
Brown University

Division of Applied Mathematics

The Interpolation of
Gravitational Waveforms

Author:
Jason Kaye

Advisor:
Professor Jan S. Hesthaven

May 2012

This honors thesis, written by Jason Kaye, has been read and approved by the
following faculty members of Brown University’s Division of Applied

Mathematics:

Jan S. Hesthaven

Björn Sandstede

Date

1

Contents

1 Preface 3

2 Gravitational Waves & Their Detection 4
2.1 Gravitational Wave Models & Matched Filtering 5
2.2 The Reduced Basis Method of Waveform Representation 7
2.3 Applications of Gravitational Wave Approximation 8

3 Interpolation and the Problem of Interpolating Waveforms 10
3.1 The Interpolation Problem . 10
3.2 Interpolation of Gravitational Waveforms 13

3.2.1 Component-Wise Interpolation 15
3.2.2 Interpolation of Reduced Basis Coefficients 16
3.2.3 Challenges to Solving the Interpolation Problem 21

4 Interpolation Methods 25
4.1 Polynomial Interpolation in One Dimension 25

4.1.1 Basic Results Concerning Polynomial Interpolation 25
4.1.2 Runge’s Phenomenon & Limitations of Polynomial Inter-

polation . 28
4.1.3 Implementing Polynomial Interpolation: Neville’s Algo-

rithm . 30
4.2 Extending Polynomial Interpolation to Higher Dimensions via a

Dimension-by-Dimension Approach 32
4.3 Interpolation with Radial Basis Functions 33

4.3.1 The Shape Parameter ε of Radial Basis Functions 35
4.3.2 Global & Local Radial Basis Function Interpolants 39

4.4 Least Orthogonal Interpolation 43

5 Waveform Interpolation and Results 44
5.1 The One-Parameter Problem . 45

5.1.1 Preliminary Results for the One-Parameter Problem using
Equispaced Global Grids 46

5.1.2 Investigation of the Shape Parameter in the One-Parameter
Problem . 47

5.1.3 Adjusting the Global Grid for the One-Parameter Problem 52
5.2 The Two-Parameter Problem . 55

5.2.1 Radial Basis & Dimension-by-Dimension Polynomial In-
terpolants for the Two-Parameter Problem 57

5.2.2 Comparison of the Least Orthogonal Interpolation Meth-
ods with the Other Methods 59

5.3 Overview of Results & the Higher-Dimensional Problem 63

6 A Brief Conclusion and Discussion of Further Work 64

7 References 65

2

1 Preface

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
Tµν

When considering this system of ten coupled nonlinear partial differential equa-
tions, called the Einstein field equations, it becomes clear that describing a law
of nature is only one of many steps along the road to practical understanding.
Encoded in this system is a broadly applicable description of the relationship
between spacetime, matter, and gravitation, but it is notoriously difficult to
solve. Acquiring approximate solutions requires many levels of simplification;
at each level, some amount of purity is lost, but a great deal of insight into the
underlying system may be gained.

In this thesis, we are concerned with gravitational waveforms, which are
disturbances in spacetime caused by the motion and interaction of massive ob-
jects. The Einstein field equations predict their existence and provide a frame-
work in which to investigate their structure, but a great deal stands between
these equations and a useful representation of the whole spectrum of gravita-
tional waveforms. Our goal, in the broadest sense, is to develop techniques by
which to obtain accurate approximations of these waveforms without an exces-
sive computational burden. In doing so, we must remember that many layers
of complexity separate these approximations from the fact of the matter; there-
fore, though we will generally settle for solutions to representative special cases
of the problem, our intention is to develop methods which are broad enough to
be, ideally, applied to its most faithful formulations.

We will begin by offering a brief introduction to the science and mathematics
of gravitational wave astrophysics in order to motivative our project. However,
this is not our primary focus; we will soon phrase the problem in the language
of mathematics, and afterward consider it as such. The techniques on which we
focus are built on the findings of related research, which we will discuss after
the scientific introduction.

We use interpolation to address the problem of approximating gravitational
waveforms, and the bulk of this paper is devoted to introducing the concept of
interpolation and investigating various interpolation techniques. Our intention
is to provide the reader with some understanding of the theory behind these
techniques, and an intuition about its strengths and limitations, so that given
certain properties of the waveforms, the results of applying interpolation to our
problem will seem natural and can be presented concisely. We will consider two
formulations of the problem - in which the waveforms are determined by one
and two parameters, respectively - and present results for both.

We reiterate that this paper is primarily concerned with investigating in-
terpolation techniques, and not with the underlying science of our application,
which is presented only briefly. In general, we intend to step the reader through
the author’s process of learning and research, from the very beginning to the
present. Thus, the mathematical discussion begins from the most basic founda-
tions, and much of the emphasis is on motivating the techniques which we will

3

use. That said, we begin with a background discussion of gravitational wave
astrophysics, much of the content of which is drawn from [1].

2 Gravitational Waves & Their Detection

Imagine that two massive objects in space, like black holes, orbit each other.
They spiral closer and closer together until finally they merge. According to
Einstein’s general theory of relativity, these massive objects alter the structure
of spacetime near them. General relativity further predicts that this effect
propagates through space in the form of gravitational radiation far from the
sources; the change in curvature induced in spacetime by the objects travels like
a ripple in a pond.

Gravitational waves, unlike electromagnetic waves, are left mostly unaffected
by matter. This makes them faithful to their sources, even if those sources are
far away, but it also makes them difficult to detect. That is, on the one hand, the
form of a particular gravitational wave provides an observer with a great deal
of information about the systems which produced it; accurate measurements
could allow the source objects’ masses, spins, and orbital patterns, for example,
to be deduced. Whereas electromagnetic waves carry information about the
atomic properties of systems, the forms of gravitational waves, and therefore
the information they carry, are determined by large-scale system dynamics. On
the other hand, such an observer must be equipped with highly sensitive and
specialized gravitational wave detectors.

The spectrum of gravitational waves spans an enormous frequency range,
from 10−16 to 104 Hz, and the frequency of a particular wave depends on the
sources that created it. These sources include, but are not limited to, systems
involving stellar mass black holes, neutron stars, massive black holes, supermas-
sive black holes, in addition to various events from the early universe. Different
types of detectors are required to identify these different types of signals.

There are a handful of existing ground-based gravitational wave detectors
such as LIGO [2] and VIRGO [3]. There are also plans to build space-based
detectors, like eLISA [4], which would be much less susceptible to noise and
could therefore detect waves with different frequencies than their ground-based
counterparts. It is important to note that no gravitational waves have yet been
directly detected, though there is indirect empirical evidence for their existence
through observation of the Hulse-Taylor pulsar [5]. There is also a great deal
of theoretical evidence from the widely accepted general theory of relativity. In
2015, more advanced and sensitive ground-based detectors will go on line, and
these are expected to detect gravitational waves directly [6].

The ground-based detectors use laser interferometers to find passing waves.
Imagine two perpendicular arms with a laser beam splitter at their intersection.
A laser is fired into the splitter, so that beams travel down both arms. Each arm
contains two mirrors, and the beam is reflected off of these mirrors, bouncing
back and forth. The beams then return to a photodetector. According to general
relativity, if a gravitational wave passes through these arms, one of them will be

4

lengthened slightly, and the other will be shortened. Therefore, one of the lasers
will have to travel a shorter distance, and will reach the photodetector faster
than the other. Measuring this difference allows an observer to deduce the form
of the gravitational wave. The arms are kilometers long, so that small changes
in their length cause substantial differences in the arrival times of the lasers.
Detectors are placed at different locations on Earth so that they can verify each
other’s findings. A schematic of the LIGO detector is given in Figure 1.

Figure 1: Schematic of the LIGO detector and a passing gravitational wave,
taken from [7].

Space-based detectors would use similar techniques to measure gravitational
waves. Since gravitational waves interact very little with matter, the signals are
very weak, so isolating the system - in particular, the mirrors - from noise is a
high priority. Space-based detectors, which use essentially free-falling mirrors,
would be less susceptible to noise.

Once signals are detected, it is necessary to determine whether or not they
represent gravitational waves. Einstein’s field equations, which model the be-
havior of gravitational waves, provide the key. By obtaining solutions to the
equations, signals could be tested against a library of possible gravitational
waveforms. A positive detection, then, is a strong match between a signal and
some known waveform.

2.1 Gravitational Wave Models & Matched Filtering

However, as stated before, solving Einstein’s field equations for general astro-
physical sources is, in general, infeasible. Alternatively, we must settle for ap-

5

proximate solutions. Many such formulations exist, and each provides a different
sort of approximation [9]. In this research, we use approximate solutions gen-
erated using Post-Newtonian formalism, which reduces to Newton’s laws in a
limiting case. In this framework, approximate solutions are expressed by includ-
ing only the lowest order nonlinear deviations of the Einstein equations from
Newton’s laws. For the purposes of this research, then, we then act as if these
approximations are the actual solutions.

The gravitational wave models we use have been Fourier transformed, so
they are functions of frequency, rather than time. A particular gravitational
waveform corresponds to some parameter µ = (µ1, . . . , µn), with µ ∈ M ⊂ Rn,
where M is the parameter space which we consider. Some of the parameters
that are used were mentioned above; for example, the masses and spins of the
sources. As we increase the number of parameters used in the model, we are
able to describe a broader range of sources, but we also have more waveforms
to consider and each waveform is a more complicated object.

A gravitational waveform, then, is considered for our purposes to be a func-
tion hµ : R → C, where the domain represents the frequency space. The
codomain is complex because a Fourier transform has been applied to the wave-
form. The particular gravitational waveform approximation we use is given later
and in [8]. It is important to note that these waveforms hµ are C∞ smooth.
In fact, if we consider h : Rn × R → C as a function of a parameter µ and a
frequency f , h is smooth in both variables, so waveforms vary smoothly with
their parameter.

Once we have models of gravitational waveforms, we need some way of testing
these models for high affinity with a signal. The commonly-used technique
is called matched filtering. Matched filtering measures the value of an inner
product between two functions; the matched filter is related to the complex
inner product given by

〈F,G〉 :=

∫ fU

fL

F ∗(f)G(f)

S(f)
df (1)

Here, F and G are two waveforms in Fourier space, fL and fU are the lower
and upper bounds of the frequency domain which we consider, respectively, ∗

represents complex conjugation, and S(f) is called the power spectral density
of the gravitational wave detector [10]. S represents the noise of the detectors
over different regions in frequency space; it is known that the amount of noise
is larger in certain regions, and we want these regions to be weighted less in the
inner product, so we make S(f) proportional to the noise of the detector at f .
This inner product, then, measures the similarity of F to G; it is maximized,
for normalized F and G, when F = G.

The matched filter, with respect to hµ, of data representing some potential
underlying signal s : R → C in Fourier space is, then, a function of 〈s, hµ〉.
If this inner product is above some threshold, we declare that the signal s was
generated by a gravitational waveform with parameter approximately equal to µ.
Therefore, a successful detection of a gravitational wave also gives information

6

about the source of that wave; the larger the dimension of the parameter space,
the more information we will obtain.

However, a higher-dimensional parameter space requires us to consider many
more waveforms in order to resolve some subset of that space. Since the pa-
rameter µ is an element of Rn, there is a continuum of gravitational waveforms,
so we cannot test a signal against all possible waveforms; we must choose some
discrete set of waveforms to test against each signal. A naive solution would
be to simply evaluate the inner product 〈s, hµ〉 on a fine grid of parameters
µ in parameter space, and check if the maximal such inner product is above
the threshold. However, in a high-dimensional parameter space this is sim-
ply not feasible, as computing each inner product requires the costly numerical
evaluation of an integral over a potentially large frequency domain. Either we
accept that there will be holes in the filter, or we devise some method by which
to represent the continuum of waveforms with high accuracy using only a few
waveforms.

2.2 The Reduced Basis Method of Waveform Representa-
tion

One solution, on which the strategies used in this paper are built, is called
the reduced basis method, described in [10]. The goal is to approximate the
continuum of waveforms with arbitrarily high accuracy by elements from an
N -dimensional vector space of particularly representative waveforms. To do so,
we must choose the right subset of the continuum as our basis, so that

WN = span{e1, . . . , eN} (2)

where WN is the N -dimensional function space, and {e1, . . . , eN} is called the
reduced basis of waveforms. In this case, we could hope to approximate an
arbitrary waveform hµ by its projection onto this linear space, given by

PWN
(hµ) =

N∑
i=1

〈hµ, ei〉ei =

N∑
i=1

αiei (3)

for αi ∈ C the complex projection coefficients of the reduced basis expansion.
It has been shown, using a greedy algorithm, that it is possible to select

{e1, . . . , en} such that given a dense grid of parameters {µ1, . . . , µM}, called the
training space, in parameter space, and an error tolerance ε > 0, we have

‖PWN
(hµj)− hµj‖ < ε (4)

for every j with 1 ≤ j ≤M . Here, the norm ‖·‖ is induced by the inner product
(1). By choosing a dense training space and invoking the smoothness of h in µ,
we can infer that the upper bound on the error ‖PWN

(hµ)− hµ‖ of the reduced
basis approximation is not much higher than ε for arbitrary µ over the entire
parameter space. Furthermore, it has been shown that the dimension N of the
linear space is relatively small given some small ε, and that the maximum error

7

over the training space drops off exponentially as the number of reduced basis
elements is increased.

In short, we can indeed represent the continuum of waveforms using rel-
atively few samples, and we can find these samples relatively quickly. The
greedy algorithm is simple. We select some parameter, and let the span of the
corresponding waveform be the linear space W1. We then compute the error
‖PW1(hµj) − hµj‖ between a waveform hµj and its projection onto W1 for ev-
ery parameter µj in the training space. We then select the waveform hµj with
the largest such error, and add its span to the linear space W1 to obtain W2.
We repeat this error computation, and keep adding waveforms to the linear
space until the maximum error over the training space is less than ε. As we
add more elements to the linear space, this maximum error is guaranteed to
decrease monotonically, and in fact it does so exponentially. A more detailed
explanation of the algorithm is given in [10].

The algorithm produces, as an output, an array with entries αij , where
αij = 〈hµj , ei〉 is the projection coefficient of the ith reduced basis element ei
for the waveform corresponding to the jth parameter µj in the training space.
Suppose, then, that we detect some signal s, and that we would be satisfied to
test this signal against every waveform in the dense training space using the
matched filter; that is, we wish to compute 〈s, hµj 〉 for M different choices of j,
where M is large. The naive solution would be to evaluate M different integrals.
However, since PWN

(hµj) ≈ hµj with arbitrarily small error, we have

〈s, hµj 〉 ≈ 〈s, PWN
(hµj)〉

=

〈
s,

N∑
i=1

〈ei, hµj 〉ei
〉

=

N∑
i=1

〈s, 〈ei, hµj 〉ei〉

=

N∑
i=1

〈s, α∗ijei〉 =

N∑
i=1

αij〈s, ei〉

Since the coefficients αij are stored outputs of the reduced basis algorithm, we
now need only evaluate N integrals, rather than M , to compute an accurate
approximation to the inner product of a signal s with a waveform hµj in the
dense training space. M is large and N is small, so since the reduced basis can
be constructed without reference to a signal, a large part of the computational
burden has been taken offline.

2.3 Applications of Gravitational Wave Approximation

This, of course, supposes that we are satisfied with obtaining the inner products
〈s, hµ〉 only at the training space points µ = µj , which still gives a discrete
picture. To obtain a continuous picture would require us to somehow fill in the
gaps in the training space. In particular, we see from the above equalities that

8

if we knew the projection coefficients αi corresponding to all waveforms hµ, we
could accurately approximate 〈s, hµ〉 for any parameter µ.

