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Abstract. A new polynomial preconditioner is given for solving large systems of linear equations.
The polynomial is derived from the minimum residual polynomial and is straightforward to compute
and implement. It this paper, we study the polynomial preconditioner applied to GMRES, however
it could be used with any Krylov solver. This preconditioning algorithm can dramatically improve
convergence for difficult problems and can reduce dot products by an even greater margin. Stability
control using added roots allows for high degree polynomials, and we give an additional check for
stability. This approach is compared to existing methods such as BiCGStab and FGMRES.
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1. Introduction. We present a new approach for polynomial preconditioning
the Krylov method GMRES [28] for solving Ax = b. While we assume that the ma-
trix A is large and nonsymmetric, the same approach could also be applied effectively
in the symmetric case. We also assume that A is real-valued; minor modifications
allow using the same polynomials for a complex-valued matrix. As in [15], we use a
minimum residual polynomial (derived from a preliminary GMRES run). This poly-
nomial forms a general-purpose preconditioner that is compatible with any system of
linear equations and can be composed with any standard preconditioner. Our new
implementation gives a significant advancement over the method in [15] because it
is naturally more stable for high degree polynomials. Additional stability modifi-
cations via added roots allow us to stably use polynomials of even higher degrees.
The algorithm to generate the polynomial is simple to implement, and stability mod-
ifications can be automated. This new polynomial preconditioner can significantly
improve convergence of GMRES for difficult problems and can also greatly reduce
orthogonalization expenses.

With a polynomial p and right preconditioning, the linear equations problem
becomes

Ap(A)y = b, (1.1)

x = p(A)y. (1.2)

The rewritten system of linear equations uses the matrix Ap(A), which typically has an
improved spectrum for solving with GMRES. We let φ(α) ≡ αp(α) be the polynomial
corresponding to Ap(A), where α is an independent variable for the polynomial. Then
equation (1.1) becomes φ(A)y = b. We let the degree of p be d− 1 so φ has degree d.

Polynomial preconditioning is important because it allows GMRES to use high-
degree polynomials rather than low-degree polynomials limited by restarting. Sup-
pose that GMRES restarts after m iterations. Then GMRES builds the Krylov
subspace Span{r,Ar,A2r, . . . Am−1r}, where r is both the current residual vector
and the right-hand side of the current system of equations. An approximate so-
lution from this subspace can be written as ω(A)r, where ω is a polynomial of
degree m − 1. In contrast, polynomial preconditioned GMRES has the subspace
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Span{r, φ(A)r, (φ(A))2r, . . . , (φ(A))m−1r}, so an approximate solution for φ(A)y = r
can be written as y = ω(φ(A))r. The composite polynomial ω◦φ has degree (m−1)∗d.
Thus, GMRES can now use very high-degree polynomials even though it only builds
a subspace of dimension m. The high degree polynomials can give much faster con-
vergence for difficult problems, as will be demonstrated with examples.

Many polynomial preconditioners have been proposed; see for example [12, 31,
23, 24, 25, 2, 29, 8, 3, 35, 27, 32, 1, 13, 15]. However, they often are complicated
to implement for nonsymmetric problems and may require computing estimates to
bound a complex spectrum. These polynomials are also frequently prone to stability
issues [14]. Thus, polynomial preconditioners are infrequently used in practice, which
is unfortunate. As computers increase parallelism, polynomial preconditioning has
potential to bring a large drop in communication expense and synchronization. Many
matrix-vector products are used per iteration in exchange for a reduction in the or-
thogonalization expense. This is an advantage because with more work concentrated
in each iteration, fewer iterations are needed for convergence. Along with this comes
a reduction in dot products and, thus, communication. There is potential to avoid
even more communication by applying matrix-vector products using a Matrix Powers
Kernel [6, 11].

The minimum residual polynomial (also called the GMRES polynomial) has been
previously investigated as a preconditioner in [1, 15]. The initial method uses a power
basis and normal equations to compute the coefficients of p(α). While the polynomial
is simple to compute, it is only stable for very low degrees. The authors of [15] give two
alternative approaches for applying p(A) that are more stable. However, they show
that even these more stable methods can suffer from instability when an eigenvalue of
A is well-spaced from the others. In this work, we give an approach that is cheaper to
apply than the more stable alternatives in [15] and is also much more stable. Unlike
in [15], the focus will be on the φ(A) polynomial rather than on the p(A) polynomial.

Our new implementation of the GMRES polynomial preconditioner has two dis-
tinct components: We use one algorithm for φ(A) for (1.1) and a different but related
approach for p(A) in (1.2). We apply φ(A) using the formula φ(A) = I − π(A).
The π(A) polynomial is factored using its roots which are the harmonic Ritz val-
ues [17, 22, 20, 10, 21] generated via an initial GMRES run. This method of applying
φ(A) is used in [7] to perform a spectral transformation for finding eigenvalues with
the Arnoldi method. The paper [7] also introduces the stability control method that
we will use with linear systems: To improve the stability of the polynomial, we add
extra roots corresponding to eigenvalues that stand out in the spectrum. Background
information from [7] will be presented in Section 2.

Our work for linear equations deviates from the methods for eigenvalue problems
in [7] in several ways: We present an original algorithm for applying p(A); details
are in Section 3 (p(A) by itself is not needed for eigenvalue problems). For the
final computation of x using equation (1.2), it is important to implement p in a way
consistent with φ. Another unique feature for linear systems is that the polynomial
can be composed with a standard preconditioner such as incomplete LU factorization.
In that case, (1.1) and (1.2) become φ(AM−1)y = b and x = M−1p(AM−1)y, where
M−1 is the standard preconditioner. We give several examples throughout the paper
where polynomial preconditioning is used to accelerate an ILU preconditioned solve.
Section 3 also gives an example of the root-adding stability method applied to linear
equations. A new test is given to check for stability. Additionally, we discuss the
importance of choosing a random starting vector (rather than the problem right-hand
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side) to generate φ.
The remainder of our paper demonstrates the potential of polynomial precondi-

tioning and establishes its differences from related methods. Section 4 gives idealized
estimates of the effectiveness of polynomial preconditioning for difficult problems and
examples demonstrating this potential. It has comparisons to other methods includ-
ing BiCGStab [33] and FGMRES [26]. Later in Section 4, we discuss the potential
of polynomial preconditioning for GMRES without restarting and demonstrate a new
variation of Polynomial Preconditioned (PP)-GMRES where we change the polyno-
mial at every cycle. Finally Section 5 has double polynomial preconditioning for
additional reduction of dot products.

