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Abstract. The inverse of a large matrix can often be accurately approximated by a polynomial
of degree significantly lower than the order of the matrix. The iteration polynomial generated by
a run of the GMRES algorithm is a good candidate, and its approximation to the inverse roughly
follows the accuracy of the GMRES iteration. We investigate the quality of this approximation
through theory and experiment, noting the practical need to add copies of some polynomial terms
to improve stability. To mitigate storage and orthogonalization costs other approaches have appeal,
such as polynomial preconditioned GMRES and deflation of problematic eigenvalues. Applications
of such polynomial approximations include solving systems of linear equations with multiple right-
hand sides (where the solutions to subsequent problems come simply by multiplying the polynomial
against the new right-hand sides) and variance reduction in multilevel Monte Carlo methods.
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1. Introduction. Inverses of matrices occur throughout applications in math-
ematics, science, and engineering. One rarely needs to access the inverse explicitly;
more typically one seeks the action of the inverse multiplied against a vector, i.e., the
solution of a system of linear equations. For dense matrices this solution can be found
via a matrix factorization; for large, sparse problems, one typically solves the system
approximately with an iterative method that, effectively, multiplies an approximation
of the inverse against a vector. Such algorithms are often motivated by invoking the
Cayley–Hamilton theorem, which implies that the inverse of a matrix A ∈ Cn×n can
be expressed as a polynomial of degree n− 1 (or less) in A. While it is impractical to
compute this polynomial for large n, one can often find satisfactory approximations
to A−1 using polynomials of significantly lower degree. We describe several ways to
construct such an approximate polynomial representation of the inverse of a large
matrix. We show that this polynomial can be accurate and useful, applying it to
solve systems of linear equations with multiple right-hand sides. A second applica-
tion, described in [22, 23], uses a polynomial approximation to an inverse to reduce
variance in a Multilevel Monte Carlo sampling of the trace of the inverse. Given the
ubiquity of the matrix inverse, we anticipate numerous other applications.

This work builds on the development of stable polynomial preconditioners for
eigenvalue problems [13, 47] and linear systems [26] based on the GMRES algo-
rithm [41]. Here, we focus on the quality of a polynomial p(A) as an approximation
of A−1 itself, addressing theoretical aspects but focusing on practical considerations
required to make such approximations work. An implementation of the GMRES resid-
ual polynomial using its roots (harmonic Ritz values) is given in [13]. This approach
is more stable than most previous methods for implementing the GMRES polyno-
mial [1, 19, 25, 33] and cheaper to implement than another approach [47]. However,
this polynomial can be prone to instabilities, prompting the stability control method
in [13]: the polynomial is augmented with extra copies of roots near outstanding
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eigenvalues. This modification enables the practical use of higher degree polynomials.
When GMRES is applied to Ax = b, the residual vector can be written as

r = b−Ax̂ = b−Ap(A)b = π(A)b,

where x̂ = p(A)b is the approximate solution generated by GMRES, and π(z) =
1− zp(z) is the GMRES residual polynomial. For r to be small in norm, p(A) should
approximate A−1 (modulated by the vector b), and this p provides the starting point
for our approximate inverse polynomial. In [26], an algorithm is given for multiplying
p(A) against a vector, given the roots of π. This implementation uses the technique
from [13] for adding extra roots to π to promote stability, often making it possible to
find a moderate degree polynomial p that achieves the goal of p(A) ≈ A−1.

We show that the accuracy of the polynomial p(A) as an approximation to A−1

follows the GMRES residual. To reduce the cost of orthogonalization, we explore the
use of a composite (or double) polynomial generated from polynomial preconditioned
GMRES [26], along with the nonsymmetric Lanczos algorithm. For systems with
multiple right-hand sides, once a polynomial has been found, the solution of additional
systems simply requires multiplying p(A) against the new right-hand sides. We also
study a deflated version of the polynomial, which can give a lower degree polynomial.

Section 2 reviews some previous work that is needed for this project. Section 3
describes the use of GMRES to find a polynomial approximation to the inverse, and
provides some theoretical results on the quality of this approximation and the location
of the harmonic Ritz values. Section 4 investigates other approaches for constructing
the polynomial: restarted GMRES, nonsymmetric Lanczos, and polynomial precon-
ditioned GMRES. Section 5 uses the polynomial to solve systems with multiple right-
hand sides, then Section 6 describes how to incorporate deflation. Finally, section 7
considers some examples that provide challenges for stabilization.

2. Review.

2.1. Polynomial preconditioning. For solving Ax = b, polynomial precondi-
tioning is a way to transform the spectrum and thus improve convergence. With a
polynomial p and right preconditioning, the linear equations problem becomes

(1) Ap(A)y = b, x = p(A)y

Defining ϕ(z) ≡ zp(z) = π(z)− 1, the preconditioned system of linear equations is

ϕ(A)y = b.

We let dp denote the degree of p, so ϕ has degree dϕ ≡ dp+ 1.
Much work has studied polynomial preconditioning; see, e.g., [1, 2, 3, 13, 15, 19,

21, 24, 25, 26, 37, 38, 39, 40, 44, 46, 47, 50, 51]. We highlight Thornquist’s thesis [47],
which constructs polynomial approximations to (A−µB)−1 using GMRES (and sev-
eral nonsymmetric Lanczos methods) to expedite shift-invert eigenvalue calculations.
The use in [47] of non-optimal short-recurrence Krylov subspace methods to generate
polynomial approximations of matrix inverses merits further investigation.

In [13, 26], starting with the GMRES residual polynomial π, the polynomial ϕ
is chosen as ϕ(z) = 1 − π(z) and thus p is also determined. The roots of π are the
harmonic Ritz values [28, 32, 34], and they are used to implement both polynomials
ϕ and p. The paper [26] includes detailed algorithms that use the roots of π to ap-
ply ϕ(A) and p(A) to vectors (respecting complex conjugate pairs of roots); see [26,
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Algorithm 1 and Algorithm 3]. Thus the polynomials needed for polynomial precon-
ditioning can be determined with one cycle of GMRES (frequently with a random
starting vector [26]). Then GMRES can also be used to solve the linear equations as
a part of polynomial preconditioned GMRES [26, Algorithm 4].

2.2. Stability for the polynomial. For a matrix with an eigenvalue that
stands out from the rest of the spectrum, GMRES typically places a single harmonic
Ritz value nearby, giving π a steep slope at that root that can lead to ill-conditioning
and cause p(A) evaluations to be unstable. To improve stability, extra copies of
roots corresponding to outstanding eigenvalues can be added. Algorithm 1 (adapted
from [13, p. A21]) shows a way to implement this procedure. For each root θk, one
computes a diagnostic quantity called pof(k) (for “product of other factors”) that mea-
sures the magnitude of π(θk) with the (1− z/θk) term removed. When log10(pof(k))
exceeds some threshold pofcutoff, extra (1−z/θk) terms are appended to π. (In step 3,
the value pofcutoff = 4 was used in [13]; in this paper, we use pofcutoff = 8.)

By construction, p(z) interpolates 1/z at the roots of π. When we add a second
copy of a root to stabilize π(z), that root becomes a point where p′(z) interpolates
(1/z)′ = −1/z2. If θ is an m-fold root of π, one can show p(j)(θ) = (−1)jj!/θj+1 =
dj/dzj (1/z)

∣∣
z=θ

for j = 1, . . . ,m − 1: thus p interpolates 1/θ and its first m − 1
derivatives at z = θ. Figure 1 shows how a second copy of a root can stabilize π(z)
and p(z) in the proximity of an outlying eigenvalue.

2.3. Deflation. When solving linear systems, deflation refers to reducing the
influence of small eigenvalues that tend to slow GMRES convergence. Deflation can
be implemented by adding approximate eigenvectors to a subspace [29, 30], or by
building a preconditioner from eigenvectors; see, e.g., [20, 35, 42]. Here we will deflate
with Galerkin projection [23, 30, 31, 43, 45]; see Algorithm 2. This method can be
applied before running a Krylov method, or between cycles of restarted GMRES.
Section 6 provides details and examples.

