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Abstract: Golden fullerenes have recently been identified by

photoelectron spectra by Bulusu et al. [S. Bulusu, X. Li, L.-S.
Wang, X. C. Zeng, PNAS 2006, 103, 8326–8330]. These

unique triangulations of a sphere are related to fullerene

duals having exactly 12 vertices of degree five, and the ico-
sahedral hollow gold cages previously postulated are related

to the Goldberg–Coxeter transforms of C20 starting from a tri-
angulated surface (hexagonal lattice, dual of a graphene
sheet). This also relates topologically the (chiral) gold nano-
wires observed to the (chiral) carbon nanotubes. In fact, the
Mackay icosahedra well known in gold cluster chemistry are

related topologically to the dual halma transforms of the
smallest possible fullerene C20. The basic building block here

is the (111) fcc sheet of bulk gold which is dual to graphene.

Because of this interesting one-to-one relationship through

Euler’s polyhedral formula, there are as many golden fuller-
ene isomers as there are fullerene isomers, with the number
of isomers Niso increasing polynomially as OðN9

iso). For the re-

cently observed Au¢16, Au¢17, and Au¢18 we present simulated
photoelectron spectra including all isomers. We also predict

the photoelectron spectrum of Au¢32. The stability of the
golden fullerenes is discussed in relation with the more com-
pact structures for the neutral and negatively charged Au12

to Au20 and Au32 clusters. As for the compact gold clusters

we observe a clear trend in stability of the hollow gold
cages towards the (111) fcc sheet. The high stability of the
(111) fcc sheet of gold compared to the bulk 3D structure

explains the unusual stability of these hollow gold cages.

1. Introduction

Ever since Haruta discovered that gold nanoclusters are cata-
lytically active,[1–4] we have experienced a new “gold rush” in

nanoscience[5–11] with the discovery of many interesting and
often unexpected gold nanostructures.[12] Gold shows indeed

very unusual properties compared to its lighter congeners

copper and silver due to pronounced relativistic effects within
the Group 11 series of elements.[13–19] Albeit these effects in-

crease with the expected approximate Z2 scaling down
a group in the periodic table, the late transition metals such as

gold or mercury have rather large relativistic enhancement fac-
tors originating from the filling of the underlying valence d-

shell.[18, 20] As a result of relativistic effects, smaller gold clusters
prefer a planar arrangement,[21–23] and mixed metal–gold clus-

ters experience strong electron donation toward the gold
atoms due to its relativistically increased electronegativity.[14]

This makes mixed gold-cluster systems ideal for electronically

fine-tuning chemical and physical properties.[5] Here we note
that the transition of 2D gold triangulated networks to 3D
compact gold structures towards the growth into the fcc bulk
gold arrangement is the subject of much discussion and

debate.[24–31] In other words, it is currently challenging to un-
derstand the growth of metallic clusters toward the bulk by

using quantum chemical methods.[32–34]

Gold clusters can show very unusual and unexpected struc-
tures such as the pyramidal Au20 cluster[26, 35, 36] or the “golden

fullerene” Ih-Au32 postulated in 2004 by Johansson et al.[37] This
unique Ih-Au32 hollow cage can be constructed by replacing

each face of the Ih-C60 fullerene polyhedron by a gold atom re-
sulting in a triangulated surface of icosahedral symmetry.[37]

More recently, Karttunen et al. predicted a chiral I-Au72 cage

which is spherically aromatic.[38] For both copper and silver
such a hollow cage becomes rather unstable.[37, 39] A number of

such golden fullerenes, that is, Ih-Au¢32, Td-Au¢16, C2v-Au¢17 and C2v-
Au¢18, have been identified by photoelectron spectroscopy by

Wang and co-workers.[40, 41] Since the publication of the paper
by Johansson et al. ,[37] a number of other studies on golden
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fullerenes have appeared, either with a hollow cage,[25, 34, 38, 42–49]

or with a central metal enclosed[50–58] extending on the original

work of Pyykkç and Runeberg on W@Au12.[59, 60] For a recent
review see Wang and Wang.[61]

In this study we explore the relationship between carbon
and golden fullerene cages in detail as many interesting topo-

logical features known for fullerenes,[62, 63] such as the Gold-
berg–Coxeter transformation to construct larger fullerene
cages,[64, 65] can also be applied to the golden fullerenes. We
show that a new class of golden fullerene structures evolves
from a one-to-one mapping into the isomer space of fullerene
graphs. With this knowledge we reanalyze the experimental
photoelectron spectrum of the negatively charged Au¢16 cage

structure. We also show that stability of such hollow cage
structures is not always guaranteed and depends on the spher-

icity of such systems, but is related to the unusual stability of

the (111) fcc sheet of gold. We also explore an interesting
topological relationship between Mackay icosahedra and

halma transformations recently investigated for fullerenes.[63]

1.1. Topological aspects

Fullerenes show rich and mathematically interesting topologi-
cal features,[62, 63] which have been described for example in
the works of Fowler and Manolopoulos,[66] and most recently
by our research group in Auckland.[63] They can be thought of

by wrapping a graphene sheet around a sphere (or more gen-
erally a genus 0 surface), but introducing 12 pentagons (no
more and no less) to fulfil Euler’s polyhedral formula:

