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ABSTRACT: We report a study of the structure and bonding of a transition-metal-doped boron
cluster, MnB6

−, using high-resolution photoelectron imaging and quantum chemical calculations.
Vibrationally resolved photoelectron spectra indicate a significant geometry change between the
anionic and neutral ground states of MnB6. The electron affinity of MnB6 is measured to be
2.4591(5) eV, and vibrational frequencies for five of its vibrational modes were determined. The
experimental data are combined with theoretical calculations to determine the structure and
bonding of MnB6

−, which is found to be planar with a B-centered hexagonal structure (C2v
symmetry) and a quintet spin state (5A2). Nuclear-independent chemical shift calculations
indicate that MnB6

− is aromatic. Molecular orbital analyses reveal that MnB6
− contains three π

orbitals, one of which is singly occupied. Hence, MnB6
− can be considered as an open-shell

metallaboron analog of 3d metallabenzenes.

■ INTRODUCTION

Boron is known to form three-dimensional (3D) polyhedral
structures with delocalized bonds in many borane compounds
because of its electron deficiency.1 The structures and bonding
of bare boron clusters have been extensively investigated by
joint experimental and computational studies in recent
years.2−8 The structures of small boron clusters have been
found to be predominantly planar with delocalized bonding,
giving rise to both σ and π aromaticity.9−15 It was further
found that the planarity and aromaticity of small boron clusters
obey the Hückel rule. Transition-metal-doped boron clusters
have also been studied by joint photoelectron spectroscopy
(PES) and computational chemistry.16−26 In addition, there
has been a variety of computational studies on transition-
metal-doped boron clusters.27−35 Notably, a class of aromatic
borometallic molecular wheels (M©Bn

−) (n = 8−10) have
been experimentally discovered.16,17 While Re©B8

− and
Re©B8

− have been found to belong to the class of borometallic
molecular wheels,36 a recent study showed that ReB6

− is planar
with the Re atom being on the periphery of the cluster.37

Chemical bonding analyses revealed that ReB6
− is aromatic

with six π electrons, whereas AlB6
− with four π electrons is

antiaromatic with an out-of-plane distortion. The bonding in
ReB6

− was further shown to be similar to that in rhenabenzene.
Thus, ReB6

− is the first aromatic metallaboron analog of
metallabenzenes.37

Metallabenzenes are a class of organometallic compounds in
which one CH group in benzene is substituted by a metal
atom.38−41 There have been increasing studies on metal-
labenzenes due to their interesting chemical and structural

properties. While there have been numerous reports on the
syntheses of metallabenzenes with various 5d transition
metals,39−47 as well as the 4d ruthenium,48,49 it has been
challenging to synthesize metallabenzenes with the first-row
and other second-row transition metals.40,50 Very recently, a
tetralithio metalla-aromatic compound has been synthesized
with two five-membered manganacycles spiro-fused by a high-
spin Mn atom.51 However, the synthesis of monocyclic
metallabenzenes with any 3d transition metals has remained
elusive, although there has been a previous theoretical study.52

In this article, we address the possibility of producing a 3d
metallaboron analog of metallabenzenes. We report an
investigation of a 3d transition-metal metallaboron cluster,
MnB6

−, produced by laser vaporization of a mixed Mn/B
target. The selection of Mn was inspired by the recent
synthesis of manganacycles51 and the ReB6

− metallaboron
analog of 5d metallabenezenes.37 High-resolution photo-
electron imaging (PEI) in conjunction with computational
chemistry has shown that MnB6

− has a planar structure with
the Mn atom on the periphery of the cluster, similar to that of
ReB6

−. However, the MnB6
− cluster has a high spin ground

state (5A2) and displays relatively weak Mn−B interactions.
Nuclear shielding calculations using the nuclear-independent
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chemical shift (NICS) reveal aromatic characters in MnB6
−,

which can be considered as a metallaboron analog of
metallabenzenes with a 3d transition metal atom.

■ EXPERIMENTAL AND THEORETICAL METHODS

High-Resolution Photoelectron Imaging. The experi-
ment was carried out using a high-resolution PEI apparatus
with a laser vaporization cluster source, which has been
described in detail previously.53 Briefly, we produced MnB6

−

by focusing the second harmonic of a Nd:YAG laser onto a
disk target, which was made of a mixture of isotopically
enriched 10B, Mn, and Ag powders (Ag served as a binder).
The laser-induced plasma was quenched by a helium carrier
gas seeded with 10% argon, initiating nucleation. The nascent
clusters were entrained in the carrier gas and underwent a
supersonic expansion, producing a cold cluster beam. Anionic
clusters were extracted perpendicularly into a time-of-flight
mass spectrometer. The MnB6