3. Polynomial of A approximating A−1.

3.1. Using GMRES to find an approximating polynomial. Let π denote a
GMRES residual polynomial after sufficiently many iterations to solve a linear system,
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Fig. 1. Adding extra copies of roots stabilize π and p. This A has real eigenvalues in [0.1, 1]
and one outlying eigenvalue at λ = 2. On the left, the degree k = 5 GMRES residual polynomial
π(z) (red) with roots at the black dots; note the steep slope at the root θ = 1.9869 near the eigenvalue
λ = 2. Adding an extra copy of that root leads to the degree k+1 = 6 polynomial (blue) that is small
in a larger neighborhood of the root. On the right, the corresponding approximate inverse polynomial
p(z), which interpolates 1/z (gray line) at the black dots. The extra root has a similarly tonic effect
on this polynomial, which now also interpolates the derivative of 1/λ at the extra root.
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Algorithm 1 Adding Roots to π(α) for Stability (from [13, p. A21])

1. Setup: Assume the dϕ roots (θ1, . . . , θdϕ) of π have been computed and then
sorted according to the modified Leja ordering [4, alg. 3.1]. (For high-degree
polynomials and/or large magnitude roots, use sums of logs in place of prod-
ucts, to prevent overflow and underflow in the Leja ordering calculations.)

2. Compute pof(k): For k = 1, . . . , dϕ, compute pof(k) =
∏

i ̸=k |1− θk/θi|.
3. Add roots: Compute ⌈log10(pof(k))−pofcutoff)/14⌉, for each k. Add that number

of θk copies to the list of roots. Add the first to the end of the list; if there are
others, space them evenly between the first and last occurrence of θk (keeping
complex roots together).

Algorithm 2 Galerkin Projection

0. Let the current system of linear equations be A(x− x0) = r0.
1. Let V be an n-by-nev matrix with nev linearly independent columns.
2. Form H = V ∗AV and c = V ∗r0.
3. Solve Hd = c and let x̂ = V d.
4. The new approximate solution is xe = x0+x̂, with residual r = r0−Ax̂ = r0−AV d.

and define p via π(z) = 1−zp(z). Examples will show that it is possible for p(A) to be
a good approximation to A−1, and that the accuracy of this approximation typically
tracks the GMRES residual norm. A theorem backs this up for the case of normal A.

In developing p(A), we presume the GMRES starting vector is not (nearly) miss-
ing components in any eigenvectors. Missing components, particularly at extreme
eigenvalues, could cause the polynomial to be inaccurate there, and thus ineffective
at approximating the inverse. When solving for multiple right-hand sides (Sections 5
and 6), if the first right-hand side has missing components, then a random vector
should be used to develop p(A).

When a standard preconditioner is available for A, we can still get an approxima-
tion to A−1, but it will not be a polynomial of A alone. Looking at the system with
standard right preconditioning, where M is an approximation to A,

AM−1w = b, x̂ =M−1w,

we see r = b− Ax̂ = b− AM−1p(AM−1)b =
(
I − AM−1p(AM−1)

)
b, where p comes

from GMRES applied to the standard preconditioned system. For ∥r∥ to be a small,
A−1 should be approximated by M−1p(AM−1). Thus standard preconditioning can
be incorporated into this framework, though we do not pursue this further here.

Our first example shows how polynomial approximation of the inverse can work
with a matrix from a simple application problem.

Example 1. Consider the standard second-order finite difference discretization of
the convection-diffusion equation −uxx − uyy + 2ux = f on a uniform grid over the
unit square [0, 1]× [0, 1], with homogeneous Dirichlet boundary conditions. Grid size
1/50 gives A of order n = 2500. GMRES is run with a random starting vector (normal
entries, scaled to unit norm). Figure 2 compares GMRES convergence to the relative
accuracy of the polynomial, ∥A−1 − p(A)∥/∥A−1∥. Notice that p(A) can accurately
approximate A−1; the relative accuracy of p(A) keeps pace with the GMRES residual
norm, typically about an order of magnitude behind. The GMRES residual norm
goes below 10−12 at k = 217, where p(A) has relative accuracy of 5.1× 10−12.

Figure 3 compares the polynomial p(z) to f(z) = 1/z. For p(A) to approximate
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Fig. 2. Example 1: The matrix is size n = 2500 from the convection-diffusion equation
−uxx−uyy+2ux = f . The relative accuracy, ∥A−1−p(A)∥/∥A−1∥, of the polynomial approximation
to the inverse is shown every 10 GMRES iterations, and is compared to the GMRES residual norm.

A−1 well, p(z) must be close to 1/z at every eigenvalue of A (made precise later
in this section). At iteration k = 10, p looks to be a good approximation over the
entire spectrum of A (top plot). However, near the origin (bottom plot) we see that
the k = 10 polynomial does not approximate 1/z well at the small eigenvalues. At
iteration k = 50 it is better, but still off a bit. The polynomial at k = 175 (computed
at the point where the GMRES residual hits 10−9) is accurate at all eigenvalues.

In Figure 4 we adjust parameters in the differential equation to make A more
nonsymmetric, then also indefinite. For −uxx−uyy+αux+βuy−γ2u = f , we first let
α = 25, β = 10 and γ = 0. The accuracy with which p(A) approximates A−1 (upper-
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Fig. 3. Convection-diffusion example from Figure 2 (dimension n = 2500), showing how the
polynomial p(z) approximates 1/z at the eigenvalues of A: the gray line shows 1/z; the markers
show p(λ) for the eigenvalues λ of A, for three different degree polynomials p of degree k − 1.



6

0 20 40 60 80 100 120 140 160
10-12

10-8

10-4

100

0 20 40 60 80 100 120
10-12

10-8

10-4

100

0 50 100 150 200 250 300 350
10-12

10-8

10-4

100

0 50 100 150 200 250 300 350 400
10-12

10-8

10-4

100

Fig. 4. Matrix of size n = 2500 from the convection-diffusion equation −uxx − uyy + αux +
βuy − γ2u = f . The relative accuracy of p(A) is compared to the GMRES residual for variying
degrees of nonnormality and indefiniteness. (The last few red dots in the bottom plots likely reflect
some numerical instabilities.)

left) follows the GMRES residual norm, though not quite as closely as in Figure 2 with
a nearly symmetric A. The polynomial remains effective with more nonnormality
(upper-right) and with indefiniteness (lower-left). However, the accuracy is more
erratic when the matrix is both significantly nonnormal and indefinite (lower-right).

3.2. Polynomial approximation accuracy and the GMRES residual.

Theorem 1. Suppose A ∈ Cn×n is invertible and Ax = b for some unit vector
b ∈ Cn. Let x̂ = p(A)b be an approximation to x for some polynomial p, and let
κ(A) = ∥A∥∥A−1∥. Then

(2)
∥r∥
κ(A)

≤ ∥x− x̂∥
∥A−1∥

≤ ∥A−1 − p(A)∥
∥A−1∥

.

Proof. Since r = b−Ax̂ = b−Ap(A)b = A(x− x̂), we can write

x− x̂ = A−1r =
(
A−1 − p(A)

)
b.

Since ∥b∥ = 1, we have ∥x− x̂∥ ≤ ∥A−1 − p(A)∥. Divide by ∥A−1∥ to get the second
inequality in (2). The first follows from ∥r∥ = ∥A(x− x̂)∥ ≤ ∥A∥∥x− x̂∥.

This result shows that, for well-conditioned problems, the norm of the GMRES
residual can serve as an indicator for the relative error in the polynomial approxima-
tion of the inverse: If the norm of the residual remains large, we cannot expect the
corresponding polynomial to approximate the inverse with any accuracy.

Next, for normal coefficient matrices, we can also use the residual to get an upper
bound on the error of the polynomial approximation. (Recall that A is normal if
A∗A = AA∗ or, equivalently, if A has an orthonormal basis of eigenvectors.)



7

Theorem 2. Suppose A ∈ Cn×n is an invertible normal matrix and Ax = b
for some unit vector b ∈ Cn. Let x̂ = p(A)b for some polynomial p, and let A =
ZΛZ∗ be a unitary diagonalization of A with orthonormal eigenvectors z1, . . . , zn and
corresponding eigenvalues λ1, . . . , λn. Expand b = Z(Z∗b) =

∑
βizi. Then

(3)
∥A−1 − p(A)∥

∥A−1∥
≤ ∥r∥

min |βi|
.

Proof. Again writing r = b−Ax̂ = b−Ap(A)b, we have

∥A−1∥∥r∥ ≥ ∥A−1r∥ = ∥(A−1 − p(A))b∥
= ∥Z(Λ−1 − p(Λ))Z∗b∥ = ∥(Λ−1 − p(Λ))[β1 . . . βn]

T ∥,

due to the unitary invariance of the 2-norm. We can then bound

∥A−1r∥2 =

n∑
i=1

∣∣∣( 1

λi
− p(λi)

)
βi

∣∣∣2
≥ max

∣∣∣ 1
λi

− p(λi)
∣∣∣2 ·min |βi|2 = ∥A−1 − p(A)∥2 ·min |βi|2,

since the norm of a function of a normal matrix is the maximum magnitude of the
function on the eigenvalues of that matrix. Rearranging the last expression gives

∥r∥
min |βi|

≥ ∥A−1 − p(A)∥
∥A−1∥

.