2. Review. Many polynomial preconditioners for linear equations are either un-
stable or difficult to compute due to required eigenvalue estimates. The GMRES
polynomial is a good choice because it is relatively easy to compute and can be made
stable. Also, it is effective at transforming the spectrum of the matrix [15]. The GM-
RES polynomial π(α) is one at the origin and tries to be near zero at the eigenvalues
of A, so φ(α) = 1 − π(α) is zero at the origin and near to one over the spectrum of
A. (See Figure 3.5 (a) for a φ polynomial graph.) If effective, the polynomial maps
most the eigenvalues near to one and spaces out the smallest eigenvalues, giving an
easier problem for a Krylov method. The GMRES polynomial also adapts to the
whole spectrum of A instead of being based on estimates of the hull of the spectrum
like a Chebyshev polynomial. This could be advantageous for a matrix with a spec-
trum that has large gaps. The rest of the section has background on developing and
applying the polynomial and on adding roots.

GMRES works to solve Ax = b by choosing an approximate solution x̂ that min-
imizes the norm of the residual vector over the Krylov subspace Span{b, Ab,A2b, . . . ,
Ad−1b}. Thus, we can write x̂ = p(A)b where the coefficients of p correspond to the
linear combination of Krylov vectors needed to form x̂. We can rewrite the residual
vector as

r = b−Ax̂ = (I −Ap(A))b = (I − φ(A))b = π(A)b.

As the residual norm decreases, p(A) generally becomes a good approximation to
A−1, and so we choose φ(A) = Ap(A) as our preconditioned operator. The work [7]
runs one cycle of GMRES(d) to find π(A) = I − φ(A) and then uses Arnoldi on the
matrix polynomial π(A) to compute eigenvalues and eigenvectors of A. The matrix
polynomial is implemented using

π(α) =

d∏
i=1

(
1− α

θi

)
(2.1)

where the θi’s are harmonic Ritz values, the roots of the π polynomial. The harmonic
Ritz values are ordered with a modified Leja ordering [4] for stability. (If A has
complex entries, use a Leja ordering [5] rather than a modified Leja ordering, and
disregard the following information on avoiding complex arithmetic.)

Since A is real-valued, any complex harmonic Ritz values occur in conjugate
pairs. The modified Leja ordering sorts complex conjugates consecutively, allowing us
to avoid complex arithmetic by combining conjugate pairs. Suppose that θk = a+ bi
and θk+1 = a− bi. Then(

1− α

θk

)(
1− α

θk+1

)
= 1 +

α2 − 2αa

a2 + b2
. (2.2)
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Thus, to apply π(A) with a complex Ritz value, we can compute two factors of the
polynomial and apply them together (see Algorithm 1).

Algorithm 1 φ(A) = Ap(A) times v via π

Input: sparse matrix A ∈ Rn×n, v ∈ Rn×1, d harmonic Ritz values θi.

1: poly = v, i = 1
2: while i <= d do
3: if imag(theta(i)) == 0 then
4: product = A ∗ poly
5: poly = poly − (1/theta(i)) ∗ product
6: i = i+ 1
7: else
8: a = real(theta(i)), b = imag(theta(i))
9: mod = a ∗ a+ b ∗ b

10: product = A ∗ poly
11: temp = A ∗ product− 2 ∗ a ∗ product
12: poly = poly + (1/mod) ∗ temp
13: i = i+ 2
14: end if
15: end while
16: phi = v − poly
17: Return phi.

Sometimes π(α) will have a very steep slope near one of the roots θk. This means
that applying φ(A) to a vector can be ill-conditioned. To resolve this problem in
[7], π(α) is expanded to have extra copies of the term (1 − α/θk), i.e. to have a
root of higher multiplicity at θk. This flattens the polynomial near θk and makes
the preconditioner application more stable. To determine how many extra roots are
needed at θk, we compute a ‘product of other factors’ or ‘pof ’ which estimates the
slope of π(α) near θk. Experiments in [7] suggested that one should add an extra root
θk when pof(k) > 104 and for every factor of 1014 beyond that. Algorithm 2 gives
the procedure to automate adding roots for stability. We find this is equally useful for
solving linear equations with GMRES as it was for finding eigenvalues with Arnoldi.
An experiment with root adding for linear equations appears in Subsection 3.3.

Algorithm 2 Adding Roots to π(α) for Stability [7]

1. Setup: Assume the d roots (θ1, . . . , θd) of π have been computed and then
sorted according to the modified Leja ordering [4, alg. 3.1]. For very high
degree polynomials, logs can be used to prevent overflow and underflow during
the ordering [7].

2. Compute pof(k): For k = 1, . . . , d, compute pof(k) =
∏
i 6=k |1− θk/θi|.

3. Add roots: Compute least integer greater than (log10(pof(k)) − 4)/14, for
each k. Add that number of θk values to the list of roots. We add the first
to the end of the list and if there are others, they are spaced into the interior
of the current list, evenly between the occurrence of that root and the end of
the list (keeping complex roots together).

3. Polynomial Preconditioned GMRES using a GMRES polynomial.
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3.1. The method. The implementation here of the GMRES polynomial uses
only about one-half the vector operations as the cheapest attempt at a more stable
method in [15]. Since p is needed for the final step (1.2), we give an implementation
that can be used along with φ. Like the implementation of φ, it uses harmonic Ritz
values. To derive, we start with the formula φ(A) = I − π(A) where π(A) is written
in factored form as in in (2.1). Then we divide both sides by α and rewrite the
polynomial p(α) as

p(α) =
1

α
− 1

α

d∏
i=1

(
1− α

θi

)
.

We split the last term of the product into two factors and distribute the 1/α to get

p(α) =
1

α
− 1

α

d−1∏
i=1

(
1− α

θi

)
+

1

θd

d−1∏
i=1

(
1− α

θi

)
.

Next we split the second term and distribute the 1/α. Continuing this process and
canceling 1

α terms at the end gives

p(α) =

d∑
k=1

uk where uk =
1

θk

(
1− α

θ1

)(
1− α

θ2

)
· · ·
(

1− α

θk−1

)
. (3.1)

The algorithm for multiplying p(A) by a vector alternates between building out the
product for the next uk term and adding that term to the final sum.

For real-valued matrices, we again avoid complex arithmetic by combining com-
plex conjugates. Suppose all θi’s are real for i < k and then θk = a + bi with
θk+1 = a− bi. Then the sum of the next two terms of p(α) is rewritten as follows:

uk + uk+1 =

(
1− α

θ1

)(
1− α

θ2

)
· · ·
(

1− α

θk−1

)(
2a− α
a2 + b2

)
.

Assuming θk+1 is not the last root, we next need to form the product uk+2. The last
two terms of this can be combined as in (2.2). Algorithm 3 details the full process for
applying p(A) while avoiding complex arithmetic.

