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A NEW TYPE OF SIMPLIFIED INVERSE LAX-WENDROFF
BOUNDARY TREATMENT FOR HYPERBOLIC CONSERVATION
LAWS

SHIHAO LIU *, TINGTING LI T, ZIQIANG CHENG ¥, YAN JIANG §, CHI-WANG SHU Y,
AND MENGPING ZHANG |

Abstract. In this paper, we design a new type of simplified high order inverse Lax-Wendroff
(ILW) boundary treatment for solving hyperbolic conservation laws with finite difference method
on a Cartesian mesh, in which both scalar equations and systems are considered. This new ILW
method decomposes the construction of ghost points into two steps: interpolation and extrapolation.
At first, we approximate some special point values through an interpolation polynomial based on
interior points near the boundary. Then, we construct a Hermite extrapolation polynomial based
on those special point values and spatial derivatives at the boundary obtained through the ILW
process. This extrapolation polynomial will give us the approximation of the ghost point values.
Through an appropriate selection of the interpolation points, high-order accuracy and stable results
can be achieved. We use the eigenvalue analysis method to analyze the stability of our new boundary
treatment. The analysis results show that the new method can improve the computational efficiency
while maintaining accuracy and stability. Numerical tests for one- and two-dimensional problems
indicate that our method has high order accuracy for smooth solutions and non-oscillatory property
for shock solution near the boundary.

Key Words: Inverse Lax-Wendroff method; numerical boundary treatment; high
order accuracy; finite difference method; hyperbolic conservation laws; eigenvalue
analysis.

1. Introduction. In this paper, we propose a new high order accuracy boundary
treatment based on finite difference methods with fixed Cartesian mesh for hyperbolic
conservation law equations. For problems on complex domain under such mesh, there
are often two main difficulties. First, the computational stencil of a high order finite
difference scheme is often relatively wide, thus we need to evaluate the values at
several ghost points near the boundary. Secondly, the physical boundary often does
not happen to be on the grid points, so we need to design an algorithm to introduce
the boundary conditions into our boundary scheme. If the boundary scheme is not
well designed, it may require an extremely small time step to ensure stability, resulting
in low computational efficiency.

A common treatment is to use body-fitted grid. That is to establish appropriate
body-fitted coordinates so that the grid points coincide with the physical boundary,
and then to solve the partial differential equation in the new coordinate system. In
this approach, the boundary conditions can be given directly on the grid points. The
advantage of this method is that it can accurately meet the given boundary conditions.
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Its disadvantage is that the generation of body-fitted grid could be difficult. The
quality of the grid directly determines the computational efficiency and accuracy.
Especially for problems with moving boundary, the management of the moving grid
is generally complex, which will increase the computational cost greatly. In addition,
the governing equation needs to be changed during computation. The transformed
PDE is often more complex than the original equation, which will also increase the
computational cost.

For non body-fitted mesh methods, many scholars have also proposed some meth-
ods, such as the embedded boundary method [1,9-11,21,27], the immersed boundary
method [4,20,22-24,33], the ILW (inverse Lax-Wendroff) method [28-31] and so on.
In this paper, the method we will introduce is a type of the ILW method.

The prototype of the earliest ILW method comes from the simulation of pedes-
trian flow [7,34]. The pedestrian walking direction can be determined by solving
an Eikonal equation. They deal with the boundary conditions by transforming the
normal derivative into the tangential derivative. Later, this method was extended
to hyperbolic conservation law equations by Tan and Shu [28]. They transformed
the normal derivative into time derivative and tangential derivative to deal with the
corresponding inflow boundary conditions (different from the original Lax-Wendroff
scheme, which transformed the time derivative into spatial derivative, hence the mean-
ing of “inverse”), and applied this method to inviscid compressible fluids.

After the ILW method was proposed, many scholars have done a series of work,
which have greatly developed this method. To deal with the heavy algebra of the
original ILW method for nonlinear systems (especially in the high-dimensional case),
the simplified ILW (SILW) method was proposed in [31], which greatly reduced the
computational cost of the ILW method for solving systems. Lu et al. [19] proposed an
ILW method to deal with sonic points by evaluating the flux values at ghost points,
so it can deal with problems with changing wind direction. Ding et al. [5] redefined
the concept of “conservation” for finite difference schemes, and gave an ILW method
satisfying conservation in the new sense. In addition to hyperbolic conservation law
equations, the ILW method was also applied to other types of equations, such as
convection diffusion equation [13,15,18] and Boltzmann equation [6]. For the mov-
ing boundary problem, Tan and Shu extended the ILW method to deal with the
compressible inviscid fluid containing moving (translational) boundary in [29]. By
redefining the material derivative on the boundary, in [3], Cheng et al. extended the
method to deal with the arbitrary motion of the boundary, and used it to simulate
the interaction between shock wave and rigid body. Liu et al. [17] extended this ILW
method to convection-diffusion equations on moving domain, in which a unified algo-
rithm was design for five cases: pure convection, convection-dominated, convection-
diffusion, diffusion-dominated and pure diffusion cases. For the three-dimensional
moving boundary problem, Liu et al. [16] extended the moving boundary treatment
to the three-dimensional case, and simulated the interaction between inviscid / vis-
cous fluid and three-dimensional rigid body. References [13-15,32] have analyzed the
linear stability of ILW and SILW methods, which provide guidelines for us to design
stable ILW boundary treatments.

In this paper, we will design a new type of SILW method for conservation law
equations. The new ILW method decomposes the construction of the ghost points
into two steps: interpolation and extrapolation. At first, we approximate some special
point values through an interpolation polynomial based on interior points near the
boundary. Then, we will construct a Hermite extrapolation polynomial based on
those special point values and spatial derivatives at the boundary obtained through
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the ILW process. This extrapolation polynomial will give us the approximation of
the the ghost point values. Through an appropriate selection of the interpolation
points, high-order accuracy and stable results can be achieved. The eigenvalue analysis
method is used to help us select these interpolation points to ensure the stability of
the numerical scheme. The analysis results show that the new method can improve
the computational efficiency while maintaining accuracy and stability. Finally, we
apply our method to the simulation of inviscid compressible fluid.