By the bound (3), for normal A a small GMRES residual norm implies a small
relative error in the A−1 approximation, provided b is not deficient in any eigenvectors.
To make such deficiencies unlikely, one can take b to have normally distributed random
entries, so the entries of β = Z∗b will also be normally distributed for unitary Z.

3.3. Bounding ∥A−1 − p(A)∥. The quality with which p(A) approximates
A−1 depends on how well p(λ) approximates 1/λ on the spectrum of A, denoted by
σ(A), or some larger set depending on the departure of A from normality. Consider
the numerical range of A, which is the set of all Rayleigh quotients [17, chap. 1],

W (A) =
{v∗Av
v∗v

: 0 ̸= v ∈ Cn
}
,

and the ε-pseudospectrum of A [48],

σε(A) =
{
z ∈ C : ∥(zI −A)−1∥ > 1/ε

}
.

The following proposition follows from conventional bounds on functions of ma-
trices, and all have analogs for bounding the residual polynomial in GMRES [12].

Proposition 3. Suppose A ∈ Cn×n is invertible, and let p be any polynomial.
1. If A is diagonalizable, A = ZΛZ−1, then with κ(Z) = ∥Z∥∥Z−1∥,

∥A−1 − p(A)∥ ≤ κ(Z) max
λ∈σ(A)

∣∣∣ 1
λ
− p(λ)

∣∣∣.
2. If 0 ̸∈W (A), then, by the Crouzeix–Palencia theorem [10],

∥A−1 − p(A)∥ ≤ (1 +
√
2) max

λ∈W (A)

∣∣∣ 1
λ
− p(λ)

∣∣∣.
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3. If ε > 0 is sufficiently small that 0 ̸∈ σε(A), then

∥A−1 − p(A)∥ ≤ Lε

2πε
max

λ∈σε(A)

∣∣∣ 1
λ
− p(λ)

∣∣∣,
where Lε denotes the length of the boundary of σε(A).

3.4. Harmonic Ritz values. The roots of π(z) = 1 − zp(z) are precisely the
points where p(z) interpolates 1/z. Thus in light of Proposition 3, to understand how
well p(A) approximates A−1 one naturally asks, Where are these roots of π located?
Thus we briefly discuss properties of the harmonic Ritz values and their location.

At step k, GMRES computes the approximation x̂ from the Krylov subspace

Kk(A, b) = span{b, Ab, . . . , Ak−1b} = {ψ(A)b : deg(ψ) < k}.

Conventional implementations of GMRES progressively build an orthonormal basis
{v1, . . . , vk} forKk(A, b). This process can be compactly summarized in the expression

(4) AVk = Vk+1Hk+1,k = VkHk,k + hk+1,kvk+1e
∗
k,

where the (k+1)×k upper Hessenberg matrix Hk+1,k (and its top k×k block, Hk,k)
collect the coefficients from the orthogonalization process. Premultiplying (4) by V ∗

k

gives Hk,k = V ∗
k AVk. (The eigenvalues of Hk,k ∈ Ck×k are called Ritz values; they

are Rayleigh–Ritz eigenvalue estimates for A from the Krylov subspace Kk(A, b).)
The GMRES approximation x̂ ∈ Kk(A, b) is selected to minimize the 2-norm of

the residual, ∥r∥ = ∥b−Ax̂∥, and so basic least squares theory implies that the residual
r = b−Ax̂ is orthogonal to the space AKk(A, b) from which b is approximated.

We write r = π(A)b, and seek to characterize the roots of π. The following
derivation comes from [8, 27]. Suppose π has a root θ, which cannot be zero since
π(0) = 1. Factor out this root: π(z) = (1 − z/θ)π̃(z) for some π̃ with deg(π̃) < k.
Since r is orthogonal to AKk(A, b) = range(AVk) and π̃(A)b ∈ Kk(A, b), we can write

0 = (AVk)
∗r = V ∗

k A
∗(I − (1/θ)A

)
π̃(A)b

= V ∗
k A

∗(I − (1/θ)A
)
Vkc(5)

for some c ∈ Ck. Rearrange this last equation to get V ∗
k A

∗AVkc = θ V ∗
k A

∗Vkc, a
generalized eigenvalue problem that characterizes the roots of the GMRES residual
polynomial π. Using the Arnoldi identity (4), we can obtain the more compact form

(6) H∗
k+1,kHk+1,k c = θH∗

k,kc.

Since the coefficient matrices H∗
k+1,kHk+1,k and H∗

k,k are k×k, this generalized eigen-
value problem can have up to k finite eigenvalues, the roots of π. WhenHk,k is singular
the generalized eigenvalue problem can have fewer than k finite eigenvalues; this case
corresponds to the stagnation of GMRES at step k. When Hk,k is invertible, (6) can
be reduced to the standard eigenvalue problem

(7)
(
Hk,k + |hk+1,k|2fke∗k

)
c = θc, fk := H−∗

k,kek.

The roots of π, characterized by (6), are called harmonic Ritz values [16, 28, 32,
34], since 1/θ is a Rayleigh–Ritz eigenvalue estimate for A−1 from the subspace
AKk(A, b) = range(AVk). To see this, note that (5) is equivalent to

(AVk)
∗A−1(AVk)c =

1

θ
(AVk)

∗(AVk)c,
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a generalized Rayleigh quotient for A−1: Unlike standard Ritz values (the eigenvalues
of Hk,k), harmonic Ritz values are not shift invariant : their location depends on the
proximity of the spectrum of A to the origin. Since the reciprocals of the harmonic
Ritz values {θj}kj=1 are Ritz values for A−1, we have 1/θj ∈W (A−1), that is,

θj ∈ {1/z : z ∈W (A−1)} =
{ v∗v

v∗A−1v
: 0 ̸= v ∈ Cn

}
.

Look ahead to Figure 6 to see an example of 1/W (A−1). This set contains z = ∞
when 0 ∈ W (A−1), which implies 0 ∈ W (A) and thus the ability of the first step of
GMRES to stagnate. (The potential for stagnation at later iterations can be described
via higher-dimensional generalizations of the numerical range [14, Theorem 2.7].)

The case of Hermitian A already shows the subtle nature of harmonic Ritz values.
If A is positive definite with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, the harmonic Ritz
values obey Cauchy interlacing (see, e.g., [36]): if θ1 ≤ θ2 ≤ · · · ≤ θk, then

λj ≤ θj ≤ λn−j+k, j = 1, . . . , k.

In contrast, if A is indefinite (and thus 0 ∈W (A)) with eigenvalues

λ−m ≤ · · · ≤ λ−1 < 0 < λ1 ≤ · · · ≤ λp,

one can say
θj ∈ (−∞, λ−1] ∪ [λ1,∞), j = 1, . . . , k.
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Fig. 5. The top plots show the harmonic Ritz values from 100 trials involving random Krylov
subspaces of dimension k = 5 for Hermitian matrices of dimension n = 8, sorted θ1 ≤ θ2 ≤ · · · ≤ θ5.
Eigenvalues are marked by gray vertical lines; the origin is denoted by the vertical black dashed line.
The positive definite matrix on the left has eigenvalues {1, 2, 3, 4, 7, 8, 9, 10}, and the harmonic Ritz
values obey Cauchy interlacing. The indefinite problem on the right has the same eigenvalues, only
shifted left: {−4,−3,−2,−1, 2, 3, 4, 5}. Notice the absence of harmonic Ritz values in the interval
(−1, 2); numerous θj values are beyond the axis limits for this case. The two plots would be identical
(up to the shift) if they showed standard Ritz values, which are shift invariant. The bottom plots show
how p(z) (red line) interpolates 1/z (gray line) for one of the trials. Notice that approximating 1/z
at eigenvalues on both sides of the origin (indefinite problem on the right) is much more challenging.
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Thus no harmonic Ritz values call fall in the interval (λ−1, λ1) containing the origin.
Figure 5 gives a simple illustration contrasting the positive definite and indefinite
cases. For a more detailed discussion of the Hermitian case, see [6].

The following result bounds the magnitudes of harmonic Ritz values via geometric
means of the trailing singular values of A. It follows by applying an upper bound for
Ritz values [9, Theorem 2.3] to bound 1/θj as a Ritz value of A−1.

Theorem 4. Suppose A ∈ Cn×n and let {θj}kj=1 denote the roots of the degree-k
GMRES residual polynomial, ordered by increasing magnitude: |θ1| ≤ |θ2| ≤ · · · ≤ |θk|
(allowing for the possibility that some θj = ∞). Then

|θj | ≥
(
sn · · · sn−j+1

)1/j
, j = 1, . . . , k,

where s1 ≥ s2 ≥ · · · ≥ sn denote the singular values of A.

