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Abstract

In this paper, we develop a high-order positivity-preserving polynomial projection remap-

ping method based on theL2 projection for the discontinuous Galerkin (DG) scheme. Com-

bined with the Lagrangian type DG scheme and the rezoning strategies, we present an

indirect arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) method. By clip-

ping precisely the intersections between the old distorted mesh andthe new rezoned mesh,

our remapping method is high-order accurate and has no limitation for the mesh movements,

so it is suitable for the large deformable problems. A multi-resolution weighted essentially

non-oscillatory (WENO) limiter is adopted to overcome numerical oscillations and it can

keep the original high-order accuracy in the smooth region. This WENO limiter combines

several di�erent degrees of polynomials which are the localL2 projections of the original

polynomial with nonlinear weights calculated by their smoothness, therefore, it is highly

parallel e�cient. A positivity-preserving limiter is also added for the physical variables in

computational uid dynamics without losing the original high-order accuracy and conser-

vation. The properties of positivity-preserving, non-oscillation and high-order accuracy of

the remapping method will be shown by a variety of numerical experiments on one, two

and three dimensional unstructured meshes. The performance of the ALE-DG scheme with

rezoning and remapping is also tested for the Euler system in one andtwo dimensions.
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1 Introduction

There are two major techniques in computational uid dynamics: the Lagrangian frame-

work with the mesh moving with the uid velocity, and the Eulerian framework with a �xed

mesh, which can easily extend to higher-order accuracy. However, the moving mesh may be

twisted in the Lagrangian framework, making the schemes unstable, whereas the Eulerian

framework requires a �ner mesh for higher resolution near shocksand especially near contact

discontinuities. The arbitrary Lagrangian-Eulerian (ALE) framework incorporates the ad-

vantages of both frameworks above, and the indirect ALE framework builds in the following

three steps.

1. The Lagrangian step: solving the hydrodynamic equations and moving the mesh ver-

tices with the uid motion;

2. The rezoning step: adjusting the mesh for better mesh quality;

3. The remapping step: transferring numerical information between the two meshes.

The computational mesh in the arbitrary Lagrangian-Eulerian method can move with

the uid as in the Lagrangian method. However, when the distortedmesh causes numerical

instability, the rezoning and remapping steps are used to continue the calculation in another

mesh with better mesh quality. The ALE framework is widely applied to computational

uid dynamics, based on the �nite volume (FV) method [8, 6, 5, 2, 13], or the Runge-Kutta

discontinuous Galerkin (RK-DG) method [9, 10, 7].

In the ALE framework based on the FV method, the remapping procedure transfers cell

averages from the old mesh to the new mesh, and this procedure should be high-order ac-

curate, essentially non-oscillatory, positive and conservative, as, for example, what we have

done in [13, 14]. Based on the discontinuous function space, the DG method [3, 4] is widely

adopted for solving hyperbolic conservation laws, since it is exible for complex mesh ge-

ometries and unstructured meshes. In the meantime, this methodis highly parallel e�cient,
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because the elements only communicate with their immediate neighbors. Di�erently from

the ALE-FV method, the remapping procedure in the ALE-DG method is more complicated,

since it needs to transfer high-order polynomials to another set ofhigh-order polynomials

de�ned on the new rezoned mesh, while maintaining the good performances. Up to now,

most of the remapping methods are applied for the �nite volume method, and there have

been fewer discussions on remapping methods for the DG method. In this paper, we focus on

the remapping step in the ALE framework coupled with the discontinuous Galerkin method.

As we know, one needs to rezone the computational mesh when themesh is distorted in

the ALE framework, and there are many studies about the rezoning strategies, such as the

reference Jacobian rezoning [11], high-order linear mesh relaxation [1], or using the Voronoi

tessellation method [18]. In [25], the author developed an adaptive mesh topology optimiza-

tion technique, to improve mesh quality with mesh re�nements, edgecollapse operation and

mesh regularization. We will not focus on this aspect in our study, and hence we may use

di�erent rezoning strategies for each of our numerical test problems.