This process of rapid gravitational wave detection is one of the primary ap-
plications of the work which follows. Our general aim is to devise methods by
which to approximate some arbitrary waveform hµ given some set of known
waveforms. We will see that this problem can essentially be reduced to the
problem of approximating the projection coefficients αi corresponding to any
parameter µ, but we return to this point in detail later. However, approximat-
ing the projection coefficients accurately would directly address the first major
application of this work, which is fast signal detection over a continuous, rather
than discrete parameter space.

Since generating accurate waveform approximations can be costly and diffi-
cult - more so in proportion to the accuracy of the approximations - it is useful
to have methods by which to quickly generate new waveforms given some known
set of waveforms. For example, suppose we wish to generate waveform approx-
imations using only a minor simplification of the original Einstein equations.
Some of these simplifications, for example, result in systems of linear PDEs [11]
or nonlinear ODEs [12]. To generate several hundred such waveforms, corre-
sponding to different parameters, takes an extraordinary amount of time and
computational power. It may then be useful to start with these highly accu-
rate approximations and fill in the many gaps, rather than using a cheaper, less
accurate model with fewer gaps. We will show that this problem of waveform
generation is closely related to the signal detection problem through the pro-
jection coefficients of the reduced basis method, but it can be considered as a
separate application.

There are also related parameter estimation problems which rapid wave-
form generation would help to solve. Given a signal containing a waveform, one
might want to know information about the source from which it came, which is
encoded in the parameters of the waveform. There are probabilistic, iterative
methods which allow one to search for the desired parameters by integrating
the signal against many different waveforms. These methods step through pa-
rameter space, integrating the signal against a corresponding waveform at each
step, in an attempt to maximize the integral over the parameter space. At each
step, information is gathered about which direction in parameter space should
be explored in order to find a maximal integral. Therefore, this iterative process
requires the rapid generation of the next desired waveforms at each step.

It is therefore worthwhile to investigate methods by which to quickly approx-
imate unknown gravitational waveforms. To this end, we will explore various
interpolation techniques. In the next section, we define interpolation in general-
ity, and describe how it can be applied to the problem of gravitational waveform
approximation. We will depart from our application and discuss interpolation
abstractly in order to set our strategies on solid ground, but we will soon after
return to the setting of gravitational waveforms.

9

3 Interpolation and the Problem of Interpolat-
ing Waveforms

3.1 The Interpolation Problem

Imagine that there exists some function f : Rn → C, of which we may or may
not know the form, or have the ability to evaluate without incurring a restrictive
cost. At the very least, we postulate the existence of such a function, but cannot
feasibly evaluate it directly at just any point. We do, however, possess a set
of m data points {(xi, yi)}mi=1 for (xi, yi) ∈ Rn × C, which we imagine to fall
exactly on the graph of f , so that

f(xi) = yi for 1 ≤ i ≤ m. (5)

We call {xi}mi=1 the set of interpolation nodes and {yi}mi=1 the set of evaluations
of f at the nodes. Using these data points, we aim to approximate f at new
points x ∈ M ⊂ Rn, where M is the smallest closed n-rectangle containing all
of the interpolation nodes. Furthermore, we require that this approximation
f̂ : M → C of f agree with f on all interpolation nodes; that is

f̂(xi) = yi for 1 ≤ i ≤ m. (6)

Having imposed these restriction, we call f̂ the interpolant of f on M , and we
use f̂(x) as an approximation of f(x) on M for any x ∈ M . A solution of the

interpolation problem will entail the construction of such an interpolant f̂ which
depends only upon the given data points. We note that the problem was here
posed for the case of f : Rn → C, which will be sufficient for our purposes, but
that it could be similarly formulated in a more general setting.

The solution that we seek to some particular interpolation problem will
depend directly on the data points, and indirectly upon our knowledge of the
underlying function f which we aim to approximate, insofar as the interpolation
technique we select is tailored to this function. We begin by presenting two
simple examples of solutions to the interpolation problem, where we choose
n = 1 and restrict the codomain C to R, so that f : R→ R.

The example of an interpolation technique - nearest neighbor interpolation
- generates a piecewise constant interpolant, such that for any x ∈ M with
M = [x1, xm], we let f̂(x) be equal to the evaluation yi at the node xi which is
closest to x. For example, let the data points be as given in Table 1 below.

i xi yi
1 0 1
2 1 2
3 3 0

Table 1: Sample data points.

The corresponding nearest neighbor interpolant f̂ is given in Figure 2.

10

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

x

f̂
(x
)

Nearest Neighbor Interpolant

Figure 2: Nearest neighbor interpolant of data in Table 1. Data points are given
as blue dots.

We can also generate a piecewise linear interpolant, by simply “connecting
the dots”. We use the same data points to generate a linear interpolant given
in Figure 3.

If we have no information about the underlying function f we wish to interpo-
late, and we only have a set of seemingly random data points as in the example,
we may only be able to do as well in our approximation as we did with the
two methods above. However, in practical applications, we will hopefully know
something about the structure of the underlying function. The function may be
known, and simply expensive to evaluate, so that the interpolant allows us to
obtain approximate evaluations of the function more cheaply. Alternatively, a
plot of the data points should suggest that the graph of the function has some
particular shape; if the data points do not resolve the essential characteristics
of the function, we have no hope of generating an accurate interpolant.

Indeed, if the underlying function is smooth and its gradient does not vary
much, it will be easy to obtain an accurate interpolant with few data points, but
if a function is highly oscillatory or erratic, obtaining an accurate interpolant
may require a large number of data points. In general, the more data points we
use to generate the interpolant, the more complicated and costly to evaluate the
interpolant will be, so we often face a trade off between accuracy and efficiency.
However, as we will see in later sections, it is often possible to get away with
few data points by choosing an interpolation method which well represents the
underlying function.

11

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

x

f̂
(x
)

Linear Interpolant

Figure 3: Linear interpolant of data in Table 1.

Before discussing interpolation as it relates to the current application, we
will describe an idea that is often used to generate interpolants - it is not a
specific technique, like nearest neighbor and linear interpolation, but a general
paradigm. We return to the general setting, in which the underlying function is
some f : Rn → C, and we have the m data points {(xi, yi)}mi=1. Suppose we have
some information about the structure of f ; perhaps it is given by trigonometric
functions, or it is radially symmetric, or its graph resembles some known surface.
We can encode this information into our interpolant by choosing an appropriate
interpolation basis, or a set of m functions {φi}mi=1 such that φi : Rn → C and
the interpolant is a sum

f̂(x) =

m∑
i=1

ciφi(x) (7)

for coefficients ci ∈ C. Enforcing the interpolation requirement f̂(xi) = yi gives
rise to the linear system ΦC = Y , given by

φ1(x1) φ2(x1) · · · φm(x1)
φ1(x2) φ2(x2) · · · φm(x2)

...
...

. . .
...

φ1(xm) φ2(xm) · · · φm(xm)

c1
c2
...
cm

 =

y1
y2
...
ym

 (8)

Therefore, solving this system for C by C = Φ−1Y gives a valid interpolant
f̂ , as long as Φ is invertible. This is not, in general, guaranteed, and depend-

12

ing on the choice of interpolation basis and the data points, Φ may be poorly
conditioned or singular. A wide variety of interpolation techniques are special
cases of this method. For example, supposing we have 2m + 1 data points, we
may choose φk(x) = eikx and rewrite the sum as

f̂(x) =

m∑
k=−m

cke
ikx (9)

to recover trigonometric interpolation of functions f : R→ C.
Now that we have defined the interpolation problem, discussed the consider-

ations that must be taken in solving the problem, and provided some examples
of solutions, we will define our specific problem, which is to interpolate gravita-
tional waveforms. Note that although we have, thus far, only provided examples
of interpolation on underlying functions f : R→ C, the concepts are easily gen-
eralizable to Rn, and we will later introduce techniques which yield interpolants
that have Rn for arbitrary n ∈ N as their domain.

3.2 Interpolation of Gravitational Waveforms

Recall that we consider a function h : (F ⊂ R) × (M ⊂ Rn) → C, where F =
[fL, fU] is the frequency domain and M is the parameter space; for our purposes,
M is some closed n-rectangle in Rn. A particular waveform, corresponding to
some parameter µ ∈ M , is written as hµ(f). The goal is to interpolate the
function h in the parameter space M , so as to obtain an approximation of
hµ(f) for any µ ∈ M . Assume that we can evaluate hµj (f) for m particular
parameters {u1, . . . , um}; these will become our interpolation nodes.

It will now be useful to describe the problem we address in less abstract
terms. Some of the details which follow are simply included for any reader who
wishes to replicate our results, and some are more fundamental to our problem.

The dimensionality of the parameter space M is dependent on the waveform
model which we use; a higher-dimensional parameter space will take into account
more properties of the waveform and its source. In our waveform models, the
source is a system of two massive objects which spiral around each other. We
consider two different parameter spaces. In the first, the parameter µ is a
function, called the chirp mass M, of the objects’ masses m1 and m2, given by

M(m1,m2) = (m1m2)3/5(m1 +m2)−1/5 (10)

In the second, the parameter µ = (m1,m2) ∈ R2 has components given by the
masses of the two objects. In both cases, we consider the mass range of 3− 30
solar masses. Adding additional parameters would give a higher-dimensional
problem, taking into account more features of the sources and the detectors,
such as the objects’ spins or the detector’s orientation.

The waveform models we use are given by the post-Newtonian approxima-
tion,

hµ(f) = Af−7/6ei(−π4 + 3
128 (πGf

M
c3

)−5/3+···) (11)

13

where f denotes frequency, A denotes an amplitude term, G is the gravitational
constant, and c is the speed of light. We indicate that there may be additional
terms in the exponential, corresponding to a higher-dimensional waveform. The
expressions given above can be found in [8]. We consider a dense grid of values
in the frequency domain, across the range [fL, fU], where fL = 40Hz and
fU ≈ 366.338Hz.

One may wonder why we wish to interpolate the function h if we already
have a closed form as given above. However, we simply use these approximate
waveforms as models for the problem of astrophysical significance, in which more
accurate waveform models are used. The models we use will have characteristics
that are similar to the accurate models, but are much easier to generate, and
therefore we can easily measure interpolation errors.

We will use the reduced basis algorithm, discussed in Section 2.2, in the
process of interpolating the waveforms, so it is necessary to define the Power
Spectral Density S(f) which we use for the inner product 〈·, ·〉 defined in (1). It
is generated using data from initial LIGO [2], which is fitted by the curve given
by

S(f) = 9× 10−46
[(

4.49

150
f

)−56
+ 0.16

(
f

150

)−4.52
+ 0.52 + 0.32

(
f

150

)2
]
.

(12)
We make one simplification to the problem, based on the information we

have about h; we cannot evaluate each known hµj (f) for any f ∈ F . Instead,
the approximate waveforms with which we work are given on some fine but finite
and fixed grid F = {f1, . . . , fp} with each fi ∈ F . That is, for our purposes, h
should be considered as a function M → Cp, so that hµ is a complex-valued p-
vector, with each entry giving the value of h for a fixed fj ∈ F at the parameter
µ. We could interpolate in the frequency coordinate in order to obtain an
approximation of hµ(f) at all values of f , but our interest is to obtain an

approximation ĥ : M → Cp of h. In particular, we want ĥ to satisfy the
interpolation condition

ĥµj (fk) = ĥkµj = hµj (fk) (13)

for 1 ≤ j ≤ m and every fk ∈ F ; each hµj is known on the frequency grid
F . Here, the leftmost expression abuses notation slightly in order to resemble
the original interpolation condition stated before, and the upper index k in the
second expression represents the kth vector component.

This interpolation problem is not, so far, phrased in the language used in
the previous section. In particular, we wish to interpolate functions h : (M ⊂
Rn) → Cp, by which we mean that we wish to obtain an approximation of h
which satisfies the interpolation condition (13). However, we have only described
the interpolation problem on functions mapping subsets of Rn to C. We must
find some way of addressing this discrepancy.

14

3.2.1 Component-Wise Interpolation

Suppose we break h into p functions hj : M → C for 1 ≤ j ≤ p, where each
j corresponds to a frequency component; that is, hjµ := hjµ, where again the

upper index j denotes the jth vector component. We can then solve each of
these p interpolation problems separately, obtain p interpolants ĥj , and define

ĥ : M → Cp by

ĥµ =

ĥ1µ
ĥ2µ

...

ĥpµ

 (14)

so that ĥjµ = ĥjµ. This approximation would, in particular, satisfy the interpo-

lation condition (13). For this stitching strategy to be plausible, it is necessary
that h be somewhat smooth over the frequency domain, but this is true since h
is C∞ considered as a function F ×M → C.

We begin by briefly describing this technique, which we call component-wise
interpolation, because it is the most obvious and direct way of reformulating the
interpolation problem. It is therefore worth discussing, though it is not the tech-
nique on which we will settle. There are two problems with applying component
wise interpolation to this problem. Firstly, p is large, so in order to find ĥµ for
some particular µ, we must solve a large number of interpolation problems at a
potentially oppressive computational cost. Indeed, accurate representations of
a waveform will be evaluated on a dense grid in the frequency domain, and the
cost of the resulting interpolation problem will scale proportionally.

Secondly, we have no guarantee that the functions hjµ are well-behaved
enough to effectively interpolate. In fact, though the graph of hj over the
parameter space M is more manageable for high frequencies, it tends to be
highly oscillatory for lower frequencies; so much so that interpolation on these
functions might require an unreasonably large number of data points. Figure 4
gives two of these graphs for the one-parameter space; one for a high frequency,
and the other for a low frequency. Notice the dramatic oscillations on the low
frequency graph for small values of the parameter µ.

In the two-parameter case, the functions hj are similarly badly behaved
for low fixed frequencies. We note that each hj is a smooth function, so given
enough data points, accurate interpolation is possible. However, we would like to
obtain an accurate solution of the interpolation problem using as few data points
as possible, because the number of data points required in a high-dimensional
parameter space can quickly become infeasible, and the generation of data points
carries a significant computational cost.

We could select our data points to reflect the location of activity over param-
eter space; specifically, in the one-dimensional, low frequency plot shown above,
we could pack the nodes more densely for lower values of µ. However, though
the function is more oscillatory for µ small, there is still a significant amount

15

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
31

−0.02

−0.01

0

0.01

0.02

Chirp Mass M (kg)

h

Frequency = 334.7382 Hz

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
31

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Chirp Mass M (kg)

h

Frequency = 47.9229 Hz

Real Part
Imaginary Part

Figure 4: Two waveforms at fixed frequencies over a one-dimensional parameter
space.

of activity over the entire parameter space, and we would still require an many
data points in the high activity areas. Another potential strategy is to make
use of the fact that the functions hj are better behaved for higher frequencies,
and to vary the number of data points we generate for each hj in proportion to
j. We do not explore this strategy of direct component-wise interpolation on
the waveforms here, though it may hold some promise if explored; instead, we
seek an indirect interpolation technique which makes use of the reduced basis
method described above.