The k = 1 case of this theorem ensures that no harmonic Ritz values can fall strictly
inside the disk of radius sn = 1/∥A−1∥ centered at the origin. For larger k the bounds
quantify the notion that there cannot be more small magnitude harmonic Ritz values
than the number of small singular values of A. The development of finer containment
regions for harmonic Ritz values is an interesting but difficult problem. When coupled
with Proposition 3, such results could illuminate how well p(A) approximates A−1.

Figure 6 contrasts standard Ritz values (eigenvalues of Hk,k) with harmonic Ritz
values (eigenvalues of Hk,k + |hk+1,k|2fke∗k) when A is the circulant shift matrix of
order n = 7 (ones on the superdiagonal and bottom-left entry; zeros elsewhere), a
unitary matrix that is notoriously difficult for GMRES [7]. The Ritz values all fall in
W (A), in this case the convex hull of the spectrum, located inside the unit disk. In
contrast, the harmonic Ritz values fall in 1/W (A−1), a nonconvex set exterior to the
unit disk (except at the eigenvalues).

3.5. Further tests.
Example 2. Returning to the convection–diffusion example, we explore how the

accuracy of the polynomial approximation of A−1 obtained from GMRES depends
on b. For a baseline we use the Laplacian −uxx − uyy = f , giving a symmetric A.
The left plot in Figure 7 shows the results of 100 trials with different random b. The
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Fig. 6. Ritz values (left) and harmonic Ritz values (right) from 5-dimensional random complex
Krylov subspaces of the circulant shift (n = 7), 500 trials. (83 of the 2500 harmonic Ritz values fall
beyond the axis.) The origin is marked in red; the blue lines show the boundaries of W (A) (left – an
exterior bound on Ritz values) and 1/W (A−1) (right – an interior bound on harmonic Ritz values).
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Fig. 7. Matrix is of size n = 2500 from the convection–diffusion equation −uxx − uyy +αux +
βuy = f with α = β = 0 (left) and α = 2, β = 0 (right). Here p(A) is determined by GMRES, run
until the relative residual norm is below 10−11. The relative accuracy ∥A−1−p(A)∥/∥A−1∥ and the
number of GMRES steps (number of harmonic Ritz values) are shown for 100 random b.

polynomial is determined by running GMRES to relative residual norm of 10−11. The
plot shows both the degree of the final GMRES residual polynomial π(z) = 1− zp(z)
and the relative accuracy of p(A) as an approximation of A−1. The degree of π is
quite consistent, as is the accuracy of p(A). The b vector that gives the worst result
has a small component (3.3× 10−4) in the eigenvector corresponding to the eleventh
eigenvalue (λ = 0.06811). The GMRES residual polynomial π is not very accurate at
that eigenvalue; it differs from the needed value of 0 by 1.6 × 10−8. As Theorem 2
suggests, if b has a small component in an eigenvector, then p(z) need not be accurate
at that eigenvalue despite the small residual norm.

The right plot in Figure 7 use the same convection-diffusion equation −uxx −
uyy +2ux = f that began Example 1, giving A with a mild departure from normality.
Again we run GMRES to tolerance 10−11 using the same 100 random b used for the
symmetric A. Now the accuracy of the A−1 approximation is more varied, though
most cases are better than 10−9. The poorest two results (relative accuracy worse than
10−8) both have the polynomial less accurate at one of two nearly equal eigenvalues
(the second and third eigenvalues, 0.0193339 and 0.0193361). For the worst case, π is
not accurate at the larger of the two nearly multiple eigenvalues: π needs to be nearly
0 at all eigenvalues, but it differs from 0 by 1.3× 10−7 at that eigenvalue.

Example 3. We examine the effect of ill-conditioning on the accuracy of the poly-
nomial approximation of the inverse. To focus on this effect, we take A to be a positive
definite diagonal matrix with no outstanding eigenvalues. (No extra stabilization roots
are required in this experiment.) For dimension n = 2501 we set

Â = diag(1p, 2p, . . . , 1251p, 2 · (1251p)− 1250p, 2 · (1251p)− 1249p, . . . , 2 · (1251p)− 1p)

and scale A = Â/(1250.5)p−1. As the parameter p ≥ 0 increases, the conditioning
grows and the eigenvalues evolve from clustered in the middle of the spectrum (p < 1)
to clustered at both ends (p > 1). We take 20 values of p ∈ [0.55, 1.8], in each case
running GMRES with the same b (a random normal vector, scaled to unit norm).

This example shows how the degree of the polynomial varies with the condition
number, and that a high degree polynomial can be effective. Figure 8 shows the
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Fig. 8. Example 3: diagonal matrices (n = 2501) with no outstanding eigenvalues. The degree
of the GMRES polynomial when the residual goes below 10−10 and the corresponding relative error
in the polynomial approximation of A−1 is plotted versus the condition number.

degree needed for full GMRES to converge to residual norm below 10−10. The relative
accuracy of p(A) ranges from a maximum of 4.4× 10−9 for p ≈ 0.616 to a minimum
of 3.6 × 10−11 for p = 1.8. Even with ill-conditioned problems, p(A) can accurately
approximate A−1, though the degree of p grows with the ill-conditioning.

4. Alternative Methods for Finding the Polynomial. Finding the poly-
nomial p that approximates A−1 can be expensive due to the need to run full (non-
restarted) GMRES, possibly for many iterations. The orthogonalization cost and
storage increase as the iteration proceeds. We discuss three ways of reducing this cost:
generating the polynomial p from restarted GMRES, a double polynomial formed by
polynomial preconditioned GMRES, and the nonsymmetric Lanczos process.

4.1. Restarted GMRES. The restarted GMRES algorithm [41] can signif-
icantly reduce the orthogonalization cost, restricting the GMRES optimization to
Krylov subspaces of fixed dimension m≪ n. However, restarted GMRES often takes
more iterations than full GMRES, so a higher degree polynomial is needed.

When GMRES(m) is run for c cycles, the overall residual polynomial is a product
of the residual polynomials for each cycle, π(z) = π1(z) · · ·πc(z), where each πj is a
degree-m polynomial. The roots of π(z) are all of the roots of the residual polynomials
(harmonic Ritz values) from each GMRES cycle put together. The polynomial p is
defined via π(z) = 1− zp(z). Then p(A) can be multiplied against a vector using [26,
Algorithm 3] with the list of roots from the overall π. When each restart occurs at
the end of a cycle of m iterations, m of these roots become “locked in”, and will
henceforth be roots of the π that is built up over future cycles. (In contrast, for full
GMRES all roots of π can change at each iteration.) The harmonic Ritz values may
nearly recur in cyclic patterns across restarted GMRES cycles [5, 52], which could
limit the effectiveness of this approach to designing polynomial approximations to the
inverse. (In the “hybrid GMRES” approach [33], m iterations of GMRES are run, and
the polynomial is constructed from π(z) = (1− z/θ1)

c · · · (1− z/θm)c. The resulting
approximation p(z) will interpolate 1/z and its first c− 1 derivatives at θ1, . . . , θm.)

4.2. Double polynomials. An alternative approach to building high-degree
polynomials while controlling orthogonalization costs uses the composition of two
polynomials, as generated by polynomial preconditioned GMRES. We call such an
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approximation to the inverse a double polynomial [13, 26]. The double polynomial
often needs to be of higher degree than a single GMRES polynomial to deliver the
same accuracy, but it can be of lower degree than the restarted GMRES polynomial.
In general, the double polynomial makes approximation of A−1 much more practical.

We describe how to build the double polynomial from polynomial preconditioned
GMRES (Subsection 2.1). First, select the degree of the ϕ polynomial in polynomial
preconditioned GMRES. We regard this as an inner polynomial, so we call it ϕin
and its degree dϕin. Run GMRES on A for dϕin iterations, and compute the roots
of the GMRES residual polynomial πin. These roots define the polynomials ϕin and
pin according to πin(z) = 1− ϕin(z) = 1− zpin(z). Next, run GMRES a second time
(“outer GMRES”), now on the polynomial preconditioned system Apin(A)y = b (or
ϕin(A)y = b), solving to the required tolerance. (The approximate solution of the
linear system is x = pin(A)y.) Compute the roots of the residual polynomial from
this outer GMRES run; they define the polynomials pout and ϕout. The degree of ϕout,
say dϕout, equals the number of outer GMRES iterations. The overall polynomial p
that approximates the inverse is p(z) = pin(z)pout(ϕin(z)), of degree dϕin × dϕout − 1.