Nþ F¢E ¼ c ð1Þ

where N is the number of vertices (atoms), F is the number of

faces (rings), E is the number of edges (bonds) and c is called
the Euler characteristic with c= 2 for convex polyhedra.[67]

Euler’s formula already shows the symmetry between the
number of vertices N and the number of faces F, as their role
can be interchanged without violating Euler’s theorem. Inter-
changing the roles of vertices and faces in a graphene sheet
leads to a (111) sheet (surface) of an (for example) fcc structure

adopted in bulk gold (both belonging to the hexagonal 2D lat-
tice group p3m1), where the dual vertex is in the center of the
hexagon connected by edges to the neighboring dual vertices.
Several smaller gold clusters found in the search for global
minima are in fact cut-outs from this (111) fcc sheet,[26] denoted
as p3m1-T in the following (Figure 1).

To view it in a different way, the hexagons in the graphene

sheets are exactly the Voronoi cells in the p3m1-T sheet. As an
interesting side aspect we mention the helical multishell

(chiral) gold nanowires found experimentally by Kondo and Ta-

kayanagi,[68] which are duals of multishell (chiral) carbon nano-
tubes.[37] These gold nanowires can be constructed exactly in

the same way as carbon nanotubes using the chiral vector
Ch(n,m) on a hexagonal sheet as described in detail for exam-

ple by Dresselhaus and co-workers.[69] As an example we show
the D6d fullerene nanotube and its dual structure in Figure 2.

The requirement to have 12 pentagons in a fullerene graph

with Fh hexagons (Fh = 0 for C20 and Fh>1 for all other ful-
lerenes) implies for a fullerene dual to have exactly 12 vertices

of degree five and the remaining of degree six. In fact it is well
known that C22 cannot exist as a fullerene,[70] which implies

that its hypothetical dual Au13 does not exist either (the

number of vertices Nd in the dual is identical to the number of
faces in a fullerene, Nd = Ff = Nf/2 + 2,[63] using subscripts f and

d for the fullerene and its dual, respectively). Because there is
a one-to-one correspondence between a fullerene and its dual

Figure 1. a) p3m1-G graphene, and b) its dual sheet p3m1-T adopted in (111)
surface of fcc gold.

Figure 2. a) D6d-C144 zig-zag fullerene nanotube, and b) its dual D6d-Au74.
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graph, we have as many isomers (nonisomorphic graphs) for
CNf

as we have for AuNf=2þ2 and dualization preserves the point

group symmetry. Here we mention that according to Thurston,
the number of isomers increases polynomially in ninth leading

order with the number of vertices, that is, as OðN9
f Þ.[71]

Au32 was the first of such golden fullerenes postulated by

Johansson et al. to be a rather stable hollow cluster, and they
were the first ones to mention that these golden dual ful-
lerenes (GDF) are obtained from fullerene graphs.[37] Au32 is

shown in Figure 3 together with its dual, C60 and the corre-
sponding graph representation (twice the dual transformation
leads back to the original polyhedron or graph). Now that we
have established an isomorphism between a fullerene graph

and its dual, we can easily construct isomers of golden ful-
lerenes by using standard algorithms for the construction of

fullerenes, such as the generalized face-spiral algo-

rithm,[63, 66, 72, 73] embedding the graph on a genus 0 surface and
finally transforming the cage to its dual.

As an example we mention Au16 as the dual of C28. Checking

the list of possible isomers[74] we see that there are two possi-
ble non-isomorphic structures, D2-Au16 and Td-Au16. However,

only the more symmetric Td-Au¢16 has been considered as a pos-
sible candidate in recent photoelectron spectroscopy experi-
ments.[41] The question naturally arises if the other negatively

charged D2 isomer has a similar photoelectron spectrum and is
more stable or not compared to the Td isomer. In fact, Au32

which is the dual of C60 has 1812 different isomers with only
one fulfilling the isolated pentagon rule (IPR) as proposed by

Kroto.[75] For example, in a recent paper Fa and Dong reported
on a hollow gold D6d-Au26 cluster.[25, 44] Looking at the list of

possible fullerenes we see that there are 199 possible isomers
for dual fullerene structures, and in fact there are two possible
isomers having D6d symmetry. This just highlights the rich top-

ology of such dual fullerenes.
For the dual structures, we do not know if a similar rule ap-

plies, that is an “isolated vertex rule” of degree five (IVR5). In
fullerenes the pentagons are responsible for the curvature of

the carbon cage and for the overall symmetry and structure,

with connected hexagons building planar substructures on the
polyhedron. Here we note that the Mackay icosahedron (dis-

cussed below) shows exactly that feature.
p3m1-G sheets have been considered by Goldberg and Cox-

eter for the construction of larger fullerenes.[64, 65, 76] The original
Goldberg–Coxeter transformation superimposes a hexagonal

mesh on the surface of the C20 dodecahedron forming a new
polyhedron with leaving the number of pentagons at exactly