− cluster of current interest was
mass-selected into the interaction zone of the velocity-map
imaging (VMI) system.
A second Nd:YAG laser or a Deyang Tech dye laser pumped

by a Nd:YAG laser was used to photodetach the size-selected
MnB6

− clusters. The photoelectrons were extracted from the
interaction zone and focused onto a set of microchannel plates
coupled with a phosphor screen and a charge-coupled device
camera. Each experiment at a given photon energy required
about 100 000 to 200 000 laser shots to achieve reasonable
signal-to-noise ratios. The VMI lens was calibrated using the
photoelectron images of Au− and Bi− at various photon
energies. The photoelectron images were analyzed using the
maximum entropy method (MEVIR and MEVELER).54 The
typical energy resolution of the VMI system was ∼0.6% for
high kinetic energy electrons and could be as good as 1.2 cm−1

for low kinetic energy electrons.53

Theoretical Methods. Structural searches for MnB6
− were

performed by direct Monte Carlo sampling with local
optimization. Around 2000 different structures with various
spin multiplicities (singlet, triplet, quintet, and septet) were
randomly generated and optimized at the PBE/6-31G* level of
theory.55−57 Low-lying isomers within 1 eV of the global
minima were further optimized at the B3LYP/6-311+G* level
of theory.58 The adiabatic detachment energy (ADE) for the
ground state transition was calculated as the energy difference
between the optimized anion and its corresponding neutral.
Franck−Condon simulation was performed using ezSpec-
trum.59 NICS calculations were carried out at the B3LYP/6-
311+G* level of theory.60 All calculations were done using
Gaussian 09.61

■ RESULTS

Experimental Results. Figure 1 shows the PE images and
spectra of MnB6

− at five different photon energies. The first
sharp peak labeled as X denotes the 0−0 transition,
corresponding to the transition from the anion ground state
to that of the neutral. Peak X defines the electron affinity (EA)
of MnB6

− to be 2.4591 ± 0.0005 eV. Extensive vibrational
structures were resolved, indicating a significant geometry
change between the ground states of the anion and the neutral
system. The resolved vibrational peaks are labeled as a−j. The
binding energies of the observed peaks and their assignments
are summarized in Table 1. The weak signals on the lower
binding energy side of peak X were likely due to vibrational hot

bands or metastable electronic excited states of the anion (vide
inf ra). The apparent enhancement of these weak signals in
Figure 1a was due to the fact that the detachment cross section
for peak X was reduced at the lower photon energy.

Computational Results. The lowest energy structure of
MnB6

− was found to be perfectly planar with C2v symmetry
(Figure 2). The structures and relative energies of other low-
lying isomers within 1 eV of the global minimum are given in
Figure S1. The ground state of MnB6

− consists of a B-centered
six-membered ring with Mn being on the periphery, similar to

Figure 1. Photoelectron images and spectra of MnB6
− at five different

photon energies. The double arrows below the images denote the
laser polarization.

Table 1. Measured Binding Energies (BE), Energy Shifts
Relative to the 0-0 Transition, and Assignments of the
Observed Vibrational Peaks in the PE Spectra of MnB6

− and
Comparison with the Theoretical Frequencies Computed at
the B3LYP/6-311+G* Level of Theory

experimental theoreticala

peak BE (eV) assignment energy shift (cm−1) frequency (cm−1)

X 2.4591(5) 00
0

a 2.5035(9) 60
1 358(9) 348

b 2.5292(23) 50
1 565(19) 578

c 2.5461(10) 60
2 702(9)

d 2.5569(16) 40
1 789(14) 733

e 2.5633(13) 30
1 840(11) 818

f 2.5777(18) 50
160

1 957(15)
g 2.5901(13) 60

3 1057(11)
h 2.6099(18) 10

1 1216(15) 1225
i 2.6259(35) 40

150
1 1345(29)

j 2.6330(12) 60
4 1403(10)

aThe calculated ADE for MnB6
− is 2.43 eV at the B3LYP/6-311+G*

level of theory.
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the structure of ReB6
−.37 While ReB6

− is closed shell, MnB6
− is

found to have a high spin state (5A2) with an electron
configuration of 1a1

21b2
22a1

22b2
21b1

23a1
21a2

23b2
24a1

24b2
2-

5a1
26a1

17a1
12b1

15b2
1. The occupied valence molecular orbitals

(MO) are shown in Figure 3, where the β orbitals are also
displayed for the doubly occupied π MOs since they show
some differences from the corresponding α orbitals. The
neutral ground state 4A2 is obtained by detaching an α electron
from the highest occupied MO (HOMO). As shown in Figure
2, there is a geometry change between the anion and the
neutral ground state: the distance between the Mn atom and
the central B atom is significantly shorter in the neutral. This is
consistent with the removal of an electron from the HOMO,
which exhibits an antibonding interaction between Mn and the
central B atom.