4.3. Nonsymmetric Lanczos. The nonsymmetric Lanczos algorithm can solve
linear equations in various ways, the most straightforward of which is the BiConjugate
Gradient (BiCG) method [40]. The BiCG residual polynomial π has roots at the
eigenvalues of the tridiagonal matrix built by the Lanczos process, which determine
the inverse approximating polynomial p through π(z) = 1−zp(z). (Future work should
explore more sophisticated approaches based on nonsymmetric Lanczos, building on
Thornquist’s investigation of BiCGSTAB and TFQMR [47].)

4.4. Comparison. Example 4. We return to the matrix from Example 1 of
dimension 2500 corresponding to −uxx − uyy + 2ux = f . Figure 9 shows results
for polynomials found by GMRES, restarted GMRES, the double polynomial from
polynomial preconditioned GMRES, and nonsymmetric Lanczos. The linear equation
residual norms are shown, along with the relative accuracy ∥A−1 − p(A)∥/∥A−1∥.
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Fig. 9. Comparison of four methods for building polynomial approximations to A−1, for the
convection–diffusion problem from Example 1 (n = 2500). The lines show the residual norms of the
linear system; the markers show the relative accuracy of the polynomial approximation to A−1.
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Nonsymmetric Lanczos has low orthogonalization costs and finds polynomials that
are almost as low degree for a given accuracy as those from full GMRES. However,
it requires more matrix-vector products, multiplying with both A and A∗ at each
iteration. The method can also be unstable, and for an indefinite matrix, Ritz values
can fall near the origin. The accuracy of the double polynomial generally stays ahead
of the restarted GMRES polynomial, and requires even less orthogonalization. Thus
we will mostly use the double polynomial in the rest of this paper.

5. Linear Equations with Multiple Right-hand Sides. Given a good poly-
nomial approximation to A−1, one can quickly solve additional linear systems: simply
multiply each right-hand side by p(A), as in Algorithm 3. One simply needs to repre-
sent p via roots of π, whether obtained from full GMRES, or one of the alternatives
discussed in the last section. For double polynomial preconditioning the process is a
bit more subtle, and so is detailed in Algorithm 4.

Example 5. Consider the discretization of −uxx − uyy + 2ux − 102u = f on the
unit square with 200 interior grid points in each direction, giving A of dimension
n = 40,000. The −102u term makes the matrix indefinite and poses a challenge for
conventional solvers like restarted GMRES and BiCGstab [49]. We seek to solve 10
systems with random normal right-hand sides (scaled to unit norm) to residual norm
10−8. The first two rows of Table 1 show the results of standard methods. Restarted
GMRES(100) with a limit of 40,000 cycles not only takes over 28 hours; it only solves
five systems to accuracy below 10−8 (others as high as 6 × 10−3). BiCGStab with
a limit of 100,000 iterations takes 380 seconds and only solves four systems to 10−8

(others as high as 3.5×10−4). The remaining rows show results for polynomial inverse
approximation. First, running full GMRES to relative residual tolerance of 10−11

creates a degree 1345 polynomial p (which includes two extra roots added for stability
control; see Section 7). The next nine systems Axj = bj are solved by multiplying
p(A)bj , and all reach residual norms below 6 × 10−9. Finding p and solving the

Algorithm 3 Solve multiple right-hand sides with a polynomial from GMRES

1. First right-hand side system. Solve the first system to the requested relative
residual tolerance with full GMRES. Find the harmonic Ritz values from the
last GMRES iteration, and use them to build a polynomial approximation
p(A) to A−1. Add roots for stability, if necessary (Algorithm 1).

2. Other right-hand side systems. Apply p(A) to the right-hand sides of the
other systems. For the systems Axj = bj , j = 2 : nrhs, compute xj = p(A)bj

using [26, Algorithm 3].

Algorithm 4 Solve multiple right-hand sides with a double polynomial

1. First right-hand side. Choose the degree dϕin of the inner polynomial ϕin.
Run dϕin iterations of GMRES on the first right-hand side and then com-
pute the roots of the residual polynomial πin. These roots define the inner
polynomials pin and ϕin. Next, solve the first right-hand side system to the re-
quested relative residual tolerance with polynomial preconditioned GMRES,
PP(dϕin)-GMRES. Find the roots of the resulting outer GMRES residual
polynomial, to define the outer polynomial pout.

2. Other right-hand side systems. For the systems Axj = bj , j = 2 : nrhs,
compute xj = pin(A)pout(ϕin(A))b

j using [26, Algorithm 1] for ϕin(A) and [26,
Algorithm 3] for both pin and pout.
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Table 1
Example 5: convection-diffusion matrix from −uxx − uyy + 2ux − 102u = f of size n = 40,000

with 10 random right-hand sides. Compare using various p(A) ≈ A−1 to standard methods.

method total MVP’s time

GMRES(100) 21.5 million 28.6 hours

BiCGStab 1.37 million 380 seconds

p(A), deg = 1345 13,451 162 + 2.4 seconds

Double Polynomial
20,789 1.1 + 3.1 seconds

deg = 40× 52− 1 = 2079
Nonsymmetric Lanczos

14,456 3.4 + 2.3 seconds
deg = 1314

first system takes 162 seconds, while the next nine systems take only 2.4 seconds.
The double polynomial generated with PP(40)-GMRES gives a polynomial of higher
degree, 2079. (The outer ϕ polynomial is originally degree 50 and two stability roots
are added, giving the overall degree 40 × 52 − 1 = 2079.) This method takes only
1.1 seconds to solve the first system and generate the approximation to A−1; the
following nine systems are solved in an additional 3.1 seconds, all reaching residual
norm of 9.0 × 10−10 or better. For the last line of the table we use nonsymmetric
Lanczos to construct p. The method is also very quick (more time for finding the
polynomial, but even faster for solving the other systems, to similar accuracy).

Example 6. We generalize the last example to make the matrix increasingly
indefinite: −uxx − uyy + 2ux − γ2u = f with increasing γ. For γ = 8, there are three
negative eigenvalues, and the number increases with γ. For γ = 10, there are six
negative eigenvalues, including two very close to zero: −7.93×10−6 and −7.96×10−6.
We will compare double polynomial approximations to A−1 to standard BiCGstab.
PP-GMRES is run to 10−10 to generate the polynomial. The degree of the inner ϕ
polynomial is increased with γ: it is 25 for γ = 0 and 8, and then goes up by 25 for
each other case. BiCGStab is run with the limit of 100,000 iterations.

Table 2 shows the results. The double polynomial degree and runtime increase
with indefiniteness (e.g., γ = 100 uses degree 40,774). The accuracy of using p(A)bj

to solve systems j = 2, . . . , 10 varies, but the results are fairly accurate for all cases,
even with high degrees. The cost and accuracy of BiCGStab are about the same as
the polynomial approach when γ = 0, but for γ > 0 BiCGStab is less competitive.
Its cost increases, and the accuracy is sometimes considerably diminished.

Example 7. From the last example, we increase the nonnormality by increasing the
convection coefficients in the differential equation: −uxx−uyy +25ux+10uy −γ2u =
f . We change γ from 10 to 20, and see that the combination of nonnormality and
indefiniteness makes the problem rather difficult.

Table 3 shows the results. BiCGStab does well for the definite case with γ = 10,
then increasingly struggles. With γ = 15, all systems except one are solved to the
requested tolerance of 10−8, while for γ = 18, six are below 10−6 and finally for
γ = 20 only three systems get to residual norm below 10−6 and the others are all
above 10−2. Using the double polynomial from polynomial preconditioned GMRES
to solve the multiple right-hand sides is better, although the accuracy degrades as
the indefiniteness increases. For the worst case of γ = 20, the degree of the inner
polynomial is set to dϕin = 175, because this gives somewhat accurate results; other
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Table 2
Example 6: convection-diffusion matrix (n = 40,000) from −uxx − uyy + 2ux − γ2u = f with

10 random right-hand sides. Compare a double polynomial to BiCGStab for increasing γ.

Double Polynomial BiCGStab
γ degree of max res. time average max res. time

polynomial norm (sec) MVP’s norm (sec)

0 25× 40− 1 = 999 3.0× 10−10 2.1 887 9.6× 10−9 3.0
8 25× 60− 1 = 1499 2.2× 10−9 3.1 12,824 1.0× 10−8 39
10 50× 41− 1 = 2049 6.5× 10−9 4.0 137,466 3.5× 10−4 463
20 75× 96− 1 = 7199 5.4× 10−11 13 84,759 9.3× 10−6 296
35 101× 154− 1 = 15, 554 1.4× 10−7 29 97,843 5.2× 10−8 318
50 126× 151− 1 = 19, 025 6.1× 10−10 34 55,252 1.3× 10−8 189
75 150× 195− 1 = 29, 249 1.7× 10−8 54 119,789 9.9× 10−9 410
100 175× 233− 1 = 40, 774 8.2× 10−8 75 144,963 9.3× 10−5 497

Table 3
Example 7: convection-diffusion matrix (n = 40,000) from −uxx−uyy+25ux+10uy−γ2u = f

with 10 random right-hand sides. Compare double polynomial to BiCGStab for several γ.