12.[64, 65] This transformation can be applied to any fullerene
isomer.[63] The Goldberg–Coxeter transformation GCk,l increases

the number of vertices for a fullerene by a factor of (k2 + kl +
l2), where k and l are integers describing the scale and orienta-

tion of the mesh.[63, 76] If k = l or l = 0 the point group symmetry
is preserved. For example, we have GC1,1[Ih-C20] = Ih-C60 (leap-
frog transformation)[66] and GC2,0[Ih-C20] = Ih-C80 (halma transfor-

mation), or in the dual case applying the same procedure to
the p3m1-T sheet for our gold fullerenes GC1,1[Ih-Au12] = Ih-Au32

and GC2,0[Ih-Au12] = Ih-Au42. Simple algebra shows that
GCk,l[AuNd

] has a new vertex count of:

N0d ¼ ðk2 þ kl þ l2ÞðNd¢2Þ þ 2 ð2Þ

Both Ih-Au32 and Ih-Au42 have been postulated to be stable

golden fullerenes before,[37] and more recently the chiral I-
Au72

[38] which is nothing else but the dual of GC2,1[Ih-C20] = I-

C140, which is chiral as well as the symmetry being conserved
upon dualization.

Now it almost seems trivial to relate Mackay icosahedra[77]

well known for gold clusters[29, 78] to fullerenes. We might call

them “multiwalled halma-transformed icosahedral” dual ful-
lerenes in an analogous way to the multiwalled gold nano-

wires. A Mackay icosahedron is a closed packed multishell
structure, each shell being an icosahedron with:

Nshell ¼ 10k2 þ 2 ð3Þ

number of atoms in each shell with increasing k. This gives the

well-known magic cluster numbers of (including the central
atom) 13, 55, 147, 309, 561 derived from:

Ntotal ¼ 1þ 2
Xmshell

k¼1

5k2 þ 1ð Þ ¼ ð10m3
shell þ 15m2

shell þ 11mshell þ 3Þ=3

ð4Þ

with mshell�1. One such Mackay icosahedron with mshell = 7
and Ntotal = 1415 is shown in Figure 4. The triangles clearly
show the halma pattern of a Goldberg–Coxeter GCk,0 transfor-
mation. Because each transformation brings a new vertex on

the icosahedral edge, we can just deduct the number of shells
by counting the number of atoms at one edge of a triangle
Nedge, that is, mshell = Nedge¢1, which gives eight atoms and

seven icosahedral shells for the Mackay icosahedron shown in
Figure 4. Mackay pointed out that the packing density (or

atomic packing factor) for N!1 with 1= 0.68818 is not too
different from a closed-packed structure such as fcc with 1=

p/
ffiffiffiffiffi
18
p

= 0.74048,[77] one reason why icosahedral cluster growth

is often seen. The number of atoms in a shell Nshell directly
corresponds to the number of faces in a halma transformed

C20, that is, for l = 0 in the Goldberg–Coxeter transformation
and starting with Nd = 12 in Equation (2) we have

N0d ¼ k2ðNd ¢ 2Þ þ 2 ¼ 10k2 þ 2 identical with the formula
given by Mackay.

Figure 3. a) Schlegel diagram of C60 (red vertices) and its dual (blue vertices
and dashed edges), b) the C60 structure, and c) its dual Au32 structure.
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Finally we note that we can name the different isomers of
the golden dual fullerenes exactly in the same way as we do

for the fullerenes by using the canonical face spiral pentagon
indices (FSPI) and the numbering scheme introduced by

Fowler and Manolopoulos,[66] keeping in mind that the face
spiral for fullerenes now becomes a vertex spiral for the dual

triangulated surface. We now turn to a detailed analysis of all

possible golden dual fullerenes from Ih-Au12, Au14 to Au20 and
Ih-Au32 by quantum chemical calculations.

2. Computational Details

Program FULLERENE[72] was used to construct initial structures of
all isomers of the golden dual fullerenes from Au12 to Au20 using
a recently developed force-field for fullerenes[79] (as already men-
tioned the golden dual fullerene Au13 does not exist). The follow-
ing isomers need to be considered according to the isomer list for
the fullerenes (number in parenthesis gives the number of differ-
ent isomers of same symmetry):[72, 74] Ih-Au12, D6d-Au14, D3h-Au15, D2-
Au16, Td-Au16, D5h-Au17, C2v-Au17(2), D3h-Au18, D3d-Au18, D3-Au18, D2-
Au18, C3-Au18(2), C3v-Au19, C2-Au19(3), Cs-Au19(2), D6h-Au20, D3h-Au20,
D2d-Au20(2), C2v-Au20, D2-Au20(2), C2-Au20(3), C2-Au20(2), C1-Au20(2) and
Ih-Au32. The initial force-field optimized structures scaled to an ap-
proximate internuclear distance were then refined by using the
Perdew–Becke–Ernzerhofer generalized gradient functional[80, 81]

corrected for dispersion interactions using Grimme’s method (PBE-
D3)[82, 83] together with a Los-Alamos scalar relativistic effective core
potential for gold and the accompanying double-zeta basis sets.[84]

Note that the PBE functional was recently considered to perform
well for gold clusters.[85] For several selected clusters we checked
that the geometries obtained were accurate by performing calcula-
tions using a small core scalar relativistic Stuttgart pseudopoten-
tial[86] together with an augmented valence double-zeta basis set
of Peterson and Puzzarini.[87] In comparison, we also calculated the
compact global minimum cluster structures which were recently
published for the neutral compounds by our group[26] and for the
negatively charged species by Kappes and co-workers.[88, 89]

The simulation of the photoelectron spectra has been carried out
by artificial broadening the spectrum of orbital energies with Gaus-
sian functions. The standard deviation s for these functions was
chosen to be 0.035 eV in qualitative agreement with the experi-
mental spectra. The orbital energies were calculated using the PBE
density functional with the def2-SVP[90] double zeta basis imple-
mented in TURBOMOLE 7.0.[91] The core region was described

using an effective core potential including scalar relativistic effects.
The calculated electron affinities were used as the onset value for
simulating the photoelectron spectra.