The remapping algorithm has two popular approaches: the uxed-based method and the

intersection-based method. By describing the information exchanges between the old and

new mesh cells as a transport equation [5, 19, 12, 17], the ux-based remapping method

is faster and easier to apply in the ALE framework. But this method demands that the

connection and the number of cells should not change, and the meshmotions should not be

too drastic. The solution-updating algorithm in the moving mesh method with the �nite

element approach also solves a transport equation to convert �nite element solution between

moving meshes [15, 16], which can be regarded as a ux-based method.

The intersection-based remapping approach is more exible and rigorous since it picks

out exactly the intersections between the old distorted mesh and the new rezoned mesh and

calculates the contributions of the old cells to the new cells [6, 2, 20, 13, 14]. This algorithm

does not require the connectivity on the new mesh to be the same asthe old mesh, and it has

no restriction on the movements of the mesh vertices, both of which limit the uxed-based
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remapping algorithm. Meanwhile, the clipping error is close to machine zero and can be

ignored. Zhang [27] developed a conservative intersection-based remapping methodbased

on L2 projection for the one-dimensional moving mesh method. But the applications for the

two or three dimensional cases remain to be seen. It is fairly straightforward to detect the

overlaps between two intervals in one dimension, but �nding the intersection between two

triangular or tetrahedral cells in two or three dimensions is costly, especially when compared

to the ux-based remapping technique. However, in the Lagrangian type DG method based

on the unstructured mesh, the rezoning step will change the meshconnectivity if a large

deformable mesh appears, and only the intersection-based remapping method can handle

this.

To extend the area of our algorithm's application for the large deformable problems

on unstructured mesh, we prefer the intersection-based remapping approach and it can be

described as follows. Assume that we have two sets of meshes, andthe numerical solution is

a piecewise high order polynomial de�ned on the old mesh. This piecewise polynomial must

be transferred to the new mesh, and the new piecewise polynomial must also have the same

high order accuracy.

Besides that, we would like to develop an indirect ALE-DG scheme, by combining the

moving mesh DG scheme introduced in [9, 10, 7], via a Lagrangian type mesh movement,

with the rezoning step and our polynomial projection remapping approach. We will use this

Lagrangian type DG scheme to solve the uid dynamics �rst, since this scheme can capture

contact discontinuities and ow interfaces automatically and sharply with low numerical

dissipation. When the computational mesh undergoes distortion orlarge deformation, which

leads to numerical instability or extremely small time step, we will try to rezone the mesh

and then use our intersection-based remapping algorithm to make the scheme more stable.

When dealing with high gradient or discontinuous solutions, the high-order piecewise

polynomial in the discontinuous Galerkin method may be oscillatory, which should be avoided

during the computation. The multi-resolution weighted essentially non-oscillatory (WENO)
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technique, which establishes smoothness indicators for a series ofpolynomials of di�erent

degrees and assigns di�erent nonlinear weights to them, is a popularsolution. In the smooth

region, the higher-order polynomials have more weights so that thenew modi�ed polynomial

can maintain high-order accuracy. On the other hand, in the non-smooth region, the lower

order polynomials play a larger role in the new modi�ed polynomial, makingit essentially

non-oscillatory. Recently, based on a sequence of localL2 projection polynomials in the

troubled cell, Zhu, Qiu and Shu [28, 29] proposed a new multi-resolution WENO limiter for

the discontinuous Galerkin method. In comparison with the traditional WENO limiters, this

new WENO limiter is more exible with any positive linear weights as long as they sum up

to 1, and can be easily extended to higher order schemes. This limiteris especially suitable

for the moving mesh methods. Besides, since it mainly uses information in the troubled

cell itself, with information from immediate neighboring cells used only for the smoothness

indicator of the lowest degree polynomial, this limiter is e�cient and canbe executed in

parallel mode. Therefore, we will use this new multi-resolution WENO limiter for the new

polynomials, to obtain modi�ed polynomials which are essentially non-oscillatory and highly

accurate.