The organization of this paper is as follows. In Section 2, we will give the descrip-
tion of the new ILW method for one-dimensional scalar conservation law equations,
and use the eigenvalue analysis method to perform the linear stability analysis. In
Section 3, we will extend this algorithm to system and high-dimensional cases. The
high order accuracy and robustness of our algorithm will be shown through numerical
tests in Section 4. Conclusion remarks will be given in Section 5.

2. The one-dimensional scalar conservation law case. Consider the scalar
hyperbolic conservation law in the following form:

ur+ f(u), =0, =ze(—1,1),¢t>0,

(2.1) u(=1,t) = gi(t), t>0,
u(z,0) = up(t), ze€[-1,1].
We assume that f/'(u(—1,¢)) > 0, such that the left boundary z = —1 is an in-

flow boundary, where a boundary condition needs to be given. We also assume that
f'(u(1,t)) > 0. Hence the right boundary = 1 is an outflow boundary, where no
boundary condition is required.

Suppose the domain is divided by the uniform mesh:

(2.2) —1+C Az =20<---<zazy=1-CpAx

with uniform mesh size Az = 2/(C, +Cy+ N) and C,, Cy € [0,1). Note that we have
deliberately allowed the physical boundary x = +1 not coinciding with grid points.
We use the framework of method of lines (MOL) to construct a semi-discrete

scheme on the interior point x;, j =0,1,2,--- , N:
(2.3) auj = Lh(u)j,
where,

1 ~ ~
L, = —E(fjﬂm = fic12) = —f(w)ala;
is the spatial discrete operator. Here, u;(t) is the numerical approximation to the
exact solution u(z;,t), and fj+1/2 is the numerical flux. In this paper, we will use an

upwind-biased finite difference conservative scheme to construct f;,;/2, such as the
WENO scheme [8].

After the spatial discretization, the semi-discrete scheme (2.3) is a system of
ordinary differential equations. For time discretization, we use the total variation
diminishing (TVD) Runge-Kutta (RK) scheme [26]. From time level " to t"! the
third order TVD RK scheme is given as

u§1> =u? + AtLy(u");,

3. 1 1
(24) u? =+ gt + AL ),
n n 2 2
Uy = guj + gug ) + gAtL} (u(z))
3
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In particular, [2] pointed out that the boundary conditions in the intermediate stages
of the above RK scheme should be modified as follows to avoid order reduction:

u?L ~ gl(t’n)7
(2.5) ulh ~ gi(tn) + Atgi(tn),

1 1
u® ~ gl(tn) + §Atgl/(tn) + zAtQQZ/(tn)-

Note that for a high order finite difference scheme, a wide computational stencil
is generally required. Hence, it is inevitable that some points in the computational
stencil are not in our computational domain,

T_p=2x0—pAzT, TyNyp=oN+pAxr, p=12---.

Therefore, we can regard the boundary treatment problem as construction of the
ghost point values. In the following, we will first review the original (S)ILW method
proposed by Tan et al. [28,31]. And then, a new SILW method will be proposed to
improve the computational efficiency while maintaining accuracy and stability. Linear
stability analysis will be given to demonstrate the advantage of the new proposed
method.

2.1. Review of the original SILW method. The main idea of the original
inverse Lax-Wendroff method for hyperbolic conservation law equations [28] is to con-
vert the spatial derivatives into the time derivatives through the PDE and boundary
conditions at the inflow boundary. At the outflow boundary, the spatial derivatives
of each order are approximated by extrapolation. After that, the values of the ghost
points outside the computational domain are obtained by Taylor expansion at the
boundary. More specifically, the ghost points near outflow boundaries, such as the
right boundary z = 1 in our example problem (2.1), can be obtained by extrapolation
directly. We can choose the traditional Lagrange extrapolation with appropriate ac-
curacy when the solution is smooth near the boundary, or least square extrapolation /
WENO type extrapolation [19,28,31] when the solution contains discontinuities near
the boundary.

For the inflow boundary, such as the left boundary z = —1 in our example problem
(2.1), to ensure our boundary treatment has d-th order accuracy, the value of the ghost
points near x = —1 will be obtained by Taylor expansion:

d—1
(‘KEA + 1)k *(k .
(2.6) UJZZJTU()’ j=—1,-2,--
k=0

where, u*(¥) is the approximation of 8§k)u|z:,1 with at least (d—k)-th order accuracy.
Using PDE and boundary condition repeatedly, we have that

0 ulo——1 = ai(t),

O g)(t
(2.7) o _f(gl(t))’
o, - D)) 21" )]0

f(q(t))3 ’
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Table 1. The table of (kg)min for original SILW method.

d |3 5 7 9 11 13
(kd)min |2 3 4 6 8 10

Thus, we can set
w®) = 9®y, .

To avoid the very heavy algebra of above original ILW method when calculating
the high order space derivatives, the simplified ILW (SILW) method was proposed
in [31]. Specifically, uw*© w*(M) are constructed by the original ILW procedure, i.e.,
converting the spatial derivatives into the time derivatives through the PDE and
boundary condition. The higher order spatial derivatives u**), 2 < k < d — 1,
are extrapolated from the interior points directly. This method can greatly improve
the computational efficiency, especially for high-dimensional systems. However, [14]
analyzed the linear stability of the SILW method through the eigenvalue method,
showing that the SILW method [31] is stable for any C, € [0,1) only when d = 3, but
unstable for d > 3. In order to guarantee the stability, more ILW procedure need to
be used to construct higher order spatial derivatives at the boundary.

Suppose that for a d-th order scheme, u**) is obtained through ILW procedure if
k < kq—1, or by extrapolation if kg < k < d—1. For different high order schemes, [14]
used the eigenvalue analysis to find out the minimum k4, denoted by (kq)min, to make
sure the scheme is stable for all C, € [0,1). The values of (kq)min for a variety of
d are shown in Table 1. It can be seen that the (kg)min is still large for high order
scheme. This results in difficulty in writing codes and affects computational efficiency
for high dimensional systems.

In summary, the above SILW method can be divided into the following two steps,
i.e., “interpolation” and “extrapolation”:

Step 1. Construct an interpolation polynomial p(x) of degree d—1 with interior points
{zo, - ,x4-1}, and obtain the approximation of spatial derivatives of each
order on the boundary

w* (k) %3§p|x=—17 k=ky - ,d—1.
Step 2. Construct the extrapolation polynomial ¢(z) of degree d — 1 satisfying
q(’“)(—l):u*(k), k=0,---,d—1,

where, u*(¥) for k < kg are obtained by the ILW procedure (2.7), and the else
are obtained by Step 1. Actually, in this case, ¢(x) is the Taylor expansion
polynomial. Then, we can get the ghost points values

Uj:q(.Tj), j:71772,....