For the calculation of the (111) fcc sheet and the fcc bulk structure
of gold we used the program package VASP5[92] utilizing a plane-
wave basis set (cutoff energy Ec = 350 eV) and the standard projec-
tor-augmented wave (PAW) datasets for the elements to model the
electron-ion interaction.[93, 94] The electron–electron interaction was
modeled within the generalized gradient approximation to the ex-
change-correlation energy functional as described above and dis-
persive effects were taken into account by employing Grimme’s D3
dispersion correction with Becke–Johnson damping.[82, 83] Brillouin
zone integrations were performed on G-centered Monkhorst–Pack
grids of k-points with an inverse distance of 0.2 æ¢1. The cohesive
energy is defined as the atomization energy per atom keeping in
mind that one gold atom is negatively charged for the anionic
clusters.

In order to discuss how much the gold cages deviate from spheric-
ity compared to the dual fullerene structure we use the previously
introduced definition of a minimum distance sphere (MDS):[72]

min
cMDS2CHðSÞ

1
N

X
i

RMDS ¢ ~pi ¢~cMDSkkj j ð5Þ

with the MDS radius defined as:

RMDS ¼
1
N

X
i

~pik ¢~cMDSk ð6Þ

Here S is the set of n points ~pi (i = 1,…, N) in 3-dimensional space,
CH(S) its convex hull, k ·k the Euclidean norm, and~cMDS is the bary-
center of the MDS with radius RMDS. In other words, we look for
a sphere with the vertices lying inside or outside the sphere, but
closest to it. We now define a measure for distortion from spherical
symmetry through the MDS:[72]

DMDS ¼
100

NRmin

XN

i¼1

RMDS ¢ ~pik ¢~cMDSkj j ð7Þ

where Rmin is the smallest bond distance found in the cluster. The
pentagon index Np for a fullerene is defined as:

Np ¼
1
2

X5

k¼1

kpk with
X5

k¼0

pk ¼ 12 ð8Þ

where the pentagon indices (pi j I = 0,…, 5) define the number of
pentagons attached to another pentagon.[66]

3. Results and Discussion

3.1. Structure and stability

The results for the neutral and negatively charged gold clusters
are collected in Table 1 and Table 2, respectively. The dual full-

erene structures (DF) are compared to the known global mini-

mum (GM) structures in these tables, and the different isomers
are numbered according to their canonical degree 5 vertex

spiral identical to the canonical face spiral pentagon indices for
fullerenes.[66] We also include calculations for the most stable

neutral and anionic compact Aun clusters for comparison
which are listed in Table 3. The investigated structures for the

Figure 4. Mackay icosahedron with seven shells and 1415 atoms. The outer
icosahedral shell is the dual of the halma transform GC7,0[Ih-C20] = Ih-C980.
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negatively charged gold clusters are depicted in Figure 5 and
Figure 6, and the energy differences compared to the global

minimum structures are shown in Figure 7.
We can sort out the optimized gold clusters according to

whether they can be derived from a dual fullerene structure or
not, or more generally from a cubic polyhedral graph. In this

case we can simplify Euler’s polyhedral formula, which upon
dualization (i.e. , swapping the role of vertices with faces) gives

a triangulation of a sphere obeying the formula:

G ¼
X
n¼3

ð6¢ nÞNn ¼ 12 ð9Þ

where Nm denotes the number of m-valent vertices. Any devia-
tion from G= 12 implies that the polyhedron is not a triangula-

tion of a sphere. For dual fullerenes we only allow for N5 = 12

and N6 = 0 or N6>1. Hence we have to look for a complete tri-

angulation and 12 vertices of degree 5 to obtain a dual fuller-
ene structure (also called a geodesic dome).

Table 1 and Table 2 show vertex counts as well as results
from Equation (9) for the neutral and anionic clusters, respec-

tively. Considering only the topological parameter G it is clear
that most of the optimized structures can be derived from

a dual planar cubic graph and therefore only consist of trian-
gles. The few notable exceptions are the isomers 12:1 and

20:12 for both the anionic and neutral structure. The ideal ico-

sahedral structure for the Au12 cluster is not stable under the
present level of theory, and the optimized structure does not
correspond to a triangulation of a sphere. However, it has al-
ready been shown that this cage can be stabilized by inserting
a transition metal (e.g. , tungsten) atom into the central posi-
tion of the icosahedron such that the ten valence electron rule

is fulfilled.[50, 59] Addition stabilization of such an endohedral

gold cluster can be achieved by attaching ligands to the sur-
face of the cluster.[96] Structure 20:12 converges towards

Figure 5. Structures of anionic gold clusters (Au¢12 to Au¢19).
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a more compact cluster with an eightfold coordinated gold

atom in the center for both the anionic and the neutral cluster.