Since the ALE-DG framework is usually applied for uid ow problems, the physical

quantities involved should preserve their physical properties, such as being conservative

and positive (non-negative). Our polynomial projection remappingmethod is automatically

conservative which will be explained in the next section. But it is not easy to maintain

high-order accuracy when one needs to preserve also the positivity. Zhang and Shu proposed

a widely used positivity-preserving framework [26], see also [24], which is based on the pos-

itivity of cell averages and includes a simple positivity-preserving scaling limiter, for �nite

volume and discontinuous Galerkin schemes. By compressing the highorder polynomial to-

wards its positive cell average, this limiter makes the negative minimumof the polynomial in

the target domain greater than 0, without destroying its original high order accuracy. This

positivity-preserving technique has been successfully used for high order conservative remap-
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ping method in two and three dimensions [13, 14], and a variety of numerical experiments

have con�rmed its high e�ciency, so we will introduce it into our remapping procedure.

In this paper, we develop a high order polynomial projection remapping method with the

local multi-resolution WENO limiter and the positivity-preserving limiter for the ALE-DG

framework. In Section2, we describe our remapping algorithm step by step. In Section

3, we design a series of numerical experiments in one, two and three dimensions to verify

the excellent properties of our remapping algorithm, such as high order accuracy, essentially

non-oscillatory performance, and positivity-preserving. Afterwards, in conjunction with the

Lagrangian type DG scheme, we use this new ALE-DG scheme to solvesome benchmarks of

the one and two dimensional Euler system and compare with the sameorder Eulerian DG

scheme and the Lagrangian type DG scheme in Section4. Finally, concluding remarks are

given in Section5.

2 The polynomial projection remapping algorithm

2.1 Basic concepts

Let us start with the one-dimensional polynomial projection remapping algorithm. In the

discontinuous Galerkin method, the numerical solutionuh 2 V m is a piecewise polynomial

Vm = f w(x) : w(x)j I i 2 P m ; 1 � i � N g;

whereI i = [ x i � 1
2
; x i + 1

2
]; i = 1; � � � ; N are cells of the computational domain 
 :=

S N
i =1 I i . In

each cellI i , uh can be written as

uh j I i =
mX

l=0

ui
l ' l (x);

whereui
l 2 R are coe�cients and ' l (x) are basis functions, e.g.

' 0(x) = 1 ; ' 1(x) = x; ' 2(x) = x2; ' 3(x) = x3; � � �

In the arbitrary Lagrangian-Eulerian discontinuous Galerkin method, sometimes we need

to modify the computational mesh after the Lagrangian step to maintain good mesh quality.
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Now, assume that we have a new rezoned mesh 
 :=
S ~N

i =1
~I i which satis�es

jI i j > 0; j ~I i j > 0;
�
�
�I i

\
I j

�
�
� = 0;

�
�
� ~I i

\
~I j

�
�
� = 0; 8i 6= j;

wherej � j means the size of the cell. Then we need to convert the numerical solution uh based

on the old meshf I i gN
i =1 to the new rezoned meshf ~I i g

~N
i =1 with the new discrete polynomial

space

~Vm = f w(x) : w(x)j ~I i
2 P m ; 1 � i � ~N g:

That means we need to �nd a new piecewise polynomial ~uh 2 ~Vm , which is theL2 projection

of uh on ~Vm

(~uh; wh) ~I j
= ( uh; wh) ~I j

; 8wh 2 ~Vm ; (2.1)

where (u; v) ~I j
:=

R
~I j

u(x)v(x)dx. It is not easy to compute (uh; wh) ~I j
, sinceuh is a piecewise

polynomial de�ned on f I i gN
i =1 and one needs to calculate the intersection between the new

cell ~I j and the old meshf I i gN
i =1 ,

(uh; wh) ~I j
=

NX

i =1

(uh; wh)I i
T ~I j

=
NX

i =1

mX

l=0

ui
l (' l (x); wh)I i

T ~I j
:

In practice, we takewh from the basis functions' s(x); s = 0; 1; � � � ; m, so we can rewrite

(2.1) as

(~uh; ' s(x)) ~I j
=

NX

i =1

mX

l=0

ui
l (' l (x); ' s(x)) I i

T ~I j
; s = 0; 1; � � � ; m: (2.2)

Notice that, if we take ' 0(x) = 1 in ( 2.2), then we have

Z

~I j

~uh(x)dx =
NX

i =1

Z

I i
T ~I j

uh(x)dx

=
Z

~I j

uh(x)dx

(2.3)

which means our remapping algorithm is conservative.