Note that applying p(A) to a vector requires more vops than applying φ(A).
However, applying p becomes less expensive as the number of complex harmonic Ritz
values increases. If r is the number of real harmonic Ritz values and c is the number
of non-real harmonic Ritz values, then the number of daxpys needed to apply p is
2r + (3/2)c − 1. This gives one reason to apply φ(A)x using a different algorithm
from p(A)x: if all the harmonic Ritz values are real, then applying p directly requires
almost twice as many daxpys as applying φ.

Algorithm 4 summarizes the new polynomial preconditioned GMRES. To combine
the polynomial with a standard preconditioner M−1, simply use the matrix AM−1

for the initial GMRES run and computation of harmonic Ritz values.

3.2. An experiment. We compare polynomial preconditioned GMRES with
regular GMRES(m), which restarts when the Krylov subspace reaches dimension m.
All experiments use modified Gram-Schmidt orthogonalization with no reorthogonal-
ization. PP(d)-GMRES(m) refers to GMRES(m) with polynomial preconditioning of
degree d. When the degree is given with a plus sign, it means roots were added for
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Algorithm 3 p(A) times v

Input: sparse matrix A ∈ Rn×n, v ∈ Rn×1, d harmonic Ritz values θi.

1: product = v, poly = zeros(n, 1), i = 1
2: while i <= d− 1 do
3: if imag(theta(i)) == 0 then
4: poly = poly + (1/theta(i)) ∗ product
5: product = product− (1/theta(i)) ∗A ∗ product
6: i = i+ 1
7: else
8: a = real(theta(i))
9: b = imag(theta(i))

10: mod = a2 + b2

11: temp = 2 ∗ a ∗ product−A ∗ product
12: poly = poly + (1/mod) ∗ temp
13: if i <= d− 2 then
14: product = product− (1/mod) ∗A ∗ temp
15: end if
16: i = i+ 2
17: end if
18: end while
19: if imag(theta(d)) == 0 then
20: poly = poly + (1/theta(d)) ∗ product
21: end if
22: Return poly.

Algorithm 4 GMRES with Polynomial Preconditioner of degree d

1. Construction of the polynomial preconditioner:
(a) Run one cycle of GMRES(d) using a random starting vector.
(b) Find the harmonic Ritz values θ1, . . . , θd, which are the roots of the GM-

RES polynomial: With Arnoldi decomposition AVd = Vd+1Hd+1,d, find
the eigenvalues of Hd,d + h2d+1,d fe

T
d , where f = H−∗d ed with elementary

coordinate vector ed = [0, . . . , 0, 1]T .
(c) Order the GMRES roots and apply stability control as in Algorithm 2.

2. PP-GMRES: Apply restarted GMRES to the matrix φ(A) = I −Πd
i=1(I −

A/θi) to compute an approximate solution to the right-preconditioned system
φ(A)y = b, using Algorithm 1 for φ(A). To find x, compute p(A)y using
Algorithm 3.

stability, e.g. 150 + 2 has original degree 150 and 2 added roots. Unless stated other-
wise, problem right-hand sides are generated random Normal(0,1) and then normed
to one. The initial guess is always x0 = ~0. The experiments are run in Matlab on a
Dell Optiplex desktop computer.

Example 1. We use the matrix E20r0100 from the Matrix Market collection. It
is nonsymmetric of size n = 4241 with an average of 31 non-zeros per row. The cor-
responding linear equations are fairly difficult since the matrix is indefinite and has
condition number 9.4 ∗ 106. We run GMRES(50) with a residual norm convergence
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tolerance of 10−8. The first set of results on Table 3.1 are for polynomial precondi-
tioning of A alone. The second group of results is for polynomials composed with an
ILU(0) (incomplete LU factorization with no fill-in) preconditioner [16, 27]. The first
rows of each group with d = 1 correspond to no polynomial preconditioning, while
other rows correspond to a φ polynomial of degree d (so a p polynomial of degree
d − 1). The mvps column indicates matrix-vector products, and vector operations
or vops gives total daxpys and dot products. The dot products included in the vops
count are given in a separate column. The cycles column gives the number of restarts
of GMRES(50) plus 1. All results include the time and expense to create the pre-
conditioner. The ILU(0) factorization is from the shifted matrix A+ 0.01I (the ILU
factorization of the original matrix A is not effective).

For the first tests, GMRES(50) does not converge. Adding polynomial precondi-
tioning improves results, but it takes a high degree polynomial with d = 150 + 2 in
order to get rapid convergence. With ILU preconditioning, GMRES(50) still does not
converge until polynomial preconditioning is added, but now low degree polynomials
are effective. The combination of the two preconditionings makes the problem much
easier for GMRES(50). Figure 3.1 shows the spectral transformation brought by the
preconditionings. The top of the figure has the spectrum of the matrix along with
a closeup showing that there are many negative eigenvalues. The middle section has
the spectrum with the ILU preconditioning, and while it is vastly changed, there are
still many negative eigenvalues. Finally the bottom part of the figure shows that if
polynomial preconditioning of degree 10 is added to the ILU preconditioning, then
the spectrum is much less indefinite and most of the eigenvalues are relatively better
separated from the origin.

This one example demonstrates several things. First, polynomial preconditioning
can change restarted GMRES from not converging to rapidly converging, even when
a standard preconditioner is also used. Also, some problems require high degree
polynomials with stability control. The stability control keeps the residual norm from
stalling before it reaches the requested tolerance. With the polynomial of requested
degree 150 in the top half of Table 3.1, the accuracy barely reaches the requested
tolerance even without stability control. However, if extra roots are not added for
degree 200, the residual norm only reaches 4.8∗10−6. Finally, we note that even with
a significantly complex spectrum, the polynomial preconditioning is effective.

3.3. Stability example. Stability control is typically needed for high degree
polynomials when there is an eigenvalue that stands out from the rest of the spectrum.
In this situation, the polynomial will have large slope at the eigenvalue. This slope
gives ill-conditioning and causes significant numerical error and a lack of convergence.
However, extra roots can control the steep slope. There is a tendency for incomplete
factorization to create spectra with outstanding eigenvalues. This next example shows
this along with the stability control.