3.2.2 Interpolation of Reduced Basis Coefficients

Since the reduced basis method can be used to represent the continuum of
waveforms using a small basis, we ask if it is possible to similarly reduce the
amount of work we must do to interpolate waveforms by using these basis ex-
pansions. Recall that, using the reduced basis technique, we can generate an
N -dimensional vector space of waveforms

WN = span{e1, . . . , eN} (15)

16

such that we can accurately approximate an arbitrary waveform hµ by its pro-
jection onto this space. The approximation error can be made arbitrarily small
by choosing N sufficiently large, but in practice small error can be obtained
with N relatively small. The projection of a particular waveform hµ is given by

PWN
(hµ) =

N∑
i=1

〈hµ, ei〉ei =

N∑
i=1

αiei (16)

for αi = 〈hµ, ei〉 ∈ C. We can equivalently consider PWN
as a function of the

parameter µ to obtain

PWN
(µ) =

N∑
i=1

〈hµ, ei〉ei =

N∑
i=1

αi(µ)ei (17)

Here α : M → CN is a function which takes a parameter value and returns a
vector of expansion coefficients, so that αi(µ), the ith component of α(µ), is the
ith coefficient αi in the expansion (16). To obtain α(µ) for some µ ∈M , however,
requires taking an inner product, which is a costly operation. Our strategy is to
perform component-wise interpolation on α(µ) over parameter space to obtain
an interpolant α̂(µ). N is not too large, so performing N separate interpolation
problems is feasible. Furthermore, αi(µ) = 〈hµ, ei〉, so it is smooth for each i,
since it is given by a smooth inner product of smooth functions. If we succeed,
we can, for arbitrary µ ∈M , obtain an approximation of PWN

(µ), and therefore

an approximation ĥµ of hµ, by

ĥµ =

N∑
i=1

α̂i(µ)ei (18)

By interpolating the waveforms via their projection coefficients, we obtain
an approximation of an arbitrary waveform hµ at every frequency value in the
domain, so the method operates independently of the density of the frequency
grid. The error in the approximation is a function of the N interpolation errors
from each interpolation problem and the error of the reduced basis expansion,
the latter of which can be made arbitrarily small. It remains to verify that
interpolation of the functions αi(µ) is feasible; that is, that the activity of the
functions can be resolved and captured using relatively few data points (µ, α(µ)).
To this end, we ought to sample α(µ) on a fine grid in parameter space, and
examine the resulting graphs of αi(µ) for all choices of 1 ≤ i ≤ N .

We note that, as a result of the greedy selection strategy used in the reduced
basis algorithm, the importance of the terms in the expansion (16) tends to
decrease as the index i increases; that is, the magnitude of αi tends to be lower
for large i than for small i. In particular, the last few terms of the sum act
as small adjustments. To illustrate this, we generate a reduced basis of 178
elements for the one-dimensional problem, and plot the average, over a grid of
3000 choices of µ, of the magnitude of αi(µ) for each i. This plot is given in

17

Figure 5. Note that the greedy algorithm randomly selects the first reduced basis
element, corresponding to the coefficient α1, so we do not necessarily expect its
magnitude to be large.

0 20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Index i

A
v
er
a
g
e
o
f
|α

i(
µ
)|

Average Magnitudes of Reduced Basis Coefficients

Figure 5: Average magnitudes of reduced basis coefficients αi(µ) over 3000
choices of µ.

We see that, indeed, the magnitude of αi tends to decrease as i increases;
in particular, the last few coefficients have magnitude near zero. Therefore,
even if the relative interpolation error is higher for the last few coefficients, the
absolute interpolation error of the sum will likely not be affected. We note this
because the last few coefficients are more poorly behaved as functions of µ than
the lower-indexed coefficients.

To give an idea of the structure of the functions we will interpolate, and to
show that it is reasonable to interpolate these functions, we first consider the
one-parameter problem, generating a reduced basis of 178 elements. We pick
several choices of i and observe plots of αi(µ). For most choices of i, the activity
of αi(µ) is highly concentrated; there is a small interval in which the function
oscillates with large amplitude, and elsewhere it is near flat with low amplitude
oscillations. Presumably the large oscillations occur near those parameters µ
for which the ith coefficient plays an important role in the reduced basis of the
corresponding waveform - in other words, we see oscillations for parameters µ
such that hµ is somehow well-represented by ei. We zoom in on locations in
parameter space with both high activity and low activity in order to paint a

18

clear picture of the structure of the one-parameter functions αi(µ).
For most such plots, the activity is so concentrated that a plot over the

entire parameter space is not particularly instructive or clear. However, Figure
6 gives the plot of the 5th coefficient over the entire parameter space M =
[.52× 1031kg, 5.19× 1031kg]. Since the index of this coefficient is low, it is quite
well-behaved as a function of M, the chirp mass.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
31

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Chirp Mass M (kg)

α
5
(M

)

5th Projection Coefficient Over One-Dimensional Parameter Space

Real Part
Imaginary Part

Figure 6: Plot of 5th projection coefficient over the entire one-dimensional pa-
rameter space.

It is clear from Figure 6 that in order to accurately interpolate this function,
it will suffice to place many nodes in the interval ≈ [.52 × 1031, 2 × 1031] and
few nodes elsewhere. Other choices of i yield similar pictures, though many of
them are less well-behaved. Consider the i = 100 case. In Figure 7, we give a
plot of the 100th projection coefficient over an interval of high variation, and
in Figure 8, we give a plot of the same coefficient over an interval of the same
length with lower variation.

These plots suggest that it is reasonable to attempt to interpolate the 100th

projection coefficient, but we ought to place many more interpolation nodes in
the region of higher variation in order to effectively capture the structure of the
function. The interval used in Figure 8 still has more activity than we see in
most of the function; as we increase M, the oscillations dampen further and
the activity decreases. Also notice that as M increases, the amplitude of the

19

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

x 10
30

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Chirp Mass M (kg)

α
1
0
0
(M

)

100th Projection Coefficient Over High-Activity Interval

Real Part
Imaginary Part

Figure 7: Plot of 100th projection coefficient over the interval [5.2 × 1030, 6 ×
1030] ⊂M .

oscillations decrease, so there is only a small contribution to the absolute error
of the interpolant made in regions of largeM. This further suggests that we can
get away with fewer data points in the flatter regions of the function, and since
the majority of the function is relatively flat, we should not need an excessive
number of data points in order to interpolate accurately.

As discussed before, the projection coefficients with very high index behave
more erratically, although they still tend to show more variation for lowerM, so
they count for less in terms of the final absolute interpolation error. Therefore,
instead of including a plot of a higher-indexed projection coefficient, it suffices
to note that these functions tend to obey some of the same important structural
qualities as the lower-indexed functions, so that they will not throw off our final
choice of interpolation nodes too much.

We observe very similar qualities in the functions αi(µ) for the two-parameter
case in which µ = (m1,m2) ∈ M ⊂ R2. Here, in parallel to the one-parameter
case, we observe a ridge-like structure in the region of small m1 and m2, with
lower-amplitude ridge-like oscillations propagating outward. A surface plot of
the real part of α20(m1,m2) is given in Figure 9 below; the structure of the
imaginary part is similar.

20

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

x 10
31

−3

−2

−1

0

1

2

3

4
x 10

−3

Chirp Mass M (kg)

α
1
0
0
(M

)

100th Projection Coefficient Over Low-Activity Interval

Real Part
Imaginary Part

Figure 8: Plot of 100th projection coefficient over the interval [1× 1031, 1.08×
1031] ⊂M .

We now have a procedure by which to interpolate the function h at some
fixed parameter µ0. We first generate a reduced basis of orthogonalized wave-
forms, so that an arbitrary waveform hµ can be represented by (16) with high
accuracy. Then, for each of N interpolation coefficients, we sample m data
points {µj , αi(µj)}mj=1 by

αi(µj) = 〈hµj , ei〉 (19)

for ei the ith reduced basis vector. We will choose the m nodes µj so as to best
capture the structure of the function αi(µ) with the smallest possible m, cluster-
ing nodes around locations of high activity if possible. We will then interpolate
each of these N functions at µ0 to obtain interpolated projection coefficients
α̂i(µ0), and then use Equation (18) to obtain the interpolated waveform ĥµ0(f)
for every f ∈ F , as desired.

3.2.3 Challenges to Solving the Interpolation Problem

We now discuss some challenges to the technique, which are sufficiently general
to apply to a wide variety of interpolation problems, but we discuss them in

21

Figure 9: Plot of the real part of the 20th projection coefficient over the two-
dimensional parameter space.

the context of our particular strategy. We will construct a checklist of points
to consider when filling in the details of our procedure, which will inform our
choice of a specific interpolation method.

One of the primary challenges to consider in formulating a solution to this
interpolation problem is the curse of dimensionality. For the one-parameter
problem, interpolation turns out to be relatively easy using simple techniques
and few data points. We simply cluster data points near the concentrated re-
gions of activity, and this is enough to resolve the behavior of the function.
Figures 6, 7, and 8 in the previous section illustrate this point. However, con-
sider Figure 9, which gives an example of the functions we wish to interpolate in
the two-parameter problem. Clearly, we require far more data points to resolve
the regions of high activity. Intuitively, it is easier, using a finite number of dots,
to form a detailed picture in the plane than it is in space. Though we cannot yet
make a precise statement about the growth of the number of nodes required to
resolve the functions, we can expect it to be significant. If the parameter space
is, say, 10-dimensional, as it perhaps would be for the astrophysically-relevant
problem, we likely cannot hope to generate enough data points to resolve the

22

behavior of the function, because of computational restrictions.
This particular challenge will inform many aspects of our interpolation strat-

egy. For one, we must use as few data points as possible, as the generation of
each data point carries a computational cost. We must also make the most
out of the m data points which we have the computational power to generate.
We would also like to choose an interpolation method which is generalizable to
arbitrary dimensions, and whose form does not change much when we change
the dimension of the space in which it is applied; we want a method that scales.
For example, linear interpolation, as we formulated it, only works on subsets of
R, but nearest neighbor interpolation is easily scalable to subsets of Rn.

It is important at this point to make a distinction between computations
which occur “off line” and those which occur “on line”. Some of the parts of
the problem can perfectly well be performed off line, using the most powerful
computers available and a reasonably large amount of time. Once we have
obtained our outputs, they have many general uses, and we can save them. For
example, we can generate a reduced basis of waveforms off line, store it, and have
available to us a space in which we can approximate any waveform with high
accuracy. However, other aspects of the problem might need to be solved on
line, on the go. For example, we might need to quickly generate approximations
of waveforms in certain locations in parameter space, based on signals that
detectors are reporting at a particular moment. In general, we assume that
the generation of interpolants for specific waveforms will be performed on line.
However, if we can factor out certain steps and perform them off line at leisure,
we can potentially reduce the number of on line computations required.

This point illuminates importance of the distinction between closed-form in-
terpolants and algorithmically-evaluated interpolants, in addition to the related
distinction between global and local interpolants. Before now, we have been
vague about these distinctions. Suppose we wish to interpolate some function
f : (M ⊂ Rn) → C at a fixed point x0 ∈ M . A closed-form interpolant is a

function f̂ : M → C which obeys the interpolation conditions and which we can
write down and evaluate at any point in M . If we have a closed-form interpolant
f̂ , we simply take f̂(x0) as our approximation of f(x0). All of the examples of
interpolants discussed in Section 3 are closed-form interpolants.

However, suppose we only care about approximating the value of f at x0,
and not at any other point in M . In this case, we may potentially do more work
than is necessary by obtaining a closed-form interpolant which can be used over
the whole parameter space M . In particular, an efficient algorithm may exist
that takes the data points as an input and produces only the approximation
f̂(x0). In this case, we call f̂ an algorithmically-evaluated interpolant. Later,
when we discuss polynomial interpolation, we will see an example of a method in
which both closed-form and algorithmically-evaluated forms of the interpolant
are available, and the choice of which to use is problem-specific.

Related is the notion of global and local interpolants. Suppose we wish to
interpolate the value of f at x0 ∈ M , but that the behavior of the function
far away from x0 is irrelevant to the value of f at x0. Rather, we may wish to

23

consider a subset U of M , and rephrase the interpolation problem in terms of
a new underlying function f |U : U → C, using as our data points the subset
of data points over M whose nodes fall in U . We call this local interpolation.
Alternatively, for every x0 ∈ M , we may wish to use all of the data points
in order to interpolate f at x0, in which case we say that the interpolation is
global.

If we can obtain a global, closed-form interpolant which is accurate, we have
a solution to the interpolation problem at every point in M . However, unless
the function f is very simple, or the interpolation method is very well suited
to f , obtaining such an interpolant may be too costly, and its closed form may
still be unreasonably complex. If only limited information is available about
the underlying structure of a function, it will be difficult to capture all of the
features of this structure in a reasonable amount of time and a concise form.
The more data points we use, the more complicated the closed-form interpolant
will be, since it is necessarily a function of the data points. We can imagine the
difficulty of writing down a global, closed-form interpolant of the two-parameter
coefficient plotted in Figure 9.

A global, algorithmically-generated interpolant usually does not make sense;
we would only use an algorithmically-generated interpolant if we only wish to
interpolate at a point, but the value of a function at a point is often more effi-
ciently approximated using only data points nearby, rather than all data points.
This is not necessarily true; if an underlying function has a regular structure
which is well-suited to a particular interpolation method, we may throw away
important information by using a local technique. A local, closed-form inter-
polant does not make sense if a faster algorithmically-generated interpolant is
available, because it is unnecessary to have a closed form of the interpolant if
we will only use it once.

In this paper, we tend to use local, algorithmically-generated interpolants,
though some of the local methods we use produce closed-form interpolants which
we evaluate at the point of interest and then throw away. We are interested in
finding some waveform at a particular parameter µ; therefore, it suffices to
interpolate all of the projection coefficients at µ. We consider this to be the on
line phase of the problem. If we could construct a global, closed-form interpolant
of the projection coefficients, the entire problem could be solved off line, except
for the evaluation of the interpolant at a specific point. However, such an
interpolant would be so complicated - most likely it would be a sum of many
thousands of terms - that generating it would be computationally straining,
storing it would be burdensome, and evaluating it at some point µ might take
as long as performing a local interpolation at µ. We could construct such an
interpolant in theory, but it would be, at best, excessively inelegant, like trying
to pack a sphere with thousands of jagged objects of different shapes and sizes.

Instead, we generate a fine, fixed global set of data points off line, and
perform on line local interpolations using these data points; that is, given a
parameter µ0, we perform an order k local interpolation by choosing the k nodes
closest to µ0 and solving an interpolation problem using the corresponding data
points.

24

An important challenge, then, lies in making a proper choice of the global
interpolation nodes. We should attempt to place the nodes carefully so as to
resolve those locations in parameter space in which the plots of the projection
coefficients tend to show more activity. By investigating the structure of the
underlying waveforms, we will gain clues about how to optimize the global set
of data points; this will be discussed at length later.

In choosing the data points, we also must take into account the specific
interpolation method that we use, since some methods require the nodes to be
arranged in a regular - not necessarily equidistant - grid. In higher dimensions, it
may be difficult to generate and store enough data points to fill a grid, and there
may be some optimal choice of nodes which captures a great deal of information
about the function, but which are scattered. It may be worthwhile, then, to
explore interpolation methods which give a high degree of freedom in the choice
of interpolation nodes.

We therefore seek a method which is easily scalable to higher dimensions,
which allows us to perform accurate local interpolations at a low computational
cost, and which gives some freedom in our choice of interpolation nodes. The
next section again departs from our specific application in favor of a general
discussion of interpolation methods, and in particular, we consider methods
which fulfill all or most of these requirements.

4 Interpolation Methods

Given a set of data points, there are many ways that we can draw a curve
through these points. The nearest neighbor and linear interpolation methods
presented before are two simple possibilities, but do not tend to accurately
capture the structure of very many functions. In this section, we present a
few different interpolation techniques in generality, and discuss their strong and
weak points. We begin with a technique which is simple, but efficient and
effective; polynomial interpolation.

4.1 Polynomial Interpolation in One Dimension

Suppose we have m data points {(xi, yi)}mi=1 for (xi, yi) ∈ R × C which we
imagine to be drawn from an underlying function f : R→ C, so that f(xi) = yi.
Interpolation of these data points via polynomials consists of constructing a
polynomial that passes through the data points, and evaluating that polynomial
at a new point of interest.

4.1.1 Basic Results Concerning Polynomial Interpolation

Polynomial interpolation is made possible by the following result.