The above (S)ILW method is based on Taylor expansion. When assembling the
extrapolation polynomial ¢(x) in the second step, all information used is on the bound-
ary. In fact, the information we can use to construct the extrapolation polynomial
¢(z) mainly consists of two parts. One is the spatial derivatives on the boundary ob-
tained by the ILW procedure, and the other part is the polynomial p(z) constructed
by interior points. In order to make the algorithm more efficient, we hope to use the
first part information as less as possible under the premise of ensuring the stability of
the scheme.
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2.2. A new SILW method. In the following, we will describe our new SILW
method for the scalar conservation law equation in (2.1), hoping (kg)min would be
smaller for the same d. The key difference between the new method and the original
one is that the extrapolation polynomial ¢(z) will employ the point values on some
special points in computational domain,

u(—1+ kalAx,t) =~ p(—1+ kalAzx), k=1,2...

instead of using the high order derivatives of the interpolation polynomial p(x) at the
boundary. Here, a > 0 is a parameter to be determined such that the (kg)mn would
be smaller.
Specifically, we summarize the procedure of our new SILW method with d-th
order accuracy in the following:
Step 1. Obtain the interpolation polynomial p(x) of degree d — 1 based on the points
{1‘0, s ,xd_l}. Let

e = p(—1+ kalzx), 1<k<d-kg.

Step 2. Construct the extrapolation polynomial ¢(z) of degree d — 1 to satisfy the
following conditions:

¢ (1) = 0P u|pe 1, 0<k<kg—1,
g(—1+ kaAzx) = upy, 1<k <d-— kg,

where, ('“);S»k)u|w:,1 is obtained by the ILW procedure. Let the ghost point
values be the values of the extrapolation polynomial g(x) at the corresponding
points:

uj=gqlz;) j=-1,-2,....

In the next subsection, we will show that through adjusting the value of o, our new
SILW method is better than the original SILW method in computational efficiency
and stability.

2.3. Linear stability analysis. Here, we will give the stability analysis of the
fully discrete schemes using the eigenvalue spectrum visualization. We consider the
case of d = 2k — 1 (k = 2,3,4,5,6,7) and assume that f’(u) > 0. The conservative
linear upwind scheme is used for spatial discretization. That is, Ly in the scheme
(2.3) is in the following form:

d=3:
1 1 1 1
Lh(u)j = —E (ij—2 - fj—l + ifj + 3fj+1> ’
d=>5:
1 1 1 1 1 1
Lp(u); = “Ax <—30fj—3 + zfj—z —fi-1+ gfj + §fj+1 - 20f1’+2> ’
d=T:

1 /1 7 3 1. 3
L P (S PR U S Tl S
n(wi =15 (140f3 1Tl glice Tl it 5 hin

1 1
—Efjm + 105fj+3> )

6
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1 2 1 1
Li(u); = =+~ ( 630fa 5+ 6fj—4 —opfimstgfice—ficat o

1 1 1
+§fj+1 — 2five+ fivs - 504fj+4) ,

d=11:
1 /1 5 5 5
Ln(u); = —— ( =—=—f; = fisst —f_
w(wi =~ 37 (2772fJ 6 210’3 5+168f -~ plise T gdiee
—fi—1+ éfj + ?fj—&-l - %fj—!—Q + 196 /i+3 — 1gg i+
+mfj+5)»
d=13:
1 1 1 5
L o 2
w(w); Ax( 201277~ 7Jr792f o 110f3 5t 4fj 17 gglies

5 1
+§fj—2 —fi-1+ §fj + ij+1 —opli2 Efj-i—?)

1 1 1
~1ee it geofits 10296fj+6) :

In particular, for the linear case f(u) = u, the semi-discrete scheme (2.3) can be
written in the matrix-vector form,

dU 1
@~ A%

dt
where, U = (uq, uz, ...,un)? and Q is the coefficient matrix of the spatial discretiza-
tion.

References [14,32] pointed out that we only need to care about the fixed eigenval-
ues of the matrix @ with the increase of grid points for stability analysis. If we use the
third-order TVD RK time discretization (2.4), the stability region can be expressed
as

(2.8) (W] <1, 2(p)=1+p+ 75+

where, p = s%, and s is the fixed eigenvalue of @Q we are concerned about. Notice
that z may not exist or there may be more than one. If there is more than one z,
we consider the largest |2(u)|. Let the CFL number be Ay = {L. We hope that
the CFL number is independent of C,. Hence, we discuss stability on the premise of
maximum CFL number (Acf)maz, Where, (Acfi)maz is the maximum CFL number for
the corresponding Cauchy problem, and their specific values are shown in the Table
2.

We select several groups of different o and kg4 for linear stability analysis for
different schemes, and the range of « is given as [0,10]. We compute the largest
|2(1)| for all the eigenvalues s. By using the software Matlab, we show the max |z(p)|
for C, € [0,1) with different . For instance, we get the results of the third order

7
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Table 2. The maximum CFL number for Cauchy problem.

d 3 5 7 9 11 13
Oef)maz | 1.62 143 1.24 112 1.04 0.99

scheme with the new SILW procedure with k; = 2 as in Figure 1. When « = 0.60,
max |z(p)| > 1 when C, approaches 0. However, max |z(p)] < 1 for all C, € [0,1)
if @ = 0.61. This indicates that we should take o > 0.61 to guarantee the scheme
is stable with k; = 2. More cases are placed in Appendix A. A numerical test is
also given to verify the stability analysis results. Finally, the minimum k4 and the
corresponding appropriate o range are shown in Table 3.

1 iyt 3

\
0.9 0.9F
o8 Sosf
2 3
go7 go7
%06 061
£ 1 £
05 05
04 0.4
0_ 0.01 0.02 0.03

0.3 0.3
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Ca Ca

(a) @ =0.60 (b) a=0.61

Fig. 1. The third order scheme with the new SILW procedure with ky = 2. The
horizontal axis represents C, and the vertical axis represents the largest |z(u)|.

