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Abstract. In this paper, we design a new type of simplified high order inverse Lax-Wendroff6
(ILW) boundary treatment for solving hyperbolic conservation laws with finite difference method7
on a Cartesian mesh, in which both scalar equations and systems are considered. This new ILW8
method decomposes the construction of ghost points into two steps: interpolation and extrapolation.9
At first, we approximate some special point values through an interpolation polynomial based on10
interior points near the boundary. Then, we construct a Hermite extrapolation polynomial based11
on those special point values and spatial derivatives at the boundary obtained through the ILW12
process. This extrapolation polynomial will give us the approximation of the ghost point values.13
Through an appropriate selection of the interpolation points, high-order accuracy and stable results14
can be achieved. We use the eigenvalue analysis method to analyze the stability of our new boundary15
treatment. The analysis results show that the new method can improve the computational efficiency16
while maintaining accuracy and stability. Numerical tests for one- and two-dimensional problems17
indicate that our method has high order accuracy for smooth solutions and non-oscillatory property18
for shock solution near the boundary.19
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1. Introduction. In this paper, we propose a new high order accuracy boundary23

treatment based on finite difference methods with fixed Cartesian mesh for hyperbolic24

conservation law equations. For problems on complex domain under such mesh, there25

are often two main difficulties. First, the computational stencil of a high order finite26

difference scheme is often relatively wide, thus we need to evaluate the values at27

several ghost points near the boundary. Secondly, the physical boundary often does28

not happen to be on the grid points, so we need to design an algorithm to introduce29

the boundary conditions into our boundary scheme. If the boundary scheme is not30

well designed, it may require an extremely small time step to ensure stability, resulting31

in low computational efficiency.32

A common treatment is to use body-fitted grid. That is to establish appropriate33

body-fitted coordinates so that the grid points coincide with the physical boundary,34

and then to solve the partial differential equation in the new coordinate system. In35

this approach, the boundary conditions can be given directly on the grid points. The36

advantage of this method is that it can accurately meet the given boundary conditions.37
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Its disadvantage is that the generation of body-fitted grid could be difficult. The38

quality of the grid directly determines the computational efficiency and accuracy.39

Especially for problems with moving boundary, the management of the moving grid40

is generally complex, which will increase the computational cost greatly. In addition,41

the governing equation needs to be changed during computation. The transformed42

PDE is often more complex than the original equation, which will also increase the43

computational cost.44

For non body-fitted mesh methods, many scholars have also proposed some meth-45

ods, such as the embedded boundary method [1,9–11,21,27], the immersed boundary46

method [4, 20, 22–24,33], the ILW (inverse Lax-Wendroff) method [28–31] and so on.47

In this paper, the method we will introduce is a type of the ILW method.48

The prototype of the earliest ILW method comes from the simulation of pedes-49

trian flow [7, 34]. The pedestrian walking direction can be determined by solving50

an Eikonal equation. They deal with the boundary conditions by transforming the51

normal derivative into the tangential derivative. Later, this method was extended52

to hyperbolic conservation law equations by Tan and Shu [28]. They transformed53

the normal derivative into time derivative and tangential derivative to deal with the54

corresponding inflow boundary conditions (different from the original Lax-Wendroff55

scheme, which transformed the time derivative into spatial derivative, hence the mean-56

ing of “inverse”), and applied this method to inviscid compressible fluids.57

After the ILW method was proposed, many scholars have done a series of work,58

which have greatly developed this method. To deal with the heavy algebra of the59

original ILW method for nonlinear systems (especially in the high-dimensional case),60

the simplified ILW (SILW) method was proposed in [31], which greatly reduced the61

computational cost of the ILW method for solving systems. Lu et al. [19] proposed an62

ILW method to deal with sonic points by evaluating the flux values at ghost points,63

so it can deal with problems with changing wind direction. Ding et al. [5] redefined64

the concept of “conservation” for finite difference schemes, and gave an ILW method65

satisfying conservation in the new sense. In addition to hyperbolic conservation law66

equations, the ILW method was also applied to other types of equations, such as67

convection diffusion equation [13, 15, 18] and Boltzmann equation [6]. For the mov-68

ing boundary problem, Tan and Shu extended the ILW method to deal with the69

compressible inviscid fluid containing moving (translational) boundary in [29]. By70

redefining the material derivative on the boundary, in [3], Cheng et al. extended the71

method to deal with the arbitrary motion of the boundary, and used it to simulate72

the interaction between shock wave and rigid body. Liu et al. [17] extended this ILW73

method to convection-diffusion equations on moving domain, in which a unified algo-74

rithm was design for five cases: pure convection, convection-dominated, convection-75

diffusion, diffusion-dominated and pure diffusion cases. For the three-dimensional76

moving boundary problem, Liu et al. [16] extended the moving boundary treatment77

to the three-dimensional case, and simulated the interaction between inviscid / vis-78

cous fluid and three-dimensional rigid body. References [13–15,32] have analyzed the79

linear stability of ILW and SILW methods, which provide guidelines for us to design80

stable ILW boundary treatments.81

In this paper, we will design a new type of SILW method for conservation law82

equations. The new ILW method decomposes the construction of the ghost points83

into two steps: interpolation and extrapolation. At first, we approximate some special84

point values through an interpolation polynomial based on interior points near the85

boundary. Then, we will construct a Hermite extrapolation polynomial based on86

those special point values and spatial derivatives at the boundary obtained through87
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the ILW process. This extrapolation polynomial will give us the approximation of88

the the ghost point values. Through an appropriate selection of the interpolation89

points, high-order accuracy and stable results can be achieved. The eigenvalue analysis90

method is used to help us select these interpolation points to ensure the stability of91

the numerical scheme. The analysis results show that the new method can improve92

the computational efficiency while maintaining accuracy and stability. Finally, we93

apply our method to the simulation of inviscid compressible fluid.94

The organization of this paper is as follows. In Section 2, we will give the descrip-95

tion of the new ILW method for one-dimensional scalar conservation law equations,96

and use the eigenvalue analysis method to perform the linear stability analysis. In97

Section 3, we will extend this algorithm to system and high-dimensional cases. The98

high order accuracy and robustness of our algorithm will be shown through numerical99

tests in Section 4. Conclusion remarks will be given in Section 5.100

2. The one-dimensional scalar conservation law case. Consider the scalar101

hyperbolic conservation law in the following form:102

(2.1)


ut + f(u)x = 0, x ∈ (−1, 1), t > 0,

u(−1, t) = gl(t), t > 0,

u(x, 0) = u0(t), x ∈ [−1, 1].