Theorem 1. (Lagrange Polynomial) Consider the set {(xi, yi)}mi=1, where
(xi, yi) ∈ R×C. Suppose xi 6= xj for i 6= j. Then there exists a polynomial p(x)

25

with complex coefficients of degree at most m−1 which interpolates {(xi, yi)}mi=1;
that is, for every 1 ≤ i ≤ m, we have

p(xi) = yi (20)

Proof. Define m polynomials li by

li(x) :=
∏

1≤j≤m
j 6=i

x− xj
xi − xj

Notice li is an m−1 degree polynomial for each i, and it is well defined, because
xi 6= xj for any j in the product. Fixing i, we can check

li(xk) = δik =

{
1, i = k

0, i 6= k
.

Let

p(x) :=

m∑
i=1

yili(x)

which is a polynomial with complex coefficients of degree at most m − 1. We
claim that this polynomial interpolates {(xi, yi)}mi=1. Indeed, fixing some k with
1 ≤ k ≤ m, we have

p(xk) =

m∑
i=1

yili(xk)

=

m∑
i=1

yiδik

= ykδkk = yk

as desired.

The polynomial which was constructed in the proof is called the Lagrange
interpolating polynomial. We confirm that the Lagrange polynomial is unique;
that is, given any polynomial of degree at most m − 1 interpolating m data
points, this polynomial is precisely the Lagrange polynomial constructed above.

Theorem 2. (Uniqueness of the Lagrange Polynomial) Suppose two poly-
nomials p and q of degree at most m−1 interpolate the points {(xi, yi)}mi=1. Then
p = q.

Proof. Let r(x) = p(x)− q(x). The degree of r(x) is at most m− 1, since both
p(x) and r(x) have degree at most m − 1. Furthermore, r(x) has at least m
roots, since for every i such that 1 ≤ i ≤ m, we have

r(xi) = p(xi)− q(xi) = yi − yi = 0

Therefore, by the Fundamental Theorem of Algebra, we must have r(x) = 0,
since the degree of r is less than m. This gives p(x) = q(x).

26

Notice that polynomial interpolation falls under the framework described at
the end of Section 3, in which an interpolant is constructed as a linear combina-
tion of some interpolation basis. Indeed, we wish to approximate the underlying
function f by

f̂(x) =

m∑
i=1

ci−1x
i−1 (21)

and we can obtain the coefficients ci by solving the linear system
1 x1 x21 · · · xm−11

1 x2 x22 · · · xm−12
...

...
. . .

...
1 xm x2m · · · xm−1m

c0
c1
...

cm−1

 =

y1
y2
...
ym

 (22)

To prove that the Lagrange polynomial is unique, it would also suffice to show
that this interpolation matrix, called the Vandermonde matrix, has non-zero
determinant, but the proof given above is considerably simpler.

We next give an error bound on the polynomial interpolant; we show that
a bound on the interpolation error is determined by the mth derivative of the
underlying function f and by the interpolation nodes. Though this result is,
for our purposes, of limited practical use, a simple error bound is an important
feature of polynomial interpolation, and it helps us to understand one of its
primary limitations. The following proof was found in [13].

Theorem 3. (Error Bound on Polynomial Interpolation) Suppose that
{(xi, yi))}mi=1 are distinct nodes with f(xi) = yi for some f : R → C. Let
a = min{x1, . . . , xm} and let b = max{x1, . . . , xm}. Suppose f ∈ Cm[a, b], and
p is the unique polynomial of degree at most m− 1 which interpolates the data
points. For every x ∈ [a, b], there exists c ∈ (a, b) such that the error f(x)−p(x)
is given by

ε(x) :=
1

m!
f (m)(c)

m∏
i=1

(x− xi) (23)

Notice the similarity between Theorem 3 and the Lagrange form of the re-
mainder in Taylor’s Theorem; simply abandon the requirement that all nodes
be distinct and set all nodes to be equal.

Proof. Suppose x = xi for some i with 1 ≤ i ≤ m. Then f(x) = p(x) and
ε(x) = 0 as desired, so we fix some x ∈ (a, b) that is not a node.

Let ω : R→ R be given by

ω(t) =

m∏
i=1

(t− xi)

Since x is fixed and x 6= xi for any i, ω(x) is fixed and non-zero. Let λ be a
constant given by

λ =
f(x)− p(x)

ω(x)

27

Lastly, define φ : R→ R by

φ(t) = f(t)− p(t)− λω(t)

Notice φ has m + 1 roots in [a, b]; at each of the m nodes xi we have f(xi) =
p(xi) and ω(xi) = 0, and we also have φ(x) = 0. Furthermore, φ is m-times
differentiable in [a, b], because p and ω are polynomials, and f ∈ Cm[a, b]. We
can then apply Rolle’s Theorem m times to find that φ(m)(t) has one root in
(a, b); that is, there is some c ∈ (a, b) with φ(m)(c) = 0. This gives

f (m)(c)− p(m)(c)− λω(m)(c) = 0

However, p is a polynomial of degree at most m− 1, so p(m)(t) = 0. Also, since
ω(t) is a degree m monomial, ω(m)(t) = m!. This gives

f (m)(c) = λm! =
f(x)− p(x)

ω(x)
m!

Rearranging and substituting the original definition of ω into this expression
gives the desired result.

As stated before, this bound will not help us predict the error of a specific
interpolation. However, now that we see the connection between polynomial in-
terpolation error and the derivatives of the underlying function, we can describe
some of the challenges encountered in using polynomial interpolation.

4.1.2 Runge’s Phenomenon & Limitations of Polynomial Interpola-
tion

Runge’s function, given by

f(x) =
1

1 + 25x2
(24)

is the classic pathological example in polynomial interpolation. In Figure 10,
we give plots of 5th, 9th, and 13th order polynomial interpolants on the interval
[−1, 1] using equispaced nodes.

We notice that as the order of the interpolant increases, the error near
x = ±1 begins to blow up due to increasingly large oscillations. Indeed for
Runge’s function with equispaced nodes, as the order of the polynomial inter-
polant increases, so does the maximum interpolation error.

This observation may be counterintuitive; one might think that as the num-
ber of interpolation nodes increases, the interpolation error should decrease.
The key to justifying this behavior is in the error bound given in Thereom 3.

In Figure 11, we give plots of the functions |f
(m)(x)|
m! on a logarithmic scale for

the first few values of m. This quantity is proportional to an upper bound on
the error of the corresponding polynomial interpolant. We wish to show that
the maximum value of the derivatives of f grow fast enough so that this error

28

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f
(x
)

Runge’s Phenomenon for Polynomial Interpolants

f(x) = 1
1+25x2

5th order polynomial interpolant

9th order polynomial interpolant

13th order polynomial interpolant

Figure 10: Demonstration of Runge’s Phenomenon for f(x) = 1
1+25x2 ; notice

the oscillations of the polynomial interpolants near x = ±1.

bound increases with m. Indeed, Figure 11 shows that for 0 ≤ m ≤ 4, this
quantity increases quickly; it continues to do so for larger values of m.

Certainly, since the error bound is an upper bound, the rapid growth of the
derivatives of f as m increases does not guarantee a corresponding growth in
the actual interpolation error. However, Runge’s function simply shows that
such a blow-up in error is possible, and that a larger-order interpolant does not
guarantee a lower interpolation error.

By choosing particular non-equispaced arrangements of interpolation nodes,
we can often mitigate Runge’s phenomenon. In particular, placing more nodes
near the endpoints of the interval can decrease oscillations. There are arrange-
ments of nodes, like Chebyshev nodes, which give a decrease in the interpolation
error as the order of the interpolation increases for large classes of functions.

Our strategy is, instead, to use low-order local interpolants, because Runge’s
phenomenon only becomes noticeable when the number of interpolation nodes
becomes large. We could attempt to construct global interpolants, but we would
then be forced to select nodes which mitigate Runge’s phenomenon, rather than
nodes which efficiently represent the underlying function, and in our application,
we can not afford to make this sacrifice. Runge’s phenomenon then makes the
impossibility of global polynomial interpolants clear; for any given choice of
interpolation nodes, a polynomial interpolant of such high order would likely

29

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

x

Growth of the Derivatives of Runge’s Function

f(x) = 1
1+25x2

|f′(x)|
|f′′(x)|

2
|f(3)(x)|

3!
|f(4)(x)|

4!

Figure 11: The growth of the derivatives of f is related to the growth of the
polynomial interpolant error bound.

contain out-of-control oscillations, and yield an enormous interpolation error.

4.1.3 Implementing Polynomial Interpolation: Neville’s Algorithm

There are a number of ways to generate local polynomial interpolants. Of course,
we could use the construction of the Lagrange polynomial given in Theorem 1,
simply writing down the sum

p(x) =

m∑
i=1

yi
∏

1≤j≤m
j 6=i

x− xj
xi − xj

(25)

This will give a closed-form interpolant, which we may then evaluate at some
point of interest. However, in practice, this construction is somewhat inelegant,
and evaluating the resulting expression still requires O(m2) operations.

Alternatively, we could invert the Vandermonde matrix given by Equation
(22) to obtain the coefficients of the Lagrange polynomial, construct the poly-
nomial, and evaluate it at some point. There are algorithms that make use of
the particular structure of the Vandermonde matrix to invert it using O(m2)
operations [14].

Since we only need to evaluate any given local interpolant at one point,
an algorithmically-evaluated interpolant suffices. We use Neville’s Algorithm,

30

which is straightforward, easy to code, and requires O(m2) operations to return
the value of the polynomial interpolant at some point given m data points
[15]. Since we only construct local interpolants, m is small, so the algorithm is
sufficiently fast.

Fix m data points {(xi, yi)}mi=1 and some point x in the domain of interpo-
lation. Neville’s Algorithm makes use of the recurrence relation given by the
following Lemma.

Lemma 1. Let pk,k+n(x) for k + n ≤ m be the unique polynomial of degree
n − 1 which interpolates the points {(xi, yi)}k+ni=k , so in particular pk(x) = yk.
Then for n ≥ 1, we have

pk,k+n(x) =
(x− xk+n)pk,k+n−1(x) + (xk − x)pk+1,k+n(x)

xk − xk+n
(26)

Proof. Fix some k. Note that the expression on the right is a polynomial of
degree n − 1, so by the uniqueness of the Lagrange polynomial, it suffices to
show that it interpolates the points {(xi, yi)}k+ni=k . This can be checked directly;
the x = xk and x = xk+n cases follow directly from the expression, and the rest
follow since pk,k+n−1(xj) and pk+1,k+n(xj) agree for k+ 1 ≤ j ≤ k+ n− 1.

If we fix some x, we seek the number p1,m(x), and we can use this recurrence
relation to find it. The resulting algorithm is Neville’s Algorithm. We simply
start with n = 1, vary k from m − 1 to 1, and use the relation to find all
values pk,k+1(x). We then move on to n = 2, finding all values pk,k+2(x) for
1 ≤ k ≤ m − 2. We repeat until n = m, at which point letting k = 1 yields
the desired interpolant. This amounts to filling in the following m ×m upper
triangular array and taking the entry p1,m(x) in the upper-right corner as the
interpolant; we fix m = 4 for simplicity.

P =

p1(x) p1,2(x) p1,3(x) p1,4(x)

0 p2(x) p2,3(x) p2,4(x)
0 0 p3(x) p3,4(x)
0 0 0 p4(x)

 (27)

Notice that to fill in an entry of P using the recursion relation (26), we must
know the entry below it and the entry to the left of it. Therefore, in the example
m = 4 above, we compute the off-diagonal entries of P in the following order:

p1,2(x)→ p2,3(x)→ p1,3(x)→ p3,4(x)→ p2,4(x)→ p1,4(x)

We give pseudocode for Neville’s Algorithm in Algorithm 1 below. Notice
that Neville’s Algorithm requires O(m2) operations; we must step through m
choices of n, and for each n, we must step through at most m− 1 values of k.

Using this algorithm, we can, given a global grid of data points in one-
dimensional parameter space, fix some m, choose m data points around some
parameter µ of interest, and carry out a fast orderm−1 polynomial interpolation
at µ. We next discuss a simple way of extending this method to an n-dimensional
domain.

31

Algorithm 1 Neville(X,Y, x)

Input: An array of m interpolation nodes X, an array of evaluations Y cor-
responding to the nodes X, and a point x at which to interpolate.
Output: The polynomial interpolation at x given the data points (X,Y).
for j = 1 to m do
P (j, j) = Y (j)

end for
for j = 2 to m do

for i = j − 1 to 1 do

P (i, j) = (X(j)−x)P (i,j−1)+(x−X(i))P (i+1,j)
X(j)−X(i)

end for
end for
return P(1,m)

4.2 Extending Polynomial Interpolation to Higher Dimen-
sions via a Dimension-by-Dimension Approach

Suppose we have an m × m grid - not necessarily uniform - of data points
{((xi, yj), zij)}mi,j=1 corresponding to some underlying function f : (M ⊂ R2)→
C. It is not necessary that the grid be square, but we assume that it is for
simplicity. We wish to approximate f at some point (x, y) inside the closed
square bounding the grid using polynomial interpolation. We can accomplish
this via m+ 1 one-dimensional interpolations.

We begin by stepping through the m points xi, and for each xi, we perform a
one-dimensional polynomial interpolation at the point (xi, y) using the m data

points {((xi, yj), (zij))}mj=1. At each step, we obtain a point ((xi, y), f̂(xi, y) =

ẑi), where f̂(xi, y) is the resulting polynomial interpolant. After all m steps, we
have a set of points {((xi, y), zi)}mi=1, and we interpolate these points at (x, y) to
obtain the desired approximation. A visualization of this process, which we call
dimension-by-dimension polynomial interpolation, is given in Figure 12 below
for m = 4.

In essence, this technique reduces an n-dimensional interpolation problem
to a series of n − 1-dimensional problems, each of which can then be reduced
again, until we are left with O(mn−1) one-dimensional problems which we can
solve. Thus, a generalization of the two-dimensional technique described above
gives rise to a recursive algorithm. Imagine the three-dimensional case, in which
the grid of data points is inside some closed m×m×m cube. We first consider
m planes in the cube, and for each plane, we consider m lines in the plane. We
interpolate on each line in the plane, and then once more on the resulting line of
approximations, to obtain an approximation in each plane, as described above.
Then we solve a final one-dimensional interpolation problem, using each of the
plane approximations as data points, to obtain the desired approximation.

Using Neville’s Algorithm, the entire method requires O(mn+1) operations;
we have O(mn−1) one-dimensional interpolation problems, each of which re-

32

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

3.5

4

4.5

x

y

Dimension-by-Dimension Polynomial Interpolation in Two Dimensions

Figure 12: m = 4. Original data points are given as blue dots. The first m
interpolations are performed along the blue dotted lines to yield data points at
the red xs, and the final interpolation is performed along the red dotted line to
obtain the desired approximation at the location (x, y) of the green circle.

quires O(m2) operations to solve. Using local interpolation, m is kept small, so
this scaling is not necessarily unmanageable, but may become so for larger n.

The severest limitation of this method, however, is the requirement of a
regular grid of data points. Each local interpolation requires such a grid, and
since each set of local data points is a subset of the set of global data points,
we require the set of global data points to be arranged in a grid. For large n,
constructing such a global grid may be infeasible; we may only be able to afford
to place nodes at points of high activity, without then filling in the extra nodes
required to form a grid. Noting this limitation, we will put this dimension-
by-dimension technique to the test in a later section, and find that it is yields
positive results in the case n = 2. However, we first consider other methods
which do not require the data points to be arranged in a grid.