Example 2. The matrix is OLM1000 from Matrix Market. It has size n = 1000.
It has some complex eigenvalues and is a little indefinite; all but 10 eigenvalues have
negative real parts. As in the previous example, with no ILU preconditioning, GM-
RES(50) does not converge, and low degree polynomial preconditioners are not suf-
ficient to overcome this. With a polynomial of degree d = 50, convergence is rapid.
The situation is very different with ILU(0) preconditioning (no shift is needed before
the factorization for this matrix). The problem becomes very easy and polynomial
preconditioning is not needed. However, the ILU preconditioned spectrum is interest-
ing because one eigenvalue is very large. The top of Figure 3.2 shows the eigenvalues
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Table 3.1: Matrix E20r0100.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands) (seconds)

No Standard Preconditioning
1 - - - - -
25 215 268 860 285 33.6
50 1231 3077 6468 1633 379
100 204 1020 1591 275 109

150 + 2 2 11.2 37.6 13.1 1.61
200 + 4 2 10.6 54.0 21.6 1.93

With ILU(0) Preconditioning
1 - - - - -
5 134 33.5 402 178 15.5
10 2 1.00 6.44 2.62 0.57
25 1 1.25 4.53 1.58 0.67
50 1 0.90 3.94 1.48 0.55
100 1 1.30 11.9 5.23 0.71
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Fig. 3.1: Spectrum of matrix E20r0100 (top left) and a closeup of this spectrum near
the origin (top right). The middle images show the spectrum after ILU(0) precon-
ditioning, and the bottom part has the spectrum after both ILU(0) and polynomial
preconditioning of degree 10.
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of the ILU(0) preconditioned problem where the eigenvalue at 16.305 is well-separated
from the others. We now add polynomial preconditioning and look at the effect of
this large eigenvalue on stability. The figure has circles at the roots of the degree 10
polynomial (the harmonic Ritz values). If no stability control is used, the accuracy of
the linear equations solution degrades as the polynomial degree increases. The circles
in the bottom half of Figure 3.2 show the final residual norms with different degree
polynomial preconditioners. Because of the outstanding eigenvalue, even the prob-
lems with low degree polynomials have trouble converging. For example with d = 10,
the residual norm only reaches 3.6 ∗ 10−5. The stars in the figure show the maxi-
mum of the pof values mentioned in Section 2. The loss of accuracy is approximately
proportional to the increase in this quantity.

Next, we add roots for stability; the final residual norms are shown with squares
in the bottom of Figure 3.2. When d = 10, we add one root at 16.305, and the residual
norm accuracy goes to 6.3 ∗ 10−11. Figure 3.3 shows a portion of the polynomial of
degree 10, first with no added roots and then with one and two roots added at the
outstanding harmonic Ritz value (which is also the outstanding eigenvalue). The
dashed line is the original degree 10 GMRES polynomial, and it has extremely large
slope at this eigenvalue. The polynomial with one added root is represented by the
solid line; it has slope zero at 16.305 and gives a much better result. However, it
still has a fairly steep slope near to the root (note that the vertical axis spans almost
108). The triple-root polynomial (dash-dot line) is much flatter near the root and
thus better for stability. The triple root is not actually needed here, but it is with the
polynomial of original degree 16. For d = 16, the root-adding algorithm in Section 2
adds two roots at 16.305 and four roots elsewhere. With the extra roots, the residual
norm accuracy improves remarkably from 2.8 ∗ 104 to 1.7 ∗ 10−11. If only one extra
root is added at 16.305, then the residual norm accuracy is 5.6 ∗ 10−7. While this
double root gives much improvement, the triple root is needed for full accuracy. This
example shows how important stability control is for polynomial preconditioning of
linear equations, especially when used in addition to ILU preconditioning.

3.4. Polynomial stability check. Even with stability control, there is a pos-
sibility that a high degree polynomial will be unstable. Here we give a test that can
suggest whether a particular polynomial will be stable. This stability check can be
applied once the polynomial has been determined, before the PP-GMRES linear solve.
Then the degree can be lowered if instability is predicted.

We compute the residual norm for a very rough approximate solution x̂ = p(A)b in
two ways and compare them. First r1 = b−Ax̂ = b−Ap(A)b, where p is implemented
with Algorithm 3. Then r2 = b − φ(A)b = π(A)b, using the factored from of π in
Algorithm 1. Then the stability check is StCh = ‖r1−r2‖. StCh gives an estimate of
the limit to the residual norm convergence to be expected in the PP-GMRES phase.
In our testing, the actual error is usually within an order of magnitude of StCh.

Example 3. We use the same matrix as the previous example, OLM1000. Because
the ILU(0) preconditioned spectrum is indefinite, extra roots added on the left side
of the spectrum can increase the size of the polynomial on the right side. So the
stability control can actually cause instability with high enough degree polynomials.
More work is needed on this, but for now we merely show that this difficulty can
be detected before the linear solve. Table 3.2 has some choices of polynomials. The
first two have d = 10 and 12 without added roots so that we can test ill-conditioned
polynomials. Then the last three polynomials, in spite of added roots, have instability
that increases as the degree increases. These tests all show reasonable correspondence
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Fig. 3.2: The top half has the spectrum of OLM1000 after ILU(0) preconditioning
and has the roots of the GMRES polynomial of degree 10. The bottom half gives
the residual norm at the end of solving the linear equations with PP-GMRES first
without stability control (circles) then with control (squares). The maximum pof
values are also given (stars).

Table 3.2: Stability check versus minimum residual norm attained for OLM1000 with
ILU(0) preconditioning. First two polynomials are without added roots and the others
do have added roots.

degree 10 12 25 30 35
(no added) (no added) + 6 + 8 + 15

StCh 1.2 ∗ 10−5 5.4 ∗ 10−3 4.3 ∗ 10−11 5.0 ∗ 10−8 1.9 ∗ 10−1

Res. Norm 3.6 ∗ 10−5 2.6 ∗ 10−2 1.4 ∗ 10−10 3.0 ∗ 10−8 6.0 ∗ 10−1

between the value of StCh and the residual norm at the end of the linear solve.

3.5. The starting vector for the polynomial. When generating the poly-
nomial preconditioner, it is often best to run GMRES(d) with a random right-hand
side rather than using the problem right-hand side. The following experiment demon-
strates how polynomials generated using the problem right-hand side might ignore
certain eigenvalues and give bad preconditioners.

Example 4. We consider the electronic circuit matrix Memplus and its correspond-
ing right-hand side available on Matrix Market. The matrix A is of size n = 17,758.
We let bprob denote the problem right-hand side and brand denote a vector generated
from a random Normal(0, 1) distribution. We generate three polynomial precondi-
tioners of degree d = 15. The first is created by running GMRES(d) with brand as
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Fig. 3.3: Graph of the degree 10 GMRES polynomial for the OLM1000 matrix with
ILU(0) preconditioning (dashed line), then the polynomial with one root added at
16.305 (solid line) and finally with two added roots at 16.305 (dash-dot line).

a starting vector and the second by using bprob as a starting vector. For the second
polynomial, additional roots are needed for stability, so our third polynomial is gen-
erated with bprob as a starting vector and the four roots are added. Figure 3.4 shows
residual norm convergence for the non-preconditioned problem and the three poly-
nomial preconditioned problems using GMRES(50) to solve for the given right-hand
side. While the problem does converge in 41 cycles without a preconditioner, the brand
polynomial gives a 90% decrease in daxpys and a 94% decrease in dot products. This
comes at a price of a slight (1%) increase in mvps with the polynomial. However, the
polynomials generated with bprob stall GMRES convergence and make the problem
much worse than with no preconditioning.