103

We assume that f ′(u(−1, t)) > 0, such that the left boundary x = −1 is an in-104

flow boundary, where a boundary condition needs to be given. We also assume that105

f ′(u(1, t)) > 0. Hence the right boundary x = 1 is an outflow boundary, where no106

boundary condition is required.107

Suppose the domain is divided by the uniform mesh:108

(2.2) − 1 + Ca∆x = x0 < · · · < xN = 1− Cb∆x109

with uniform mesh size ∆x = 2/(Ca+Cb+N) and Ca, Cb ∈ [0, 1). Note that we have110

deliberately allowed the physical boundary x = ±1 not coinciding with grid points.111

We use the framework of method of lines (MOL) to construct a semi-discrete112

scheme on the interior point xj , j = 0, 1, 2, · · · , N :113

(2.3)
d

dt
uj = Lh(u)j ,114

where,

Lh = − 1

∆x
(f̂j+1/2 − f̂j−1/2) ≈ −f(u)x|xj

is the spatial discrete operator. Here, uj(t) is the numerical approximation to the115

exact solution u(xj , t), and f̂j+1/2 is the numerical flux. In this paper, we will use an116

upwind-biased finite difference conservative scheme to construct f̂j+1/2, such as the117

WENO scheme [8].118

After the spatial discretization, the semi-discrete scheme (2.3) is a system of119

ordinary differential equations. For time discretization, we use the total variation120

diminishing (TVD) Runge-Kutta (RK) scheme [26]. From time level tn to tn+1, the121

third order TVD RK scheme is given as122

u
(1)
j = unj + ∆tLh(un)j ,

u
(2)
j =

3

4
unj +

1

4
u

(1)
j +

1

4
∆tLh(u(1))j ,

un+1
j =

1

3
unj +

2

3
u

(2)
j +

2

3
∆tLh(u(2))j .

(2.4)123
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In particular, [2] pointed out that the boundary conditions in the intermediate stages124

of the above RK scheme should be modified as follows to avoid order reduction:125

un ∼ gl(tn),

u(1) ∼ gl(tn) + ∆tg′l(tn),

u(2) ∼ gl(tn) +
1

2
∆tg′l(tn) +

1

4
∆t2g′′l (tn).

(2.5)126

Note that for a high order finite difference scheme, a wide computational stencil
is generally required. Hence, it is inevitable that some points in the computational
stencil are not in our computational domain,

x−p = x0 − p∆x, xN+p = xN + p∆x, p = 1, 2, · · · .

Therefore, we can regard the boundary treatment problem as construction of the127

ghost point values. In the following, we will first review the original (S)ILW method128

proposed by Tan et al. [28, 31]. And then, a new SILW method will be proposed to129

improve the computational efficiency while maintaining accuracy and stability. Linear130

stability analysis will be given to demonstrate the advantage of the new proposed131

method.132

2.1. Review of the original SILW method. The main idea of the original133

inverse Lax-Wendroff method for hyperbolic conservation law equations [28] is to con-134

vert the spatial derivatives into the time derivatives through the PDE and boundary135

conditions at the inflow boundary. At the outflow boundary, the spatial derivatives136

of each order are approximated by extrapolation. After that, the values of the ghost137

points outside the computational domain are obtained by Taylor expansion at the138

boundary. More specifically, the ghost points near outflow boundaries, such as the139

right boundary x = 1 in our example problem (2.1), can be obtained by extrapolation140

directly. We can choose the traditional Lagrange extrapolation with appropriate ac-141

curacy when the solution is smooth near the boundary, or least square extrapolation /142

WENO type extrapolation [19,28,31] when the solution contains discontinuities near143

the boundary.144

For the inflow boundary, such as the left boundary x = −1 in our example problem145

(2.1), to ensure our boundary treatment has d-th order accuracy, the value of the ghost146

points near x = −1 will be obtained by Taylor expansion:147

(2.6) uj =

d−1∑
k=0

(xj + 1)k

k!
u∗(k), j = −1,−2, · · ·148

where, u∗(k) is the approximation of ∂
(k)
x u|x=−1 with at least (d−k)-th order accuracy.149

Using PDE and boundary condition repeatedly, we have that150

∂(0)
x u|x=−1 = gl(t),

∂(1)
x u|x=−1 =

g′l(t)

−f(gl(t))
,

∂(2)
x u|x=−1 =

f ′(gl(t))g
′′
l (t)− 2f ′′(gl(t))g

′
l(t)

2

f ′(gl(t))3
,

...

(2.7)151
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Table 1. The table of (kd)min for original SILW method.

d 3 5 7 9 11 13
(kd)min 2 3 4 6 8 10

Thus, we can set
u∗(k) = ∂(k)

x u|x=−1.

To avoid the very heavy algebra of above original ILW method when calculating152

the high order space derivatives, the simplified ILW (SILW) method was proposed153

in [31]. Specifically, u∗(0), u∗(1) are constructed by the original ILW procedure, i.e.,154

converting the spatial derivatives into the time derivatives through the PDE and155

boundary condition. The higher order spatial derivatives u∗(k), 2 ≤ k ≤ d − 1,156

are extrapolated from the interior points directly. This method can greatly improve157

the computational efficiency, especially for high-dimensional systems. However, [14]158

analyzed the linear stability of the SILW method through the eigenvalue method,159

showing that the SILW method [31] is stable for any Ca ∈ [0, 1) only when d = 3, but160

unstable for d > 3. In order to guarantee the stability, more ILW procedure need to161

be used to construct higher order spatial derivatives at the boundary.162

Suppose that for a d-th order scheme, u∗(k) is obtained through ILW procedure if163

k ≤ kd−1, or by extrapolation if kd ≤ k ≤ d−1. For different high order schemes, [14]164

used the eigenvalue analysis to find out the minimum kd, denoted by (kd)min, to make165

sure the scheme is stable for all Ca ∈ [0, 1). The values of (kd)min for a variety of166

d are shown in Table 1. It can be seen that the (kd)min is still large for high order167

scheme. This results in difficulty in writing codes and affects computational efficiency168

for high dimensional systems.169

In summary, the above SILW method can be divided into the following two steps,170

i.e., “interpolation” and “extrapolation”:171

Step 1. Construct an interpolation polynomial p(x) of degree d−1 with interior points
{x0, · · · , xd−1}, and obtain the approximation of spatial derivatives of each
order on the boundary

u∗(k) ≈ ∂kxp|x=−1, k = kd, · · · , d− 1.

Step 2. Construct the extrapolation polynomial q(x) of degree d− 1 satisfying

q(k)(−1) = u∗(k), k = 0, · · · , d− 1,

where, u∗(k) for k < kd are obtained by the ILW procedure (2.7), and the else
are obtained by Step 1. Actually, in this case, q(x) is the Taylor expansion
polynomial. Then, we can get the ghost points values

uj = q(xj), j = −1,−2, . . . .