4.3 Interpolation with Radial Basis Functions

A radial function is a function φ : Rn → R of the form

φx0
(x) = ψ(‖x− x0‖) = ψ(r) (28)

33

where x0 ∈ Rn is some fixed center and ψ : R → R [16]. In other words, the
value of a radial function depends only on the distance of its argument from the
center. A radial basis function interpolant, then, is an interpolant of the form

f̂(x) =

m∑
i=1

ciφxi(x) =

m∑
i=1

ciψ(ε‖x− xi‖) (29)

Here, {xi}mi=1 is a set of interpolation nodes, φxi is a radial function with center

xi, and ε is some positive constant. As always, f̂(x) must obey the interpolation
condition corresponding to the data points {(xi, yi)}mi=1 for (xi, yi) ∈ Rn × C.
We obtain the coefficients ci by solving the symmetric linear system given by

ψ(ε‖x1 − x1‖) ψ(ε‖x1 − x2‖) · · · ψ(ε‖x1 − xm‖)
ψ(ε‖x2 − x1‖) ψ(ε‖x2 − x2‖) · · · ψ(ε‖x2 − xm‖)

...
...

. . .
...

ψ(ε‖xm − x1‖) ψ(ε‖xm − x2‖) · · · ψ(ε‖xm − xm‖)

c1
c2
...
cm

 =

y1
y2
...
ym

(30)

Inverting this system to obtain the closed-form interpolant requires O(m3) op-
erations in general.

A radial basis function interpolant, then, is a sum of m radially symmetric
functions which are collocated to the interpolation nodes, such that the sum
passes through all data points. At each node, we place some radial basis func-
tion, and then take as the interpolant the linear combination of these functions
which satisfies the interpolation condition. These interpolants, then, are well
suited to underlying functions which exhibit some sort of radial symmetry, either
global or local.

We can further expect that the steepness or flatness of the chosen radial basis
function will affect the accuracy of the interpolation. Varying this property of
the basis functions is the purpose of the constant ε in the expansion (29) above.
This ε is called the shape parameter, and adjusting it properly will turn out
to be of the utmost importance in generating accurate radial basis function
interpolants.

For certain choices of radial functions, the interpolation matrix above is
guaranteed to be non-singular. Notice that in the section on polynomial in-
terpolation, we indirectly proved that the Vandermonde matrix is non-singular
by proving the existence of the Lagrange polynomial. However, non-singularity
is not in general guaranteed for an arbitrary interpolation basis, so this is an
important advantage of the method. There are several commonly used radial
functions which guarantee that the interpolation matrix in Equation (30) is
non-singular [15]. The multiquadric radial function is given by

ψ(r) =
√

1 + (εr)2 (31)

Notice that since r ≥ 0, the multiquadric radial function is smooth, and it is
equal to 1 at r = 0. We also have the inverse multiquadric, given by

ψ(r) =
1√

1 + (εr)2
(32)

34

which is also smooth and equal to 1 at r = 0. The multiquadric and inverse mul-
tiquadric are said to be about equally as effective in applications, even though
the multiquadric grows monotonically, whereas the inverse multiquadric decays
monotonically. This turns out to be largely unimportant in practice, unless we
require that the interpolant decay outside of the rectangle bounded by the data
points. A final example is the Gaussian, given by

ψ(r) = e−(εr)
2

(33)

The Gaussian radial function tends to display a higher sensitivity to changes
in the shape parameter ε than the multiquadric and inverse multiquadric radial
functions, and as a result may not perform as well, though it is well-suited to
certain specific applications where the choice of ε can be optimized. Note again
that each of these radial functions yields a guaranteed non-singular interpolation
matrix in (30).

As an example of the method, we interpolate the function f(x) = e−
(x−2)2

2 +

e−
(x+2)2

2 on the interval [−5, 5] using a multiquadric radial basis with ε = 1
and 7 equispaced data points. We give a plot of f , the data points, and the
interpolant in Figure 13. We also include plots of the individual terms of the sum
which forms the interpolant in order to provide intuition about how elements
of the interpolation basis might combine to form an accurate interpolant. Since
f is smooth and contains radially symmetric structures, we are able to build a
decent interpolant with a small set of data points.

Before entering a brief discussion of the sensitivity of the error to the shape
parameter ε, which will turn out to be a fatal flaw of the radial basis functions for
our application, we emphasize its primary advantages. Notice that there is no
fundamental difference between the forms of the method for different dimensions
n, since the functions in the interpolation basis map all nodes in Rn onto R for
any n. Since the inversion of the interpolation matrix requires O(m3) operations
in general, the requirement of many more nodes in higher dimensions may cause
the computational cost of the problem to scale dramatically. However, the
method itself does not require any special generalization to higher dimensions,
as polynomial interpolation does. Also notice that the interpolation nodes can
be placed anywhere; we do not require them to have any sort of regular structure.
This flexibility might allow us to use fewer, intelligently-placed nodes, and is
one of the main benefits of interpolation via radial basis functions.

4.3.1 The Shape Parameter ε of Radial Basis Functions

Recall the form of the radial basis function interpolant given in Equation (29).
The parameter ε essentially adjusts the rate of growth of each term in the sum.
If we require each term in the sum to reflect localized behavior of the underlying
function - for example, if the interpolation nodes are densely packed - then we
would choose a large value of ε. However, if we require the terms in the sum
to have a broader shape - perhaps we believe the form of the radial functions

35

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

x

Multiquadric Radial Basis Interpolant of f(x) = e−
(x−2)2

2 + e−
(x+2)2

2 , ε = 1

f(x) = e−
(x−2)2

2 + e−
(x+2)2

2

Interpolation Nodes

Collocated MQ RB Functions

MQ Interpolant

Figure 13: Multiquadric radial basis interpolant of f(x) = e−
(x−2)2

2 + e−
(x+2)2

2 ,
with ε = 1 and 7 equispaced data points.

properly reflects the global behavior of the underlying function - then we would
choose a small value of ε.

We find that the success or failure of interpolation with radial basis functions
is highly dependent on the choice of ε; this choice must properly reflect the
structure of the underlying function, as well as the choice of interpolation nodes.
This property is detrimental to the success of this method in our application.
For each waveform we wish to interpolate, we must perform interpolations of
many different functions - the projection coefficients over parameter space - each
of which has a different, though related, structure. The optimal choice of ε for
one of these functions in one particular region - assuming that we will use local
interpolants; we will discuss this in greater detail later - may be quite different
from the optimal choice of ε for some other function and some other region. For
now it suffices to state that we require a method which is generalizable, and
performs well in a variety of contexts.

This begs the question; is there some procedure for choosing ε optimally?
In [17], it is demonstrated that indeed, using the smooth radial functions listed
above, there is some ε > 0 for which the error of the radial interpolant is
minimized. Various authors have proposed techniques for approximating this
optimal ε, but no method has been proposed which is efficient, effective, and
sufficiently general. One popular method is known as leave-one-out cross vali-

36

dation [18]. We first generate a list of possible choices of ε, and fix some ε in
the list. We then loop through each of the m data points, and for each compute
a radial basis interpolant using the m− 1 other data points. We then compute
the error of the interpolant at the “left-out” data point, and store this value
in a vector. In the end, we obtain an m vector, and, taking the norm of this
vector, obtain a “cost” estimate for the value of ε which we have chosen. We
then choose the value of ε with the lowest associated cost.

If we use this technique to test n choices of ε, we incur an O(nm4) cost.
This method is therefore highly inefficient, especially when we are required to
solve many different interpolation problems. A proposed improvement to this
technique reduces the cost to O(nm3), but we still only optimize ε by testing
every possibility in some set of candidates. Thus, this technique is hardly an
improvement to tinkering in the context of our application, which requires the
interpolation of hundreds of different functions in order to obtain a solution.

Notice that we have, so far, assumed ε is fixed for each basis function; that
is, that the choice of ε is identical for each radial function φxi in the sum. We
could instead choose a different εi for each i. This would, of course, require
some criterion by which to choose each εi. One author suggests setting the
value of εi to be inversely proportional to the distance of xi from the nearest
node [16]. This way, in regions in which nodes are more densely packed, the
corresponding terms of the sum will be steeper and more localized. However,
we must choose some proportionality constant, and this choice will affect the
interpolation dramatically. We are still faced with an overly-specific method,
since now we have no general procedure by which to choose the proportionality
constant; the correct choice of such a constant may very well be different for
different functions. In light of the absence of a robust and general procedure
for optimizing the shape parameter, if the accuracy of the interpolant is overly
sensitive to the choice of ε, we will likely be forced to reject interpolation via
radial basis functions.

In practice, in order to investigate the optimal choice of ε for various func-
tions, we simply interpolate the same set of data points over a range of values
of ε, and take note of which choice of ε gives the lowest error. We find that,
though the optimal ε correlates with the shape of the underlying function -
specifically, with the absolute values of its derivatives - it often also depends on
other factors. We would expect to see a proportional relationship between the
optimal ε and the broadness of the underlying function in regions of activity;
for example, if we interpolate the functions sin(kx) for different choices of k, we
would expect that the optimal ε would increase with k. However, this is not
always what we observe; the optimal ε appears to depend not only on the shape
of the function, but on the resolution of the underlying function by the data
points, the placement of those points, and probably other factors.

Furthermore, the range in error over different choices of the shape parameter
can be rather large. We consider the relatively well-behaved function f(x) =
x sin(3x). Since f(x) is smooth and somewhat well-resolved by the data points,
the sensitivity of the interpolation error to ε in this case is typical. Using a
multiquadric radial function basis and 30 equispaced data points, we interpolate

37

f on the interval [−2π, 2π] using different choices of ε; specifically, we choose
values ε ∈ [12 , 2]. We plot the function f with the data points that we use, and
the maximum interpolation error over [−2π, 2π] for each choice of ε, in Figure
14. Here, doubling ε increases the error by an order of magnitude; for other
functions, the slope of this plot may be even steeper.

−5 0 5
−6

−4

−2

0

2

4

6

x

f
(x
)
=

x
si
n
(3
x
)

f(x) = x sin(3x) with 30 data points

0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε

M
a
x
im

u
m

In
te
rp
o
la
ti
o
n
E
rr
o
r

Optimal Choice of ε for f(x) = x sin(3x)

Figure 14: Maximum interpolation error for many choices of ε ∈ [12 , 2]. The
optimal choice of ε on this interval is highlighted in red.

For small values of ε, the interpolation matrix in (30) can become very ill-
conditioned. Intuitively, this is because a smaller value of ε yields a flatter
radial function, so that the range of values in the entries of the interpolation
matrix will be smaller, leading to less linear independence between the rows
and columns of the matrix. If we require an interpolant with small ε, then,
we might need to use other methods, such as singular value decomposition or
higher-precision arithmetic, to invert the interpolation matrix. This further
increases the computational cost of the interpolation.

A result from [19] shows that in the limit ε→ 0, the one-dimensional radial
basis function interpolant on some set of data points converges to the corre-
sponding polynomial interpolant. As a result, we see Runge’s Phenomenon
appear in radial basis function interpolants with small ε; this is a further im-
pediment to using radial basis function interpolants with small ε. In light of the
ε→ 0 result, it is natural that using different node distributions, like Chebyshev
nodes, effectively addresses this problem if we are to use global interpolants in
our application. This phenomenon is explored further in [16].

In light of observation, mentioned above, that in general there exists some
optimal choice of ε which is greater than 0, this ε→ 0 result also implies that the
accuracy of radial basis interpolants with an optimal choice of ε will generally

38

be better than that of polynomial interpolants. Note that this result is only
relevant for one-dimensional problems, although we sometimes notice Runge
Phenomenon-like oscillations in higher dimensions.

4.3.2 Global & Local Radial Basis Function Interpolants

Consider the possibility of employing global radial basis function interpolants
of the projection coefficients αi(µ). A plot of one such function was given
in Figure 9. In this particular function, we have a small region of very high
oscillation, and then broader oscillations emanating from this region. It may
be, then, that different choices of ε will better resolve different regions over the
parameter space. Furthermore, we must interpolate many different projection
coefficients, and since we do not have an automatic procedure to customize our
choice of ε - and there are potentially hundreds of projection coefficients to
interpolate - we must simply fix some ε and use it for every interpolation. The
sensitivity, then, of radial basis interpolants to the choice of the shape parameter
may be incompatible with the variety inherent in such a complex, multi-step
interpolation problem considered over the global parameter space.

Most important, however, is that the number of nodes required to resolve
the functions, even in one dimension, is likely in the thousands, and in two
dimensions, in the tens of thousands. This is exacerbated by the lack of any
radial symmetry in the functions of interest; if the structures of the elements
in an interpolation basis resemble the underlying function, fewer nodes will be
required to resolve that function’s behavior. We need only consider Figure 9 to
see that a radial basis is not so well-suited to the global problem. Of course,
given enough data points, the interpolant will converge to the underlying func-
tion, but the marginal error reduction achieved by adding an additional data
point will likely level off too soon to obtain a reasonably efficient interpolant.
The induced interpolation matrix will be enormous, and inverting it with ac-
curacy will then be a significant challenge. Furthermore, the resulting global
closed-form interpolant will take the form of a sum with an unwieldy number
of terms.

In short, our problem requires a general method, and a global radial basis
interpolant must be tailored to a specific type of underlying function. Instead,
we will make use of local interpolants; this strategy eliminates some of the
problems associated with global radial basis interpolants which we have pointed
out. Since the projection coefficients vary smoothly over parameter space, a
small neighborhood of some point αi(µ) resembles a hyperplane. In a local
neighborhood including only a handful of data points, the underlying function
will, in most regions in parameter space, be a surface whose gradient varies
mildly. We demonstrate the utility of a local approach by plotting a 9× 9 local
grid on the front face of the plot in Figure 9, and showing a neighborhood of
the grid at three different levels of zoom in Figures 15, 16, and 17 below. These
figures should be viewed as a series, beginning with Figure 9, and are intended
to provide intuition as to the fundamental difference between local and global
interpolation in this context.

39

Figure 15: 9 × 9 local grid, with data points given by red dots, on the plot of
the 20th projection coefficient over a two-parameter space. At this first level of
zoom, we can not clearly see the points in the local grid, but we may observe
the scale of the local grid with respect to the whole parameter space.

This local grid is a subset of a 400× 400 global grid which is the Cartesian
product of two one-dimensional logarithimically-spaced grids; that is, the nodes
in the global grid are clustered towards lower parameter values, so that more
nodes are placed in the region of high oscillation. The selection of the global grid
will be discussed in a later section. Note that this is a dense grid; the picture
might not look as promising if the grid contained fewer nodes, since we would
be forced to interpolate on larger neighborhoods of the point of interest, which
have less of a resemblance to simple hyperplanes. Furthermore, other regions of
the underlying function have more variation in their gradient, or more complex
structures.

However, at least for this particular projection coefficient, most regions are
locally well-behaved, and other projection coefficients have a similar structure.
This is the primary advantage of local interpolation using any method; that
the local structure of a smooth function tends to be easier to capture than
its global structure, though it is nevertheless sometimes useful in interpolation
to maintain information about the global structure of the underlying function.
However, there is another related benefit which is more specific to radial basis

40

Figure 16: A zoom in of Figure 15 to the local grid. Here, we can observe the
local well-behavedness of the underlying function.

interpolants. In our application, attempting to interpolate globally via radial
basis functions is awkward, since the underlying functions display very little
radial symmetry. On the other hand, a small neighborhood of a point on the
graph, in its approximate similarity to a slanted hyperplane, will likely exhibit
some sort of radial symmetry. Therefore, a radial basis which fails to represent
the underlying function globally may very well do so locally.