This inconsistent preconditioner behavior can be explained by considering how
the polynomials remap the eigenvalues of A. All eigenvalues of A lie in the right half
of the complex plane. The two non-real eigenvalues have very small magnitude and
are minimally affected by the polynomial preconditioners. Of the real eigenvalues,
four lie near 1.5 and the remainder have magnitude less than or equal to 0.5. Figure
3.5 shows the effect of the first two polynomial preconditioners on this subset of real
eigenvalues (note that though the spectrum is slightly complex, the polynomial is only
graphed on the real axis). While the brand polynomial effectively maps most of the
small eigenvalues to near 1, the bprob polynomial creates a more difficult spectrum
by making the problem highly indefinite. Outside of this figure, the brand polynomial
moves the eigenvalues of magnitude 1.5 closer to 1, but the bprob polynomial effectively
ignores those eigenvalues, mapping them to near 106. In Figure 3.6, a cumulative
distribution function provides further insight into the eigenvalue distributions of the
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Fig. 3.4: Relative Residual convergence vs number of cycles for GMRES(50) on the
Memplus matrix. Circles indicate no polynomial preconditioning. The preconditioned
problems are indicated by: asterisks for the brand polynomial, crosses for the bprob
polynomial, and triangles for the polynomial with added roots. All polynomials have
degree 15.
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Fig. 3.5: Polynomials of degree 15 plotted over the real axis on [0, 0.5]. Stars indicate
eigenvalues of the Memplus matrix (horizontal axis) mapped to the eigenvalues of the
preconditioned matrix (vertical axis). Observe the large difference in scaling between
the two vertical axes.

preconditioned operators.

Upon further examination of the vector bprob, it appears that bprob has components
of significant magnitude in the direction of only a handful of the eigenvectors of A. The
components of brand are more evenly distributed among the eigenvectors. Experiments
in generating polynomials with other vectors yielded comparable results: A uniformly
distributed random vector worked almost as well as the brand vector, but a vector of
all ones again yielded stalled convergence (though not quite as bad as bprob). This
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Fig. 3.6: Cumulative distribution of absolute values of eigenvalues for preconditioned
and non-preconditioned Memplus matrix. Vertical axis shows the probability that
an eigenvalue has magnitude less than or equal to a given value on the x-axis. The
line with circles shows how the unpreconditioned eigenvalues are mostly clustered
near zero. The polynomial generated by brand (*s) clusters more eigenvalues near 1.
The polynomials generated by bprob uncluster the eigenvalues and create a difficult
spectrum.

phenomenon has been observed in a number of other matrix problems; thus, we
recommend always using a random vector to generate the polynomial preconditioner.
The one exception to this is when the polynomial is frequently changing to adapt
to the problem; see discussion in Section 4.5. If there is concern that a particular
random starting vector will not generate an effective polynomial, it is possible to use
two starting vectors to generate the polynomial; see [7].

4. Potential of Polynomial Preconditioning. In this section, we look at po-
tential effectiveness of polynomial preconditioned GMRES for difficult problems. The
first focus is on how much GMRES computation can be reduced by polynomial pre-
conditioning. We also look at how polynomial preconditioned GMRES compares with
the non-restarted method BiCGStab. The potential for not restarting PP-GMRES
is discussed. Then polynomial preconditioned GMRES is compared to the related
method FGMRES and to a PP-GMRES variant where we change the polynomial at
each cycle.

4.1. Chebyshev estimates. Here we develop a theoretical estimate for how ef-
fective polynomial preconditioning can be for improving restarted GMRES. We show
dramatic reduction in the number of matrix-vector products under idealized circum-
stances.

We assume that all of the polynomials in polynomial preconditioned GMRES can
be approximated with Chebyshev polynomials. This includes both the polynomial
for the preconditioning and the polynomials that underlie the GMRES method. We
assume all the eigenvalues of A are real and positive and lie between a and b with
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0 < a < b. We also assume that the linear equations problem is very difficult, so
b is much larger than a. As a result of this assumption, it is possible to use the
approximation

Tm(1 + δ)
.
= 1 +m2δ, (4.1)

where Tm is the standard Chebyshev polynomial of the first kind of degree m and
δ is very small. For one cycle of GMRES(m), the GMRES polynomial is assumed
to be approximately the Chebyshev polynomial shifted and scaled so that it is one
at the origin and small and equal oscillatory over the interval from a to b. Then the
maximum value of the Chebyshev polynomial over the interval [a, b] is 1

Tm(1+2a/(b−a)) .

This quantity then gives approximately how much one cycle of GMRES(m) improves
the residual norm. With the approximation in (4.1), we have that the residual norm
is improved by approximately

1

1 + 2m2a
b−a

.
= 1− 2m2a

b− a
.
= 1− 2m2a

b
.

We next compare the improvement in residual norm for d cycles of GMRES(m)
with the improvement for one cycle of polynomial preconditioned GMRES(m) with
polynomial of degree d. The improvement factor for the d cycles of GMRES(m) is
approximately (

1− 2m2a

b

)d .
= 1− 2dm2a

b
. (4.2)

We view the one cycle of polynomial preconditioned GMRES as being a composition
of two polynomials with the preconditioner polynomial from GMRES(d) on the inside
and a GMRES(m) poly on the outside. This can be modeled with a composition of
shifted and scaled Chebyshev polynomials, giving residual improvement of

1

Tm(Td(1 + 2a
b−a ))

.
=

1

Tm(1 + 2d2a
b−a )

.
=

1

1 + 2d2m2a
b−a

.
= 1− 2d2m2a

b
. (4.3)

Comparing (4.2) and (4.3), we conclude that polynomial preconditioned GMRES
converges approximately d times faster. So for example, if the degree of the polynomial
is doubled, then the number of matrix-vector products is cut in half. Note that
orthogonalization costs are reduced even more dramatically.

Since this result used two kinds of approximations (GMRES polynomials were
approximated by Chebyshev polynomials and values of Chebyshev polynomials were
approximated with an asymptotic result), it is natural to ask whether such a reduction
in matrix-vector products can happen in a computation. The next example tests this
for a simple but difficult problem.