As can be seen from the Table 3, compared with the original SILW method,
we can construct the stable boundary treatments with smaller kg by adjusting a.
Here, we plot C,, versus max |z(u)| for both boundary treatments with the same order
of accuracy and the same CFL number to compare the original and the new SILW
methods. The fifth order schemes with k; = 2 are taken as an example, see Figure
2. It is observed that with the original SILW method, the fifth order upwind scheme
is unstable when the first grid point is either close to or far from the left boundary,
while the new SILW method is stable for all the C,, € [0, 1].

Table 3. Linear stability analysis results of the new SILW method

d 3 5 7 9 11 13
(kd)min 2 2 2 3 3 4
a (0.61,10] [0.92,5.11]  [1.34,1.99] [1.29,2.43] [1.42,1.70]  [1.49,2.08]

3. The new SILW method for one- and two-dimensional systems.

3.1. The new SILW method for one-dimensional Euler equation. We
consider the following one-dimensional compressible Euler equation:

(3.1) U+ FU), =0, ze(-1,1),¢t>0,
8
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Fig. 2. The stability analysis results of the fifth order scheme with k; = 2, the
horizontal axis represents C, and the vertical axis represents the largest |z(u)|.

251 where
Uq 1% pu
252 U=| U, |=| pu |, FU = pu®+p
Us E u(E + p)

253  Here, p, u, p and E represent the density, velocity, pressure and total energy per
254 volume, respectively. In order to close the system, we give the following equation of
255 state of ideal gas:
p L

v ~—1 " 2"
257 Here, « is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.
258 We consider the boundary treatment of left boundary z = —1 as an example.
259 The original Euler equation (3.1) can be rewritten into the following nonconservative
260 form:

261 U:+ AU)U, =0,

262  where, A(U) = F'(U) is the Jacobi matrix,

1 ’ 2 : ’ a1 (U)
263 (3.2) AWU) = 5(7 - 3)u (3—7)u v=1| — (e .
264 %(7 - 1)u3 —uH H-—(y- 1)u2 Y as3(U)

with H = (E 4 p)/p. And the Jacobi matrix is diagonalizable:
A(U)=F'(U)=RAL.
265 Here, A = diag(u — ¢, u, u 4+ ¢), ¢ = y/vp/p is the speed of sound, R and L are
2

266 matrices as follows:

267 RU)=| “7¢ " ute
H —uc §u2 H + uc
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11 1 11
que+ (y=Du*  —s(y-Nu-ge S(y-1) L)
1 1
LU) =5 | &—S(y-1u (y = Du 1—v | = (L)
1 % , 1 11 13(U)
—guct (v =1u —o(y-Nutge S(v-1)

The number of boundary conditions we need to give is determined by the sign
of the eigenvalues of Jacobi matrix A(U) at the boundary. Specifically, on the left
boundary x = —1, it can be divided into the following cases:

Case 1. u — ¢ > 0: three boundary conditions need to be given;

Case 2. u—c <0, u>0: two boundary conditions need to be given;

Case 3. u <0, u+ c> 0: only one boundary condition need to be given;

Case 4. v+ ¢ < 0: no boundary conditions are required.

In particular, for case 3, when the given boundary condition is Us(—1,t) = 0, we get
the free slip solid wall boundary condition.

Here, we take the case 2 as an example to describe our algorithm. Suppose two
boundary conditions are given at the left boundary,

Ul(—].,t) = gl(t), and UQ(—l,t) = 92(?5)

Again, we perform uniform mesh generation on the computational domain with mesh
size Ax,

—“1+C, Az =29 < ---<azny=1-CyAx.
Employ the finite difference methods to get the semi-discrete scheme:

d 1 - - ,
%Uj = _Fx(ﬂ+1/2 —Fj_1p2), j=0,---,N.

Here, Uj(t) is the approximation of U(x;,t), and numerical flux 15j+1/2 can be ob-
tained by the WENO reconstruction. We take the fifth order scheme as an example
to describe our boundary algorithm, and other high order schemes can be obtained
similarly. For the fifth order WENO scheme, we need the values of at three ghost
points near the boundary x = —1, which are U_;,U_5 and U_3.

Similar to the case of scalar equation, in order to obtain the ghost point values,
we will construct the extrapolation polynomials g(z) near the boundary. It can be
seen from Table 3 that, for the fifth order scheme, we have to use the point values
and first order spatial derivatives on the boundary through the ILW procedure. To
ensure the order of accuracy, the value U*(®) and U*(") should be 5th and 4th order
approximations of U|,=_1 and U,|,—_1, respectively.

Specifically, we use the left characteristic matrix L = L(Uy) to do the character-
istic projection V = LU. Here,

(3.3)

V = (Vi, Vo, V5)T

is the characteristic variable. In case 2, V; is the outflow variable, V5 and V3 are the
inflow variables. Combined with the boundary conditions, we can obtain the following
linear system:

U =gi(t),

(3.4) U3 =ga(t),
ll . U*(O) :Vl*(O)v
10
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where, Vl*(o) is the 5th order approximation of Vi |,—_1 and can be extrapolated from
the interior grid points. By solving the above system, we can get the value of U*(©).
For U*( applying the ILW procedure, we have

a (U)W = —gi(t),

3.5a
(35 ax(U*?) . U™ = —gh(1),

Combine with outflow conditions,
(3.5b) LU =y,

where, Vl*(l) is the 4th order approximation of (V7);|z=—1 and can be extrapolated
from the interior grid points. By combining and solving the above equations, we can
get the value of U*(1),
At this time, we can construct the point values of the ghost points through the
new SILW method. The specific construction method is as follows:
Step 1. Construct the vector of interpolation polynomial p(x) of degree four with the
interior grid points values {Uy, -+ ,Us}. Let

Ui = p(—1+ kalz), 1<k<3,

Here, o can be selected as any number in [0.92, 5.11] according to the stability
analysis results in Table 3.
Step 2. Construct the extrapolation polynomial g(x) of degree four to satisfy:

q(-1)=U""
q/(—l) — U*(l)
g(—1+4+ kalAz) =Uy,, 1<k<3

Step 3. Let the ghost points values be the values of the extrapolation polynomial g(z)
at the corresponding points:

In particular, if the solution of the equation has discontinuities near the boundary,
we can apply the WENO extrapolation technique when constructing the extrapolation
polynomial g(z) in step 3. More details about WENO extrapolation can be found
in [19,28,31]. In addition, in many cases, boundary conditions are not directly given
to the conserved variables. For example, the temperature or pressure is given on the
boundary. For these cases, when dealing with the boundary conditions, we need to
convert the conservation equation into equations in terms of primitive variables. This
process is used in [3,16,17,30], which is very similar to the above process of conserved
variables. We will not expand it here.