Double Polynomial BiCGStab
γ degree of max res. time average max res. time

polynomial norm (sec) MVP’s norm (sec)

10 25× 42− 1 = 1049 8.7× 10−10 2.4 907 1.0× 10−8 3.0
15 25× 73− 1 = 1824 4.7× 10−7 4.0 4426 2.8× 10−2 15
18 50× 70− 1 = 3499 3.6× 10−6 8.3 53,714 6.5× 10−2 191
20 175× 90− 1 = 15, 749 8.8× 10−5 30 27,186 6.9× 10−2 97

values of dϕin that we tried did not work as well. One can do better by using a
lower degree polynomial and applying it more. For an inner polynomial of degree 50,
a degree 50 × 92 − 1 polynomial gives solutions with a worst-case residual norm of
8.3×10−3. But then applying it two more times, the accuracy improves to 4.8×10−9

and the total time is 23 seconds. This result suggests possibly trying to automate
the number of times the polynomial is applied for difficult problems, which is not
further pursued here. However, in the upcoming subsection on deflated polynomials,
applying a polynomial several times to help with the deflation will be considered.

We finish this section with a theorem about accuracy of multiple right-hand side
systems for normal A, using the distribution of the right-hand sides in the eigenvectors.

Theorem 5. Let A ∈ Cn×n be a normal matrix, and let Ax(1) = b(1) and
Ax(2) = b(2) be two systems with unit norm right-hand sides. Let A have the unitary
diagonalization A = ZΛZ∗, with eigenvectors z1, . . . , zn and corresponding eigenval-

ues λ1, . . . , λn. Expand the right-hand sides as b(1) = Z(Z∗b(1)) =
∑
β
(1)
i zi and

b(2) = Z(Z∗b(2)) =
∑
β
(2)
i zi. Let the first residual vector be r(1) = b(1)−Ax̂(1), where

x̂(1) is the GMRES approximate solution with x̂(1) = p(A)b(1). Obtain the second
residual by premultiplying this p(A) generated from the first linear system against the
second right-hand side: r(2) = b(2) −Ax̂(2), where x̂(2) = p(A)b(2). Then

∥r(2)∥ ≤ max

∣∣∣∣β(2)
i

β
(1)
i

∣∣∣∣ · ∥r(1)∥.
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Proof. Using that r(2) = b(2) − Ax̂(2) = b(2) − Ap(A)b(2) = π(A)b(2) and the
eigenvalue decomposition of π(A),

(8) r(2) = π(A)b(2) =

n∑
i=1

π(λi)ziz
∗
i b

(2) =

n∑
i=1

β
(2)
i π(λi)zi.

Since the eigenvectors form an orthonormal basis,

∥r(2)∥2 =
∥∥∥ n∑

i=1

β
(2)
i π(λi)zi

∥∥∥2 =

n∑
i=1

∣∣β(2)
i π(λi)

∣∣2 =

n∑
i=1

∣∣∣β(2)
i

β
(1)
i

· β(1)
i π(λi)

∣∣∣2
≤ max

∣∣∣∣β(2)
i

β
(1)
i

∣∣∣∣2 n∑
i=1

∣∣β(1)
i π(λi)

∣∣2
= max

∣∣∣∣β(2)
i

β
(1)
i

∣∣∣∣2 · ∥r(1)∥2.
6. Deflated Polynomials for Solving Multiple Right-hand Sides. Small

magnitude eigenvalues slow the convergence of iterative methods. After solving the
first linear system with GMRES, one can use the resulting Krylov subspace to obtain
approximations to the eigenvectors associated with the problematic small eigenvalues.
These approximate eigenvectors can then be projected out from subsequent right-hand
sides, greatly reducing the influence of the small eigenvalues and thus expediting
convergence. This process, briefly mentioned in subsection 2.3, is called deflation.
Here we explain how to integrate this idea with polynomial approximations to A−1 for
lowering the required polynomial degree, and then solving subsequent linear systems.

Algorithm 5 describes three main steps for solving Axj = bj for j = 1, . . . ,nrhs.
Step 1. Solve the first system using polynomial preconditioned GMRES. From the
resulting outer subspace, approximate eigenvectors via a standard Rayleigh–Ritz pro-
cedure. Use these approximate eigenvectors for a Galerkin projection applied to the
other right-hand sides, which (hopefully) deflates the most significant small eigenval-
ues from these systems. (See Algorithm 2 for details; the columns of the n × nev
matrix V span the nev approximate eigenvectors we wish to deflate, giving the ap-
proximate solutions xje for j = 1, . . . ,nrhs.) Step 2. Solve the deflated second system
(Ax2 = b2−Ax2e) with polynomial preconditioned GMRES using the same inner poly-
nomial as before. This solve develops a double polynomial, which we call a deflated
polynomial (since the small magnitude eigenvalues are deflated from this second sys-
tem). If the deflation is effective, the polynomial degree is reduced. Step 3. Apply this
deflated polynomial to solve the systems with all other (deflated) right-hand sides.

For a significantly nonnormal matrix, deflation is less effective unless both right
and left eigenvectors are computed. For these cases, we will consider applying a lower
degree polynomial more than once; see Example 9.

Example 8. We use the matrix BWM2000 from SuiteSparse [11]. Though not
large (n = 2000) and only mildly indefinite (all eigenvalues have negative real parts,
except for two that are barely positive), solving linear equations with this matrix can
be difficult. The right-hand sides are again random unit vectors. The parameters are
dϕin = 50, nev = 30, rtol1 = 10−11, rtol2 = 10−9, and rtol3 = 10−8. PP(50)-GMRES
takes 64 iterations and finds 30 approximate eigenvectors with residual norms ranging
from 6.5 × 10−8 to 4.7 × 101. Deflated PP-GMRES on the second system takes 16
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Algorithm 5 A deflated polynomial for solving multiple right-hand sides

0. Preliminary. Choose dϕin, the degree of the inner polynomial ϕin. Pick nev, the
number of eigenvalues to deflate. Choose relative residual norm tolerances
for the three steps: the first system is solved to rtol1, the second to rtol2 and
rtol3 for the other systems.

1. Solve first system and compute approximate eigenvectors. Run GMRES
for dϕin iterations to develop the inner polynomials pin and ϕin. Then solve
the first right-hand side system with polynomial preconditioned GMRES,
i.e., run PP(dϕin)-GMRES with rtol1. From the subspace thus developed,
apply the Rayleigh–Ritz procedure to compute approximate eigenvectors cor-
responding to the nev smallest eigenvalues [13].

2. Develop the deflated polynomial with the second system. Deflate the
second right-hand side system with a Galerkin projection over the approx-
imate eigenvectors (Algorithm 2). Then apply PP(dϕin)-GMRES, with the
same inner polynomial developed earlier, to the deflated second system with
rtol2. This generates an outer polynomial pout and thus the deflated double
polynomial p(z) = pin(z)pout(ϕin(z)).

3. Other systems. For Axj = bj , j = 3, . . . ,nrhs, project over the approximate
eigenvectors, yielding the partial solution xje and deflated system A(xj−xje) =
rj . Next, the approximate solution to the original system is xj = xje+p(A)r

j .
4. Optional. Reapply the deflated polynomial to systems that have not converged

to rtol3, including the second system if more accuracy than rtol2 is needed.
Each reapplication needs a projection and multiplication by p(A).

Table 4
Example 8: BWM2000 matrix of size n = 2000 with 10 right-hand sides. Compare a deflated

polynomial for multiple right-hand sides to BiCGStab.

method total MVP’s total time log avg. res. norm

Deflated Double Poly
10,460

0.37 + 0.09 + 0.07
3.1× 10−10

deg = 50× 16− 1 = 799 = 0.53 seconds
BiCGStab 550,313 6.9 seconds 5.3× 10−6

iterations. Figure 10 shows the convergence of PP(50)-GMRES on the first system
with a (blue) dashed line and BiCGStab on the same system with a (green) dash-dot
line. BiCGStab converges only to residual norm 4.6 × 10−3 in 45,405 matrix-vector
products (most not shown on the plot). The (red) solid line shows the solution of the
deflated system corresponding to the second right-hand side, which proceeds much
quicker due to the deflation.