Local interpolation with radial basis functions still suffers from the lack of
generality caused by the sensitivity of the shape parameter. Up to a rotation,
we expect to see similarities between the regions bounded by local grids, as suf-
ficiently small regions resemble hyperplanes. However, the optimization of the
shape parameter is related to the underlying function’s gradient, in addition to
higher derivatives. These quantities will certainly vary from region to region.
To elucidate this point, we locally interpolate a Gaussian at a fine grid of points
on the interval [−5, 5]. We use a global equispaced grid of 100 nodes and per-
form 99 local interpolations - one between each adjacent pair of points in the
global grid. At each point, we generate multiquadric radial basis interpolants
for various choices of ε ∈ [.05, 1], and compute the corresponding interpolation
error. In Figure 18, we give plots of a Gaussian with the global data points,
in addition to the absolute values of the first two derivatives, and the optimal

41

Figure 17: A zoom in of Figure 16. We see that within the bounds of the local
grid, the underlying function almost resembles a plane, with mild smooth waves.

choice of ε for different local interpolants.
Though there is no simple relationship between the optimal choice of ε and

the derivatives of the underlying function f , we can see that they are in some
way related. In general, steeper regions and regions of greater curvature tend
to favor larger choices of ε, as expected; when one of these quantities is large
and the other is small, the optimal choice of ε tends to be somewhere in the
middle of the range. It might be worthwhile to use this observation and attempt
to construct some procedure by which to select the shape parameter for local
interpolants, but the association is likely too vague to exploit. Notice that there
are certain unexpected irregularities in the optimal choice of ε, which are likely a
result of round-off error due to ill-conditioned interpolation matrices for smaller
values of ε, and could be mitigated by using higher-precision arithmetic. We do
not address this issue here because the overall structure of the plot is still clear.

We are left with an interpolation method which is perhaps too specific for
our application. However, by using local interpolants, we have some chance, per-
haps, of overcoming this specificity. We must also remember that the method
works with scattered data points, and is easily generalizable to higher dimen-
sions. Furthermore, since radial basis interpolants converge to polynomial in-
terpolants in the limit ε → 0, and the optimal choice of ε usually exists for

42

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Optimal ε for Local Order 5 RBF Interpolants of f(x) = e−
x2

2

f(x) = e−
x2

2

|f′(x)|
|f′′(x)|
Optimal ε

Figure 18: The optimal choice of the shape parameter ε for local interpolants is
related to the derivatives of the underlying function.

some ε > 0, a well-chosen radial basis interpolant will often outperform a poly-
nomial interpolant of the same order. Therefore, it is worthwhile to test the
effectiveness of interpolation via radial basis functions on our application.

4.4 Least Orthogonal Interpolation

Theorem 1 establishes the existence of polynomials of degree m− 1 that inter-
polate any m data points in one dimension. However, this result does not apply
to underlying functions f : Rn → C. Given m data points sampled from such
a function, what can we say about n-variate polynomial interpolants of those
data points?

Let us outline a procedure to generate an n-variate interpolating polynomial
of degree at most m− 1. Choose a one-dimensional subspace such that the pro-
jections of the interpolation nodes onto this subspace are distinct. For example,
in n = 2, if we have data points ((0, 0), z1) and ((1, 0), z2), we can project onto
the x axis, but not onto the y axis. We then obtain data points in this one-
dimensional subspace, and write down the Lagrange polynomial interpolant on
this subspace. Finally, we extend the resulting polynomial constantly along the

43

n− 1-dimensional orthogonal complement of the subspace. For the data points
above, the resulting interpolant will be given by f̂(x, y) = z1(1−x)+z2x; in this
case the interpolant is independent of y, but this is only because we were able
to project onto the x axis without issue. In general, we would apply a simple
coordinate transformation to move the subspace to the x axis, and the resulting
interpolant would not then be constant in all but one of the variables.

However, the number of terms required to build this polynomial grows
quickly with the number of data points. For example, given 3 data points
in a two-dimensional domain, an interpolating polynomial will, in general, be of
the form

f̂(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 (34)

and given 4 data points, we will potentially require a polynomial of the form

f̂(x, y) = c1+c2x+c3y+c4x
2+c5xy+c6y

2+c7x
3+c8x

2y+c9xy
2+c10y

3. (35)

In general, an n-variate polynomial of degree k has up to
(
n+k
k

)
terms; this

expression grows with k like a polynomial of degree n, which is prohibitively
fast if we wish to use more than a few data points.

Given m data points, then, we seek a polynomial of minimal degree which
interpolates the data points. Such a process will involving choosing which of
the

(
n+m−1
m−1

)
possible polynomial terms we require. For example, if the nodes

are arranged in a straight line along one particular coordinate axis, the problem
is essentially one-dimensional along that coordinate axis, and we will require all
of the corresponding single-variable terms to generate an interpolating polyno-
mial. However, depending on the arrangement of the nodes, we may require a
polynomial with fewer terms.

In [20], a procedure to construct a polynomial interpolant of minimal de-
gree on an arbitrary grid in an arbitrary number of dimensions is outlined.
The procedure uses families of orthogonal polynomials, rather than multivari-
ate monomials as shown above, as elements of the interpolation basis. These
polynomial interpolants are not unique, and using different weight functions to
generate orthogonal families of polynomials, we may obtain different polynomial
interpolants. This allows for greater problem-by-problem variability.

Like radial basis function interpolants, least orthogonal interpolants operate
on arbitrary grids in an arbitrary number of dimensions. In principle, we could
use this method to compute global interpolants, but these interpolants will suffer
from many of the same issues discussed in previous sections. We will implement
a local version of the method for the multi-parameter problem.

The theory and strategies of implementation surround this method are com-
plicated, and are not discussed here, but the curious reader can refer to [20] for
details.

5 Waveform Interpolation and Results

Now that we have discussed a few relevant interpolation methods, we return
to the problem of interpolating waveforms. We begin by restating our general

44

strategy, and then we will compare the effectiveness of different methods, begin-
ning with the one-parameter problem. Recall that we represent all gravitational
waveforms in parameter space by a map h : (M ⊂ Rn)→ Cp, where p is the size
of the grid F ⊂ F in the frequency domain on which we sample the waveforms.
Fixing a parameter µ ∈M , we then obtain a particular gravitational waveform
hµ, which is a p-vector with complex entries.

Given some parameter µ, our aim is to approximate the vector hµ using local
interpolation techniques. We will not, however, approximate hµ directly, but
the projection PWN

(hµ) of hµ onto the reduced basis space. To do so, we will
interpolate the N projection coefficients αi over the parameter space M at the
point µ ∈M . Our interpolant ĥ, then, will be of the form

ĥµ =
N∑
1

α̂i(µ)ei (36)

where α̂i(µ) is the value of the interpolant of the ith projection coefficient at
µ, and ei is the ith reduced basis vector. Our data points will be of the form
(µj , α(µj)) ∈ M × CN , and we will solve N separate interpolation problems in

order to obtain ĥµ.
We must first choose a global set of data points. To obtain each data point

corresponding to the node µj , we must take N inner products αi(µj) = 〈hµj , ei〉
and place the result into an N -vector. We do this for a dense set of nodes
µj ∈M . To obtain an order m local interpolant at some point µ ∈M , we first
choose the m nodes in the global grid, labeled {µ1, . . . , µm}, which are closest
to µ. Then, for each of the N interpolation problems, we have m data points
{(µj , αi(µj))}mj=1, and we use one of the interpolation techniques discussed in
the previous section to obtain an interpolant α̂i : M → C obeying the condition

α̂i(µj) = αi(µj) (37)

for 1 ≤ j ≤ m. Plugging in to Equation (36), we obtain the interpolant ĥ, and
evaluating at µ gives the desired approximation. Notice that we have

ĥ(µj) =

N∑
i=1

α̂i(µj)ei =

N∑
i=1

αi(µj)ei = PWN
(hµj) (38)

for 1 ≤ j ≤ m, so, since we consider PWN
(h)|M as the underlying function in

the interpolation problem, the interpolation condition is satisfied.

5.1 The One-Parameter Problem

In this section, we compare only the polynomial and radial basis function in-
terpolation methods, as least orthogonal interpolation reduces to polynomial
interpolation in one dimension. As our global set of data points, we will begin
by choosing an equispaced grid of nodes, and we will use the results to inform
our choice of a better configuration of nodes.

45

Once we fix the global grid and some order m of our local interpolants, we
will sample 100 random parameters M in the parameter space M . At each
sample parameter M, we will compute an interpolant ĥ(M) using the strategy
described above, and we will also compute the actual projection PWN

(hM) of
hM onto the reduced basis space. As a measure of the success or failure of the
interpolation, we consider the mean l2 error between the interpolant and the
underyling function evaluated at M over the frequency domain F , given by√√√√1

p

p∑
i=1

|PWN
(hM)i − hiM|2 (39)

where | · | denotes the complex modulus, and the upper indices denote the
components of the corresponding vectors.

The reduced basis space we use contains 178 elements. It is generated using
a logarithmically-spaced training space with 3000 elements, and the maximum
error between the projections using this reduced basis space and the actual
waveforms in the training space is O(10−6). We begin by choosing three different
equispaced global grids of interpolation nodes, containing 500, 1000, and 3000
points, respectively. For each choice of global grid, we use local grids containing
5, 9, and 13 points, respectively. We could use larger local grids, and up to some
size, this might increase the accuracy of the interpolants. However, for local
grids which are too large, we will generally begin to notice Runge’s Phenomenon-
like oscillations, and the interpolation error will increase. Larger local grids
demand a higher computational cost, and since the optimal local grid size is
largely problem-dependent, it is not our aim here to optimize this choice; rather,
we aim to give the reader some idea of how varying the local grid size effects
the interpolation error. We measure the mean l2 error at each quartile, in
addition to the minimum and maximum errors, and the total number of sample
waveforms, out of 100, which have interpolation error greater than 10−3.

5.1.1 Preliminary Results for the One-Parameter Problem using Eq-
uispaced Global Grids

For each trial, we perform radial basis function interpolation on the projection
coefficients with a multiquadric radial function, for many choices of ε. We
report the lowest error over each choice of ε, and compare this to the polynomial
interpolation error. We will use these preliminary results to inform any decisions
about how to improve the process. In Figures 19, 20, and 21 we compare the
two methods for the three different equispaced global grid sizes by plotting the
boundaries of the error quartiles for different local grid sizes.

These plots suggest that the performance of the two methods is quite compa-
rable. Though the optimal radial basis function interpolant sometimes outper-
forms the polynomial interpolant - as the theory suggests it might - their errors
tend to fall within the same order of magnitude. These figures seem to show
that the error is more a function of the resolution of the underlying function by
the grid than of the local interpolation method used. The picture then seems to

46

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Local Grid Size

M
ea
n
l2

E
rr
or

Interpolation Error Quartiles for 500-Node Equispaced Global Grid

5−Node RBF 5−Node Poly 9−Node RBF 9−Node Poly 13−Node RBF13−Node Poly

Figure 19: Comparison of l2 error quartiles of RBF interpolation with optimal
ε and polynomial interpolation, for a 500-node equispaced global grid and three
different local grid sizes. The black lines bound the entire range of errors, the
blue box bounds the middle 50% of errors, and the red line is the median error.

favor the simpler and faster polynomial approach, especially if we recall that the
plotted error for the radial basis interpolant is, for each interpolated waveform,
the lowest error over many choices of ε. In a practical setting, we will not know
the underyling waveform - this would defeat the purpose of the interpolation -
so we cannot choose ε optimally. We must then investigate how sensitive the
radial basis interpolation error is to changes in the shape parameter; if it is not
at all sensitive to ε, then the radial basis method is still viable, but if it is, the
polynomial method seems more favorable.

5.1.2 Investigation of the Shape Parameter in the One-Parameter
Problem

We tested values of ε ranging from .4 to 30, with more test values for lower ε. To
understand the sensitivity of the error to small changes in the shape parameter,
we can consider the curvature of the plot of ε against the corresponding inter-
polation error near the optimal value of ε. First, however, we check whether or
not drastically different choices of ε are optimal for different locations in param-
eter space, and if so, we must determine how well optimal choices of ε in one
location fare in a location with a different optimal ε. We focus on the case of a

47

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Local Grid Size

M
ea
n
l2

E
rr
or

Interpolation Error Quartiles for 1000-Node Equispaced Global Grid

5−Node RBF 5−Node Poly 9−Node RBF 9−Node Poly 13−Node RBF13−Node Poly

Figure 20: Comparison of l2 error quartiles of RBF interpolation with optimal ε
and polynomial interpolation, for a 1000-node equispaced global grid and three
different local grid sizes.

3000-node equispaced global grid with 9-node local grids. In Figure 22, we give
a histogram of the optimal choices of ε over the 100 samples.

We observe that we have a wide range of optimal choices of ε for different
locations in parameter space, although more of the trials favor smaller ε. To
obtain a more specific idea of how the optimal shape parameter is chosen, we
plot, in Figure 23 the optimal ε against the location in parameter space of the
waveform for which that ε was optimal.

We see that larger ε tends to be optimal for lower values of the parameter
M, except in the case of the first few choices of M. This will turn out to be a
useful observation in optimizing the global grid, and we will discuss it more at
length shortly. For now, we simply notice that a wide range of choices of ε are
optimal for different locations in parameter space. Is there some choice of ε that
gives small error for most parameters? In Figure 24, we plot the interpolation
error as a function of M and ε.

This plot gives us a more complete picture of the behavior of the radial basis
function interpolation error corresponding to different locations in parameter
space, but it is best viewed as two planar plots. First consider Figure 25. For
each choice of M, we see many different errors, which each correspond to some
choice of ε. This plot shows that given some particular parameter, varying ε

48

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Local Grid Size

M
ea
n
l2

E
rr
or

Interpolation Error Quartiles for 3000-Node Equispaced Global Grid

5−Node RBF 5−Node Poly 9−Node RBF 9−Node Poly 13−Node RBF13−Node Poly

Figure 21: Comparison of l2 error quartiles of RBF interpolation with optimal ε
and polynomial interpolation, for a 3000-node equispaced global grid and three
different local grid sizes.

and interpolating the waveform corresponding toM can effect the interpolation
error by orders of magnitude.

More important, however, is Figure 26. We would like that for some par-
ticular ε, the errors corresponding to all of the samples are low. That is, for
some ε, the top most data points in the corresponding vertical line in the plot
in Figure 26 are low. Consider ε = 25. Here, all errors, but one, are below 10−2.
However, the lowest errors are higher than for smaller ε. Thus, we see a trade
off; in order to interpolate the tough waveforms better, we must choose an ε
that results in a poorer interpolation of the easy waveforms. A larger number of
the waveforms are better interpolated with smaller ε, but for certain waveforms,
using small ε results in very high error.

For comparison, in this plot, we also give the corresponding data for poly-
nomial interpolation. We see that the polynomial interpolation error is roughly
comparable to that of RBF interpolation for 5 < ε < 10. That is, compared
with ε = 25, we end up interpolating a few waveforms more poorly in order
to decrease the interpolation error by about an order of magnitude for a larger
number of waveforms.

Our choice of interpolation method and shape parameter, then, depends on
our priorities; for example, do we want a lower median error, or a lower maxi-
mum error? However, radial basis interpolants do not seem to beat polynomial

49

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

Optimal ε

N
u
m
b
er

of
S
a
m
p
le
s

Histogram of Optimal ε for RBF Interpolation of 100 Samples

Figure 22: Histogram of optimal ε over 100 samples for local RBF interpolation
using a 3000-node global grid and 9-node local grids.

interpolants by very much in any case, and the interpolation error is sensitive
enough to the choice of shape parameter that there is cause to worry about
using radial basis interpolants.

The most effective way to achieve small error for the difficult waveforms,
however, is to increase the density of the global grid. In Table 2, we vary the
number of nodes in the equispaced global and local grids and report the number
of samples with interpolation error larger than 10−3. The numbers for the radial
basis interpolants correspond to the best choice of ε.