Figure 8 gives an overview over all optimized structures. A
green field marks a dual fullerene structure with exactly 12 ver-

tices of degree five and the remaining vertices being of degree
six. These are also the structures used in Figure 10 and they

are more abundant for clusters of size 14 to 19 atoms. Struc-
tures with an orange mark do not fulfill the requirement of

being a dual fullerene as they contain vertices of degree 4.

However, they are still hollow gold cages and, as mentioned
before, show a value of G = 12. These structures can be rather

similar to the initial dual fullerene structures obtained from

a force-field optimization of the corresponding carbon cage,
and are usually a result of a flattening towards a more oblate
geometry. Most of the clusters shown here preserve their
hollow cage structure with only few clusters optimizing into

more stable compact structures. These are marked as red in
Figure 8.

As illustrated by the distortion parameter D(F) in Tables 2
and 3, carbon fullerenes try to adopt “spherical” shapes if per-
mitted by the distribution of pentagons. This is especially the

case for Ih-C20 and Ih-C60 with a distortion parameter of exactly
zero (i.e. , all atoms lie on a sphere). In contrast, the golden

dual fullerene structures have much larger distortion parame-
ters D(GDF) than their carbon equivalent and are therefore less

spheroidal. The golden dual fullerenes usually distort into less

symmetric structures, for example into oblate structures as
mentioned above.

Figure 7 shows the relative energies DEg per atom compared
to the most stable compact arrangement for all optimized

hollow gold clusters. It is immediately apparent, that the most
stable dual fullerene structures can be found in the region of

Figure 6. Structures of anionic gold clusters (Au¢20).

Figure 7. Relative energies for the investigated dual fullerene clusters.
Energy differences compared to the most stable compact cluster (per atom)
are given in eV.
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14 to 18 atoms. Some clusters in this region even exceed the

stability of formerly proposed global minimum structures. For
example, for Au¢16 the global minimum has been proposed
before to be the tetrahedral hollow cluster[88, 89] which is the

dual of the tetrahedral C28 isomer as observed experimentally
in photoelectron spectra.[41] We should mention, that Chen

et al. have found the tetrahedral structure to lie 0.22 eV above
a sheet-like structure.[46] However, our results contradict these

findings as the planar structure is predicted to be 0.939 eV

higher in energy. Here we point out that according to our cal-
culations the D2 symmetric isomer 16:1 lies only 0.02 eV above

the tetrahedral structure. Therefore, it should also be possible
to observe this isomer by experimental methods.

Possible Au32 structures have been investigated intensively
by Jalbout et al.[95] We compare our results to the most stable

isomers found in their work (Table 3). For both neutral and

anionic clusters, isomer 10 in their work (see ref. [95] for de-

tails) turns out to be the most stable compact geometry and
the icosahedral hollow structure 32:1082 is less stable in both

cases, that is, for the neutral and anionic cluster. We also in-
clude the C3v compact structure in Table 3 not investigated

before, which is derived from the ideal Au35 tetrahedron by re-
moving three of the corner atoms in the tetrahedron and can

be seen as a cut-out of the fcc bulk structure. This cluster is

also very stable compared to the other structures proposed by
Jalbout et al. We also mention that the Au32 hollow cage dis-

torts from an ideal icosahedral symmetry into a D2h arrange-
ment, which is reflected in the distortion parameter D(Au32) =

10.4, which however is rather small. Au32 can therefore be seen
as pseudospherical.

Table 1. Topological parameters for the neutral gold clusters.[a]

Symmetry Stability Vertices G Bond lengths PI Distortion
isomer ideal actual DEn DEg N4 N5 N6 N7 shortest largest Np D(F) D(GDF)