Table 4 shows the cost for solving 10 right-hand sides. The deflated double poly-
nomial method uses 0.37 seconds to solve the first system and compute approximate
eigenvectors. Then 0.09 seconds are for the second system and generating a deflated
polynomial. The other systems take 0.07 seconds, and all solutions have residual
norms of 8.3× 10−10 or smaller. Meanwhile, BiCGStab is applied to the ten systems
with tolerance of 10−8 and a maximum of 100,000 iterations. This process takes 6.9
seconds, but only three of the systems converge. The log average for the systems
(exponential of the average of the natural logs of the residual norms) is 5.3× 10−6.

Example 9. Consider the one-dimensional convection-diffusion equation −u′′ +
αu′ − 302u = f . This example shows that it can take careful implementation of
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Fig. 10. Example 8: the matrix is BWM2000. Converge is shown for BiCGStab, polynomial
preconditioned PP(50)-GMRES with no restarting, and for deflated PP(50)-GMRES.

Table 5
Example 9: one-dimensional convection-diffusion equation −u′′ + αu′ − 302u = f with n = 1000.

Double Polynomial BiCGStab
α rtol’s degree of average average log avg.

(log10) deflated polynomial MVP’s MVP’s res. norm

0 −11,−9,−8 25× 10− 1 = 249 392 57,868 6.6× 10−9

5 −11,−9,−8 25× 62− 1 = 1549 1562
61,623 2.9× 10−7

5 −11,−3,−8 25× 4− 1 = 99 437
25 −10,−2,−8 25× 3− 1 = 74 542 66,275 1.4× 10−3

the deflated polynomial for significantly nonnormal and indefinite problems, but the
method can be cheap and accurate. Table 5 shows results for α = 0, 5, 25. With
n = 1000, the matrix is fairly ill-conditioned and the u term makes these matrices
indefinite. For the symmetric case of α = 0, the first system is solved with PP(25)-
GMRES to relative residual tolerance of 10−11, requiring 64 outer iterations and
1625 matrix-vector products. Then 30 eigenvectors are computed. Next, the deflated
polynomial is found of degree 249, and it accurately solves the other right-hand sides.
The residual norms are 6.9×10−9 or better, and the average number of matrix-vector
products (including the first right-hand side) is 387. BiCGStab needs over two orders
of magnitude more matrix-vector products, but it does produce accurate results.

Next, consider α > 0. BiCGStab requires slightly more matrix-vector products,
and is less accurate. The deflated polynomial is not effective for α = 5: it has about
the same degree as if no deflation was used, due to the inaccuracy of the deflation
in removing eigenvectors. PP-GMRES converges rapidly at first due to the partial
deflation, but slows down once the eigenvector components of the residual vector are
reduced down to the level of the deflated components. At that point, the Krylov
method must deal with these small eigenvalues, and the convergence plateaus while
that happens; see the solid (red) curve in Figure 11. For effective use of the deflation,
it pays to stop the PP-GMRES method when the approximately deflated eigenvalues
begin to impede convergence. Doing so gives a low degree deflated polynomial that
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Fig. 11. Example 9: Convection-diffusion equation −u′′ + 5u′ − 302u = f , n = 1000. Conver-
gence is shown for BiCGStab, PP(25)-GMRES with no restarting, and for deflated PP(25)-GMRES.

needs to be used more than once, with a deflation in-between each application of
the polynomial. Table 5 shows the results of running PP(25)-GMRES on the second
system to rtol2 = 10−3, then applying it three times (with projections) to bj for
j = 3, . . . , 10 and twice for the partly solved right-hand side for j = 2. This approach
gives accurate results, with a log average residual norm for the nine right-hand sides
of 5.8× 10−10. The average matrix-vector products for all 10 systems is only 427.

For higher nonnormality, α = 25, a good result comes from rtol2 = 10−2. The
deflated polynomial is applied five or six times for j = 2, . . . , 10 to reach the de-
sired residual norm level of 10−8. While this uses two orders of magnitude fewer
matrix-vector products than BiCGStab and gives better accuracy, it required experi-
mentation. An automated method for choosing rtol2 would be quite desirable.

Example 10. In Lattice Quantum Chromodynamics (QCD), one important task
is to estimate the trace of the inverse of a large non-Hermitian complex matrix. This
can be done with a Monte Carlo approach called Hutchinson’s method [18], which
requires solving many linear systems with random right-hand sides. Here we use 10
right-hand sides with entries randomly drawn from {±1,±i}. The QCD matrix is
from a 163-by-24 lattice, giving n = 1,179,648. The desired relative residual tolerance
for the linear systems is rtol3 = 10−5. The spectrum is roughly inside a circle in the
right-half of the complex plane, with eigenvalues approaching the origin from above
and below; the presence of small eigenvalues makes deflation important. A two-sided
projection is needed. Once right eigenvectors are known, the left eigenvectors can be
computed easily for this application. Thus only one deflation projection is needed
despite the significant nonnormality. This projection is the same as the Galerkin
projection in Algorithm 2 except in Step 1, we compute a matrix W whose columns
span the subspace of left eigenvectors and in Step 2, H =W ∗AV and c =W ∗r0.

Table 6 compares the deflated polynomial to the non-deflated polynomial and
BiCGStab. The non-deflated polynomial is found by solving the first right-hand side
with PP(40)-GMRES to relative residual norm accuracy below 10−6. This requires
52 iterations, so the polynomial is of high degree 40×52−1 = 2081. This polynomial
solves the next nine systems to accuracy 2.4×10−5 or better, which is just worse than
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Table 6
Example 10: QCD matrix of size n = 1,179,648 with 10 right-hand sides. Comparison of a

deflated polynomial, non-deflated polynomial, and the conventional BiCGstab algorithm.

method total MVP’s total time

Deflated Double Polynomial
10,524

7.1 + 1.1 + 8.5
deg = 40× 14− 1 = 799 = 16.7 minutes

Non-deflated Double Polynomial
20,898

4.1 + 31.7
deg = 40× 52− 1 = 2081 = 35.8 minutes

BiCGStab 203,481 375 minutes

the desired accuracy; a slightly higher degree polynomial is needed. Next, BiCGStab
is solved to requested relative residual of 10−5 and gives accurate answers, but requires
much more time.

Finally, to find the deflated polynomial, the first right-hand side is solved with
PP(40)-GMRES to relative residual tolerance of rtol1 = 10−12, which takes 78 iter-
ations. Then approximate eigenvectors are computed and here only the nev = 34 of
them that have residual norm below 10−3 are used, along with the associated left
eigenvectors. Deflated PP(40)-GMRES for the second right-hand side with rtol2 =
10−6 runs for only 14 iterations. It generates a polynomial of degree 40×14−1 = 559,
much lower than the non-deflated case. This polynomial solves the remaining eight
systems to relative residual norms of 3.4×10−6 or better. Overall, the time is reduced
by more than a factor of two compared to the non-deflated polynomial. More time
is needed for the first right-hand side (7.1 minutes versus 4.1 minutes), since it is
over-solved. However, the next nine are faster (9.6 minutes instead of 31.7 minutes).

7. Stability of the polynomial. Polynomials from GMRES are especially
prone to instability when a few eigenvalues stand out from the rest of the spectrum.
Stability can be improved by adding extra copies of the harmonic Ritz values near
these outstanding eigenvalues; see Subsection 2.2. We briefly consider implications for
polynomials approximating A−1. When high-degree polynomials are needed, stability
is of particular concern. The next example shows that it can be possible to find an
effective polynomial even when there are very outstanding eigenvalues.

Example 11. We use bidiagonal matrices with increasing separation of the large
eigenvalues and thus increasing difficulty for stability. All matrices are size n = 2500
and have 0.2’s on the superdiagonal. The first matrix has eigenvalues 1, 2, 3, . . . , n on
the main diagonal. Matrix 2 has diagonal 0.1, 0.2, 0.3, . . . , 0.9, 1, 2, 3, . . . , 2490, 2491.
While the large eigenvalues are not especially separated, they are more separated rela-
tive to the size of the small eigenvalues than for the first matrix. Matrix 3 has eigenval-
ues 0.1, 0.2, 0.3, . . . , 0.9, 1, 2, 3, . . . , 2490, 2600, so there is one very well separated eigen-
value. Matrix 4 has five outstanding eigenvalues, with diagonal 0.1, 0.2, 0.3, . . . , 0.9, 1,
2, 3, . . . , 2486, 2600, 2700, 2800, 2900, 3000.

Table 7 shows results both without and with the stability control of adding roots
from Algorithm 1. The first right-hand side is solved to relative residual tolerance of
10−11, and the polynomial p is then applied to nine other right-hand sides. Without
adding roots, the polynomial is effective in solving multiple right-hand sides only
for Matrix 1. In that case, the nine extra systems all have residual norms below
3.1×10−11. For the next three matrices, the polynomial is increasingly unstable with
high pof values (as defined in Algorithm 1) that indicate steep slopes, and it provides
very inaccurate solutions for the nine additional right-hand sides.
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Table 7
Example 11: Bidiagonal matrices with some increasingly outlying eigenvalues. The effect of

stability control is shown for solving systems with multiple right-hand sides.