Assume ~uh j ~I j
=

P m
l=0 ~uj

l ' l (x). The new coe�cients ~uj
l satisfy

mX

l=0

~uj
l (' l (x); ' s(x)) ~I j

=
NX

i =1

mX

l=0

ui
l (' l (x); ' s(x)) I i

T ~I j
; s = 0; 1; � � � m
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which can be written as

M j ~u j = b j (2.4)

whereM j = ( M j
sl )

m
s;l=0 is the mass matrix withM j

sl = ( ' l (x); ' s(x)) ~I j
and ~u j = (~uj

0; � � � ; ~uj
m )T

are the coe�cients which need to be determined. The right-hand side of (2.4) is de�ned as

b j = ( bj
0; � � � ; bj

m )T ; bj
s =

NX

i =1

mX

l=0

ui
l (' l (x); ' s(x)) I i

T ~I j
; s = 0; 1; � � � ; m:

So, the idea of the polynomial projection remapping algorithm is �nding a new piecewise

polynomial ~uh 2 ~Vm on the new rezoned meshf ~I i g
~N

i =1 by solving the linear system (2.4). But

the new high-order piecewise polynomial may generate overshootsand the minimum for the

physically non-negative variables may less than 0, both of them should be avoided. After

solving (2.4), we add a multi-resolution WENO limiter on the new polynomial to prevent

numerical oscillations, especially when we design the high-order remapping procedure, and we

add a positivity-preserving limiter to maintain positivity for the relevant physical quantities,

such as density and internal energy. The above limiters should not destroy the original

accuracy and the owchart of the remapping algorithm is below:

1. Clipping: �nding the intersection of I i
T ~I j ; 8 i; j ;

2. Numerical integration: calculate the integration of the basis functions over the inter-

sections (' l (x); ' s(x)) I i
T ~I j

, then obtain the new polynomials ~uh by solving (2.4);

3. Multi-resolution WENO limiter: modify the high-order polynomials by the multi-

resolution WENO limiter, in the so-called troubled cells;

4. Positivity-preserving limiter: modify the high-order polynomials bythe positivity-

preserving limiter.

Next, we will introduce our polynomial projection remapping algorithm in detail.
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2.2 Clipping

Although the intersection-based remapping method needs to determine the intersections, it

is much more exible for large deformable problems on unstructuredmeshes and easier to

achieve high-order accuracy since the clipping error can be ignored. Therefore, we prefer the

intersection-based remapping method for the ALE-DG scheme on the unstructured mesh.

The clipping procedure for two one-dimensional intervalsI i ; ~I j is very simple, so we

concentrate on the multi-dimensional clipping procedure for the triangular cells and the

tetrahedral cells.

In this paper, we use the Sutherland-Hodgman polygon clipping algorithm [13, 23] for the

two-dimensional triangular cells. In this clipping algorithm, one needsto use the `window'

cell to clip against the `target' cell. By setting visible and invisible sides for each edge in the

`window' cell, one can separate the `target' cell with the `window' cell'sedges and pick the

intersection parts in the visible sides. Repeating the above loop for each edge in the `window'

cell completes the algorithm. Figure2.1 gives an example for the clipping algorithm with

two triangular cells.

The clipping algorithm for the tetrahedral cells is similar to the 2D clipping algorithm, by

setting visible and invisible faces and clipping the `target' cell using each face of the `window'

cell in turn. The clipping error is close to machine zero and has no involvement with the mesh

size, that helps our intersection-based remapping algorithm to achieve high-order precision.

(a) (b) (c) (d) (e)

Figure 2.1: The clipping procedure. The black triangle is the target cell, the red triangle is
the window cell, the gray shaded polygon is the clipping result.
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2.3 Numerical integration

Now, we need to calculate the integration for the product of two basis functions over the

intersections I i
T ~I j . For the one-dimensional case, the intersection is also an intervaland

it is easy to calculate the integration with suitable high-order quadrature rules by mapping

the intersection interval to the reference unit [� 1; 1].