The above (S)ILW method is based on Taylor expansion. When assembling the172

extrapolation polynomial q(x) in the second step, all information used is on the bound-173

ary. In fact, the information we can use to construct the extrapolation polynomial174

q(x) mainly consists of two parts. One is the spatial derivatives on the boundary ob-175

tained by the ILW procedure, and the other part is the polynomial p(x) constructed176

by interior points. In order to make the algorithm more efficient, we hope to use the177

first part information as less as possible under the premise of ensuring the stability of178

the scheme.179
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2.2. A new SILW method. In the following, we will describe our new SILW180

method for the scalar conservation law equation in (2.1), hoping (kd)min would be181

smaller for the same d. The key difference between the new method and the original182

one is that the extrapolation polynomial q(x) will employ the point values on some183

special points in computational domain,184

u(−1 + kα∆x, t) ≈ p(−1 + kα∆x), k = 1, 2 . . .185186

instead of using the high order derivatives of the interpolation polynomial p(x) at the187

boundary. Here, α ≥ 0 is a parameter to be determined such that the (kd)min would188

be smaller.189

Specifically, we summarize the procedure of our new SILW method with d-th190

order accuracy in the following:191

Step 1. Obtain the interpolation polynomial p(x) of degree d− 1 based on the points
{x0, · · · , xd−1}. Let

uk∗ = p(−1 + kα∆x), 1 ≤ k ≤ d− kd.

Step 2. Construct the extrapolation polynomial q(x) of degree d − 1 to satisfy the192

following conditions:193

q(k)(−1) = ∂(k)
x u|x=−1, 0 ≤ k ≤ kd − 1,

q(−1 + kα∆x) = uk∗, 1 ≤ k ≤ d− kd,
194

195

where, ∂
(k)
x u|x=−1 is obtained by the ILW procedure. Let the ghost point

values be the values of the extrapolation polynomial q(x) at the corresponding
points:

uj = q(xj) j = −1,−2, . . . .

In the next subsection, we will show that through adjusting the value of α, our new196

SILW method is better than the original SILW method in computational efficiency197

and stability.198

2.3. Linear stability analysis. Here, we will give the stability analysis of the199

fully discrete schemes using the eigenvalue spectrum visualization. We consider the200

case of d = 2k − 1 (k = 2, 3, 4, 5, 6, 7) and assume that f ′(u) > 0. The conservative201

linear upwind scheme is used for spatial discretization. That is, Lh in the scheme202

(2.3) is in the following form:203

d = 3:

Lh(u)j = − 1

∆x

(
1

6
fj−2 − fj−1 +

1

2
fj +

1

3
fj+1

)
,

d = 5:

Lh(u)j = − 1

∆x

(
− 1

30
fj−3 +

1

4
fj−2 − fj−1 +

1

3
fj +

1

2
fj+1 −

1

20
fj+2

)
,

d = 7:

Lh(u)j = − 1

∆x

(
1

140
fj−4 −

7

105
fj−3 +

3

10
fj−2 − fj−1 +

1

4
fj +

3

5
fj+1

− 1

10
fj+2 +

1

105
fj+3

)
,

204

205
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d = 9:

Lh(u)j = − 1

∆x

(
− 1

630
fj−5 +

1

56
fj−4 −

2

21
fj−3 +

1

3
fj−2 − fj−1 +

1

5
fj

+
2

3
fj+1 −

1

7
fj+2 +

1

42
fj+3 −

1

504
fj+4

)
,

206

207

d = 11:

Lh(u)j = − 1

∆x

(
1

2772
fj−6 −

1

210
fj−5 +

5

168
fj−4 −

5

42
fj−3 +

5

14
fj−2

−fj−1 +
1

6
fj +

5

7
fj+1 −

5

28
fj+2 +

5

126
fj+3 −

1

168
fj+4

+
1

2310
fj+5 ),

208

209

d = 13:

Lh(u)j = − 1

∆x

(
− 1

12012
fj−7 +

1

792
fj−6 −

1

110
fj−5 +

1

24
fj−4 −

5

36
fj−3

+
3

8
fj−2 − fj−1 +

1

7
fj +

3

4
fj+1 −

5

24
fj+2 +

1

18
fj+3

− 1

188
fj+4 +

1

660
fj+5 −

1

10296
fj+6

)
.

210

211

In particular, for the linear case f(u) = u, the semi-discrete scheme (2.3) can be212

written in the matrix-vector form,213

dU

dt
=

1

∆x
QU ,214

where, U = (u0, u2, ..., uN )T and Q is the coefficient matrix of the spatial discretiza-215

tion.216

References [14,32] pointed out that we only need to care about the fixed eigenval-217

ues of the matrix Q with the increase of grid points for stability analysis. If we use the218

third-order TVD RK time discretization (2.4), the stability region can be expressed219

as220

(2.8) |z(µ)| ≤ 1, z(µ) = 1 + µ+
µ2

2
+
µ2

6
,221

where, µ = s∆t
∆x , and s is the fixed eigenvalue of Q we are concerned about. Notice222

that z may not exist or there may be more than one. If there is more than one z,223

we consider the largest |z(µ)|. Let the CFL number be λcfl = ∆t
∆x . We hope that224

the CFL number is independent of Ca. Hence, we discuss stability on the premise of225

maximum CFL number (λcfl)max, where, (λcfl)max is the maximum CFL number for226

the corresponding Cauchy problem, and their specific values are shown in the Table227

2.228

We select several groups of different α and kd for linear stability analysis for229

different schemes, and the range of α is given as [0,10]. We compute the largest230

|z(µ)| for all the eigenvalues s. By using the software Matlab, we show the max |z(µ)|231

for Ca ∈ [0, 1) with different α. For instance, we get the results of the third order232

7
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Table 2. The maximum CFL number for Cauchy problem.

d 3 5 7 9 11 13
(λcfl)max 1.62 1.43 1.24 1.12 1.04 0.99

scheme with the new SILW procedure with kd = 2 as in Figure 1. When α = 0.60,233

max |z(µ)| > 1 when Ca approaches 0. However, max |z(µ)| ≤ 1 for all Ca ∈ [0, 1)234

if α = 0.61. This indicates that we should take α ≥ 0.61 to guarantee the scheme235

is stable with kd = 2. More cases are placed in Appendix A. A numerical test is236

also given to verify the stability analysis results. Finally, the minimum kd and the237

corresponding appropriate α range are shown in Table 3.238
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(a) α = 0.60
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0.3

0.4

0.5
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0.7

0.8

0.9

1  
m

a
x
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b
s
(z

))

(b) α = 0.61

Fig. 1. The third order scheme with the new SILW procedure with kd = 2. The
horizontal axis represents Ca and the vertical axis represents the largest |z(µ)|.