This suggests that we should attempt to adjust the structure of the global
grid in order to better resolve locations in parameter space at which interpola-
tion appears difficult. As a starting point, we return to Figure 23, which gives
the optimal choice of ε for different choices of M on a 3000-node equispaced
global grid with 9-node local grids. We see that larger choices of ε are optimal
for lower values of M, except for the first few choices of M. From Figure 25,
we see that the radial basis interpolation error with the best choice of ε tends
to be larger for lower values of M; the polynomial interpolation error behaves
in the same way.

This first clue suggests that the projection coefficients as functions of the
parameter M have larger gradient, and higher derivatives, for smaller values

50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
31

0

5

10

15

20

25

M

O
p
ti
m
al

ε

Optimal ε for RBF Interpolation on 100 Waveforms over One-Parameter Space

Figure 23: Optimal ε over 100 different parametersM for local RBF interpola-
tion using a 3000-node global grid and 9-node local grids.

of M, except in the case of M very near the left endpoint of the domain, in
which the projection coefficients flatten out. This is reinforced by the second
clue, since functions with steep local features are more difficult to interpolate
than flat, smoothly varying functions. These hypotheses turn out to be correct;
Figures 6 and 7, which show the behavior of typical projection coefficients over
one-parameter space, show that we tend to have a spike near some low parameter
value, and smaller oscillatory features emanating outward from this spike.

We can attempt to explain this behavior by returning to Figure 4, which
shows the values of waveforms for fixed frequency and varying parameter M.
The behavior exhibited in this plot is typical of all fixed frequencies, in that
we have high oscillation for low parameter values and low oscillation for high
parameter values. Recall that the projection coefficients corresponding to some
parameter M are given by inner products of hM with the elements ei of the
reduced basis. The reduced basis elements are waveforms that are chosen so
as to represent the whole space of waveforms accurately, so the reduced basis
algorithm will choose for the reduced basis more waveforms from locations in
parameter space where there is more activity in the function h(M). In light of
Figure 4, it is reasonable to believe that those locations of high activity occur

51

0

2

4

6

x 10
31

0

5

10

15

20

25

30

10
−10

10
−5

10
0

10
5

M

RBF Interpolation Error for 100 Samples Over a Range of Shape Parameters ε

ε

M
ea
n
l2

In
te
rp
ol
at
io
n
E
rr
or

Figure 24: RBF Interpolation Error on a 3000-node global grid and 9-node local
grids for 100 samples, plotted as a function of ε and µ.

for lower parameters, and indeed, we observe that the reduced basis algorithm
chooses more basis elements corresponding to lower parameters. It is to be
expected, then, that the projection coefficients will spike near these low pa-
rameters; the inner product of hM with ei will be larger if hM is near ei in
parameter space, and many of the waveforms ei correspond to low parameters.
These spikes will be in different places for different projection coefficients, but
most tend to occur near lower parameter values.

5.1.3 Adjusting the Global Grid for the One-Parameter Problem

Now that we understand where in parameter space the highest activity of the
projection coefficients tends to lie, we can adjust the set of interpolation nodes
to take these features into account; specifically, we wish to group nodes near
lower parameter values, because the main activity of many projection coefficients
occurs in this region. Let a and b denote the minimum and maximum parameter
values M∈M , respectively. Consider the function

f(x) = a+
10

x−a
b−a − 1

9
(b− a) (40)

52

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
31

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

M

RBF Interpolation Error for 100 Samples Over a Range of Shape Parameters ε

Figure 25: The M-Error cross-section of Figure 24

Notice that f fixes a and b. It also increases monotonically on [a, b] with a pos-
itive second derivative. Therefore, if we apply f to an equispaced grid on [a, b],
the image will be a grid on [a, b] with points clustered towards a; specifically,
the image will be a logarithmically-spaced grid.

We generate logarithmically-spaced global grids of 500, 1000, and 3000
nodes, and interpolate using both methods with 9-node local grids. In Figures
27 and 28, we compare error quartiles for these equispaced and logarithmically
spaced global grids, using radial basis function interpolation with optimal ε and
polynomial interpolation, respectively.

We see the the logarithmically-spaced grids give improvements on the max-
imum error and the upper quartile. This suggests that using a logarithmically-
spaced grid helps to resolve waveforms corresponding to regions in parameter
space in which the projection coefficients are badly-behaved; this was the inten-
tion of using such a grid. In particular, using this grid gives a large improvement
on the 3000-node global grid. We see that 3000 well-placed nodes are sufficient
to resolve all of the sample waveforms, but 3000 poorly-placed nodes yields high
error on certain waveforms. To reinforce this point, in Table 3 below, we give
the number of sample waveforms with polynomial interpolation error larger than
10−3 for equispaced global grids and logarithmically-spaced global grids. The
analogous numbers for radial basis function interpolation are similar.

It is likely that we can achieve even better error improvements by further
adjusting the global grid - for example, by adjusting the base of the logarithmic
spacing - but in practice, we may not have the luxury to optimize the grid

53

0 5 10 15 20 25 30 Polynomial Error
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

RBF Interpolation Error for 100 Samples Over a Range of Shape Parameters ε

ε

Figure 26: The ε-Error cross-section of Figure 24. We supplement this plot with
the polynomial error for each sample, given as boxes to the right of the RBF
results.

through this sort of tinkering. It suffices to conclude that taking advantage of
the underlying structure of the projection coefficients is invaluable to getting the
most out of each interpolation node, and that in this one-parameter problem,
some grouping of nodes towards lower parameters is more efficient than an
equispaced grid of nodes.

In the one-parameter problem, we are able to successfully interpolate a large
number of waveforms with small error without an unreasonably large global
grid. We find that a logarithmically-spaced global grid is more efficient than an
equispaced global grid. We favor the local polynomial interpolation approach,
because it is not significantly outperformed by the local radial basis function
interpolation approach, it is simpler, it is faster, and it does not require us to
adjust any parameters corresponding to different waveforms. By testing various
approaches, we have come to understand certain characteristics of the projection
coefficients, which are the underyling functions we wish to interpolate. This
knowledge will help us to solve the higher-dimensional problem, since these
characteristics have higher-dimensional analogues.

54

Nodes in Global Grid Nodes in Local Grid Optimal RBF Polynomial
500 5 27 30
500 7 25 27
500 9 24 36
1000 5 20 21
1000 7 19 20
1000 9 18 20
3000 5 2 3
3000 7 1 1
3000 9 1 1

Table 2: Number of samples, out of 100, with interpolation error larger than
10−3 for equispaced grids.

Nodes in Global Grid Equispaced Grid Logspaced Grid
500 27 20
1000 20 3
3000 1 0

Table 3: Number of samples, out of 100, with polynomial interpolation error
larger than 10−3 for equispaced and logarithmically-spaced global grids. All
local grids contain 5 nodes.

5.2 The Two-Parameter Problem

Though the two-parameter problem is qualitatively similar to the one-parameter
problem, and we will use many of the same strategies to solve it, certain new
challenges are unavoidable. We will require many more data points to inter-
polate waveforms successfully, as resolving a function of two variables requires
many more samples than resolving a function of one variable. The global set
of nodes, in particular, will now be very large; the number of local nodes will
grow, but each local interpolation is still manageable.

On the other hand, there are more similarities between the two problems
than there are differences. Radial basis function interpolation still suffers from
the same lack of robustness that it does in one dimension. Though we will
not investigate the shape parameter extensively in this section like we did in
the last, we have observed that the radial basis function interpolation error is
sensitive to the choice of ε in the same way. That is, if we are to fix one choice
of ε for every interpolation, there is a trade off between decreasing the minimum
interpolation error and decreasing the maximum interpolation error over a set of
sample waveforms. Thus, in this section, we will only consider the interpolation
error using radial basis interpolants with optimal ε, and we will investigate
whether or not, unlike for the one-parameter problem, radial basis interpolants
drastically outperform dimension-by-dimension polynomial interpolants. If so,
it will be worthwhile to further investigate the shape parameter with respect to

55

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

500−Node Eq500−Node Log1000−Node Eq1000−Node Log3000−Node Eq3000−Node Log
Global Grid

M
ea
n
l2

E
rr
or

RBF Interpolation Error Quartiles for Equispaced and Logspaced Global Grids

Figure 27: Comparison of mean l2 error quartiles of RBF interpolation with
optimal ε for equispaced and logarithmically-spaced global grids. All local grids
have 9 nodes.

the two-parameter problem, and if not, we will conclude that the dimension-by-
dimension polynomial approach is preferable.

The structures of the one and two-parameter projection coefficients are anal-
ogous. This is not surprising, considering the one parameter M is a function
of the two parameters m1 and m2. Figures 6 and 9 show typical projection
coefficients over one and two-parameter space, respectively. Now, instead of a
spike occurring at some, usually low parameter, we have a ridge. We also see
smaller oscillations emanating from the ridge, just like in the one-parameter
case. For different projection coefficients, the ridge is found in different lo-
cations, but it tends to occur when both parameters are small. Therefore, a
logarithmically-spaced grid will again outperform an equispaced grid; specifi-
cally, we use a Cartesian product of two one-dimensional logarithmically spaced
grids. We have observed in practice that this grid choice is preferable, and
since the reason is clear, we simply consider logarithmically-spaced grids in this
section, and do not present data for equispaced grids.

56

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Global Grid

M
ea
n
l2

E
rr
or

Polynomial Interpolation Error Quartiles for Equispaced and Logspaced Global Grids

500−Node Eq500−Node Log1000−Node Eq1000−Node Log3000−Node Eq3000−Node Log

Figure 28: Comparison of mean l2 error quartiles of polynomial interpolation
for equispaced and logarithmically-spaced global grids. All local grids have 9
nodes.

5.2.1 Radial Basis & Dimension-by-Dimension Polynomial Inter-
polants for the Two-Parameter Problem

We compute interpolation errors for 200 sample waveforms randomly selected
over the parameter space. We measure the interpolation error as the mean l2

error given in 39. The reduced basis space we use is generated using a 200 ×
200 equispaced training space, and is comprised of 161 reduced basis elements.
The maximum error tolerance between the reduced basis projections and the
actual waveforms over the training space is O(10−6). We will first compare local
radial basis function interpolation with optimal ε with the local dimension-by-
dimension polynomial interpolation approach, using 100 × 100, 250 × 250 and
400 × 400 logarithmically-spaced global grids with 5 × 5 local grids. We again
vary ε between .4 and 30 in order to select the optimum value. Afterward, we
will compare these approaches with least orthogonal interpolation. Figure 29
gives error quartiles for these grid choices.

In Table 4, we give the number of samples with interpolation error greater
than 10−3 for radial basis interpolants and polynomial interpolants, respectively.

We see that, as in the one-parameter problem, the two methods are compa-
rable. The dimension-by-dimension polynomial technique gives a slightly wider

57

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Local Grid Size

M
ea
n
l2

E
rr
or

Interpolation Error Quartiles for Logarithmically-Spaced Global Grids

100^2 RBF 100^2 Poly 250^2 RBF 250^2 Poly 400^2 RBF 400^2 Poly

Figure 29: Comparison of mean l2 error quartiles of RBF and dimension-by-
dimension polynomial interpolation for different logarithmically-spaced global
grids. All local grids are 5× 5.

error range, which is to be expected, since we are viewing the errors of radial
basis interpolants with an optimal choice of ε. This said, the polynomial tech-
nique seems preferable, since it is faster, simpler, and more general. Also notice
from Table 4 that for the denser global grids, fewer waveforms were very poorly
interpolated by polynomial interpolants than by radial basis interpolants.

In the last section, we showed that logarithmically-spaced global grids out-
perform equispaced grids, but we did not claim that our choice of global grid
was in any way optimal. Indeed, we find that we might benefit further from
clustering nodes more densely for lower parameters. In Figure 30, we plot
the two-dimensional parameters of the sample waveforms we have chosen, and
color-code them by the corresponding dimension-by-dimension polynomial in-
terpolation error. The analogous plot for the radial basis function interpolation
error is similar.

Even for the logarithmically-spaced grid generated using the transformation
(40), the waveforms corresponding to smaller parameters are less well-resolved.
This suggests that we could achieve better results for these waveforms by clus-
tering more points towards lower parameters. This would involve adjusting the
transformation (40); we could, for example, change the base of the exponentia-
tion. The goal would be to, unlike in Figure 30, achieve a more even distribution
of interpolation errors over parameter space. Note that in exchange for lower-

58

Global Grid Size RBF Interpolant Polynomial Interpolant
100× 100 66 75
250× 250 25 20
400× 400 13 7

Table 4: Number of samples, out of 200, with interpolation error larger than
10−3 for radial basis and dimension-by-dimension polynomial interpolants, re-
spectively.

ing the interpolation errors of the lower-parameter waveforms, we would likely
increase the errors of the higher-parameter waveforms. We do not investigate
more optimal global grids here, as finding one would simply involve problem-
specific tinkering, but it might be useful to attempt to formulate a technique
by which to choose a more optimal global grid automatically by exploiting the
structure of the projection coefficients.

5.2.2 Comparison of the Least Orthogonal Interpolation Methods
with the Other Methods

We next proceed to the least orthogonal interpolation method. Least orthogo-
nal interpolants share some of the primary benefits of radial basis interpolants;
they do not require structured grids of interpolation nodes, and they are easily
generalizable to higher dimensions. Least orthogonal interpolants are multivari-
able polynomials of minimal degree which satisfy the interpolation condition,
so these interpolants do not involve any sort of shape parameter, which could
be an improvement over the sensitivity of the radial basis interpolants. The
only freedom we have in least orthogonal interpolation is in choosing a weight
function; each weight function corresponds to a different interpolation basis of
orthogonal polynomials.

We find, using simple test functions, that performing least orthogonal in-
terpolation with structured grids of interpolation nodes, rather than scattered
grids, tends to increase the interpolation error. The process of finding an inter-
polating polynomial of minimal degree relies heavily on the structure of the set
of interpolation nodes; changing the arrangement of nodes affects the number
of terms required to build a polynomial interpolant. For example, if all m nodes
lie on some coordinate axis, say the x axis, the problem essentially reduces to
one-dimensional polynomial interpolation, and the interpolant will require all
of the m terms c0, c1x, c2x

2, . . . , cm−1xm−1. Such a rigidly-structured polyno-
mial interpolant may not well represent the rest of the underlying function. For
example, in the above case, certain weight functions could give an interpolant
which is simply the constant extension of the single-variable polynomial along
the other coordinates.

The accuracy of the least orthogonal interpolant, then, is related to the
structure of the interpolation nodes, even if a structured and unstructured grid
resolve the underlying function equally well. We find that a random sampling of

59

0 1 2 3 4 5 6

x 10
31

0

1

2

3

4

5

6
x 10

31

m1

m
2

Polynomial Interpolation Error of Samples Over Two-Parameter Space

10−3 ≤ Err < 10−2

10−4 ≤ Err < 10−3

10−5 ≤ Err < 10−4

10−6 ≤ Err < 10−5

10−7 ≤ Err < 10−6

10−8 ≤ Err < 10−7

10−9 ≤ Err < 10−8

Figure 30: Polynomial interpolation errors of sample waveforms over two-
parameter space, using a 400× 400 logarithmically-spaced global grid and 5× 5
local grids.

nodes yields a more accurate least orthogonal interpolant than any sort of struc-
tured grid. Thus, to obtain the global set of nodes, we randomly sample points
from a two-dimensional uniform distribution over parameter space, and apply
the transformation (40) to the components of these points in order to obtain an
unstructured set of nodes which are clustered towards lower parameters.