Without Stability Control With Stability Control

matrix
degree of

max pof
max residual roots max residual

polynomial norm added norm

1 324 2.5× 101 3.1× 10−11 0 3.1× 10−11

2 596 9.5× 1022 5.4× 106 12 2.7× 10−11

3 596 2, 3× 10103 5.3× 1087 19 5.7× 10−9

4 597 7.9× 10216 4.5× 10201 68 1.5× 10−11

With stability control from Algorithm 1 using pofcutoff = 8, results are good even
with outlying eigenvalues and many added roots. Matrix 3 gives the least accurate
results, however if pofcutoff = 4, then all nine residual norms are below 2.3× 10−11.

The improvement with stability control is remarkable. However, the next example
is designed to trouble the stability control procedure.

Example 12. We choose a diagonal matrix with entries 0.1, 0.2, 0.3, . . . , 1, 2, 3, . . .,
50, 551, 552, 553, . . . 1000, 1501, 1502, 1503, . . . , 2000, 2501, 2502, 2503, . . . , 3000, 3501,
3502, 3503, . . . , 4491. This spectrum has four prominent gaps, and the residual poly-
nomial π has steep slope at eigenvalues at their edges. Also contributing to the
steepness is that there are enough small eigenvalues to push the polynomial degree
high. Slopes are especially steep for the eigenvalue at 50 and the ones just below it.

We solve the first system to relative residual norm below 10−11, generating p of
degree 454. Without stability control, this polynomial does not accurately solve other
systems: the residual norms for nine right-hand sides are as high as 9.4× 10−3. With
stability control, the results are even worse: the largest of the nine residual norms is
3.2× 10−1. Seven roots are added, including extra roots near eigenvalues 50, 49, 48,
47 and 46, along with two at Ritz values in gaps of the spectrum. Figure 12 (top)
shows the polynomial ϕ before roots are added (dashed line) and with roots (solid
line). This polynomial needs to be close to 1 over the spectrum for the method to
be effective. Figure 12 (bottom) examines these polynomials over the small and large
eigenvalues. Adding five roots near 50 multiplies the π polynomial by linear factors
like (1− z/50), each of which is near −100 at the large eigenvalues. The polynomial
oscillates with larger amplitude around the large eigenvalues, causing two problems:
instability due to a pof of 5×1013 at the largest eigenvalue, and, more importantly, the
polynomial ϕ varies significantly from 1 at quite a few of the eigenvalues (e.g., 4472,
4473 and 4474). This inaccuracy makes p(A) useless for solving linear equations.

We propose an improved version of Algorithm 1 that performs the stability test on
roots in increasing order of magnitude, and then updates the pof values when a root is
added; see Algorithm 6. This algorithm improves the results so that the maximum of
the nine residual norms is 4.0×10−6. The limited accuracy is not due to instability, but
rather the ϕ polynomial is still not close enough to 1 at some eigenvalues. The largest
deviation is at λ1512 = 3503 where ϕ(λ1512) = 1 − 5.2 × 10−5, which is significantly
far from 1. The ϕ polynomial is more accurate at larger eigenvalues due to two added
roots at the largest two eigenvalues, a result of the updated pof values. This example
demonstrates the danger of adding roots to the GMRES polynomial, because then
the polynomials no longer correspond to a minimum residual method and may not
be accurate at all eigenvalues. However, Algorithm 6 with pof updating did improve
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Fig. 12. Example 12: a matrix with four gaps in the spectrum, n = 2500. The top plot shows
the ϕ polynomial of degree 455, both before and after roots are added for stability control. The bottom
plot shows a close-up around the small and large parts of the spectrum.
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Fig. 13. Example 12: a matrix with four gaps in the spectrum, n = 2500. The plots are for a
double polynomial. The inner polynomial ϕin is highlighted at the eigenvalues. Also plotted is the
double polynomial ϕout(ϕin(z)) = pin(z) ∗ pout(ϕin(z)) of degree 899.

accuracy. In other testing with matrices that are difficult due to gaps in the spectrum
or due to indefiniteness, Algorithm 6 often improves the situation.

We now describe another way to improve stability through use of the double
polynomial. For the same matrix with gaps, we run PP(20)-GMRES to relative
residual norm below 10−11, which takes 45 iterations; this process yields the double
polynomial. No extra roots are needed for stability for either the inner or outer parts
of the double polynomial. The p polynomial is degree 20 × 45 − 1 = 899, much
higher than the polynomial from GMRES. Applying this polynomial to the nine
extra right-hand sides gives residual norms at or below 3.9× 10−10. Figure 13 shows
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Algorithm 6 Adding Roots to π(z) for Stability with pof Updating

1. Setup: Assume the d roots (θ1, . . . , θd) of π have been computed and then sorted
according to the modified Leja ordering [4, alg. 3.1]. (For high-degree poly-
nomials and/or large magnitude roots, use sums of logs in place of products,
to prevent overflow and underflow in the Leja ordering calculations.)

2. Compute pof(k): For k = 1, . . . , d, compute pof(k) =
∏

i ̸=k |1− θk/θi|.
3. Add roots using a reordered list of harmonic Ritz values and update

pof values: Reorder the roots and their corresponding pof’s (generally by
increasing magnitude). For each root θk starting with the smallest, compute
⌈log10(pof(k)) − pofcutoff)/14⌉. Add that number of θk copies to the list of
roots with the Leja ordering. Add the first to the end of the list; if there are
others, space them evenly between the first and last occurrence of θk (keeping
complex roots together). Based on the added root(s), update the pof values
of all roots that have not yet been considered in the list of roots sorted by
magnitude. Then continue checking the pof values for the next root.

4. Apply a second Leja ordering: For the list of θk values that is Leja ordered
aside from the stabilizing roots, perform a second Leja ordering. To give
distinct values for the Leja algorithm, perturb these roots slightly for deter-
mining the order, but do not change the actual θk values. (We perturb to
(1 + 10−12 ∗ randn) ∗ θk, where “randn” is a random Normal(0,1) number.)

the degree 20 inner polynomial ϕin as a dashed line and highlights the values at the
eigenvalues. It also shows the composite ϕ polynomial, ϕ(z) = ϕout(ϕin(z)), which is
near 1 throughout the spectrum. This polynomial is also near 1 over most of the gaps
in the spectrum. This is because the inner polynomial maps the gaps (except for the
first one) into a zone where eigenvalues are also mapped, and so the outer polynomial
needs to be near 1 there. The fact that the double polynomial is near 1 over most
gaps, instead of being unconstrained, partly explains why the higher degree is needed.

Stability control and double polynomials enable polynomial approximation to
the inverse for some difficult matrices, but these approaches are not foolproof. One
can construct adversarial examples with enough small eigenvalues and gaps in the
spectrum to make an effective polynomial quite hard to find. On the other hand,
many applications have matrices that lack such challenges. Polynomial approximation
can be effective for these problems, even when a high-degree polynomial is needed.

8. Conclusion. It is often possible to construct an accurate moderate-degree
polynomial approximation to the inverse of a large matrix. The theory for the nor-
mal case shows that accuracy of the polynomial follows that of the GMRES residual,
along with the interplay of the right-hand side and the eigenvectors. The approxi-
mating polynomial can be found in several ways; here we focused on full GMRES and
polynomial preconditioned GMRES, the latter of which builds double (composite)
polynomials. This composite approach can be more efficient due to reduced orthogo-
nalization costs, though higher degree polynomials are often needed.

Applications for approximate polynomial inverses include solving systems of lin-
ear equations with multiple right-hand sides. For difficult problems, the polynomial
is often better than BiCGStab in expense and accuracy. However, like all Krylov
methods, a polynomial is not always effective. This is particularly true for matrices
that are ill-conditioned and have outstanding eigenvalues. Stability control can help.

A deflated version of the polynomial uses approximate eigenvectors to lower the
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degree. Multiple applications of the deflated polynomial may be needed, particularly
for significantly nonnormal matrices. Some fine-tuning is needed.

In future research, we plan to consider both the nonsymmetric and symmet-
ric Lanczos algorithms. These methods have some natural stability control through
roundoff error, which produce extra copies of Ritz values corresponding to outstand-
ing eigenvalues (so-called “ghost” Ritz values). Nonsymmetric Lanczos can find both
right and left eigenvectors, which could help construct polynomials for deflation; the
stability of this process will require careful assessment.
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