Example 5. We let the matrix be diagonal with entries 12

n ,
22

n ,
32

n , . . . ,
n2

n , where
n = 20,000. The residual tolerance is 10−10. GMRES(50) is used both with and
without polynomial preconditioning. The degree of the polynomial is doubled for each
subsequent test and we look at how the matrix-vector products are reduced. The last
two tests have roots added for stability. Table 4.1 shows the results, and while the
matrix-vector products are not quite cut in half for each subsequent test, they do come
somewhat close. The last experiment with d = 1048 does reduce the matrix-vector
products by a factor of 1360 compared to d = 1, no polynomial preconditioning. As
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Table 4.1: Example to demonstrate reduction in matrix-vector products that is
roughly proportional to the degree of the polynomial. A has n = 20,000 and is

diagonal with entries i2

n , i = 1 . . . n.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands)

1 1,395,850 69,792 3,911,170 1,849,500 3.85 days
2 386,303 38,630 1,101,790 511,850 23.2 hours
4 118,249 23,650 349,069 156,679 8.76 hours
8 33,557 13,423 105,775 44,465 2.49 hours
16 9,053 7,242 32,156 11,995 56.8 minutes
32 2,283 3,652 9,935 3,025 11.2 minutes
64 613 1,961 3,650 814 4.44 minutes
128 157 1,000 1,446 215 1.31 minutes
256 43 542 724 89.0 40.9 seconds

512+4 8 197 481 142 24.8 seconds
1024+24 1 52.4 1,107 527 1.20 minutes

mentioned, the orthogonalization expense is cut even more, with vops going down
by a factor of over 8000 from d = 1 to d = 516. In this ideal situation with both
a difficult problem and cheap matrix-vector products so that most of the expense is
in the orthogonalization, the reduction in computational time is remarkable for these
d’s. The time goes down from 3.85 days to 24.8 seconds, a reduction by a factor of
about 13,400. The time then goes up for d = 1048. This is due to the initial cost of
computing the polynomial using one cycle of GMRES(1024). For high-performance
computing, dot products are expected to be a bottleneck, and they are reduced by a
factor of over 20,000 from d = 1 to d = 256.

We next want to see if such results can happen for a matrix from a PDE. Here
we test on a biharmonic problem. These become difficult even without an extremely
fine grid.

Example 6. We consider the 2-dimensional biharmonic partial differential equa-
tion −uxxxx − uyyyy + uxxx = f on the unit square. The grid for finite differences is
uniform with both ∆x and ∆y of 1

201 , so that the matrix has size n = 40,000. We
stop when the shortcut residual formula reaches 10−10. The actual residual does not
always reach this level due to the ill-conditioning of the problem. Interestingly, while
GMRES(50) reaches only 2.7 ∗ 10−9 for the true residual norm, all the polynomial
preconditioned tests reach 1.4 ∗ 10−10 or better. Table 4.2 has the results with some
values of d. While the reduction in matrix-vector products is not quite as large as in
the previous example, it still is substantial. For example, going from no polynomial
preconditioning to degree 200 preconditioning reduces the matrix-vector products by
a factor of about 110. This is over half of the ideal reduction factor of 200. This
matrix has 13 non-zeros in most rows, so the matrix-vector products are a bigger part
of the expense than in the previous example. Nevertheless, the computational time
is reduced by a factor of about 1100 going from no polynomial preconditioning to a
polynomial of degree 403.

Another reasonable question to ask is whether using standard preconditioning
such as ILU on this biharmonic problem makes the results completely different. The
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Table 4.2: Biharmonic matrix with n = 40,000.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands)

1 229,740 11,487 643,729 304,404 14.6 hours
5 11,248 2,812 33,766 14,903 1.14 hours
10 4,159 2,079 13,522 5,509 34.6 minutes
25 742 927 2,969 983 10.4 minutes
50 196 489 1,029 260 4.89 minutes
100 47 235 374 137 2.29 minutes
200 11 105 174 33.9 54.9 seconds

400 + 3 4 73.7 245 85.1 47.9 seconds
800 + 19 1 41.7 688 322 1.33 minutes

Table 4.3: Biharmonic matrix with n = 40,000, now with ILU preconditioning.

degree cycles mvps vops dot products time
d (thousands) (thousands) (thousands)

1 625 31.2 1,749 827 3.03 minutes
5 57 14.1 168 74.3 42.0 seconds
10 19 9.05 58.7 23.9 25.0 seconds
25 4 3.90 12.8 4.34 13.4 seconds
50 1 2.40 7.35 2.41 7.74 seconds
100 1 2.70 13.7 5.48 8.85 seconds

answer is that effective standard preconditioning does make this difficult problem
easier. Polynomial preconditioning is not needed as much, but still can be very helpful.
This is shown next.

Example 7. For the same biharmonic matrix, we apply ILU(0). To compute the
incomplete factorization, the matrix is first shifted in the positive direction by 0.5
times the identity matrix (this is needed for the ILU to be effective). The problem is
indeed much easier; see Table 4.3. In spite of this, adding a polynomial preconditioner
of degree 50 still reduces matrix-vector products by a factor of 13 and dot products
by a factor of 344.

4.2. Comparison to BiCGStab. Some Krylov methods for linear equations
are based on the nonsymmetric Lanczos iteration. These include BiCGStab [33],
TFQMR [9] and IDR [30]. These methods have an advantage compared to GMRES
because they are not restarted. Their large subspaces give rise to high degree polyno-
mials that are needed for difficult problems, while GMRES is limited by its restarting.
Polynomial preconditioned GMRES allows for high degree polynomials without large
subspaces, so we next look at how it compares to BiCGStab.

Because it uses full orthogonalization, restarted GMRES generally uses more vec-
tor operations per matrix-vector product than BiCGStab. For example, GMRES(50)
uses about 54 vops per mvp. BiCGStab, depending on the implementation, uses about
six vops per mvp. However, polynomial preconditioned GMRES can have fewer vops
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than BiCGStab. It uses about 1+ m+4
d vops per mvp. When m = 50 and d = 11, PP-

GMRES uses about the same number of vops per mvp as BiCGStab, and it gains the
advantage for higher degrees. PP(50)-GMRES(50) uses only about two vops per mvp,
and PP(200)-GMRES(50) has about 1.3. This gives some context to the comparisons
that follow which focus mainly on mvps.

Example 8. We want to see which of polynomial preconditioned GMRES and
BiCGStab gains an advantage as the problem becomes increasingly difficult. The
first set of matrices are diagonal with entries 1p

n ,
2p

n ,
3p

n , . . . ,
np

n , for n = 20,000 and for
p = 1, 1.25, 1.5, 1.75, 2.0, and 2.25 (the p = 2 case is the same matrix as in Example 5).
The cost in mvps for each p value is plotted at the top of Figure 4.1. BiCGStab and
PP(50)-GMRES(50) are similar for the two lowest values of p, but BiCGStab becomes
significantly better as the problems become more difficult. For p = 2, BiCGStab
uses a polynomial of degree about 492 thousand, much larger than the composite
polynomial used by PP(50)-GMRES(50) which has degree about 2500. PP(200)-
G(50) with polynomial of degree about 10 thousand is more successful. It keeps up
with BiCGStab and then wins for p = 2.25 when BiCGStab does not converge. Also,
as mentioned above, it uses less vector ops per matrix-vector product.

