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PRECONDITIONING THE LANCZOS ALGORITHM FOR SPARSE
SYMMETRIC EIGENVALUE PROBLEMS*

RONALD B. MORGAN," AND DAVID S. SCOTT

Abstract. A method for computing a few eigenpairs of sparse symmetric matrices is presented and
analyzed that combines the power of preconditioning techniques with the efficiency of the Lanczos algorithm.
The method is related to Davidson’s method and its generalizations, but can be less expensive for matrices
that are fairly sparse. A double iteration is used. An effective termination criterion is given for the inner
iteration. Quadratic convergence with respect to the outer loop is shown.
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1. Introduction. We consider the problem of computing a few eigenvalues and
eigenvectors of a large, sparse, symmetric matrix. It is assumed that factoring the
matrix is impractical due to its size and sparsity structure. A method is presented that
incorporates both the technique of preconditioning and the Lanczos algorithm. A
double iteration scheme is used. The outsideloop updates a certain preconditioned
matrix; the inside loop applies the Lanczos algorithm. An effective termination criterion
is given for the inner loop. This method can be very efficient if the matrix is fairly
sparse and an approximate inverse is easily available.

This section briefly discusses background material on eigenvalue techniques and
on preconditioning. Section 2 presents the method. Section 3 gives convergence results
including asymptotic quadratic convergence with respect to the outer loop. Section 4
gives examples and looks at some implementation details. Comparisons are made with
other methods.

Krylov subspace methods are popular for both eigenvalue problems and linear
equations problems. Krylov subspaces are used by the Lanczos algorithm [11], [19]
for eigenvalues and by the conjugate gradient method [2], [9], 10] for linear equations
(see [7, p. 523] and [18] for the relation between the methods). Both methods have
convergence problems if the distribution of eigenvalues is unfavorable. The Lanczos
algorithm has difficulty if the desired eigenvalues are not well separated from the rest
of the spectrum. The conjugate gradient method needs the spectrum to be somewhat
separated from zero. Convergence of the conjugate gradient method is often improved
by preconditioning (multiplying the matrix equation by an approximate inverse) [1],
[3], [8], [13].

It would also be, desirable to improve the convergence of the Lanczos algorithm
with preconditioning, but this is not straightforward. Preconditioning can be applied
indirectly to eigenvalue problems by using the preconditioned conjugate gradient
method to solve equations for inverse iteration, the Rayleigh quotient iteration [12],
[22], or shift-and-invert Lanczos [6], [20].

Davidson’s method [4] and the generated Davidson (GD) method [15], [17] give
a more direct approach to preconditioning eigenvalue problems. Suppose eigenvalues
are sought for the matrix A. Then these methods generate a subspace with the operator
(M-pI)-l(A-pI), where p is the latest approximate eigenvalue obtained by the
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Rayleigh-Ritz procedure [19]. In Davidson’s method, the operator M is D, the main
diagonal of A. For the GD method, M can be any approximation to A. M-pI is in
effect a preconditioner for A-pL Let (A, z) be the desired eigenpair. Asymptotically,
the subspace produced by these methods resembles a Krylov subspace generated by
(M-,I)-I(A AI). The operator (M-AI)-I(A-AI) has one eigenvalue at 0 with z
as the associated eigenvector. The rest of the spectrum tends to be compressed around
1 by the preconditioning. This makes 0 well separated, and convergence is rapid toward
z (see [17] for more detail).

The GD method is more expensive per iteration than the Lanczos algorithm. There
is the cost of the preconditioning and also the cost of the Rayleigh-Ritz procedure.
Full orthogonalization must be done. Davidson’s method is often applied to problems
for which the main expense is the matrix-vector products, and thus any reduction in
the number of iterations is worthwhile. For other problems, particularly those where
A is quite sparse, the orthogonalization costs are significant. Restarting reduces the
expense but slows down the convergence.

A method is desired that could be preconditioned and could take advantage of
the Lanczos recurrence. One possibility involves using the Lanczos algorithm to build
the subspace for GD [16, pp. 71-83]. The Rayleigh-Ritz expense can be reduced by
a factor of five. However, a double iteration is used and the cost still grows as the size
of the subspace increases. In the next section, another method is presented that uses
preconditioning and the Lanczos algorithm. The difference is that in this method the
Rayleigh-Ritz procedure is not done with respect to A. A double iteration is again
used, but the costs of order n are fixed as the subspace grows.