As can be seen from the Table 3, compared with the original SILW method,239

we can construct the stable boundary treatments with smaller kd by adjusting α.240

Here, we plot Ca versus max |z(µ)| for both boundary treatments with the same order241

of accuracy and the same CFL number to compare the original and the new SILW242

methods. The fifth order schemes with kd = 2 are taken as an example, see Figure243

2. It is observed that with the original SILW method, the fifth order upwind scheme244

is unstable when the first grid point is either close to or far from the left boundary,245

while the new SILW method is stable for all the Ca ∈ [0, 1].246

Table 3. Linear stability analysis results of the new SILW method

d 3 5 7 9 11 13
(kd)min 2 2 2 3 3 4

α [0.61,10] [0.92,5.11] [1.34,1.99] [1.29,2.43] [1.42,1.70] [1.49,2.08]

3. The new SILW method for one- and two-dimensional systems.247

3.1. The new SILW method for one-dimensional Euler equation. We248

consider the following one-dimensional compressible Euler equation:249

(3.1) Ut + F (U)x = 0, x ∈ (−1, 1), t > 0,250

8

This manuscript is for review purposes only.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ca

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

m
a
x
(a

b
s
(z

))

(a) The new SILW method with α = 3.015 (b) The original SILW method

Fig. 2. The stability analysis results of the fifth order scheme with kd = 2, the
horizontal axis represents Ca and the vertical axis represents the largest |z(µ)|.

where251

U =

 U1

U2

U3

 =

 ρ
ρu
E

 , F (U) =

 ρu
ρu2 + p
u(E + p)

 .252

Here, ρ, u, p and E represent the density, velocity, pressure and total energy per253

volume, respectively. In order to close the system, we give the following equation of254

state of ideal gas:255

E =
p

γ − 1
+

1

2
ρu2.256

Here, γ is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.257

We consider the boundary treatment of left boundary x = −1 as an example.258

The original Euler equation (3.1) can be rewritten into the following nonconservative259

form:260

Ut + A(U)Ux = 0,261

where, A(U) = F ′(U) is the Jacobi matrix,262

A(U) =


0 1 0

1

2
(γ − 3)u2 (3− γ)u γ − 1

1

2
(γ − 1)u3 − uH H − (γ − 1)u2 γu

 =

a1(U)
a2(U)
a3(U)

 ,(3.2)263

264

with H = (E + p)/ρ. And the Jacobi matrix is diagonalizable:

A(U) = F ′(U) = RΛL.

Here, Λ = diag(u − c, u, u + c), c =
√
γp/ρ is the speed of sound, R and L are265

matrices as follows:266

R(U) =

 1 1 1
u− c u u+ c

H − uc 1

2
u2 H + uc

 ,267

268
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269

L(U) =
1

c2


1

2
uc+

1

4
(γ − 1)u2 −1

2
(γ − 1)u− 1

2
c

1

2
(γ − 1)

c2 − 1

2
(γ − 1)u2 (γ − 1)u 1− γ

−1

2
uc+

1

4
(γ − 1)u2 −1

2
(γ − 1)u+

1

2
c

1

2
(γ − 1)

 =

l1(U)
l2(U)
l3(U)

 .270

271

The number of boundary conditions we need to give is determined by the sign272

of the eigenvalues of Jacobi matrix A(U) at the boundary. Specifically, on the left273

boundary x = −1, it can be divided into the following cases:274

Case 1. u− c > 0: three boundary conditions need to be given;275

Case 2. u− c ≤ 0, u > 0: two boundary conditions need to be given;276

Case 3. u ≤ 0, u+ c > 0: only one boundary condition need to be given;277

Case 4. u+ c ≤ 0: no boundary conditions are required.278

In particular, for case 3, when the given boundary condition is U2(−1, t) = 0, we get279

the free slip solid wall boundary condition.280

Here, we take the case 2 as an example to describe our algorithm. Suppose two
boundary conditions are given at the left boundary,

U1(−1, t) = g1(t), and U2(−1, t) = g2(t).

Again, we perform uniform mesh generation on the computational domain with mesh281

size ∆x,282

−1 + Ca∆x = x0 < · · · < xN = 1− Cb∆x.283

Employ the finite difference methods to get the semi-discrete scheme:284

(3.3)
d

dt
Uj = − 1

∆x
(F̂j+1/2 − F̂j−1/2), j = 0, · · · , N.285

Here, Uj(t) is the approximation of U(xj , t), and numerical flux F̂j+1/2 can be ob-286

tained by the WENO reconstruction. We take the fifth order scheme as an example287

to describe our boundary algorithm, and other high order schemes can be obtained288

similarly. For the fifth order WENO scheme, we need the values of at three ghost289

points near the boundary x = −1, which are U−1,U−2 and U−3.290

Similar to the case of scalar equation, in order to obtain the ghost point values,291

we will construct the extrapolation polynomials q(x) near the boundary. It can be292

seen from Table 3 that, for the fifth order scheme, we have to use the point values293

and first order spatial derivatives on the boundary through the ILW procedure. To294

ensure the order of accuracy, the value U∗(0) and U∗(1) should be 5th and 4th order295

approximations of U |x=−1 and Ux|x=−1, respectively.296

Specifically, we use the left characteristic matrix L = L(U0) to do the character-
istic projection V = LU . Here,

V = (V1, V2, V3)T

is the characteristic variable. In case 2, V1 is the outflow variable, V2 and V3 are the297

inflow variables. Combined with the boundary conditions, we can obtain the following298

linear system:299

(3.4)

U
∗(0)
1 =g1(t),

U
∗(0)
2 =g2(t),

l1 ·U∗(0) =V
∗(0)
1 ,

300
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where, V
∗(0)
1 is the 5th order approximation of V1|x=−1 and can be extrapolated from301

the interior grid points. By solving the above system, we can get the value of U∗(0).302

For U∗(1), applying the ILW procedure, we have303

(3.5a)
a1(U∗(0)) ·U∗(1) = −g′1(t),

a2(U∗(0)) ·U∗(1) = −g′2(t),
304

Combine with outflow conditions,305

(3.5b) l1 ·U∗(1) = V
∗(1)
1 ,306

where, V
∗(1)
1 is the 4th order approximation of (V1)x|x=−1 and can be extrapolated307

from the interior grid points. By combining and solving the above equations, we can308

get the value of U∗(1).309

At this time, we can construct the point values of the ghost points through the310

new SILW method. The specific construction method is as follows:311

Step 1. Construct the vector of interpolation polynomial p(x) of degree four with the
interior grid points values {U0, · · · ,U4}. Let

Uk∗ = p(−1 + kα∆x), 1 ≤ k ≤ 3,

Here, α can be selected as any number in [0.92, 5.11] according to the stability312

analysis results in Table 3.313

Step 2. Construct the extrapolation polynomial q(x) of degree four to satisfy:314

q(−1) = U∗(0)

q′(−1) = U∗(1)

q(−1 + kα∆x) = Uk∗, 1 ≤ k ≤ 3

315

316

Step 3. Let the ghost points values be the values of the extrapolation polynomial q(x)
at the corresponding points:

Uj = q(xj) j = −1,−2,−3.