12:1 Ih D4h ¢2.058 0.485 8 0 4 0 16 2.798 2.895 30 0 21.1
14:1 D6d D2d ¢2.134 1.173 0 12 2 0 12 2.739 3.048 24 6.1 23.4
15:1 D3h C2v ¢2.192 ¢0.083 0 12 3 0 12 2.786 2.901 21 5.1 29.2
16:1 D2 D2 ¢2.247 0.223 0 12 4 0 12 2.770 2.917 20 7.9 24.3
16:2 Td D2d ¢2.233 0.440 0 12 4 0 12 2.716 2.996 18 1.3 28.5
17:1 D5h Cs ¢2.259 0.177 2 8 3 3 12 2.747 3.026 20 11.5 17.3
17:2 C2v C2v ¢2.272 ¢0.038 0 12 5 0 12 2.769 2.931 18 7.6 19.1
17:3 C2v C2v ¢2.277 ¢0.128 0 12 5 0 12 2.762 3.139 17 5.5 20.8
18:1 C2 C2 ¢2.307 0.321 0 12 6 0 12 2.736 2.934 17 9.2 16.9
18:2 D2 D2 ¢2.290 0.627 0 12 6 0 12 2.733 2.935 18 11.6 17.2
18:3 D3d D3d ¢2.275 0.896 0 12 6 0 12 2.714 2.894 18 12.1 18.2
18:4 C2 C2 ¢2.321 0.073 0 12 6 0 12 2.749 2.931 16 7.2 18.7
18:5 D3h D3h ¢2.303 0.386 0 12 6 0 12 2.763 3.159 8 15.1 27.3
18:6 D3 D3 ¢2.310 0.270 0 12 6 0 12 2.742 2.945 15 5.8 15.2
19:1 C2 C2 ¢2.298 1.196 0 12 7 0 12 2.745 3.006 17 14.9 26.0
19:2 Cs Cs ¢2.307 1.014 0 12 7 0 12 2.747 2.972 15 7.5 20.0
19:3 Cs Cs ¢2.304 1.077 0 12 7 0 12 2.737 2.957 15 11.9 28.3
19:4 C2 C2 ¢2.311 0.935 0 12 7 0 12 2.745 2.905 15 7.0 17.7
19:5 C2 C2 ¢2.313 0.911 0 12 7 0 12 2.734 2.947 14 6.6 18.7
19:6 C3v C3v ¢2.316 0.854 0 12 7 0 12 2.765 2.890 15 12.7 30.6
20:1 C2 C1 ¢2.324 1.684 2 8 10 0 12 2.711 2.984 16 15.3 36.7
20:2 D2 D2 ¢2.295 2.271 0 12 8 0 12 2.699 3.023 18 20.4 22.0
20:3 C1 C1 ¢2.339 1.395 2 8 10 0 12 2.724 2.954 15 13.1 129.1
20:4 Cs Cs ¢2.324 1.695 0 12 8 0 12 2.709 3.023 16 13.7 25.5
20:5 D2 D2 ¢2.332 1.541 0 12 8 0 12 2.749 3.080 16 18.5 17.3
20:6 D2d C2v ¢2.337 1.440 2 8 10 0 12 2.752 2.977 14 9.8 26.6
20:7 C1 C1 ¢2.325 1.663 2 9 8 1 12 2.712 3.019 14 10.9 25.8
20:8 Cs Cs ¢2.346 1.256 2 8 10 0 12 2.748 3.057 14 8.4 40.7
20:9 C2v D6h ¢2.362 0.938 6 0 14 0 12 2.744 2.971 13 3.8 23.2
20:10 C2 C2 ¢2.344 1.299 2 8 10 0 12 2.726 3.004 14 12.6 23.9
20:11 C2 Cs ¢2.346 1.256 2 8 10 0 12 2.747 3.056 13 8.1 35.8
20:12 C2 C1 ¢2.366 0.861 3 5 4 7 4 2.719 3.048 13 5.4 21.1
20:13 D3h D6h ¢2.362 0.938 6 0 14 0 12 2.744 2.970 15 6.5 27.9
20:14 D2d D2d ¢2.311 1.948 0 12 8 0 12 2.779 2.929 12 3.7 22.0
20:15 D6h D6h ¢2.362 0.936 6 0 14 0 12 2.744 2.972 12 4.5 25.6
32:1082 Ih Ih ¢2.494 1.537 0 12 20 0 12 2.793 2.835 0 0 7.5
(111) 2D sheet ¢2.994 – 0 0 1 0 – 2.722 2.722 0 0 0
fcc 3D bulk ¢3.677 – – – – – – 2.897 2.897 – – –

[a] Number of gold atoms and isomer numbers of the corresponding fullerene in canonical order of the pentagon spiral indices,[66] ideal and actual point
group symmetry, energy differences DEg to the most stable neutral cluster of same size and binding energy per atom DEn = [E(Aun)¢nE(Au)]/n [eV], short-
est and largest bond distance [æ], pentagon index (PI) Np, and distortion parameter D (in %) for the initial force-field optimized fullerene structure (F) and
the dual gold cluster (GDF).
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3.2. Convergence towards the infinite structure

The neutral gold clusters and their property conver-
gence towards the bulk has already been discussed
in one of our previous papers.[26] Increasing the size

of non-hollow compact clusters lowers the cohesive
energy until the clusters are large enough to be
a valid representation of the bulk gold structure. This

can be seen in Figure 9, where a clear linear correla-
tion between cluster size and the cohesive energy is

depicted.
Hollow gold clusters can be created by wrapping

a cutout from a (111) gold 2D sheet around a sphere

introducing 12 vertices of degree 5 to satisfy Euler’s
theorem. Therefore, an infinitely large 2D gold sheet

represents a golden dual fullerene cage with an infin-
ite sphere radius. As the cohesive energy of the com-

pact structures converges towards the bulk cohesive
energy, the cohesive energy of the 2D gold sheet

Table 2. Topological parameters for the anionic gold clusters.

Symmetry Stability Vertices G Bond lengths Distortion
isomer ideal actual DEn DEg N4 N5 N6 N7 shortest largest D(GDF)