3.2. The new SILW method for two-dimensional Euler equation. Con-
sider the two-dimensional Euler equation as follows:

U | IF(U) , 9GW) _

3.6 0 Teq
where,
p gu pv
| pu _ | pu+p _ puv
(3.7) u= "0 Foy =" e =| B
E w(E + p) v(E + p)
11
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331 Here, p, u = (u,v)”, p and E represent the density, velocity, pressure and total energy
332 per volume, respectively. In order to close the system, we give the following equation
333 of state of ideal gas:

p 1 2 2
334 EFE=— 44— .
po— + 2p(u +v)
335 Here, = is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.
We use a uniform non body-fitted Cartesian mesh to divide the domain

Tip1 =z + Az, yjp1 =y; + Ay,

336 with mesh size Az and Ay in z- and y-direction, respectively. Discretize the equation
337 into the following conservative semi-discrete scheme:

338 J 4 |+ Gigry ~ Gy =0

o dt Ax Ay ’

339 where, U ;(t) is approximation to the exact solution U (z;, y;,1), E+%)j and GAm#%
340 are numerical fluxes, which can be obtained by the 5th order WENO reconstruction.

rormn

——
—_
8
=
e
=~

Fig. 3. The local coordinate rotation diagram.

341 Suppose P;; = (z;,y;) is a ghost point near the boundary. At first, we find its
342 foot point P, € 082(t,), so that the normal n at P, goes through P;;, as shown in
343 Figure 3. Assume the normal vector from P, to P; ; is n = (cos,sinf)”. In order to
344 simplify the algorithm, we perform a local coordinate rotation transformation at P,,

. Z\ [ cosf sinf\ [z
o 9)  \—sinf cosf) \y/"

346 In the new coordinate system, the equation (3.6) can be rewritten as

oU OF{U) 0G(U
ou ()+ ) _

347 (3.8 0
AT (38) o " os Bf ’
348  where,
b\ (0
i A pta| Uz w\ [ cosf sinf) (u
9 U= po | U5 | (i)) - ( sin cos@) (v)
E Uy
12
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Let

ap (l?) R R651
- ax(U) s 0G((U) Ress

A - A, = F = — =
(U) a3([{) (U), Res 29 Ress
ay(U) Resy

Then, the equations can be written in the following non conservative form

(3.9) U, + A(U)U, = Res.

The original equation is hyperbolic, so A(U) is diagonalizable:

A(U) = RO)AU)L(D),

Here, .
AU) = diag(t — ¢, 4,0, 0 + ¢)

>

Iy (
L) = |
(O
L(U)
The number of boundary conditions that should be given at the boundary point
P, is related to the eigenvalues 4 — ¢, 4, %, % + ¢ at this point. Specifically, it can be
divided into the following situations:
Case 1: &4 — ¢ > 0, no boundary conditions are required;
Case 2: 4 —¢ <0, u >0, only one boundary condition needs to be given;
Case 3: 4 <0, @+ ¢ >0, three boundary conditions need to be given;
Case 4: 4+ ¢ < 0, four boundary conditions need to be given.
We take case 2 as an example to describe our algorithm. Suppose the boundary
condition given at the boundary point P, is

Us = g(t).

As before, we can transform the construction problem of ghost point values into
the construction problem of extrapolation polynomial g(s). It also can be seen from
Table 3 that, for the fifth order scheme, we need to use the Oth and 1st order normal
direction derivatives on the boundary obtained from the ILW procedure when con-
structing g(s). That is, we need to get the value of U*© and Tj*(l), which are the
5th and 4th order approximations of ﬁ| p, and Uw\ p, respectively, through the ILW
procedure.

Specifically, we use the left characteristic matrix L = L(Uext) to do the char-

>
o~

G

)
0)
)

acteristic projection V' = LU. Here, U.,, is the extrapolation value at P,, V =
(1, Va, Vs, VZQT is the characteristic variable. For case 2, V5, V3,V are the outflow
variables, V] is the inflow variable.

Combined with the boundary conditions, we can obtain the following linear sys-
tem:

03 = g(v),
- U =y

(3.10)

l3 . U*(O) _ ‘/'3*(0)’

l4 . U*(O) _ V;L*(O)’
13
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394

where, V;(O),V;(O) and VZ(O) can be extrapolated from the interior grid points. By
solving the above system, we can get the value of U+,
For U*(W | apply the ILW procedure and we have

(3.11a) ax(U*©). UM = —¢/(t) + Res,.
Combine with the outflow conditions,

I, - U = ‘/1*(2)’
(3.11b) Iy U — ),

1, - U = ‘/1*(4)’

where, ‘/2*(1)7‘/3*(1) and Vf(l) can be extrapolated from the interior grid points. By
solving the above equations, we can get the value of U*(1).

Y 1.
\ / Pg mterior
/P
7
2 / [ !
I

exterior

Fig. 4. Two dimensional new SILW method diagram

Next, we use the new SILW method to construct the value of ghost point F; ;. It
is divided into the following steps:
Step 1. Obtain the interpolation polynomial p(x,y) of degree 4 with the values inter-
nal grid points near P,.
Step 2. Let
U =p(Pr), 1<k<3,
where,

P.=P,—kahn, 1<k<3

As show in Figure 4, {P;}|3_, are some non grid points in the interior area

on the normal line. Here, h = \/Ax?2 + Ay2, a can be chosen as any number
in [0.92maX(8.8Y) 5 11 min(Ar.Av))

Step 3. Let g(s) be the unique polynomial of degree 4 satisfy

q(0) =U",
q/(O) _ 1]*(1)7
a(—kah) = Uy., 1<k<3.