■ DISCUSSION
Comparison of the Photoelectron Spectra of MnB6

−

with the Theoretical Results. The ADE of MnB6
− is

calculated to be 2.43 eV at the B3LYP/6-311+G* level of
theory, which agrees well with the experimental value of 2.4591
eV. The computed vibrational frequencies also show excellent
agreement with the experimental measurements (Table 1).
Five totally symmetric vibrational modes, υ6, υ5, υ4, υ3, and υ1,
were observed and assigned to peaks a, b, d, e, and h,
respectively. Their displacement vectors are given in Figure S2.
As shown in the experimental spectra, the most Franck−
Condon active mode is υ6, which corresponds to the stretching
motion of the Mn atom. This observation is consistent with the
fact that electron detached is from the HOMO of MnB6

−

(Figure 3). A Franck−Condon simulation was done,59 as
compared with the 2.6415 eV spectrum in Figure 4, which
reproduced all the major vibrational features of the
experimental spectra. The overall excellent agreement between
the experimental and theoretical results confirms unequivocally
the geometric and electronic structure of MnB6

−.
The Franck−Condon simulation suggested that there were

negligible vibrational hot band contributions to the weak
signals below the 0−0 transition. These weak signals seemed to
span a wide energy range down to ∼2.2 eV. A very likely
source of these weak signals was due to the population of low-
lying electronic excited states of the anion. As shown in Figure
S1, the 7A2 excited state was computed to be ∼0.22 eV above
the 5A2 ground state. Despite the fact that MnB6

− was
relatively cold vibrationally, the high-spin 7A2 state, which was
expected to be metastable, might not be in equilibrium with
the vibrational temperature and could be populated in small
quantity in the cluster beam.

Chemical Bonding and Aromaticity in MnB6
−.

Although MnB6
− has a similar geometric structure as the

recently reported ReB6
−, their electronic structures are

different. In MnB6
−, due to its large spin multiplicity, the

shapes of the α and β orbitals are not necessarily the same.
Figure 5 displays the occupied π-MOs of MnB6

−. The β
orbitals are found to be more diffuse relative to their α

Figure 2. Optimized structures of (a) MnB6
− and (b) MnB6. The

point group symmetries and electronic states are also given. The bond
lengths are in Å.

Figure 3. Occupied valence molecular orbitals of MnB6
−. The α orbitals are displayed. The β orbitals for the doubly occupied π MOs are also

shown.
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counterparts. In particular, the α electron in HOMO−4 is
essentially localized in the 3dxz orbital. On the other hand, the
β orbital of HOMO−4 is mainly delocalized on the B atoms
with a small contribution from the 3dxz orbital. The π MOs of
SOMO-1 and HOMO−6 are also mainly delocalized on the B6
motif with relatively small contributions from the Mn 3d
orbitals. In comparison to the 5d element Re, the 3d orbitals in
Mn are spatially more contracted and are expected to have
smaller overlap with the 2p orbitals of boron. The weaker
bonding capacity of Mn with B can be gleaned from the
significantly larger Mn−B bond distances (2.17 Å) in MnB6

−

(Figure 2a), compared with the Re−B bond distances (1.98−
2.05 Å) in ReB6

−.37 There have been two previous studies on

lanthanide hexaboride clusters (SmB6
− and CeB6

−),62,63 which
have similar planar structures as MnB6

−. The Ln−B bond
lengths are even longer, indicating even weaker interactions
between the Ln atoms and boron in these clusters. In fact, the
SmB6

− cluster was characterized to consist of a B6
2− unit with

double antiaromaticity.62

Despite the fact that MnB6
− possesses only five π electrons

with one of the π MOs singly occupied, its structural similarity
with ReB6

− suggested that it might be aromatic, which was
evaluated using the NICS index.60,64 It should be noted that
the open-shell nature of MnB6

− makes it difficult to apply the
Hückel rule. The NICS(0)zz and NICS(1)zz values of MnB6

−

were calculated at different sites (Figure S3) and are compared
with those of benzene in Table 2. All of the the NICS(0)zz and

NICS(1)zz values are negative, indicating that MnB6
− indeed

has aromatic characters. Because the three π MOs are not
completely filled, MnB6

− can be considered as an open-shell
weak aromatic system or a 3d metallaboron analog of
metallabenzenes. The weak bonding between Mn and the B6
motif in MnB6

− suggests that the 3d transition metals should
also have weaker interactions with carbon in metallabenzenes,
consistent with the challenges to synthesize such compounds.

■ CONCLUSIONS
In conclusion, we have produced and studied a 3d metal-
laboron cluster (MnB6

−) using high-resolution photoelectron
imaging and quantum chemical calculations. Vibrationally
resolved photoelectron spectra were obtained and used to
determine the structure of MnB6

− by comparing them with the
theoretical results. MnB6

− was found to have a planar B-
centered hexagonal structure with the Mn atom on the
periphery and a high-spin ground state. Molecular orbital
analyses and NCIS calculations suggest that MnB6

− is aromatic
and can be viewed as an open-shell metallaboron analog of 3d
metallabenzenes.
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