For the lower half of Figure 4.1, we modify the previous set of matrices by adding
superdiagonal elements with value 0.2. This makes the matrices significantly non-
normal. The powers on the diagonal elements are p = 1.25, 1.375, 1.5, and 1.625.
BiCGStab and PP(50)-GMRES(50) both struggle for p = 1.375 and do not converge
for the more difficult cases. However, PP(200)-GMRES(50) is much better than the
other two methods at p = 1.375 and converges for the two largest values of p. It
does not converge if p is stepped up to 1.75. So for this difficult non-normal problem,
polynomial preconditioned GMRES is much better than BiCGStab, but only with a
high degree polynomial.

4.3. Prospect of not restarting PP-GMRES. The optimal Krylov method
is unrestarted GMRES, also called GMRES(∞). It gives residual convergence in the
least number of matrix-vector products. However, GMRES(∞) is not realistic for
difficult problems since its large subspace requires a large amount of both storage and
orthogonalization. Polynomial preconditioning makes GMRES(∞) more practical by
reducing the subspace size.

Example 9. The top half of Figure 4.2 shows convergence of several methods
for the diagonal matrix from the previous example with p = 2.0. The bottom half
of the figure uses the same matrix with p = 2.25. Clearly, using GMRES(∞) along
with polynomial preconditioning improves convergence over the other methods. It
dramatically reduces matrix-vector products, and Table 4.4 shows that it is also better
in terms of vops and cpu time. For case p = 2.0, time for BiCGStab is 58.2 seconds,
while PP(200)-G(∞) needs only 6.4 seconds. For p = 2.25, the problem is much harder
for most of the methods, and BiCGStab doesn’t converge. However, PP(200)-G(∞)
only takes about twice as long with p = 2.25 as for p = 2 and is much better than the
other methods. Note that even though PP(50)-G(∞) uses a little less matrix-vector
products than PP(200)-G(∞), it needs a much bigger GMRES subspace (size 1351
versus 401). Therefore it needs more orthogonalization and much more CPU time.

4.4. Comparison to FGMRES. The methods FGMRES [26] and GMRESR [34]
are related to PP-GMRES. Both of these methods allow GMRES to have precondi-
tioning that varies at every iteration. If we choose this preconditioner to be a cycle of
GMRES(d), this corresponds to using a new polynomial to precondition each iteration
of the outer GMRES. This is in contrast to PP-GMRES, which has a fixed polyno-
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Fig. 4.1: Comparison of polynomial preconditioned GMRES with BiCGStab. The top
half is for increasingly difficult diagonal matrices. The entries are ip

n for n = 20, 000
and with p values 1, 1.25, 1.5, 1.75, 2 and 2.25. The bottom half is for bidiagonal
matrices with the same formula for diagonal entries but with superdiagonal elements
of 0.2. The p values are 1.25, 1.375, 1.5 and 1.625.

Table 4.4: Polynomial preconditioning combined with GMRES(∞) vs. other methods.
Diagonal matrices with powers p = 2 and 2.25 are used.

BiCGSt PP(50) PP(200) PP(50) PP(200)
-G(50) -G(50) -G(∞) -G(∞)

mvps (thou’s), p = 2 492 2459 637 42.6 43.6
vops (thou’s), p = 2 2949 5168 852 772 133
time (sec’s), p = 2 58.2 328 48.9 38.2 6.4

mvps (thou’s), p = 2.25 - 28,572 7234 67.6 80.4
vops (thou’s), p = 2.25 - 59,430 9264 1902 284
time (sec’s), p = 2.25 - 7839 944 155 13.2

mial that is used to precondition all outer GMRES iterations. These polynomials also
differ in how they were generated: The polynomial for PP-GMRES is designed to
approximate a solution for a linear equations problem with a random right-hand side.
This constrains it to have small norm over the entire spectrum of A so that it can
effectively precondition for any right-hand side. Meanwhile the GMRES(d) used for
a step of FGMRES attacks the specific linear equations problem at that moment and
thus may be skewed for that problem instead of applying a polynomial that addresses
the overall spectrum of A.
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Fig. 4.2: Demonstration of the usefulness of combining polynomial preconditioning
with GMRES(∞). The top portion is for the diagonal matrix with powers of 2.0 and
the bottom half is for powers of 2.25. The legend in the bottom half also applies to
the top half.

In the comparisons that follow, we use the same degree polynomials for PP-
GMRES and FGMRES. FGMRES uses one more matrix-vector product per iteration
because its GMRES(d) has d matrix-vector products in order to build a p polynomial
of degree d− 1. Then FGMRES still has to apply the operator A.

Example 10. The matrix is diagonal with entries 12

n ,
22

n , . . . ,
n2

n , the same matrix
from Example 5 and other examples, except here n = 10,000. Comparison between
polynomial preconditioned GMRES and FGMRES is in Table 4.5. (The third method
in the table will be discussed in the next subsection.) For low degree polynomials,
FGMRES is significantly better than PP-GMRES in terms of both matrix-vector
products and computation time. This probably is because FGMRES continually
changes its polynomial to be optimal for the current situation. However, FGMRES
requires orthogonalization to implement its GMRES cycle at every iteration, and
so for high degree polynomials, PP-GMRES is much cheaper. PP(d)-GMRES(50)
reduces solve time to 5.7 seconds with d = 250, while the minimum solve time of
FGMRES(50) is 253 seconds with d = 200. Given a matrix with a more expensive
matrix-vector product, the orthogonalization expense of FGMRES would use a smaller
proportion of total solve time, and FGMRES might be the best method. However, in
a highly parallel setting, the global communication costs of orthogonalization become
increasingly prohibitive so PP-GMRES may still have the advantage.

4.5. Polynomial preconditioning with the polynomial changed for each
cycle. We now introduce a new variation of PP-GMRES where the polynomial is
changed every time GMRES restarts. We recompute the polynomial at the start
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Table 4.5: Comparison with different degree polynomials between PP-GMRES (PP-
G), FGMRES (FG) and PP-GMRES with polynomial changing for each cycle (Ch-

Poly). GMRES(50) is used for all tests. The matrix is diagonal with entries i2

n and
with n = 10,000.

PP-G FG ChPoly PP-G FG ChPoly
degree mvps mvps mvps time time time

d (thousands) (thou’s) (thou’s) (seconds) (sec’s) (sec’s)

5 5765 2468 580 3006 1166 191
10 2798 1064 335 907 472 64.0
25 1213 693 293 168 454 32.7
50 593 383 365 39.6 386 36.7
100 322 209 550 18.4 367 61.5
150 223 155 636 12.0 389 88.9
200 202 76.4 747 11.3 253 125
250 95.4 82.5 626 5.7 338 128

of each GMRES cycle using the current residual vector as the starting vector for
the polynomial computation. This is contrary to our advice in Subsection 3.5 which
demonstrated that such polynomials can be wildly skewed. However, the following
example demonstrates that this strategy can work well in some circumstances.