14
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414
415
116
117

Step 4. Take the function value at P;;
Uij = q(|Pij = Fal)-

It should be noted that when g(t) = 0, we actually get the non penetrating free
slip boundary condition:
u-n=_0.

As in the one-dimensional case, if the solution is discontinuous near the boundary, we
can use a one-dimensional WENO extrapolation technique in step 3.

Notice that, for the problems with changing wind direction, the above inverse Lax-
Wendroff procedure may involve solving an ill-conditioned linear algebraic system,
which may ruin the accuracy or even lead to blowing up. There are two ways to deal
with this problem. One is mentioned in [28], which adds additional extrapolation
equations and solves a least squares problem whenever one of the eigenvalues very
closed to 0. The other method is proposed in [19], which evaluates the solution values
and the flux values at ghost points separately. In the test examples of this paper,
we use the first method. The performance of the second method applied to our new
SILW boundary treatment is unclear.

4. Numerical tests. We take some numerical tests to show the efficiency and
stability of our new proposed SILW method. We use the third and fifth order FD-
WENO scheme for spatial discretization. Correspondingly, the new SILW boundary
treatment with third order and fifth order accuracy will be used, respectively. For
all the one-dimensional numerical tests we take the parameter @ = 1.0, for all the
two-dimensional numerical tests we take e = 1.25. The third order TVD RK scheme
(2.4) is employed for time discretization, with the time step

A k/3
At = CFL=2
c
for one-dimensional problems, and
CFL

At = .
Co/ ATF/3 + ¢, | AyF/3

for two-dimensional problems. Here, the index k/3 help us to guarantee k-th order
in time. ¢ = ¢, = maxy [A(F'(U))|, ¢, = maxy [A(g'(u))|, and A is the eigenvalue of

the Jacobian matrix. Throughout our numerical tests, the CFL number is taken as
0.6.

Example 1. At first, we consider the accuracy test of the new SILW on the one-
dimensional Euler equation on the computational domain as [—m,7]. We choose
suitable boundary conditions such that the exact solution is:

— 0.2sin(2t — ),
(4.1) u(

In order to verify the applicability of our algorithm to the “cut cell” problem, we
test with difference choices of C, and Cp. The computational errors about density p
at final time t.,q = 1 are shown in Table 4 - 5. We can see that for all cases, the
schemes can achieve the designed order accuracy with mesh refinements.

15
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Table 4. Example 1: errors and orders of accuracy of p with third order scheme.

Ca = 0.0001,C5 =07 C. =09999,Cp = 0.7
N L' error order L% error order LT error order L% error order
20 1.67E-004 — 5.73E-004 — 1.45E-004 — 4.80E-004 —

40 1.58E-005  3.40  4.78E-005  3.58 1.00E-005 3.85  4.39E-005  3.45
80 2.07E-006 2,92  5.30E-006  3.17 | 8.52E-007 3.56  4.57TE-006  3.26
160 | 2.69E-007 2.94  T7.30E-007  2.86 8.38E-008  3.34  5.24E-007  3.12
320 | 3.43E-008 297  9.50E-008  2.94 9.15E-009  3.19  6.27E-008  3.06
640 | 4.32E-009  2.98 1.21E-008  2.96 1.06E-009  3.10 7.66E-009  3.03

Table 5. Example 1: errors and orders of accuracy of p with fifth order scheme.

'« = 0.0001,Cy = 0.7 '« = 0.9999, Cy = 0.7
N LT error order L error order LT error order  L°° error  order
20 9.33E-005 - 1.76 E-004 - 7.41E-005 - 1.36E-004 -

40 2.99E-006 4.96  6.09E-006  4.84 2.62E-006  4.81 5.47E-006  4.63
80 9.28E-008  5.01 1.99E-007  4.93 8.65E-008  4.92 1.81E-007  4.91
160 | 2.88E-009  5.01 6.06E-009  5.04 2.77TE-009  4.96  5.78E-009  4.97
320 | 8.89E-011 5.01 1.77E-010  5.09 8.72E-011 4.99 1.73E-010  5.05

418 Example 2. Next, we consider the example given in [12] to test the accuracy of
119 our method. The governing equations is still the one-dimensional compressible Euler
120 equation, with following initial condition:

14 0.2sin(z)
p(x70) - 2\/§ i
u(z,0) = p(z,0),
p(,0) = plz,0)7.

421 (4.2)

122 The computational domain is taken as [0,27]. We choose the parameter v = 3.
123 Consequently, the exact solution is

24 pla.t) =5 ulet) = Aat), oo ) = plat)

425  where p(z,t) is the solution of the following Burgers’ equation:

2

7!
[l 9
126 (4.3) Mt+(2)ac 0, O<xz<2m, t>0,

w(xz,0) =14 0.2sin(z), 0<z < 2m.

427  We take boundary conditions from the exact solution whenever needed.

428 We consider the extrema situation and set C, = 0.0001, Cy = 0.9999. The com-
129 putational errors about density p and orders of accuracy at time t.,q = 3.0 are shown
130 in Table 6, indicating that our methods can achieve the designed third order or fifth
131 order accuracy.

132 Example 3. Now we consider the interaction of two blast waves [28]. In this problem,
133 multiple reflections occur between shock and rarefaction off the walls. The initial

16
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434

435

Table 6. Example 2: errors and orders of accuracy of p.

third order scheme fifth order scheme
N L' error order L% error order LT error order L% error order
40 1.30E-003 - 2.49E-003 - 4.01E-004 - 1.04E-003 -

80 2.04E-004 2.67 6.20E-004  2.00 2.24E-005 4.15  8.03E-005  3.69
160 | 2.84E-005 2.84  8.50E-005  2.86 7.16E-007 497  2.98E-006  4.75
320 | 3.60E-006  2.97 9.93E-006  3.09 2.38E-008  4.90 1.00E-007  4.89
640 | 4.52E-007  2.99 1.18E-006  3.06 8.04E-010  4.89  2.90E-009  5.10

T -
6 6 :_
sF sF
24T 2 4F
w o} » |
c I 2 L
[ I F [
- 3k s 3|
2F ok
i n
o
1k E_‘: 1k 1
0 s e s s s s s e S (Y R SRR | 0 et S S S SRR RN N R ISR T
0 02 04 06 08 1 0 0.2 0.4 0.6 0.8 1
X X
(a) Third order scheme. (b) Fifth order scheme.