2. The Preconditioned Lanczos (PL) Algorithm. Preconditioning the Lanczos
algorithm was suggested by Scott [21] as a special case of a method for generalized
eigenvalue problems, but it was not investigated, and the algorithm has not been given
before for the standard eigenvalue problem. Our purpose here is threefold. We establish
important convergence results. Scott’s results [21] do not take into account precon-
ditioning or early termination of the inner iteration. Second, we implement the method
and show that it is useful. Third, we derive the method showing its connection with
the Davidson and GD methods. This is important because it gives insight into why
the method is effective and because Davidson’s method is well known among quantum
chemists.

The GD method uses the operator N(p)=(M-pI)-l(A-pI) to generate a
subspace, but it uses the operator A in the Rayleigh-Ritz procedure for extracting
approximate eigenvectors from the subspace. However, since N(/9) has an eigenvector
approximating one of A, the Rayleigh-Ritz procedure with a fixed N(/9) is also useful
for computing an eigenvector of A. It is necessary to restart the Rayleigh-Ritz occasion-
ally with a new/9, because the eigenvector of N(/9) is only an approximation. We use
this idea, but transform N(p) to a symmetric operator so that the Lanczos algorithm
can be applied. A positive definite preconditioner is required, so we replace M-pI
with Mk. The algorithm is called the PL Algorithm.

THE PL ALGORITHM. Given a vector Xo, compute Po xAxo/XXo, and FOR
k=0, 1, 2,..., DO 1 to 5

1. Choose Mk to be a positive definite matrix approximating A-pkI, and let LkL
be its Cholesky factorization.

2. Define Wk L-(A pkI)L- r.
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3. Run the Lanczos iteration with Wk and starting vector L[Xk, until the smallest
Ritz value is bounded away from zero by the residual norm 19, p. 260]. Letting
Ok be the smallest Ritz value and Yk be the corresponding Ritz vector of unit
length, this stopping test is --Ok > WkYk- OkYkl["

4. Let Xk+ L- 7"yk.
5. Set Pk+ X+IAXk+I/XLIXk+I Pk -I- Ok/X+lXk+
The operator Wk =--L-(A-pkI)L-r is related to M-(A-pkI) by a similarity

transformation. And M-(A-pkI) has an eigenvector approximating an eigenvector
of A. By applying the Lanczos iteration to Wk, computing a Ritz vector, and then
transforming it back, we get Xk+, an approximate eigenvector of A. The Rayleigh
quotient flk+l of Xk+ is an approximate eigenvalue. The residual norm [19, p. 69] of
(Pk+l, Xk+I) with respect to A can be monitored to determine a stopping point for the
PL iteration.

The main cost of the method is in the Lanczos loop. A matrix-vector product with
A is required and systems of linear equations in Lk and L[ are solved. So it is important
for the Lanczos iteration to converge quickly. The spectrum of Wk, or equivalently of
M-I(A pkI), is the determining factor. Here the preconditioning improves the eigen-
value distribution just as it does for the GD method. The early termination test in step
3 of the PL Algorithm also reduces the number of Lanczos iterations. In the following
section it is shown that the early termination test does not significantly impair the
convergence of the outer iteration.

3. Convergence of PL. For convergence, the preconditioner does not need to be
an accurate approximation. If there is boundedness, then the sequence {Pk} in the PL
Algorithm converges to an eigenvalue of A at an asymptotically quadratic rate. First,
convergence of Pk to an eigenvalue is shown.

THEOREM 1. Assume that both Mk and M- are uniformly bounded in norm. Then

Pk converges to an eigenvalue of A.
Proof. First we will establish the equality asserted in step 5 of the PL Algorithm.

(1)

Pk+l xL,Ax+,/xL,x+,

Pk +(LTyk)T(A--pI)L-Tyk/X+lXk+I

p+yWzY/ r
Xk+lXk+l

pk nt_ Ok/ T
Xk+lXk+l

Next we will show that Ok is nonpositive, so that from (1), {Pk} is a nonincreasing
sequence. The (1, 1) element of the tridiagonal matrix T that is generated by the
Lanczos iteration is the Rayleigh quotient of the starting vector LXk with respect to

Wk. It can be seen that this Rayleigh quotient is zero, since flk xAXk/XXk" Using
Cauchy’s interlace theorem, Ok is less than or equal to zero, since Ok is the smallest
eigenvalue of T.