For the two-dimensional case, the intersection can be any polygon, therefore we will

split it into several triangles and use high-order quadrature rules to calculate the numerical

integration over these triangles. We locate the barycenter of theconvex polygon and connect

it to the vertices to divide the intersection into multiple smaller triangles. If the polygon is

non-convex, one can also cut it into several triangles by connecting the vertices. The idea

of the numerical integration step for the three-dimensional caseis the same. By splitting

complicated polyhedral cells into several small tetrahedral cells, one can do such integration

over these shapes with suitable high-order quadrature rules.

In this paper, we adopt unstructured triangular meshes for the two-dimensional tests and

unstructured tetrahedral meshes for the three-dimensional tests. The reference cell in one

dimension is the interval [� 1; 1] and the two-dimensional triangular reference cell is made

up with vertices (0; 0); (1; 0); (0; 1). The three-dimensional tetrahedral reference cell is

made up with vertices (0; 0; 0); (1; 0; 0); (0; 1; 0); (0; 0; 1). In Table 2.1, Table 2.2, Table

2.3 and Figure2.2, we show the quadrature points and the weights on the referencecells for

the third-order remapping schemes in one, two and three dimensions, respectively. These

quadrature rules hold exactly for the product of two quadratic polynomials.

Consider the triangular cellI = f (xI
1; yI

1); (xI
2; yI

2); (xI
3; yI

3)g and de�ne matrix A I as:

A I :=
�

xI
2 � xI

1 xI
3 � xI

1

yI
2 � yI

1 yI
3 � yI

1

�
;

then we can map the reference cellI 0 to the physical cell I as

�
x
y

�
:= A I

�
� 1

� 2

�
+

�
xI

1

yI
1

�
; (x; y) 2 I; 8(� 1; � 2) 2 I 0:
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The integration over I can be written as:

(' l (x; y); ' s(x; y)) I =
Z

I
' l (x; y)' s(x; y)dxdy

=
Z

I 0

' l (x(� 1; � 2); y(� 1; � 2)) ' s(x(� 1; � 2); y(� 1; � 2))2jI jd� 1d� 2

= jI j
LX

� =1

! � ' l (x � ; y� )' s(x � ; y� )

(2.5)

where
� x �

y�

�
= A I

� � 1;�
� 2;�

�
+

� x I
1

yI
1

�
. ! � and (� 1;� ; � 2;� ) are the weights and the quadrature points in

the reference cellI 0, respectively, which have been listed in Table2.2. The integration over

the tetrahedral cell is the same, so we omit it here.

Up to now, we can use the numerical integration method to calculatethe mass matrixM j

and the right hand side vectorb j in (2.4). Then, we obtain our new piecewise polynomial

~uh by solving the linear system (2.4).

Table 2.1: Quadrature rule for the one-dimensional remapping scheme.

! � � 1;�

0.56888888888888890.0000000000000000
0.4786286704993665-0.5384693101056831
0.47862867049936650.5384693101056831
0.2369268850561891-0.9061798459386640
0.23692688505618910.9061798459386640

Table 2.2: Quadrature rule for the two-dimensional remapping scheme.

! � � 1;� � 2;�

0.2059505047608870.1249495032332320.437525248383384
0.2059505047608870.4375252483833840.124949503233232
0.2059505047608870.4375252483833840.437525248383384
0.0636914142862230.7971126518600710.165409927389841
0.0636914142862230.7971126518600710.037477420750088
0.0636914142862230.1654099273898410.797112651860071
0.0636914142862230.1654099273898410.037477420750088
0.0636914142862230.0374774207500880.797112651860071
0.0636914142862230.0374774207500880.165409927389841
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Table 2.3: Quadrature rule for the three-dimensional remapping scheme.