12:1 Ih D2d ¢2.137 0.665 8 0 4 0 16 2.780 2.869 23.0
14:1 D6d D2d ¢2.242 ¢0.089 0 12 2 0 12 2.758 2.989 20.3
15:1 D3h C2v ¢2.281 0.473 0 12 3 0 12 2.741 3.029 21.2
16:1 D2 D2 ¢2.328 0.020 0 12 4 0 12 2.764 2.905 17.7
16:2 Td D2d ¢2.330 0.000 0 12 4 0 12 2.738 2.907 16.2
17:1 D5h D5h ¢2.353 0.469 0 12 5 0 12 2.757 3.017 13.2
17:2 C2v C2v ¢2.368 0.215 0 12 5 0 12 2.742 2.994 14.4
17:3 C2v C2v ¢2.376 0.087 0 12 5 0 12 2.731 3.019 14.2
18:1 C2 C2 ¢2.360 0.589 0 12 6 0 12 2.734 2.968 16.8
18:2 D2 C2 ¢2.346 0.848 0 12 6 0 12 2.733 3.059 16.8
18:3 D3d C2 ¢2.348 0.817 4 4 10 0 12 2.701 3.038 24.3
18:4 C2 C1 ¢2.364 0.529 0 12 6 0 12 2.740 3.048 19.0
18:5 D3h D3h ¢2.364 0.516 0 12 6 0 12 2.710 3.023 27.5
18:6 D3 D3 ¢2.357 0.642 0 12 6 0 12 2.734 2.912 14.7
19:1 C2 C2 ¢2.384 0.967 4 4 11 0 12 2.732 2.985 28.5
19:2 Cs Cs ¢2.368 1.268 2 9 7 1 12 2.727 2.989 16.9
19:3 Cs C3v ¢2.381 1.022 0 12 7 0 12 2.755 3.046 32.6
19:4 C2 C2 ¢2.390 0.853 2 8 9 0 12 2.744 3.003 22.1
19:5 C2 C2 ¢2.398 0.698 2 8 9 0 12 2.743 2.963 31.3
19:6 C3v C3v ¢2.381 1.023 0 12 7 0 12 2.756 3.044 32.4
20:1 C2 C1 ¢2.386 0.927 2 8 10 0 12 2.748 3.032 25.0
20:2 D2 D2 ¢2.365 1.348 0 12 8 0 12 2.731 2.971 43.8
20:3 C1 C1 ¢2.396 0.716 2 8 10 0 12 2.745 2.926 23.4
20:4 Cs Cs ¢2.385 0.950 0 12 8 0 12 2.740 2.939 24.4
20:5 D2 D2 ¢2.390 0.850 0 12 8 0 12 2.775 2.907 37.4
20:6 D2d Cs ¢2.382 1.001 2 8 10 0 12 2.770 2.948 20.5
20:7 C1 C1 ¢2.384 0.974 0 12 8 0 12 2.739 3.079 25.3
20:8 Cs Cs ¢2.388 0.888 2 8 10 0 12 2.761 2.977 22.0
20:9 C2v D6h ¢2.402 0.610 6 0 14 0 12 2.731 2.971 27.1
20:10 C2 C2 ¢2.404 0.568 2 8 10 0 12 2.743 2.984 37.1
20:11 C2 C1 ¢2.378 1.093 3 8 7 2 12 2.732 3.018 26.5
20:12 C2 Cs ¢2.412 0.407 2 8 3 6 6 1.755 2.996 192.0
20:13 D3h D6h ¢2.402 0.610 6 0 14 0 12 2.731 2.972 27.0
20:14 D2d C1 ¢2.405 0.544 2 8 1 8 12 2.710 3.010 199.2
20:15 D6h D6h ¢2.361 1.430 0 12 8 0 12 2.792 2.933 15.2
32:1082 Ih D2h ¢2.524 2.201 0 12 20 0 12 2.766 3.004 10.4

[a] Number of gold atoms and isomer numbers of the fullerene in canonical order of the pentagon spiral indices,[66] ideal and actual point group symmetry,
energy differences DEg to the most stable anionic cluster of same size and binding energy per atom DEn = [E(Aun)¢(n¢1)E(Au)¢E(Au¢)]/n [eV] , shortest
and largest bond distance [æ], and distortion parameter D [%] for the dual gold cluster (GDF).

Table 3. Binding energy per atom [eV] for investigated neutral and anionic compact
cluster compounds.[a]

N Symmetry DEn(neutral) N Symmetry DEn(neutral) N Symmetry DEn(anion)

2 D1h ¢1.105 13 C2v ¢2.087 12 D3h ¢2.192
3 C2v ¢1.152 14 C2v ¢2.218 14 D2h ¢2.236
4 D2h ¢1.486 15 Cs ¢2.186 15 C1 ¢2.313
5 C2v ¢1.631 16 Cs ¢2.261 16 D2d ¢2.330
6 D3h ¢1.875 17 Cs ¢2.270 17 C2v ¢2.381
7 Cs ¢1.833 18 Cs ¢2.325 18 C2v ¢2.393
8 D4h ¢1.959 19 C3v ¢2.361 19 C3v ¢2.435
9 C2v ¢1.944 20 Td ¢2.409 20 Td ¢2.432
10 D2h ¢2.028 32 C3v ¢2.491 32 C3v ¢2.548
11 D3h ¢2.063 32 isomer1 ¢2.536 32 isomer1 ¢2.590
12 D3h ¢2.098 32 isomer10 ¢2.542 32 isomer10 ¢2.593

[a] For the definition of the binding energy see Table 1 and Table 2, and for the defini-
tion of the isomer 1 and 10 for Au32 see reference [95].
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should represent the infinite limit for the dual golden fullerene

structures. This is indeed the case and is depicted in Figure 10
using a N¢1 scaling law analogue to the one used for fullerenes

(for details see ref. [79]).
An interesting result here is the difference between the co-

hesive energy of the bulk fcc structure compared to the (111)

2D sheet. Creating the bulk structure from stacking (111)
sheets only accounts for approximately 0.68 eV of the total co-

hesive energy of the bulk which is 3.81 eV.[97] This implies that
most of the cohesive energy of bulk gold originates from the

(111) sheet, which is therefore exceptionally stable and can be
seen as a reason for the preferred planar arrangement of many

small gold clusters. As pointed out by Takeuchi et al. , relativis-

tic effects increase the cohesive energy of bulk gold by

1.5 eV.[97] A similar large relativistic effect is expected for the
(111) sheet of gold.