We test the method using global sets of 1002, 2502, and 4002 nodes generated
in this way. We generate local least orthogonal interpolants using the 25 nodes
closest to the point at which we wish to interpolate; this corresponds to the 5×5
local grids used to test the radial basis function and polynomial interpolation
methods. For each choice of nodes, we interpolate using two different weight
functions, corresponding to the Legendre and Hermite polynomial bases.

In Figure 31, we give the least orthogonal interpolation error quartiles for
both choices of polynomial basis.

The Hermite polynomial basis slightly outperforms the Legendre polynomial
basis. We have also observed that, as expected, the interpolation error is larger
for lower parameter values as in Figure 30, so adjusting the global grid could
improve the results of least orthogonal interpolation as well. In Figure 32, we

60

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Local Grid Size

M
ea
n
l2

E
rr
or

Least Orthogonal Interpolation Error Quartiles for Logarithmically-Weighted Global Grids

100^2 Leg 100^2 Her 250^2 Leg 250^2 Her 400^2 Leg 400^2 Her

Figure 31: Comparison of mean l2 error quartiles of least orthogonal interpolants
using Legendre and Hermite polynomial bases, respectively. Three different
logarithmically-weighted global sets of nodes are tested. All local grids are
5× 5.

compare the error quartiles for the least orthogonal method with a Hermite
polynomial basis and the dimension-by-dimension polynomial method. Since
the performance of polynomial interpolation is comparable to that of radial
basis function interpolation, we do not include the error results of the latter in
the figure.

Least orthogonal interpolation gives a wider range of errors than dimension-
by-dimension polynomial interpolation, suggesting that the former is more sen-
sitive to the location of the waveform in parameter space. That is, least or-
thogonal interpolation seems to perform better with well-behaved waveforms,
but dimension-by-dimension polynomial interpolation seems to perform better
with badly-behaved waveforms. To reinforce this point, in Table 5, we give the
number of samples with interpolation error greater than 10−3 for both methods.

It may be worthwhile to experiment with different weight functions for the
least orthogonal interpolation method, since we have only explored two choices
here. However, if the application allows for a structured grid of data points,
dimension-by-dimension polynomial interpolation appears to provide a fast, sim-
ple, and effective solution. The lower minimum errors of the least orthogonal
method will not, most likely, be significant in applications, since there are other

61

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Local Grid Size

M
ea
n
l2

E
rr
or

Least Orthogonal and Dimension-by-Dimension Polynomial Interpolation Error Quartiles

100^2 Poly 100^2 LO 250^2 Poly 250^2 LO 400^2 Poly 400^2 LO

Figure 32: Comparison of mean l2 error quartiles of dimension-by-dimension
polynomial and least orthogonal interpolants with Hermite polynomial basis.
Three different logarithmically-weighted global sets of nodes are tested. All
local grids are 5× 5.

sources of error arising in the process of waveform approximation which may be
of a higher order of magnitude than this minimum; in general, we are primarily
concerned with interpolating as many waveforms as possible with reasonable
accuracy.

Nevertheless, the radial basis function and least orthogonal interpolation
techniques should not be discounted. In tackling the higher-dimensional prob-
lem, we will likely be forced to interpolate on scattered nodes, so the dimension-
by-dimension polynomial approach will no longer be applicable. Both tech-
niques, while more complicated and slower, provide reasonably accurate results,
and could potentially be tailored to better solve the problem. In particular, it is
possible that a proper choice of weight function could improve the performance
of the least orthogonal interpolation method, and in light of the sensitivity of
radial basis interpolants to the shape parameter, this might be worth exploring.

62

Global Nodes Polynomial Interpolant Least Orthogonal Interpolant
1002 75 91
2502 20 36
4002 7 19

Table 5: Number of samples, out of 200, with interpolation error larger than
10−3 for dimension-by-dimension polynomial and least orthogonal interpolants,
respectively.

5.3 Overview of Results & the Higher-Dimensional Prob-
lem

We have extensively investigated the one and two-parameter problems, but in
these low-dimensional cases, the curse of dimensionality has not quite kicked
in. Accurate models of gravitational waveforms could include ten parameters,
and storing dense global grids over this sort of space is infeasible. Even in two
dimensions, the number of nodes required to resolve the projection coefficients
over the whole parameter space is burdensome.

Therefore, constructing an efficient global set of interpolation nodes may
be of the utmost importance. In particular, it would be useful to formulate a
technique by which to capture the structure of the projection coefficients, and
place interpolation nodes in locations where many of the projection coefficients
show activity. The improvement in accuracy achieved by using logarithmically-
weighted nodes rather than uniformly-spaced nodes is dramatic, and further
investigation into an optimal global grid could yield equally dramatic improve-
ments. The difficulty is in automating this process; if we wish to design tech-
niques which are broadly applicable, we must be careful to rely on the infor-
mation of only those structures which are common to all relevant applications.
However, the structure of the waveforms over parameter space seems to de-
termine the structure of the projection coefficients, so it is not unreasonable
to imagine that certain fundamental characteristics of the waveforms could be
exploited to efficiently place global interpolation nodes.

In higher dimensions, it will likely be impossible to store any sort of regu-
lar grid. Therefore, choosing the global nodes efficiently will likely come down
to choosing the right probability distribution from which to sample the nodes,
unless some iterative or empirical approach is utilized. Furthermore, it will
be necessary to use interpolation methods which are compatible with scattered
nodes, so although the dimension-by-dimension approach is straightforward and
effective in low dimensions, it will no longer be of use when the curse of dimen-
sionality becomes significant.

Unfortunately, there is no hope of constructing global interpolants of the
projection coefficients, as their structure is far too fine and irregular to be cap-
tured by any reasonable interpolation basis. Therefore, we are restricted to local
interpolation methods. On this scale, the underlying function, being smooth,
tends to be quite simple. The success or failure of the interpolation, then, de-

63

pends more on the resolution of the underlying function by the interpolation
nodes than on finding an interpolation method which is particularly well-suited
to the underlying function. This is why the methods we used tended to give
comparable error results, and simple polynomial interpolation was sufficient.

When constructing global interpolants, it is sometimes possible to capture
the structure of the underlying function using few nodes and a well-chosen
interpolation basis. Here, it seems that the general features of a method, like
speed and the ability to operate on scattered nodes, are more important than
the structure of the interpolation basis on which the method is built. This
suggests that the most significant improvements to the interpolation error may
result from adjustments to the arrangement of the interpolation nodes, rather
than from finding a better interpolation method.

6 A Brief Conclusion and Discussion of Further
Work

In this paper, we have discussed the problem of approximating unknown grav-
itational waveforms given some set of known waveforms. Successful approxi-
mations would be useful for applications in gravitational waveform generation,
signal detection, and parameter estimation. To make these approximations, we
attempted to combine the reduced basis method of representing the continuum
of waveforms by a low-dimensional linear space with interpolation techniques.
In doing so, we attempted to interpolate a complicated and subtle function
h : Rn ×R→ Cp with p large by solving much fewer than p interpolation prob-
lems. We presented introductions to several relevant interpolation techniques
- namely polynomial interpolation in one dimension, dimension-by-dimension
polynomial interpolation, radial basis function interpolation, and least orthog-
onal interpolation - and discussed the strengths and weakness of each method.
Afterward, we tested these techniques on our application.

Our findings were consistent with the theory which we presented. Optimizing
the interpolation grid is of the utmost importance in obtaining accurate results;
when the underlying function is complicated, resolving it with interpolation
nodes is the first priority. Global interpolants were not feasible, so we opted to
use local interpolants. However, it is difficult to tailor a local interpolant to a
specific underlying function, so we found that most interpolation methods gave
comparable results.

More research should be done, then, into optimizing the global grid of in-
terpolation nodes. It is not unrealistic to imagine that there are some aspects
of the structure of the projection coefficients, taking their root in the physics
of gravitational waveforms, which can be exploited to determine where the pri-
mary activity in these functions lies. If this structure were well-understood, it
could lead to the construction of global interpolation grids which could be used
to fill in the gaps of many different types of gravitational waveform models. It
also may be worthwhile to investigate algorithmic methods of interpolation grid

64

selection, though many of these techniques seem too slow for practical use.
This paper only explored the one and two-parameter problems. It is im-

portant to test the methods described here on the higher-dimensional problem.
Though we imagine that many of the structures we have found will generalize
in obvious ways to higher dimensions, this is not necessarily the case. Fur-
thermore, it is necessary to explore methods of probabilistic node selection in
spaces whose dimension is too large to support any sort of regular arrangement
of nodes.

There are certainly other strategies that could be used to attempt to inter-
polate gravitational waveforms. Some of these strategies may use the reduced
basis method, and some may not; for example, one could attempt to interpo-
late the waveforms directly over parameter space. It would be worthwhile to
explore entirely different paradigms which could perhaps be applied to more
general problems, or which take better advantage of the underlying structure of
gravitational waveforms as they are described by Einstein’s equations.

An accurate and efficient solution to this problem could help to enable de-
tectors to find waveforms, and discover a great deal of information about their
sources. These sources are diverse, scattered through space and time, with
countless unsolved mysteries surrounding them. A more complete knowledge of
the structure of gravitational waveforms could lead to novel ways of viewing the
universe, and of understanding Einstein’s confounding equations. Through the
study of simplifications and approximations, like interpolants, and the effort to
create more faithful approximations, we inch closer to a true understanding of
these fundamental laws.

Acknowledgments

I thank Professor Jan S. Hesthaven of Brown University’s Division of Applied
Mathematics for being an encouraging and patient teacher, and a knowledgeable
and inspired research advisor; Scott Field, his former student, for his creativity
and spirit; my professors in Brown University’s Departments of Mathematics
and Applied Mathematics, for their vast knowledge and their eagerness to im-
part it to others; and my undergraduate peers, in every discipline, for their
many passions for their various fields, and for the refreshing insights which
those passions produce.

7 References

[1] J. Centrella, AIP Conf. Proc. 1381, 98 (2011) [arXiv:1109.3492 [astro-
ph.HE]].

[2] B. Abbott et al. (The LIGO Scientific), LIGO: The Laser Interferometer
Gravitational-Wave Observatory (2007), 0711.3041.

[3] F. Acernese et al., The Virgo status, Class. Quant. Grav. 23, S635 (2006).

65

[4] P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti, A. Bohe,
C. Caprini and M. Colpi et al., arXiv:1201.3621 [astro-ph.CO].

[5] “Press Release: The 1993 Nobel Prize in Physics”. Nobelprize.org. 23 Apr
2012. http://www.nobelprize.org/nobel_prizes/physics/laureates/
1993/press.html

[6] Harry, Gregory M. “Advanced LIGO: The next Generation of Gravitational
Wave Detectors.” Classical and Quantum Gravity 27.8 (2010): 084006.
Print.

[7] “Diagram of LIGO Detector.” LIGO. Web. 23 Apr. 2012. http://www.

ligo.caltech.edu/LIGO_web/PR/scripts/facts.html.

[8] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton,
gr-qc/0509116.

[9] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan and B. S. Sathyaprakash, Phys.
Rev. D 80, 084043 (2009) [arXiv:0907.0700 [gr-qc]].

[10] S. E. Field, C. R. Galley, F. Herrmann, J. S. Hesthaven, E. Ochsner and
M. Tiglio, Phys. Rev. Lett. 106, 221102 (2011) [arXiv:1101.3765 [gr-qc]].

[11] K. Martel and E. Poisson, Phys. Rev. D 71, 104003 (2005) [gr-qc/0502028].

[12] A. Buonanno, Y. Pan, J. G. Baker, J. Centrella, B. J. Kelly,
S. T. McWilliams and J. R. van Meter, Phys. Rev. D 76, 104049 (2007)
[arXiv:0706.3732 [gr-qc]].

[13] Davis, Lisa G. “Polynomial Interpolation and Error Analysis.” Numerical
Solution of Differential Equations Course Page. Montana State Univer-
sity, 2007. Web. 2012. http://www.math.montana.edu/~davis/Classes/
MA442/Sp07/Notes/InterpError.pdf

[14] Eisinberg, A., and G. Fedele. “On the Inversion of the Vandermonde Ma-
trix.” Applied Mathematics and Computation 174.2 (2006): 1384-397.
Print.

[15] Press, William H. Numerical Recipes: The Art of Scientific Computing.
Cambridge [Cambridgeshire: Cambridge UP, 1986. 118-19, 141-142. Print.

[16] Zuev, Julia M. “Recent Advances in Numerical PDEs.” Diss. University of
Colorado, 2007. Print.

[17] Huang, C.-S., H.-D. Yen, and A.H.-D. Cheng. “On the Increasingly Flat
Radial Basis Function and Optimal Shape Parameter for the Solution of
Elliptic PDEs.” Engineering Analysis with Boundary Elements 34.9 (2010):
802-09. Print.

66

http://www.nobelprize.org/nobel_prizes/physics/laureates/1993/press.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1993/press.html
http://www.ligo.caltech.edu/LIGO_web/PR/scripts/facts.html
http://www.ligo.caltech.edu/LIGO_web/PR/scripts/facts.html
http://www.math.montana.edu/~davis/Classes/MA442/Sp07/Notes/InterpError.pdf
http://www.math.montana.edu/~davis/Classes/MA442/Sp07/Notes/InterpError.pdf

[18] Fasshauer, Gregory E., and Jack G. Zhang. “On Choosing “optimal” Shape
Parameters for RBF Approximation.” Numerical Algorithms 45.1-4 (2007):
345-68. Print.

[19] Driscoll, T., and B. Fornberg. “Interpolation in the Limit of Increasingly
Flat Radial Basis Functions.” Computers & Mathematics with Applications
43.3-5 (2002): 413-22. Print.

[20] Narayan, Akil, and Dongbin Xiu. Stochastic Collocation Methods on Un-
structured Grids in High Dimensions via Interpolation. Department of
Mathematics, Purdue University. Web. 2012.

67

	1 Preface
	2 Gravitational Waves & Their Detection
	2.1 Gravitational Wave Models & Matched Filtering
	2.2 The Reduced Basis Method of Waveform Representation
	2.3 Applications of Gravitational Wave Approximation

	3 Interpolation and the Problem of Interpolating Waveforms
	3.1 The Interpolation Problem
	3.2 Interpolation of Gravitational Waveforms
	3.2.1 Component-Wise Interpolation
	3.2.2 Interpolation of Reduced Basis Coefficients
	3.2.3 Challenges to Solving the Interpolation Problem

	4 Interpolation Methods
	4.1 Polynomial Interpolation in One Dimension
	4.1.1 Basic Results Concerning Polynomial Interpolation
	4.1.2 Runge's Phenomenon & Limitations of Polynomial Interpolation
	4.1.3 Implementing Polynomial Interpolation: Neville's Algorithm

	4.2 Extending Polynomial Interpolation to Higher Dimensions via a Dimension-by-Dimension Approach
	4.3 Interpolation with Radial Basis Functions
	4.3.1 The Shape Parameter of Radial Basis Functions
	4.3.2 Global & Local Radial Basis Function Interpolants

	4.4 Least Orthogonal Interpolation

	5 Waveform Interpolation and Results
	5.1 The One-Parameter Problem
	5.1.1 Preliminary Results for the One-Parameter Problem using Equispaced Global Grids
	5.1.2 Investigation of the Shape Parameter in the One-Parameter Problem
	5.1.3 Adjusting the Global Grid for the One-Parameter Problem

	5.2 The Two-Parameter Problem
	5.2.1 Radial Basis & Dimension-by-Dimension Polynomial Interpolants for the Two-Parameter Problem
	5.2.2 Comparison of the Least Orthogonal Interpolation Methods with the Other Methods

	5.3 Overview of Results & the Higher-Dimensional Problem

	6 A Brief Conclusion and Discussion of Further Work
	7 References