Fig. 5. Example 3: Density profiles. h = 1/640. The solid line represents the
reference solution and the circle represents the numerical solution.

condition is

Uy, =<0.1,
(4.4) U(z,0)=¢ Uy, 01<z<0.9,
Ur, x>0.9.

Here, p;, = py = pr =1, up = upyr = ug = 0, pp = 10%, ppyy = 1072, and pr = 10°.
We take tenq = 0.038 and C, = 0.0001,C, = 0.7. At the same time, we use a very
dense grid with Az = 1/2560 and the original ILW method to obtain the reference
solution. The numerical results are shown in Figure 5. We can see that the new ILW
method can distinguish the structure of the solution well, and higher order scheme
has a better approximation to the complex structure.

Example 4. We consider two-dimensional linear scalar equations on a disk:
(4.5) U + Uy + uy =0, (z,9)T € Q= {(z,y) : 2> +y* < 0.5}.
The initial condition is given as
u(z,y,0) = 0.25 + 0.5sin[n(z + y)],
and the boundary is given whenever needed such that the exact solution is

u(r,y,t) = 0.25 + 0.5sin[r(z + y — 2t)].
17
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The domain is discretized by embedding the domain in a regular Cartesian mesh with
T; = (if%)Ax, yj = (jf%)Ay, and the non body-fitted Cartesian mesh h = Ax = Ay.
We show Figure 6 as an example. The final time is taken as t¢,q = 1.0. The numerical
results are given in Table 7, indicating that our schemes are stable and can achieve
the design order of accuracy.

Fig. 6. Example 4: Non body-fitted Cartesian mesh. The red points are the interior
points.

Table 7. Example 4: errors and orders of accuracy .

third order scheme fifth order scheme

h LT error order L error  order LT error order L error  order
1/10 1.28E-004 - 4.83E-004 - 4.16E-004 - 1.42E-003 -
1/20 1.33E-005 3.26 4.54E-005 3.41 1.51E-005 4.77 1.38E-004 3.36
1/40 1.43E-006 3.21 5.84E-006 2.95 3.47E-007 5.44 5.54E-006 4.64
1/80 1.46E-007 3.28 6.68E-007 3.12 1.17E-008 4.89 2.71E-007 4.35
1/160 | 1.19E-008 3.61 8.82E-008 2.92 4.47E-010 4.70 9.72E-009 4.80

Example 5. We test the vortex evolution problem for the 2D Euler equation. The
mean flow is p = u = v = p = 1 with following isentropic vortex perturbation centered
at (zo,yo) = (0,0) (perturbation in (u,v) and temperature T'= p/p , no perturbation
in the entropy S = p/p7):

(4.6) 57— (=D a2
55 =0.

where (z,9) = (v — @0,y — yo), 7> = Z% + %, and the vortex strength ¢ = 5. It
is clear that the exact solution is just the passive convection of the vortex with the
mean velocity. The computational domain is taken as (—0.5,1) x (—0.5,1) and the
final time is taken as te,q = 1.0. The boundary conditions are taken from the exact

18
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467

solution whenever needed. We divide the domain with the uniform Cartesian mesh
z; = (i— 1)h and y; = (j — %)h, with mesh size h = 1.5/N. The numerical results in
Table 8 show that the schemes are stable and can reach the designed high order.

Table 8. Example 5: errors and orders of accuracy of p .

third order scheme fifth order scheme
h LT error order L*° error order LT error order L error  order
3/40 1.73E-004 - 3.05E-004 3.39E-005 - 7.12E-005 -

3/80 2.17E-005 2,99  4.10E-005  2.89 1.09E-006  4.95 2.33E-006  4.93
3/160 | 2.51E-006 3.10 4.93E-006  3.05 3.46E-008  4.98 1.08E-007  4.43
3/320 | 2.99E-007 3.07 6.32E-007  2.96 1.12E-009  4.94  4.71E-009 4.51
3/640 | 3.63E-008 3.04 8.34E-008  2.92 3.77E-011  4.89 1.90E-010  4.63

Example 6. Next, we consider 2D version of Example 2 [12]. The governing equation
is the two-dimensional compressible Euler equations with following initial condition:
(2.9.0) 1+0.2sin(%3Y)
p ‘/L.ﬂ y? = - =
V6

(47) U(SC, Y, O) = ’U(:L', Y, 0) = \/ZIJ(-T, Y, 0)7
p(iU, y70) = p($>y70)’y'

We choose the parameter v = 3, such that the exact solution is

plx,y,t gl
plx,y,t) = (\[6)7 u(z,y,t) = v(z,y,t) = \/;O(fmy,t% p(z,y,t) = p(z,y,t)7,

where p(z,y,t) is the solution of the following 2D Burgers’ equation:

0 u?
(4.8) et (et (5)y =0, (2,9) €0
)

w(z,y,0) =1+0.2 sin(g3 +y

We consider following two computational domains:

(4.9a) Q =[0, 47] x [0, 47],
(4.9b) Q ={(z,y)|z* +y* < (1.57)?},

and take boundary conditions from the exact solution whenever needed. For the
square domain (4.9a), we use a grid similar to example 5. And for the circular domain
(4.9b), we use a non body-fitted grid similar to example 4. The numerical results at
final time t.,q = 1 are shown in Table 9 - 10. We can see that our schemes are stable
and high order accuracy for all cases.