! � � 1;� � 2;� � 3;�

0.01904761904761900.00000000000000000.50000000000000000.5000000000000000
0.01904761904761900.50000000000000000.00000000000000000.5000000000000000
0.01904761904761900.50000000000000000.50000000000000000.0000000000000000
0.01904761904761900.50000000000000000.00000000000000000.0000000000000000
0.01904761904761900.00000000000000000.50000000000000000.0000000000000000
0.01904761904761900.00000000000000000.00000000000000000.5000000000000000
0.08858982474298070.69841970432438660.10052676522520450.1005267652252045
0.08858982474298070.10052676522520450.10052676522520450.1005267652252045
0.08858982474298070.10052676522520450.10052676522520450.6984197043243866
0.08858982474298070.10052676522520450.69841970432438660.1005267652252045
0.13283874668559070.05688137952042340.31437287349319220.3143728734931922
0.13283874668559070.31437287349319220.31437287349319220.3143728734931922
0.13283874668559070.31437287349319220.31437287349319220.0568813795204234
0.13283874668559070.31437287349319220.05688137952042340.3143728734931922

-1 1

(0,0)

(1,0)

(1,0)

(0,1,0)

(0,0,0)

(0,0,1)

(1,0,0)

Figure 2.2: The quadrature points.

2.4 Multi-resolution WENO limiter

Near the discontinuity or in the large gradient regions, high-order polynomials may generate

overshoots or oscillations which could make the scheme unstable, therefore we should pay

more attention on how to prevent the numerical oscillations e�ectively. Di�erently from

our previous remapping work [13, 14], where we reconstructed high-order polynomials based

on the cell averages with the multi-resolution WENO procedure whichcan overcome the

numerical oscillation, the new polynomials ~uh generated by this remapping algorithm may

be oscillatory, since they are solved by the linear system (2.4), corresponding to the standard
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L2 projection without any limitation. To overcome this problem, we adopt a new type of

multi-resolution WENO limiter [ 28, 29] for the DG scheme, which can retain high-order

accuracy in the smooth region and can achieve essentially non-oscillatory performance in the

discontinuous region.

In this part, we will follow the multi-resolution WENO procedure proposed in [30, 28] step

by step to generate an essentially non-oscillatory polynomial. In order to save space, we take

the one-dimensional third-order multi-resolution WENO limiter as an example to discuss

the speci�c procedure and we refer to [30, 28] for higher-order schemes or multi-dimensional

cases.

Suppose we need to modify a third-order polynomial ~u~I j
(x) =

P 2
l=0 ~uj

l ' l (x), for all

j = 1; � � � ; ~N .

� Step 1. De�ne low-order polynomialsq0(x); q1(x) on local lower-order polynomial

spaces with theL2 projection method

(qs(x); ' l (x)) ~I j
=

�
~u~I j

(x); ' l (x)
�

~I j

; l = 0; 1; � � � ; s (2.6)

where qs(x) 2 P s for s = 0; 1. Notice that, qs(x) is de�ned on the basisqs(x) =
P s

k=0 qs
k ' k(x), so the integration in (2.6) can be written as

sX

k=0

qs
k (' k(x); ' l (x)) ~I j

=
mX

k=0

~uj
k (' k(x); ' l (x)) ~I j

; l = 0; 1; � � � ; s (2.7)

which is convenient to solve. Besides that, we de�ne the third-order polynomial as

q2(x) := ~u~I j
(x).

� Step 2. Introduce linear weights and de�ne

p0(x) = q0(x);

p1(x) =
1

 1;1
q1(x) �

 0;1

 1;1
p0(x);

p2(x) =
1

 2;2
q2(x) �

 0;2

 2;2
p0(x) �

 1;2

 2;2
p1(x);
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where  0;1 = 1
11;  1;1 = 10

11 and  0;2 = 1
111;  1;2 = 10

111;  2;2 = 100
111. By combining ps(x)

with the linear weights  s;2, we can achieve the optimal third-order accuracy

2X

s=0

 s;2ps(x) = q2(x) = ~u~I j
(x):

� Step 3. De�ne smoothness indicators to measure how smooth these functions are in

the cell ~I j ,

� 1 :=
Z

~I j

j ~I j j
�

@p1(x)
@x

� 2

dx; � 2 :=
2X

� =1

Z

~I j

j ~I j j2� � 1

�
@� p2(x)

