) on the coarse grid and IDR(20)-Proj(150)
on the fine grid; diamonds show the residual norm at the end of each of the 20 cycles. Also compared
are IDR and GMRES-DR(200,150).

almost 25% slower with ncyc = 20 instead of 5). Both deflated methods converge
faster than the other methods, but the deflated IDR has much less orthogonalization.

In this experiment, the positively shifted Laplacian linear equations are solved
accurately. However, one can relax that and apply the multigrid only to partial
convergence. The methods still work, but the results vary some.

We also tried complex shifts for the multigrid preconditioner [14]. There is faster
convergence, but greater cost per iteration due to subspaces becoming complex. For
a complex Helmholtz problem, this would not be a disadvantage and should be a
subject for further study.

5.2. Biharmonic Matrix. We next consider matrices from discretizing a bihar-
monic differential equation. Matrices from this differential equation quickly become
very ill-conditioned as the discretization size gets small. The biharmonic examples
demonstrate first that residual norms can jump up during the projection over approx-
imate eigenvectors. Then the second example has faster convergence if approximate
eigenvectors are improved on the fine grid.

Example 6. The partial differential equation is −uxxxx − uyyyy + 40uxxx = f on
the unit square with zero boundary conditions. The discretization has h = 1/256,
giving a matrix of size n = 65, 025. The right-hand side is chosen random normal.
Due to the ill-conditioning, all Biharmonic tests have residual tolerance for the linear
equations of only 10−8. BiCGStab and IDR do not converge and GMRES-DR is
slow and expensive. We only give results for deflated BiCGStab. The top half of
Figure 5.3 shows results with three choices of m and k for GMRES-DR(m,k) on the
coarse grid. GMRES-DR(100,50) finds 40 eigenpairs to residual norms below 10−8,
GMRES-DR(150,100) gets 80 to that tolerance and GMRES(200,150) stops when 120
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Fig. 5.2. Matrix is from the simple Helmholtz equation with κ = 100. Now multigrid precon-
ditioning is used. Two-grid deflated GMRES uses GMRES-DR(150,100) on the coarse grid and
GMRES(100)-Proj(100) on the fine grid. Two-grid deflated IDR uses GMRES-DR(150,100) on the
coarse grid and IDR(5)-Proj(100) on the fine grid; diamonds show the residual norm at the end of
each of the 5 cycles. These methods are compared to IDR and GMRES-DR(150,100).

have converged. Deflated BiCGStab is used on the fine grid with ncyc = 20 cycles.
The convergence is plotted against cost for both coarse and fine grid phases. Here each
matrix-vector product is counted as 13 vector operations (the number of non-zeros in
most rows). The cost for the coarse grid phase is greater when more eigenvalues are
computed, but then the convergence is faster on the fine grid. Using 100 approximate
eigenvectors is best overall for this example. If there were multiple right-hand sides,
then 150 would be clearly better for subsequent right-hand sides because of the faster
fine grid convergence.

The lower half of Figure 5.3 has a portion of the fine grid restarted BiCGStab
with k = 150, plotted against matrix-vector products. The residual norm jumps up
by a significant amount during each projection over the approximate eigenvectors.
For instance, it increases from 2.5 ∗ 10−6 to 1.2 ∗ 10−5 in between cycles 14 and 15 (at
matrix-vector product 3415). As a result, the second of the two convergence criteria in
part 1. b) of the algorithm is activated. Figure 5.4 shows eigencomponents of residual
vectors for a smaller version of this problem. The matrix is size n = 961 and the coarse
grid matrix is size 49. Here 10 eigenvectors are computed accurately on the coarse
grid and moved to the fine grid. The top of the figure shows all 961 eigencomponents
during part of a deflated BiCGStab run on the fine grid. The (red) circles are from
the residual vector after the projection at the start of the fifth cycle. Then the (black)
squares are after BiCGStab has been applied. Finally, the (blue) dots are after the
next projection at the start of the sixth cycle, and they mostly overlie the circles
but are a little better on average. Most of the components increase dramatically
with the projection. Then, fortunately they are reduced by the Krylov iteration.
The lower part of the figure shows that some of the components corresponding to
the small eigenvalues are reduced by the projection. This reduction is important
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Fig. 5.3. Matrix is from a biharmonic differential equation. The top half has deflated BiCGStab,
with convergence shown on both the coarse and fine grids. The coarse grid has GMRES-DR(m,k)
for three choices of m and k. The fine grid has BiCGStab(50)-Proj(k) for the three values of k.
The bottom half has a view of part of the fine grid convergence with k = 150, showing the jump in
residual norm with each projection.

because they are for the most part not reduced by the BiCGStab. This essential
reduction of the small eigencomponents by the projection makes up for the increase
of the other components, because overall this deflated method does better than regular
non-restarted BiCGStab.

5.3. Preconditioned Biharmonic. We continue the biharmonic example, but
now use an incomplete LU factorization. This example also considers improving the
eigenvectors on the fine grid (phase 2 of the Two-grid Deflated GMRES algorithm).

Example 7. We use incomplete factorization preconditioning for the biharmonic
differential equation from the previous example. This is done with Matlab’s “ilu”
command with no fill, after adding 0.5 to all diagonal elements of the matrix (this
is needed to make the preconditioning effective). We choose a smaller discretization
size than the previous example, because the preconditioning allows us to solve a
harder problem. The matrix has n = 5112 = 261, 121 and the course grid is size
1272 = 16, 129. An ILU preconditioner is generated for both the fine and course
grids. As in the previous example, rtol is set at 10−8.