Example 10 (cont.) Changing the polynomial for each cycle of PP-GMRES works
surprisingly well for low degree polynomials but becomes more expensive for high
degree polynomials; see Table 4.5. For low degree polynomials, the ‘changing polyno-
mial’ method needs far less iterations than FGMRES. We suspect that this is because
even though FGMRES changes polynomials more frequently, it is focused on solving
a particular linear equations problem instead of the overall problem. Even though
the changing polynomial method struggles for high degree polynomials, it still stays
ahead of FGMRES in solve time. Ultimately its fastest time does not match that of
regular PP-GMRES. Changing the polynomial for PP-GMRES loses its advantage for
high degrees because if a residual vector is skewed at the beginning of a cycle, then
the polynomial for the preconditioning is skewed and less effective. For low degree
polynomials, a skewed polynomial is used for fewer matrix-vector products and is
quickly replaced by another polynomial that can compensate for the previous one.

There are some situations where low degree polynomials work better than high
degrees, such as when a problem is not very difficult or the polynomial is composed
with an effective standard preconditioner. Also, for some problems, high degrees could
be unstable. This is true in Example 2, where there is an indefinite spectrum with
outstanding eigenvalues. For these problems, PP-GMRES with changing polynomials
may be more effective than the alternatives.

5. Double Polynomial Preconditioning. Subsection 4.1 showed reduction
in matrix-vector products and mentioned that dot products are reduced by an even
greater proportion. Here we look at further reducing dot products by using high
degree composite polynomials.

In the results of Example 6 shown in Table 4.2, dot products are reduced by almost
four orders of magnitude going from no polynomial preconditioning to a polynomial
of degree 200. However, there is a limit to this reduction; at some point, creating
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Table 5.1: Biharmonic matrix with n = 40, 000.

degree cycles mvps vops dot prod’s time
deg = d1 x d2 (thousands) (thou’s) (thou’s)

100 = 10 x 10 117 583 903 154 5.29 minutes
225 = 15 x 15 31 348 433 41.0 3.00 minutes
400 = 20 x 20 8 153 174 10.2 1.26 minutes
900 = 30 x 30 3 99.1 107 3.66 49.5 seconds
1600 = 40 x 40 1 75.3 81.0 2.76 35.8 seconds
2500 = 50 x 50 1 77.6 83.9 3.07 36.6 seconds
3600 = 60 x 60 1 79.3 87.4 3.95 38.3 seconds

higher degree polynomials raises the total number of dot products. To study this,
we separate the two phases of PP-GMRES: creating the polynomial and the linear
solve. When solving the linear equations, dot products keep going down as the cycles
are reduced, but the dot products needed to generate the polynomial increase as the
polynomial degree increases. With degree 200 in Example 6, there are about 20,000
dot products for generating the polynomial and about 14,000 for the linear solve.
Then with degree 400 (+3), only about 5,000 dot products are needed for the solve,
but about 80,000 dot products are needed for generating the polynomial.

To make high-degree polynomials that reduce the total number of dot products
rather than just the dot products for the linear solve, we suggest double polynomial
preconditioning [7]. First, a GMRES iteration for matrix A of length d1 finds the
polynomial φ1. Then GMRES with matrix φ1(A) is run to length d2 to determine
the polynomial φ2. The corresponding polynomials p1 and p2 are such that φ1(α) =
αp1(α) and φ2(α) = αp2(α). The composite polynomial, φ2(φ1(A)), is used for the
polynomial preconditioned GMRES phase. Plugging in to (1.1) and (1.2), the linear
equations problem becomes

φ2(φ1(A))z = b,

x = p1(A)(p2(φ1(A))z.

Example 11. We use the same matrix as in Example 6. The results are in
Table 5.1, which is somewhat of a continuation of Table 4.2. We use d1 = d2 =
10, 15, 20, 30, 40, 50 and 60. (For simplicity, the degrees of φ1 and φ2 are the same,
but this is not necessary.) These values of d1 and d2 give very high degree composite
polynomials, up to degree 3600. However, the best results are for degree 1600. The
time is reduced from 47.9 seconds for a single degree 403 polynomial in Table 4.2 to a
best time of 35.8 seconds here. However, the more significant improvement is that dot
products go down by a factor of more than 10 from the best single polynomial (degree
200) to the best composite polynomial (degree 1600). Generating two polynomials of
degree 40 takes many fewer dot products than generating one polynomial of degree
200.

The reduction in dot products is more remarkable when compared to unpre-
conditioned GMRES; the improvement is five orders of magnitude for this exam-
ple. As linear equations become larger and computer architectures necessitate low-
communication algorithms, double polynomial preconditioning is one possible tool to
create high-degree polynomials in a cost-effective manner.
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6. Conclusion. In this paper we present a new implementation for polynomial
preconditioning of GMRES using a minimum residual polynomial. It is cheaper and
more stable than related implementations. For difficult problems, the polynomials can
greatly reduce computational costs compared to regular restarted GMRES. Favorable
comparisons are also given with FGMRES and BiCGStab. Polynomial precondition-
ing can effectively accelerate standard preconditioners such as ILU. The polynomials
are adjusted with multiple added roots for stability control. We also give a test
to check whether the additional control is sufficient. This control may be especially
helpful for linear systems that have incomplete factorization preconditioning. We also
show that polynomial preconditioning can reduce dot products by a greater margin
than other computations, which may give potential to avoid expensive communication
when applied in a parallel setting. This polynomial preconditioned GMRES method
should be considered for any difficult system of linear equations.

Polynomial preconditioning works well for Example 1 even though the matrix
is indefinite. However, several problems can appear for the indefinite case. One
such difficulty is that even with a real spectrum, the polynomial may not have a
minimum at the origin and thus the spectrum is still indefinite after the polynomial
preconditioning. Also, adding roots for stability on one side of the spectrum may
increase the volatility of the polynomial on the other side (as mentioned in Example
3). Future work will address indefinite matrices. Possible solutions include damping
the polynomial [13, 7] and shifting the operator used for generating the roots of the
polynomial.

We also plan to apply this polynomial preconditioning to non-restarted meth-
ods such as the conjugate gradient method for symmetric problems and BiCGStab
and IDR for nonsymmetric problems. These methods do not suffer slowing conver-
gence due to restarting, but there is still great potential to reduce orthogonalization
expense and improve stability for difficult indefinite and non-normal problems. We
could also apply this polynomial preconditioner to the eigenvalue deflated method
GMRES-DR [18, 19, 15]. In some sense, both polynomial preconditioning and eigen-
value deflation accomplish the same thing, so it would be interesting to analyze the
differences between them and study cases difficult enough that both are needed.
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