@x�

� 2

dx;

and the smoothness indicator of the zero-order polynomialp0(x) should be de�ned in

another way. De�ne

� 0 = ( �~u~I j
� �~u~I j � 1

)2; � 1 = ( �~u~I j +1
� �~u~I j

)2; �� 0 =
�

1 � 0 � � 1

10 else
; �� 1 = 11 � �� 0;

and

� 0 =
�� 0

�� 0 + �� 1
; � 1 = 1 � � 0; � 0 = � 0

�
1 +

j� 0 � � 1j
� 0 + "0

�
; � 1 = � 1

�
1 +

j� 0 � � 1j
� 1 + "0

�
;

where we take"0 = 10� 10. Then we have

� 0 :=
1
� 2

�
� 0( �~u~I j

� �~u~I j � 1
) + � 1( �~u~I j +1

� �~u~I j
)
� 2

; � = � 0 + � 1;

where �~u~I j
is the cell average on the cell~I j .

� Step 4. De�ne the nonlinear weights as

! l =
�! l

�! 0 + �! 1 + �! 2
; �! l =  l;2

�
1 +

�
"0 + � l

�
; l = 0; 1; 2

where � = j� 2 � � 0j + j� 2 � � 1j and the �nal polynomial is given by

~uW
~I j

(x) :=
2X

s=0

! sps(x):

However, it is not necessary to apply this multi-resolution WENO limiterfor every cell.

Instead, we identify the troubled cells by a shock detection technique [21, 28, 29, 31], and

only apply the WENO limiter on those cells.
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To summarize, we simply employ the multi-resolution WENO limiter only on afew

troubled cells to improve the e�ciency of our method. Actually, in the following numerical

tests, we do not always utilize this limitation because some of these tests do not need it.

This limiter combines the polynomial's localL2 projection on lower discrete polynomial

spaces with nonlinear weights given by the polynomials' smoothness,and this limiter is

parallel e�cient, since there is little information exchange between neighbors (only for the

smoothness indicator of the lowest degree polynomial). The nonlinear weights are close to

the linear weights in the smooth region, and the modi�ed polynomial ~uW
~I j

(x) is close to the

original high-order polynomial ~u~I j
(x). In the discontinuous region, on the other hand, the

low-order polynomials play a larger role in ~uW
~I j

(x), which can prevent numerical oscillations.

2.5 Positivity-preserving limiter

Associated with uid ow problems, the involved physical quantities inthe ALE framework

such as density and internal energy should preserve positivity. This requires our polynomial

projection remapping procedure to maintain this property as well.

Assume that the input piecewise polynomial satis�esuh(x) > " everywhere, or at least

at the quadrature points in eachI i
T ~I j , and we obtain the new piecewise polynomial ~uh by

solving the linear system (2.4) with or without the multi-resolution WENO limiter, where "

is a small positive number and we take" = 10� 14. Then the new cell averages�~u~I j
are also

greater than ", since
j ~I j j �~u~I j

=
�

~u~I j
; 1

�

~I j

= ( uh; 1)~I j

=
NX

i =1

Z

I i
T ~I j

uh j I i dx � 0:

Besides that, we need to preserve positivity for the new piecewise polynomial ~uh, other-

wise, the numerical solutions in the next Lagrangian DG step may be negative, which are

contradicted with the laws of physics.

Referring to the work of Zhang and Shu [26], we compress the polynomial ~u~I j
in each cell
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~I j towards its non-negative cell average�~u~I j
as,

~uP
~I j

(x) = � ~u~I j
(x) + (1 � � ) �~u~I j

;

� = min

(

1;
j �~u~I j

� " j

j �~u~I j
� m~I j

j

)

; m~I j
= min

x2 Sj

~u~I j
(x); " = 10� 14:

(2.8)

So the new polynomials are non-negative ~uP
~I j

(x) > 0 for all x 2 Sj . If we need to remap ~uP
h

on f ~I j g
~N

j =1 to a new meshf
�

I lg
�
N
l=1 in the next remapping loop,Sj is the set of the quadrature

points in each ~I j
T �

I l ; 8 l. If we need to do the Lagrangian DG step in the ALE-DG scheme

with ~uP
h , Sj is the set of the quadrature points in the cell~I j and its boundaries. Notice

that Sj is a �nite set and we only need to �nd the minimum of ~u~I j
(x) in Sj rather than

the minimum in the entire cell ~I j , which makes the implementation of this scaling limiter

considerably more e�cient.