Example 7. We consider a flow around a cylinder. The center of the bottom surface
of the cylinder is at the origin with a radius of 1. At the initial moment, a fluid
with Mach 3 moves towards the cylinder. In consideration of the symmetry, we
only consider the problem of an upper half plane. For the lower boundary of the
computation area at y = 0, we use the reflection technique; for the left boundary

19
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Table 9. Example 6: The errors and the orders of accuracy of p on the square domain

Q =1[0,4nx] x [0,4].

third order scheme fifth order scheme
h L' error order L error  order L' error order L error  order
47 /100 | 4.09E-004 - 1.13E-005 - 1.42E-005 - 2.08E-006 —
47 /150 | 1.22E-004 2.98 3.51E-006 2.89 1.93E-006 4.92 2.89E-007 4.86
47/200 | 5.18E-005 2.98 1.66E-006 2.60 4.59E-007 4.99 7.55E-008 4.67
47 /250 | 2.66E-005 2.98 9.14E-007 2.67 1.49E-007 5.01 2.77TE-008 4.48
47/300 | 1.54E-005 2.99 5.54E-007 2.74 6.01E-008 5.01 1.20E-008 4.56

Table 10. Example 6: The errors and the orders of accuracy of p on the
domain Q = {(x,y)|2? + y* < (1.5m)?}.

circular

third order scheme fifth order scheme

h LT error order L% error order L' error order L% error order
47 /100 1.46E-004 — 1.14E-005 — 1.48E-005 — 8.59E-006 —
47 /150 4.20E-005 3.08 4.28E-006 2.42 2.13E-006 4.78 1.28E-006 4.69
47 /200 1.81E-005 2.91 1.79E-006 3.03 6.65E-007 4.05 3.51E-007 4.49
47 /250 9.20E-006 3.05 8.90E-007 3.12 2.21E-007 4.91 1.16E-007 4.95
47 /300 | 5.44E-006 2.87 5.23E-007 2.91 8.42E-008 5.31 4.72E-008 4.93

of the computation region at x = —4, we give the inflow boundary condition; for

the right boundary = = 0 and the upper boundary y = 6 of the computation area,
the outflow boundary conditions are given. On the surface of a cylinder, our new
ILW method is used to deal with a no-penetration boundary condition. As before, a
uniform non body-fitted Cartesian mesh is used, which is shown in Figures 7. Figure
8 show the numerical results. We can see that the results are comparable with those
in [5,19,28,31].

0.5

Y

-0.5

Fig. 7. Example 7: The non body-fitted Cartesian mesh with near the cylinder
boundary. The red points are the interior points.

Example 8. We consider the double Mach reflection problem. At the initial moment,
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pressure pressure
15 15
143158 143158
13.6316 13.6316
| 129474 | 129474
1 12.2632 ] 12.2632
| 11.5789 —| 11.5789
] 10.8947 ] 10.8947
| 10.2105 | 10.2108
| 952632 | 952632
| 884211 [ 8.84211
| 8.15789 | 8.15788
[ | 747368 [ | 747368
| 6.78947 | 6.78947
[ | 6.10526 [ | 6.10526
| 542105 | 542105
| 473684 | 4.73684
4.05263 4.05263
3.36842 3.36842
268421 2.68421
2 2
| ] | ]
1 2 1 2

Fig. 8. Example 7: Pressure contour of flow past a cylinder, 20 contours from 2 to
15. Az = Ay = 1/40. left: third order scheme. right: fifth order scheme.

a horizontally moving Mach 10 shock wave passes through a wedge with an inclination
angle of 30°. In common practice, the wedge is placed horizontally to apply reflective
boundary conditions. At this time, the shock wave forms an angle of 60° with the
wall. In [8,25], the original double Mach number reflection problem is computed
respectively. With the ILW method, people can also do numerical simulation on the
original region [28,31]. Here, we use the new ILW method to simulate this problem.
In detail, at the top of the calculation area, we give the exact flow value according
to the shock Mach number. at the left and right boundary, we give the supersonic
inlet and outlet boundary conditions respectively. On the lower right boundary, a
new ILW method is adopted. The discretization of space and time is consistent with
the previous example. Figure 9 show the computational region and density contour
respectively. The zoomed in region near the double Mach stem is presented in Figure
10. We rotate and translate the region for ease of comparison. It is observed that
the new ILW method captures the shock wave well, and it is comparable with the
previous results.

5. Concluding remarks. In this paper, we propose a new SILW method for
conservation laws, which decomposes the procedure of construction ghost points into
two steps: interpolation and extrapolation. At first, we approximate some special
point values through an interpolation polynomial based on interior points near the
boundary. Then, we construct a Hermite extrapolation polynomial based on the
special point values and spatial derivatives at the boundary obtained through the
ILW process. After that, we can get the approximation of the the ghost point values.
Through the linear stability analysis with the eigenvalue method, we can conclude that
our new SILW method is more efficient than the original SILW method while ensuring
the stability. Then we extend our new SILW method to systems and high-dimensional
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(a) The computational region.
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(b) Density contour.

Fig. 9. Example 8: Left:The computational region of the double mach reflection
problem. The dashed line indicates the computational domain used in [8,25]. Right:
The density contour. 30 contours from 1.731 to 20.92. Az = Ay = 1/320.
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density: 1.73 6.36 10.99 15.63 20.26

(a) Az = Ay =1/320.

28

density: 173 6.36 10.99 15.63 20.26

(b) Az = Ay = 1/640.

Fig. 10. Example 8: Density contour on the local area. 30 contours from 1.731 to

20.92.

cases, and carry out a series of numerical experiments. The numerical results show
that our new SILW method is stable and can achieve the expected accuracy. In the
future, we are going to extend this new SILW method to deal with the initial-boundary
value problems of diffusion equations and convection-diffusion equations.

Appendix A. More results about linear stability analysis.

The linear stability analysis results of the new SILW method with different in-
ternal schemes and different k; are shown in Figure 11-13. The parameter « is taken
as the critical value between stable and unstable. These figures verify the correctness
and the optimality of the o range given in Table 3.

Next, we want to verify the results of the above stability analysis numerically.
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The result of linear stability analysis with k; = 2. The horizontal axis

represents C, and the vertical axis represents the largest |z(u)|.

Consider the following problem:

(A1)

up + u, =0,

The exact solution is

We use the d-th order upwind scheme for spatial discretization and the third-order

-l1<z<1,t>0,
u(x,0) = 0.25 4+ 0.5 sin(7x),
u(—1,t) = 0.25 4+ 0.5 sin(nt),

-1 <x <1,
t > 0.

u(z,t) = 0.25 + 0.5sin(7(z — )).
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Fig. 12. The result of linear stability analysis with k3 = 3. The horizontal axis
represents C, and the vertical axis represents the largest |z(u)|.

TVD RK scheme for time discretization. Let t.,q = 30, N = 200. Take time step

At = ()\cfl)marA-T'

We test the problem with « in or out the range given in Table 3. The numerical
results are shown in Table 11. It can be observed that when « falls in the range, the
scheme will be stable for all tested C,. Otherwise, if a is out of the range, we can
always find one C such that the scheme is unstable.
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