Table 5.1 has results of a few tests. The second row of the table (“cycles phase
1”) has the number of GMRES-DR(150,100) cycles on the coarse grid. The third
row has the cycles of Arnoldi-E on the fine grid used to improve the approximate
eigenvectors (phase 2. of the Two-grid Deflated GMRES algorithm). The fourth row
has the number of cycles on the fine grid; this happens to be exactly 200 for GMRES-
Proj and is specified to be 50 for restarted BiCGStab. The fifth row of the table
has the number of applications of matrix-vector product plus preconditioner on the
fine grid. Then the next row adds to this the coarse grid mvp’s+preconditionings,
scaled by 16 to give the fine-grid-equivalent total. The last row has the approximate
cost which counts 26 for each matrix-vector product plus preconditioner (13 for the
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Fig. 5.4. Small matrix from a biharmonic differential equation. The top portion of the figure has
eigencomponents of the residual vector before applying BiCGStab in the fifth cycle (red circles), then
after the BiCGStab (black squares), and then after the projection over the approximate eigenvectors
(blue dots). The bottom portion has only the first 20 eigencomponents.

mvp and 13 for preconditioning) and then adds the vector ops. The coarse grid
costs are included, but again scaled by 16. The first result in the table (the second
column) is for regular, non-restarted BiCGStab. For convergence, this takes 34,907
applications of a matrix-vector product plus a preconditioning. The next column
has Two-grid Deflated GMRES, with GMRES-DR(150,100) on the coarse grid and
GMRES(50)-Proj(100) on the fine grid. This is much better than BiCGStab in terms
of the numbers of applications of matrix-vector product plus preconditioner, using
the fine-grid-equivalent if 10,203 of them. However, the cost estimate in the last
row of the table is only a little better (854 thousand compared to 1152 thousand)
due to the orthogonalization in the 200 cycles of GMRES(50). If GMRES(100)-
Proj(100) is used instead, the number of cycles on the fine grid reduces to 73, and
thus the fine-grid equivalent matrix-vector product plus preconditioners goes down
to 7576. However the cost goes up to 988 thousands. The next column has Deflated
BiCGStab. The same GMRES-DR run is used on the coarse grid and then the fine grid
has BiCGStab(50)-Proj(100), with 50 cycles of BiCGStab and projections over the
100 approximate eigenvectors in between. The cost is significantly reduced compared
to the other methods. We note that with ncyc = 20, there are 12,168 mvp+prec’s. For
this example, more restarts are needed, perhaps because the approximate eigenvectors
are not as good and so need to be deflated more often. The next to last column has
Arnoldi-E(150,100) applied to the approximate eigenvectors for 10 cycles with the
10 smallest approximate eigenvectors used as starting vectors. Then the last column
has the Arnoldi-E applied as in [26] until the first 80 approximate eigenvectors have
residual norms below 10−3 (before this improvement, the 80 have residual norms from
3.3∗10−4 to 2.4∗10−2). This improvement takes 41 cycles. Both of these raise the cost
but reduce the BiCGStab iterations. For cases with multiple right-hand sides, this
eigenvector improvement could be worthwhile. Improving eigenvectors was generally
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Table 5.1
Results for biharmonic matrix preconditioned by ILU factorization. The first method is regular

non-restarted BiCGStab. Second is Two-grid Deflated GMRES with GMRES-DR(150,100) on the
coarse grid and GMRES(50)-Proj(100) on the fine grid. The last three columns have the same
coarse grid work and then restarted BiCGStab(50)-Proj(100) on the fine grid. The first of these
three tests has no improvement of the approximate eigenvectors on the fine grid, and the last two
have 10 and 41 cycles of improvement respectively.

fine grid method BiCGSt G-Proj Defl. Bi. Defl. Bi. Defl. Bi.

cycles phase 1 - 31 31 31 31
cycles phase 2 - 0 0 10 41
cycles phase 3 1 200 50 50 50

f. g. mvp + prec 34,907 10,000 7877 6074 3069
total f. g. equiv. mvp+ 34,907 10,203 8080 6827 5372

cost (in thousands) 1152 854 322 801 2369

not beneficial in the earlier examples. Probably the best way to decide if eigenvectors
should be improved is by experimenting.

6. Conclusion. We have proposed a two-grid method that finds approximate
eigenvectors with the coarse grid and uses them to deflate eigenvalues for linear equa-
tions on the fine grid. This includes deflation for BiCGStab and IDR using only
approximate right eigenvectors and novel use of restarting for these normally non-
restarted nonsymmetric Lanczos methods. This two-grid deflation is a very efficient
way to deflate eigenvalues, because the difficult work of finding approximate eigen-
vectors is done for an easier problem on the coarse grid. This is particularly useful
for multiple right-hand side problems, because the coarse grid work only needs to be
done once and then can be applied for all right-hand sides.

The new two-grid deflated methods are not as efficient as multigrid when it works
well, but the new methods can potentially be used in situations where multigrid is
not effective. Additionally, they can be combined with multigrid preconditioning.

Many facets of these two-grid deflated methods could use further investigation.
For instance, three dimensional problems may have greater potential because the
coarse grid matrix can be relatively smaller compared to the fine grid matrix. Other
possible future work is to use more grid levels; see [26] for a multiple grid method for
computing eigenvalues.
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