In particular, if the solution of the equation has discontinuities near the boundary,317

we can apply the WENO extrapolation technique when constructing the extrapolation318

polynomial q(x) in step 3. More details about WENO extrapolation can be found319

in [19,28,31]. In addition, in many cases, boundary conditions are not directly given320

to the conserved variables. For example, the temperature or pressure is given on the321

boundary. For these cases, when dealing with the boundary conditions, we need to322

convert the conservation equation into equations in terms of primitive variables. This323

process is used in [3,16,17,30], which is very similar to the above process of conserved324

variables. We will not expand it here.325

3.2. The new SILW method for two-dimensional Euler equation. Con-326

sider the two-dimensional Euler equation as follows:327

(3.6)
∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= 0, (x, y)T ∈ Ω,328

where,329

(3.7) U =


ρ
ρu
ρv
E

 , F (U) =


ρu

ρu2 + p
ρuv

u(E + p)

 , G(U) =


ρv
ρuv

ρv2 + p
v(E + p)

 .330
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Here, ρ, u = (u, v)T , p and E represent the density, velocity, pressure and total energy331

per volume, respectively. In order to close the system, we give the following equation332

of state of ideal gas:333

E =
p

γ − 1
+

1

2
ρ(u2 + v2).334

Here, γ is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.335

We use a uniform non body-fitted Cartesian mesh to divide the domain

xi+1 = xi + ∆x, yj+1 = yj + ∆y,

with mesh size ∆x and ∆y in x- and y-direction, respectively. Discretize the equation336

into the following conservative semi-discrete scheme:337

dUi,j

dt
+

F̂i+ 1
2 ,j
− F̂i− 1

2 ,j

∆x
+

Ĝi,j+ 1
2
− Ĝi,j− 1

2

∆y
= 0,338

where, Ui,j(t) is approximation to the exact solution U(xi, yj , t), F̂i+ 1
2 ,j

and Ĝi,j+ 1
2

339

are numerical fluxes, which can be obtained by the 5th order WENO reconstruction.340

Fig. 3. The local coordinate rotation diagram.

Suppose Pij = (xi, yj) is a ghost point near the boundary. At first, we find its341

foot point Pa ∈ ∂Ω(tn), so that the normal n at Pa goes through Pij , as shown in342

Figure 3. Assume the normal vector from Pa to Pi,j is n = (cos θ, sin θ)T . In order to343

simplify the algorithm, we perform a local coordinate rotation transformation at Pa,344 (
x̂
ŷ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
.345

In the new coordinate system, the equation (3.6) can be rewritten as346

(3.8)
∂Û

∂t
+
∂F (Û)

∂x̂
+
∂G(Û)

∂ŷ
= 0,347

where,348

Û =


ρ
ρû
ρv̂
E

 =


Û1

Û2

Û3

Û4

 ,

(
û
v̂

)
=

(
cos θ sin θ
− sin θ cos θ

)(
u
v

)
.349
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Let350

A(Û) =


a1(Û)

a2(Û)

a3(Û)

a4(Û)

 = F ′(Û), Res = −∂G(Û)

∂ŷ
=


Res1

Res2

Res3

Res4

 .351

Then, the equations can be written in the following non conservative form352

(3.9) Ût + A(Û)Ûx = Res.353

The original equation is hyperbolic, so A(Û) is diagonalizable:

A(Û) = R(Û)Λ(Û)L(Û),

Here,
Λ(Û) = diag(û− c, û, û, û+ c)

354

L(Û) =


l1(Û)

l2(Û)

l3(Û)

l4(Û)

 .355

The number of boundary conditions that should be given at the boundary point356

Pa is related to the eigenvalues û − c, û, û, û + c at this point. Specifically, it can be357

divided into the following situations:358

Case 1: û− c > 0 , no boundary conditions are required;359

Case 2: û− c ≤ 0, û > 0 , only one boundary condition needs to be given;360

Case 3: û ≤ 0, û+ c > 0 , three boundary conditions need to be given;361

Case 4: û+ c ≤ 0 , four boundary conditions need to be given.362

We take case 2 as an example to describe our algorithm. Suppose the boundary
condition given at the boundary point Pa is

Û2 = g(t).

As before, we can transform the construction problem of ghost point values into363

the construction problem of extrapolation polynomial q(s). It also can be seen from364

Table 3 that, for the fifth order scheme, we need to use the 0th and 1st order normal365

direction derivatives on the boundary obtained from the ILW procedure when con-366

structing q(s). That is, we need to get the value of Û∗(0) and Û∗(1), which are the367

5th and 4th order approximations of Û |Pa
and Ûx̂|Pa

respectively, through the ILW368

procedure.369

Specifically, we use the left characteristic matrix L = L(Ûext) to do the char-370

acteristic projection V = LÛ . Here, Ûext is the extrapolation value at Pa, V =371

(V1, V2, V3, V4)T is the characteristic variable. For case 2, V2, V3, V4 are the outflow372

variables, V1 is the inflow variable.373

Combined with the boundary conditions, we can obtain the following linear sys-374

tem:375

(3.10)

Û
∗(0)
2 = g(t),

l2 · Û∗(0) = V
∗(0)
2 ,

l3 · Û∗(0) = V
∗(0)
3 ,

l4 · Û∗(0) = V
∗(0)
4 ,

376
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where, V
∗(0)
2 ,V

∗(0)
3 and V

∗(0)
4 can be extrapolated from the interior grid points. By377

solving the above system, we can get the value of Û∗(0).378

For Û∗(1), apply the ILW procedure and we have379

(3.11a) a2(Û∗(0)) · Û∗(1) = −g′(t) +Res2.380

Combine with the outflow conditions,381

(3.11b)

l2 · Û∗(1) = V
∗(2)
1 ,

l3 · Û∗(1) = V
∗(3)
1 ,

l4 · Û∗(1) = V
∗(4)
1 ,

382

where, V
∗(1)
2 ,V

∗(1)
3 and V

∗(1)
4 can be extrapolated from the interior grid points. By383

solving the above equations, we can get the value of Û∗(1).384

Fig. 4. Two dimensional new SILW method diagram

Next, we use the new SILW method to construct the value of ghost point Pi,j . It385

is divided into the following steps:386

Step 1. Obtain the interpolation polynomial p(x, y) of degree 4 with the values inter-387

nal grid points near Pa.388

Step 2. Let
Uk∗ = p(Pk), 1 ≤ k ≤ 3,

where,
Pk = Pa − kαhn, 1 ≤ k ≤ 3

As show in Figure 4, {Pk}|3k=1 are some non grid points in the interior area389

on the normal line. Here, h =
√

∆x2 + ∆y2, α can be chosen as any number390

in [0.92max(∆x,∆y)
h , 5.11min(∆x,∆y)

h ].391

Step 3. Let q(s) be the unique polynomial of degree 4 satisfy392

q(0) = U∗(0),

q′(0) = U∗(1),

q(−kαh) = Uk∗, 1 ≤ k ≤ 3.

393

394
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Step 4. Take the function value at Pij

Uij = q(|Pij − Pa|).

It should be noted that when g(t) = 0, we actually get the non penetrating free
slip boundary condition:

u · n = 0.