The sequence of pk’S is bounded below by the smallest eigenvalue of A. Therefore,

Pk converges. Let the limit be r, and let ek Pk--7".
Because by assumption M is bounded in norm, so also is L1. The vector Yk is

of unit length, so X[+Xk+=(L-ryk)TL-Tyk is bounded. From (1),

(2) IOkl Pk pk+,)X#+,Xk+, <- ekX#+,Xk+l.

Therefore, Ok converges to zero. But Ok is within the residual norm bound of some

eigenvalue of Wk, say tog. Because of the stopping test for the Lanczos iteration in
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step 3 of the PL algorithm, (.Ok is within [Okl of Ok and so within 2[ Okl of zero. Therefore,
tOg converges to zero.

Since Wk has an eigenvalue converging to zero, WII goes to infinity. Since

wlll- IIL[(A-pkI)-lLkll <= IILffll II(A-pkI)-lll IILII,
and IIZll and IiZll are bounded, Ok must be converging to an eigenvalue of A, and
the proof is complete.

The theorem does not say which eigenvalue Pk converges to, but it is extremely
likely to be the smallest one. For this not to be the case would require that each starting
vector of the Lanczos iteration have a very small component in the direction of the
eigenvector associated with the smallest eigenvalue of Wk.

Let Pk converge to A. The next theorem shows that this convergence is asymptoti-
cally quadratic. The "big O" notation will be used" /3 y+ O(e) implies I/3- y] _-< ce
for c>0.

THEOREM 2. Assume that both Mk and M- are uniformly bounded in norm. Then
Pk converges at an asymptotically quadratic rate.

Proof Using the definitions of Wk and Yk,

T(A-pkI)Xk+l- LkWkLk Xk+ LkWkyk

L Wv Ov) + Ov].

Because of the stopping test in step 3 of the PL Algorithm and the fact that Yk is a
unit vector,

(3)
II(a-pgI)x+ <--IItll[ll Wv- 0v / 10l [lygll]

<-211Lll10l.
Let the residual vector of Xk+ with respect to A be rk+l"

r/ II(a Pk+lI)Xk+l ! x/ II.
Using first the minimal residual property [19, p. 12], then (3),

--< 211L IOl/llx/ll.
With (2) and the fact that IItll is bounded and IIx/ll is bounded away from zero,
we have

(4) IIr+ll o(e).

Let Yk be the gap between Pk and the nearest eigenvalue of A other than A. This gap
approaches a nonzero constant because Pk converges to A. By the Kato-Temple
inequality 19, p. 222],

With (4), this becomes

p+,=+o(),

and we have quadratic convergence. U

4. Implementation and examples. Here examples are given and comparisons are
made with other methods. First, some implementation details are discussed.
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On the choice of preconditioner, one possibility is to pick M to be a portion of
A. Then factor M- Pk! in LDLT fo;m, and let Mk equal LIDILr. Small pivot elements
during the factorization should be changed. Another approach is to let Mk be M-rI,
where tr is an estimate of the smallest eigenvalue of A and is below the spectrum of
M. A powerful preconditioning..approach is to use incomplete factorization [8], [13]
of A- trL Here it is important that A-o-I be positive definite. Even then, adjustment
of small or negative pivot elements may be necessary for a stable factorization. The
symmetric successive overrelaxation (SSOR) [9] preconditioner is another possibility.

If more than one eigenvalue is desired, a form of deflation can be used. The
eigenvalues that are already computed can be shifted out of the way. For example,
once (A1, Z1) has been computed, A--pkI can be replaced by A-pkI+TZlZ, where
y is large enough to shift A1 away from the other desired eigenvalues. The shifting
should be kept as small as possible to comfortably achieve this, because a large shift
and the effect of M could possibly produce a large eigenvalue for Wk. This would
slow the convergence of the Lanczos loop. The starting vector for finding the second
eigenvalue can be determined while the first eigenvalue is being computed. At some
point, the second Ritz vector of Wk can be computed and multiplied by LT. In the
examples that follow, the starting vectors for interior eigenpairs are calculated once
the residual norm for the previous eigenpair reached two-thirds in orders of magnitude
of the desired accuracy.

An additional stopping test is applied in the Lanczos loop to terminate early if it
is likely that the desired accuracy has been attained. This is done by comparing the
improvement in the residual norm with respect to Wk of the Ritz vector in the Lanczos
loop with the improvement needed in the residual norm with respect to A of the
approximate eigenvector. (The Lanczos loop is terminated when the log base 10 of
the ratio of the residual norms of Ritz vectors at the beginning and current point of
Lanczos is less than the log of the ratio of the residual norm of Xk to the specified
residual tolerance, divided by a safety factor of 0.9 times the ratio of logs of improve-
ments in residual norms for the previous k.) In our testing, this check for early
termination helps the method avoid extra computation.