3.3. Simulation of photoelectron spectra

Photoelectron spectra of several golden cages dual fullerenes
have been determined experimentally and simulated by theo-

retical methods by Bulusu et al.[41] Before we discuss our results
we need to consider spin-orbit effects as substantial 5d-mixing

into the 6s orbitals of gold occurs in such clusters. Figure 11
shows a comparison of simulated photoelectron spectra of the

three golden dual fullerene isomers of Au¢17. The results clearly

shows that spin-orbit effects can be neglected in this energy
range.

Bulusu et al. considered only the Au¢16 Td structure. From our
data there is reason to believe that the other possible isomer

16:1 is also present in the measured spectrum. Figure 12
shows our simulation results for the isomers 16:1 and 16:2 and

a simulation for a mixture of both compounds with a ratio of

1:1 as the energy of both isomers are comparable. Looking at
the experimental data a shoulder can be identified in the first

peak. We can reproduce this feature by shifting the spectra for
16:1 and 16:2 according to the corresponding vertical ioniza-

tion potential, superimposing both spectra and shift the result
by 0.18 eV to better fit the experimental data as pictured in
Figure 12. This indicates that the second hollow cage isomer
has also been produced. Further evidence for this could be the
experimental peak at 5.51 eV. The simulated spectrum for the

tetrahedral cluster shows a dip at this energy, while the D2

structure has a clear intensity maximum.

Figure 12 shows the simulated spectra for the three possible
dual fullerene isomers for Au¢17. The spectra have been shifted

according to the vertical ionization potential of the negatively
charged clusters. The most stable structures are 17:2 (red) and

17:3 (green) of which 17:2 fits reasonably well for the first four

peaks. The peak at 4.73 eV could be accounted to the 17:3
isomer which is identical to Bulusu and co-workers’ C2v sym-

metric structure.
From the relative energies in Figure 7 it is clear that anionic

dual fullerene structures start to become rather unstable for
N = 18. Therefore, compact clusters might dominate the experi-

Figure 8. Overview of PBE-D3 optimization results for the dual fullerene
structures. Green: dual fullerene structure, orange: hollow structure, red:
non-hollow structure.

Figure 9. Cohesive energies for the compact gold clusters with cluster size N
and convergence toward the bulk fcc structure.

Figure 10. Cohesive energies for the hollow gold clusters with cluster size N
and convergence toward the (111) gold sheet.
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mental spectrum. Figure 12 shows our calculated spectra in
comparison with the experimental data. The calculated spectra

have been first shifted to the corresponding vertical ionization
potential and subsequently shifted by 0.25 eV to better fit the
experimental data. The most stable dual fullerene clusters are
18:1, 18:4 and 18:5; 18:1 and 18:5 could be responsible for

the second peak in the experimental data at 3.63 eV, while
18:4 agrees with the first peak. The signal at 3.97 eV could be

and an indication that isomer 18:3 was produced as it is the
only structure that shows a peak in that area, although it is the
least stable of the hollow structures.

Finally, for future experiments we include our simulated
photoelectron spectrum for Au¢32 which is shown in Figure 13.

4. Summary

We found an interesting topological relationship between ful-
lerenes and the cage-like gold clusters resulting in a triangula-

tion of a sphere with vertices of degrees 5 and 6 fulfilling
Euler’s polyhedral formula. Because of this isomorphism be-

tween the two structures by dualization, there are as many
golden fullerene isomers as there are different fullerene struc-

tures. In the same way we relate gold nanotubes to carbon
nanotubes and halma transforms of C20 to the shells of

a Mackay icosahedron. We investigated the stability of these
golden fullerenes. While they perhaps may not compete in

energy with the more compact gold clusters at larger cluster
size,[98] the smaller cage structures are stable as observed by

Figure 11. Comparison of simulated photoelectron spectra of the three dual
fullerene isomers of Au¢17 with (2c) and without spin-orbit coupling.

Figure 13. Simulated photoelectron spectra for 32:1812 isomer of Au¢32 .

Figure 12. Simulated photoelectron spectra for the negatively charged
hollow gold clusters (shifted to the experimental threshold energy). a) The
two possible dual fullerene isomers of Au¢16 . The green curve shows a combi-
nation of the D2 and Td spectra with a ratio of 1:1. b) The three possible dual
fullerene isomers of Au¢17 . c) The six possible dual fullerene isomers of Au¢18

(shifted to the experimental threshold energy).

Chem. Eur. J. 2016, 22, 8823 – 8834 www.chemeurj.org Ó 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim8832

Full Paper

http://www.chemeurj.org


photoelectron spectroscopy. Our simulated photoelectron
spectra suggest that more than one golden fullerene isomer

was observed. A natural step in the next direction would be to
stabilize such hollow gold clusters by either endohedral enclo-

sure of gold or other metal atoms or by attaching appropriate
ligands to the outside of the cage.
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