As in the one-dimensional case, if the solution is discontinuous near the boundary, we395

can use a one-dimensional WENO extrapolation technique in step 3.396

Notice that, for the problems with changing wind direction, the above inverse Lax-397

Wendroff procedure may involve solving an ill-conditioned linear algebraic system,398

which may ruin the accuracy or even lead to blowing up. There are two ways to deal399

with this problem. One is mentioned in [28], which adds additional extrapolation400

equations and solves a least squares problem whenever one of the eigenvalues very401

closed to 0. The other method is proposed in [19], which evaluates the solution values402

and the flux values at ghost points separately. In the test examples of this paper,403

we use the first method. The performance of the second method applied to our new404

SILW boundary treatment is unclear.405

4. Numerical tests. We take some numerical tests to show the efficiency and
stability of our new proposed SILW method. We use the third and fifth order FD-
WENO scheme for spatial discretization. Correspondingly, the new SILW boundary
treatment with third order and fifth order accuracy will be used, respectively. For
all the one-dimensional numerical tests we take the parameter α = 1.0, for all the
two-dimensional numerical tests we take α = 1.25. The third order TVD RK scheme
(2.4) is employed for time discretization, with the time step

∆t = CFL
∆xk/3

c

for one-dimensional problems, and

∆t =
CFL

cx/∆xk/3 + cy/∆yk/3
.

for two-dimensional problems. Here, the index k/3 help us to guarantee k-th order406

in time. c = cx = maxU |λ(F ′(U))|, cy = maxU |λ(g′(u))|, and λ is the eigenvalue of407

the Jacobian matrix. Throughout our numerical tests, the CFL number is taken as408

0.6.409

Example 1. At first, we consider the accuracy test of the new SILW on the one-410

dimensional Euler equation on the computational domain as [−π, π]. We choose411

suitable boundary conditions such that the exact solution is:412

(4.1)


ρ(x, t) = 1− 0.2 sin(2t− x),

u(x, t) = 2,

p(x, t) = 2.

413

In order to verify the applicability of our algorithm to the “cut cell” problem, we414

test with difference choices of Ca and Cb. The computational errors about density ρ415

at final time tend = 1 are shown in Table 4 - 5. We can see that for all cases, the416

schemes can achieve the designed order accuracy with mesh refinements.417
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Table 4. Example 1: errors and orders of accuracy of ρ with third order scheme.

Ca = 0.0001, Cb = 0.7 Ca = 0.9999, Cb = 0.7
N L1 error order L∞ error order L1 error order L∞ error order
20 1.67E-004 – 5.73E-004 – 1.45E-004 – 4.80E-004 –
40 1.58E-005 3.40 4.78E-005 3.58 1.00E-005 3.85 4.39E-005 3.45
80 2.07E-006 2.92 5.30E-006 3.17 8.52E-007 3.56 4.57E-006 3.26
160 2.69E-007 2.94 7.30E-007 2.86 8.38E-008 3.34 5.24E-007 3.12
320 3.43E-008 2.97 9.50E-008 2.94 9.15E-009 3.19 6.27E-008 3.06
640 4.32E-009 2.98 1.21E-008 2.96 1.06E-009 3.10 7.66E-009 3.03

Table 5. Example 1: errors and orders of accuracy of ρ with fifth order scheme.

Ca = 0.0001, Cb = 0.7 Ca = 0.9999, Cb = 0.7
N L1 error order L∞ error order L1 error order L∞ error order
20 9.33E-005 – 1.76E-004 – 7.41E-005 – 1.36E-004 –
40 2.99E-006 4.96 6.09E-006 4.84 2.62E-006 4.81 5.47E-006 4.63
80 9.28E-008 5.01 1.99E-007 4.93 8.65E-008 4.92 1.81E-007 4.91
160 2.88E-009 5.01 6.06E-009 5.04 2.77E-009 4.96 5.78E-009 4.97
320 8.89E-011 5.01 1.77E-010 5.09 8.72E-011 4.99 1.73E-010 5.05

Example 2. Next, we consider the example given in [12] to test the accuracy of418

our method. The governing equations is still the one-dimensional compressible Euler419

equation, with following initial condition:420

(4.2)


ρ(x, 0) =

1 + 0.2 sin(x)

2
√

3
,

u(x, 0) =
√
γρ(x, 0),

p(x, 0) = ρ(x, 0)γ .

421

The computational domain is taken as [0, 2π]. We choose the parameter γ = 3.422

Consequently, the exact solution is423

ρ(x, t) =
µ(x, t)

2
√

3
, u(x, t) =

√
γρ(x, t), p(x, t) = ρ(x, t)γ ,424

where µ(x, t) is the solution of the following Burgers’ equation:425

(4.3)

µt + (
µ2

2
)x = 0, 0 < x < 2π, t > 0,

µ(x, 0) = 1 + 0.2 sin(x), 0 ≤ x ≤ 2π.

426

We take boundary conditions from the exact solution whenever needed.427

We consider the extrema situation and set Ca = 0.0001, Cb = 0.9999. The com-428

putational errors about density ρ and orders of accuracy at time tend = 3.0 are shown429

in Table 6, indicating that our methods can achieve the designed third order or fifth430

order accuracy.431

Example 3. Now we consider the interaction of two blast waves [28]. In this problem,432

multiple reflections occur between shock and rarefaction off the walls. The initial433
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Table 6. Example 2: errors and orders of accuracy of ρ.

third order scheme fifth order scheme
N L1 error order L∞ error order L1 error order L∞ error order
40 1.30E-003 – 2.49E-003 – 4.01E-004 – 1.04E-003 –
80 2.04E-004 2.67 6.20E-004 2.00 2.24E-005 4.15 8.03E-005 3.69
160 2.84E-005 2.84 8.50E-005 2.86 7.16E-007 4.97 2.98E-006 4.75
320 3.60E-006 2.97 9.93E-006 3.09 2.38E-008 4.90 1.00E-007 4.89
640 4.52E-007 2.99 1.18E-006 3.06 8.04E-010 4.89 2.90E-009 5.10

(a) Third order scheme. (b) Fifth order scheme.

Fig. 5. Example 3: Density profiles. h = 1/640. The solid line represents the
reference solution and the circle represents the numerical solution.

condition is434

(4.4) U(x, 0) =


UL, x < 0.1,

UM , 0.1 < x < 0.9,

UR, x > 0.9.