Example 1. The first test matrix is A Diag (1, 2, 3,..., 1000). For the precon-
ditioner, let M Diag (10.1, 10.2, 10.3,..., 110) and Mk M--pkI. The starting vector
is (1, 1/2, 1/3,..., 1/1000) . The smallest eigenvalue and eigenvector are computed.
The requested residual tolerance is 1 10-8. Table 1 gives the results of the PL method.
It lists the number of iterations in the Lanczos loop (this is the size of the Krylov
subspace generated and also the number of matrix-vector products with A), the new
approximate eigenvalue Pk+l, and the residual norm. It shows the expected quadratic
convergence. The total number of iterations is 88. The standard Lanczos algorithm
requires 194 iterations for the same task. So the preconditioning cuts the number of

TABLE
PL for Example 1.

4.55 24.2
0 3 1.67 4.5

8 1.064 1.0
2 13 1.00035 0.101
3 25 1.0000000058 0.56E- 3
4 39 1.0000000000 0.76E- 8

k Iterations /gk+ Residual norm
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iterations in half. With better preconditioning, this can be improved. For example,
with M Diag (1.1, 1.2, 1.3,..., 101), the PL Algorithm converges in only 30 total
iterations.

Next we compare three methods that use preconditioning: the PL Algorithm, the
GD method, and the Rayleigh quotient iteration (RQI) [12], [22] with preconditioned
SYMMLQ [18] in the inner loop. The GD method has a limit of 40 on the size of the
subspace because of the orthogonalization costs. The RQI uses termination criterion
in SYMMLQ of RTOL Min {0.01 rl[, rll3}, where rl[ is the residual norm at the
previous step of RQI. The choice of termination criterion can affect the convergence
a great deal, especially when the starting vector for RQI is not accurate. Three matrices
with increasing difficulty are used. Let A Diag (1, 1 + 8, 1 + 28,..., 1 + 998, 2 + 998,
3+99,..., 901+998), for 8 1, 0.1, and 0.01. M is as originally defined. Table 2
gives the total number of matrix-vector products used for each of these methods. For
the toughest problem (8 --0.01), the PL Algorithm is much better than the GD method.
Not only are fewer iterations required, but each iteration is considerably less expensive.
The PL Algorithm has the advantage of being able to cheaply generate large subspaces,
and for difficult problems, large subspaces are needed. The PL Algorithm also has an
advantage when storage is limited and the vectors spanning the subspace must be
stored on disk, because the GD method accesses these vectors at every iteration.

TABLE 2
Preconditioning methods.

Method

Number of matrix-vector products
Matrix Matrix Matrix
6 6 0.1 0.01

PL 88 247 555
GD 69 309 1584
RQI 99 333 582

The PL Algorithm and RQI are fairly comparable in this example. This is not
surprising, since the two methods do resemble each other. The main difference is that
the PL Algorithm has an eigenvalue problem in the inner loop instead of a linear
equations problem. RQI does not require storage of the vectors spanning the subspace
and has easier deflation. But the PL Algorithm has the advantage of being more reliable
in converging to the smallest eigenvalue. To illustrate this with the first matrix (6 1.0)
and starting vector (5, 5, 5, 5, 5, 1/6, 1/7, 1/8,..., 1/1000) r, RQI converges to the
fifth eigenvalue. The PL Algorithm still converges to the first eigenvalue. Of course, it
is well known that to insure convergence to a particular eigenvalue, RQI needs a good
starting vector or an implementation that combines it with inverse iteration.

The shift-and-invert Lanczos method with the preconditioned conjugate gradient
method can also be used, but we have not found it to be competitive. For one
implementation with early termination of the inner conjugate gradient iteration, 893
iterations were required with the matrix =0.1. However, there is probably a better
implementation.

Example 2. This and the next example use matrices from the Harwell-Boeing
sparse matrix collection [5]. The matrices selected are quite sparse and have small
eigenvalues that are not well separated. The first matrix is SHERMAN1, from oil
reservoir simulation. The dimension is 1000, and it has seven nonzero bands with
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half-bandwidth of 100. The six smallest eigenvalues are 0.000323, 0.00102, 0.00111,
0.00151, 0.00192, and 0.00205, and the largest is 5.04.