435

Here, ρL = ρM = ρR = 1, uL = uM = uR = 0, pL = 103, pM = 10−2, and pR = 102.436

We take tend = 0.038 and Ca = 0.0001, Cb = 0.7. At the same time, we use a very437

dense grid with ∆x = 1/2560 and the original ILW method to obtain the reference438

solution. The numerical results are shown in Figure 5. We can see that the new ILW439

method can distinguish the structure of the solution well, and higher order scheme440

has a better approximation to the complex structure.441

Example 4. We consider two-dimensional linear scalar equations on a disk:442

(4.5) ut + ux + uy = 0, (x, y)T ∈ Ω = {(x, y) : x2 + y2 < 0.5}.443

The initial condition is given as

u(x, y, 0) = 0.25 + 0.5 sin[π(x+ y)],

and the boundary is given whenever needed such that the exact solution is

u(x, y, t) = 0.25 + 0.5 sin[π(x+ y − 2t)].
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The domain is discretized by embedding the domain in a regular Cartesian mesh with444

xi = (i− 1
2 )∆x, yj = (j− 1

2 )∆y, and the non body-fitted Cartesian mesh h = ∆x = ∆y.445

We show Figure 6 as an example. The final time is taken as tend = 1.0. The numerical446

results are given in Table 7, indicating that our schemes are stable and can achieve447

the design order of accuracy.448

Fig. 6. Example 4: Non body-fitted Cartesian mesh. The red points are the interior
points.

Table 7. Example 4: errors and orders of accuracy .

third order scheme fifth order scheme
h L1 error order L∞ error order L1 error order L∞ error order

1/10 1.28E-004 – 4.83E-004 – 4.16E-004 – 1.42E-003 –
1/20 1.33E-005 3.26 4.54E-005 3.41 1.51E-005 4.77 1.38E-004 3.36
1/40 1.43E-006 3.21 5.84E-006 2.95 3.47E-007 5.44 5.54E-006 4.64
1/80 1.46E-007 3.28 6.68E-007 3.12 1.17E-008 4.89 2.71E-007 4.35
1/160 1.19E-008 3.61 8.82E-008 2.92 4.47E-010 4.70 9.72E-009 4.80

Example 5. We test the vortex evolution problem for the 2D Euler equation. The449

mean flow is ρ = u = v = p = 1 with following isentropic vortex perturbation centered450

at (x0, y0) = (0, 0) (perturbation in (u, v) and temperature T = p/ρ , no perturbation451

in the entropy S = p/ργ):452

(4.6)

(δu, δv) =
ε

2π
e0.5(1−r2)(−ȳ, x̄),

δT =− (γ − 1)ε2

8γπ2
e(1−r2),

δS =0.

453

where (x̄, ȳ) = (x − x0, y − y0), r2 = x̄2 + ȳ2, and the vortex strength ε = 5. It454

is clear that the exact solution is just the passive convection of the vortex with the455

mean velocity. The computational domain is taken as (−0.5, 1) × (−0.5, 1) and the456

final time is taken as tend = 1.0. The boundary conditions are taken from the exact457
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solution whenever needed. We divide the domain with the uniform Cartesian mesh458

xi = (i− 1
2 )h and yj = (j − 1

2 )h, with mesh size h = 1.5/N . The numerical results in459

Table 8 show that the schemes are stable and can reach the designed high order.460

Table 8. Example 5: errors and orders of accuracy of ρ .

third order scheme fifth order scheme
h L1 error order L∞ error order L1 error order L∞ error order

3/40 1.73E-004 – 3.05E-004 – 3.39E-005 – 7.12E-005 –
3/80 2.17E-005 2.99 4.10E-005 2.89 1.09E-006 4.95 2.33E-006 4.93
3/160 2.51E-006 3.10 4.93E-006 3.05 3.46E-008 4.98 1.08E-007 4.43
3/320 2.99E-007 3.07 6.32E-007 2.96 1.12E-009 4.94 4.71E-009 4.51
3/640 3.63E-008 3.04 8.34E-008 2.92 3.77E-011 4.89 1.90E-010 4.63

Example 6. Next, we consider 2D version of Example 2 [12]. The governing equation461

is the two-dimensional compressible Euler equations with following initial condition:462

(4.7)


ρ(x, y, 0) =

1 + 0.2 sin(x+y
2 )

√
6

,

u(x, y, 0) = v(x, y, 0) =

√
γ

2
ρ(x, y, 0),

p(x, y, 0) = ρ(x, y, 0)γ .

463

We choose the parameter γ = 3, such that the exact solution is464

ρ(x, y, t) =
µ(x, y, t)√

6
, u(x, y, t) = v(x, y, t) =

√
γ

2
ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ ,465

where µ(x, y, t) is the solution of the following 2D Burgers’ equation:466

(4.8)


µt + (

µ2

2
)x + (

µ2

2
)y = 0, (x, y) ∈ Ω

µ(x, y, 0) = 1 + 0.2 sin(
x+ y

2
).

467

We consider following two computational domains:468

Ω =[0, 4π]× [0, 4π],(4.9a)469

Ω ={(x, y)|x2 + y2 < (1.5π)2},(4.9b)470471

and take boundary conditions from the exact solution whenever needed. For the472

square domain (4.9a), we use a grid similar to example 5. And for the circular domain473

(4.9b), we use a non body-fitted grid similar to example 4. The numerical results at474

final time tend = 1 are shown in Table 9 - 10. We can see that our schemes are stable475

and high order accuracy for all cases.476

Example 7. We consider a flow around a cylinder. The center of the bottom surface477

of the cylinder is at the origin with a radius of 1. At the initial moment, a fluid478

with Mach 3 moves towards the cylinder. In consideration of the symmetry, we479

only consider the problem of an upper half plane. For the lower boundary of the480

computation area at y = 0, we use the reflection technique; for the left boundary481
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Table 9. Example 6: The errors and the orders of accuracy of ρ on the square domain
Ω = [0, 4π]× [0, 4π].

third order scheme fifth order scheme
h L1 error order L∞ error order L1 error order L∞ error order

4π/100 4.09E-004 – 1.13E-005 – 1.42E-005 – 2.08E-006 –
4π/150 1.22E-004 2.98 3.51E-006 2.89 1.93E-006 4.92 2.89E-007 4.86
4π/200 5.18E-005 2.98 1.66E-006 2.60 4.59E-007 4.99 7.55E-008 4.67
4π/250 2.66E-005 2.98 9.14E-007 2.67 1.49E-007 5.01 2.77E-008 4.48
4π/300 1.54E-005 2.99 5.54E-007 2.74 6.01E-008 5.01 1.20E-008 4.56

Table 10. Example 6: The errors and the orders of accuracy of ρ on the circular
domain Ω = {(x, y)|x2 + y2 < (1.5π)2}.

third order scheme fifth order scheme
h L1 error order L∞ error order L1 error order L∞ error order

4π/100 1.46E-004 – 1.14E-005 – 1.48E-005 – 8.59E-006 –
4π/150 4.20E-005 3.08 4.28E-006 2.42 2.13E-006 4.78 1.28E-006 4.69
4π/200 1.81E-005 2.91 1.79E-006 3.03 6.65E-007 4.05 3.51E-007 4.49
4π/250 9.20E-006 3.05 8.90E-007 3.12 2.21E-007 4.91 1.16E-007 4.95
4π/300 5.44E-006 2.87 5.23E-007 2.91 8.42E-008 5.31 4.72E-008 4.93

of the computation region at x = −4, we give the inflow boundary condition; for482

the right boundary x = 0 and the upper boundary y = 6 of the computation area,483

the outflow boundary conditions are given. On the surface of a cylinder, our new484

ILW method is used to deal with a no-penetration boundary condition. As before, a485

uniform non body-fitted Cartesian mesh is used, which is shown in Figures 7. Figure486

8 show the numerical results. We can see that the results are comparable with those487

in [5, 19,28,31].488

Fig. 7. Example 7: The non body-fitted Cartesian mesh with near the cylinder
boundary. The red points are the interior points.

Example 8. We consider the double Mach reflection problem. At the initial moment,489
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Fig. 8. Example 7: Pressure contour of flow past a cylinder, 20 contours from 2 to
15. ∆x = ∆y = 1/40. left: third order scheme. right: fifth order scheme.

a horizontally moving Mach 10 shock wave passes through a wedge with an inclination490

angle of 30◦. In common practice, the wedge is placed horizontally to apply reflective491

boundary conditions. At this time, the shock wave forms an angle of 60◦ with the492

wall. In [8, 25], the original double Mach number reflection problem is computed493

respectively. With the ILW method, people can also do numerical simulation on the494

original region [28, 31]. Here, we use the new ILW method to simulate this problem.495

In detail, at the top of the calculation area, we give the exact flow value according496

to the shock Mach number. at the left and right boundary, we give the supersonic497

inlet and outlet boundary conditions respectively. On the lower right boundary, a498

new ILW method is adopted. The discretization of space and time is consistent with499

the previous example. Figure 9 show the computational region and density contour500

respectively. The zoomed in region near the double Mach stem is presented in Figure501

10. We rotate and translate the region for ease of comparison. It is observed that502

the new ILW method captures the shock wave well, and it is comparable with the503

previous results.504

5. Concluding remarks. In this paper, we propose a new SILW method for505

conservation laws, which decomposes the procedure of construction ghost points into506

two steps: interpolation and extrapolation. At first, we approximate some special507

point values through an interpolation polynomial based on interior points near the508

boundary. Then, we construct a Hermite extrapolation polynomial based on the509

special point values and spatial derivatives at the boundary obtained through the510

ILW process. After that, we can get the approximation of the the ghost point values.511

Through the linear stability analysis with the eigenvalue method, we can conclude that512

our new SILW method is more efficient than the original SILW method while ensuring513

the stability. Then we extend our new SILW method to systems and high-dimensional514
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(a) The computational region. (b) Density contour.

Fig. 9. Example 8: Left:The computational region of the double mach reflection
problem. The dashed line indicates the computational domain used in [8, 25]. Right:
The density contour. 30 contours from 1.731 to 20.92. ∆x = ∆y = 1/320.

(a) ∆x = ∆y = 1/320. (b) ∆x = ∆y = 1/640.

Fig. 10. Example 8: Density contour on the local area. 30 contours from 1.731 to
20.92.

cases, and carry out a series of numerical experiments. The numerical results show515

that our new SILW method is stable and can achieve the expected accuracy. In the516

future, we are going to extend this new SILW method to deal with the initial-boundary517

value problems of diffusion equations and convection-diffusion equations.518

Appendix A. More results about linear stability analysis.519

The linear stability analysis results of the new SILW method with different in-520

ternal schemes and different kd are shown in Figure 11-13. The parameter α is taken521

as the critical value between stable and unstable. These figures verify the correctness522

and the optimality of the α range given in Table 3.523

Next, we want to verify the results of the above stability analysis numerically.524
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(a) Fifth order scheme with α = 0.91
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(b) Fifth order scheme with α = 0.92
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(c) Fifth order scheme with α = 5.11
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(d) Fifth order scheme with α = 5.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ca

0.7 

0.75

0.8 

0.85

0.9 

0.95

1   

m
a
x
(a

b
s
(z

))

0.38 0.4 0.42 0.44 0.46

1   

(e) Seventh order scheme with α = 1.33
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(f) Seventh order scheme with α = 1.34
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(g) Seventh order scheme with α = 1.99
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(h) Seventh order scheme with α = 2.00

Fig. 11. The result of linear stability analysis with kd = 2. The horizontal axis
represents Ca and the vertical axis represents the largest |z(µ)|.

Consider the following problem:525

(A.1)


ut + ux = 0, −1 < x < 1, t > 0,

u(x, 0) = 0.25 + 0.5 sin(πx), −1 ≤ x ≤ 1,

u(−1, t) = 0.25 + 0.5 sin(πt), t > 0.

526

The exact solution is527

u(x, t) = 0.25 + 0.5 sin(π(x− t)).528

We use the d-th order upwind scheme for spatial discretization and the third-order529
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(a) Nineth order scheme with α = 1.28
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(b) Nineth order scheme with α = 1.29
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(c) Nineth order scheme with α = 2.43
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(d) Nineth order scheme with α = 2.44
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(e) Eleventh order scheme with α = 1.41
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(f) Eleventh order scheme with α = 1.42
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(g) Eleventh order scheme with α = 1.70
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(h) Eleventh order scheme with α = 1.71

Fig. 12. The result of linear stability analysis with kd = 3. The horizontal axis
represents Ca and the vertical axis represents the largest |z(µ)|.

TVD RK scheme for time discretization. Let tend = 30, N = 200. Take time step530

∆t = (λcfl)max∆x.531

We test the problem with α in or out the range given in Table 3. The numerical532

results are shown in Table 11. It can be observed that when α falls in the range, the533

scheme will be stable for all tested Ca. Otherwise, if α is out of the range, we can534

always find one Ca such that the scheme is unstable.535
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(a) Thirteenth order scheme with α = 1.48
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(b) Thirteenth order scheme with α = 1.49
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(c) Thirteenth order scheme with α = 2.08
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(d) Thirteenth order scheme with α = 2.09

Fig. 13. The result of linear stability analysis with kd = 4. The horizontal axis
represents Ca and the vertical axis represents the largest |z(µ)|.

Table 11. Numerical verification results of linear stability analysis

d Stable α in Table 3 α Result

3 [0.61,10]
0.60 Unstable for Ca = 10−6

1.00 Stable for all tested Ca

5 [0.92,5.11]
0.91 Unstable for Ca = 0.38
1.00 Stable for all tested Ca
5.12 Unstable for Ca = 0.70

7 [1.34,1.99]
1.33 Unstable for Ca = 0.40
1.50 Stable for all tested Ca
2.00 Unstable for Ca = 0.40

9 [1.29,2.43]
1.28 Unstable for Ca = 0.85
1.50 Stable for all tested Ca
2.44 Unstable for Ca = 0.03

11 [1.42,1.70]
1.41 Unstable for Ca = 0.93
1.50 Stable for all tested Ca
1.71 Unstable for Ca = 0.01

13 [1.49,2.08]
1.48 Unstable for Ca = 1− 10−6

1.75 Stable for all tested Ca
2.09 Unstable for Ca = 1− 10−6
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