The elements of the starting vector are selected randomly on the interval (0, 1).
The computations are performed on an IBM 3090-170J computer using double precision
arithmetic. The Lanczos algorithm is restarted every 250 steps and the GD method
every 40. The small eigenvalue problems generated by these methods are solved with
EISPACK routines, though an iterative method such as subspace iteration [19] might
be better. The small problem is solved at the end of each 250 iterations of Lanczos,
at every step for GD (as is required), and for PL at each of the first seven iterations
and then at multiples of five. A few steps of inverse iteration are needed at the start
of RQI. We let/9 =0 for the first three outer iterations, then switch to regular RQI.
The preconditioner for all methods is from incomplete factorization [13] of A, with
no fill-in allowed.

First, the smallest eigenpair ofthe matrix is computed with residual norm tolerance
of 1 x 10-8. Table 3 lists the total number of matrix-vector products (MVPs) with A,
along with the time in CPU seconds. The preconditioning methods need far fewer
iterations than the Lanczos algorithm. The PL Algorithm is the fastest method, even
though the GD method requires fewer iterations.

TABLE 3
Harwell- Boeing matrices.

SHERMAN SHERMAN NOS6
One eigenpair Five eigenpairs One eigenpair

Method MVPs Time MVPs Time MVPs Time

Lanczos 750 7.6
PL 61 1.2 487 9.3 987
GD 39 2.2 149 9.7 6920
RQI 221 4.2

16.7
346

Next the five smallest eigenpairs are computed. PL uses 3’ 0.01 to shift computed
eigenvalues. The results are not very sensitive to the choice of y. (For example, with
3’ 0.002, 445 matrix-vector products are needed, while PL with 3’ 0.1 uses 533.) The
PL and GD methods require about the same amount of time. The simple Lanczos
algorithm with restarting has difficulty calculating these eigenvalues. A deflation scheme
is possible, but it might be better to use a block Lanczos method [6] or out-of-core
storage to avoid restarting. RQI is implemented with p =0 for the first three outer
iterations for each eigenvalue and with a small Raleigh-Ritz procedure [19] applied
to the last five approximate eigenvectors to get each new starting vector. RQI finds
the first, third, fifth, second, and ninth eigenvalues and uses 2001 total matrix-vector
products. A different implementation might help, but this appears to be a difficult
problem for RQI.

Example 3. Here we use a structural engineering matrix of dimension 675 called
NOS6 in Simon’s LANPRO collection [5]. The starting vector has entries distributed
randomly on the interval (-1, 1), and the residual tolerance is 1 x 10-4. The two smallest
eigenvalues are 1.0000153 and 1.0000254, which are extremely close considering that
the matrix has elements of size 4 x 106. The maximum size subspace for the Lanczos
algorithm and for the Lanczos iteration of PL is 350, while GD again uses dimension
40. The results for computing one eigenvalue are given in Table 3. The PL Algorithm
is more than 20 times faster than GD. The Lanczos algorithm shows little sign of ever
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finding the smallest eigenvalue. RQI is implemented with initial steps ofinverse iteration
using/9 0 until the Rayleigh quotient is less than 1.00002, but it also cannot find this
eigenvalue (it never switches from inverse iteration to RQI). In another test with p 1
initially, RQI converges in 1961 total iterations and 30.2 seconds. So even with an
extremely accurate initial estimate of the eigenvalue, RQI is slower than the PL
Algorithm.

5. Conclusion. Like the Davidson and GD methods, the PL Algorithm uses precon-
ditioning to accelerate the convergence. However, the expense per iteration is reduced
by applying the Lanczos iteration. A double iteration scheme is used. The inner iteration
is terminated early for efficiency, but convergence is still asymptotically quadratic with
respect to the outer loop.

The PL Algorithm can significantly reduce the expense of computing eigenvalues
and eigenvectors of some matrices. It is most useful for sparse matrices, for difficult
problems, and for computing only a very small number of extreme eigenpairs.

We conclude with some possibilities for further research. If an eigenvalue estimate
tr is known, A-pkI can be replaced with A-trI in step 2 of the PL .Algorithm, for
the first few outer loops. Also, the method might be more robust if the Xk vectors are
saved and combined using the Rayleigh-Ritz procedure with A. This would not be
too expensive if only the last few Xk vectors are used. Finally, an interior implementation
14] of the Lanczos loop might allow computation of more than one eigenvalue without

using deflation. This also might allow computation of several eigenvalues at a time if
estimates are known of the desired eigenvalues.
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