When we solve the Euler system, we �rst utilize the above positivity-preserving limiter

for the density � , then we use the momentum, total energy and the modi�ed densityto

preserve positivity for the internal energye, as detailed in [24]. This compressing strategy

is also suitable for the multi-dimensional case.

Meanwhile, this positivity-preserving limiter is also conservative because it does not a�ect

the cell averages and also maintains the original high-order accuracy as proved in [24, 26].

Notice that, we apply this limiter after the multi-resolution WENO limiter since it will not

destroy the essentially non-oscillatory property by compressing the polynomial towards the

cell average.

We have now completed the discussion of the polynomial projection remapping algo-

rithm. Although we have only introduced the local multi-resolution WENO limiter and the

positivity-preserving limiter for the one-dimensional situation in detail, extending to the

multi-dimensional case is not di�cult, and details may be found in the references [29, 26].

Following that, we apply our remapping method to several benchmarks in one, two, and

three dimensions to validate its good properties such as conservation, high-order accuracy,

positivity and essentially non-oscillatory performance. After that, we utilize the novel ALE-

DG scheme consisting of this remapping algorithm and the Lagrangiantype DG scheme to
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solve the Euler system in one and two dimensions.

3 Numerical results

3.1 One-dimensional case

Suppose 
 = f I 0
i gN

i =1 ; I 0
i = [ x0

i � 1
2
; x0

i + 1
2
] is the initial mesh and we design a randomly moving

mesh strategy 
 = f I t
i g

N
i =1 ; I t

i = [ xt
i � 1

2
; xt

i + 1
2
],

xt
i � 1

2
= x0

i � 1
2

+ cRhr t
i � 1

2
; h = min

i
hi ; hi = x0

i + 1
2

� x0
i � 1

2
; i = 2; � � � ; N; (3.1)

wherer t
i � 1

2
2 [� 1; 1] are random numbers and we takecR = 0:5 in our numerical tests. After

remappingT times on the randomly moving mesh, we require the �nal mesh to moveback

to the initial mesh in the accuracy tests.

3.1.1 Accuracy test

Now, we verify the high-order accuracy of our polynomial projection remapping method.

Suppose the initial function is

u(x) = cos8(8�x ) + 10 � 12; x 2 [0; 1]:

First, we calculate the initial L2 projection u0
h(x) of u(x) on the initial mesh and calculate

the error ku0
h � uk. After that, we will remap T = 10 times on the randomly moving mesh

(3.1) and move back to the initial meshf I 0
i gN

i =1 . We denote the remapping results as ~u10
h

without any limiters, ~uP;10
h with the positivity-preserving limiter and ~uW;P;10

h with the local

multi-resolution WENO limiter and the positivity-preserving limiter.

Based on the di�erent degrees of the DG space, we show the third-order and the fourth-

order remapping results in Table3.1 and Table 3.2 as examples, respectively. The last

column `PP' and `WENO' in these tables represent the ratio of the cellsbeing modi�ed by

the positivity-preserving limiter and the local multi-resolution WENO limiter. As one can

see, our high-order polynomial projection remapping method achieves the designed high-

order accuracy, regardless of the limiters being involved.
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Table 3.1: One-dimensional third-order accuracy test: error andorder of the polynomial
projection remapping method on the randomly moving meshes withT = 10.

jju0
h � ujj

N L1 error order L2 error order L1 error order -

80 6.3222E-04 1.3081E-03 6.4792E-03 -
160 7.4433E-05 3.09 1.6780E-04 2.96 9.7294E-04 2.74 -
320 9.1500E-06 3.02 2.1112E-05 2.99 1.2489E-04 2.96 -
640 1.1378E-06 3.01 2.6433E-06 3.00 1.5622E-05 3.00 -

jj ~u10
h � ujj

N L1 error order L2 error order L1 error order -

80 2.0806E-03 4.0362E-03 2.3422E-02 -
160 2.1561E-04 3.27 4.3533E-04 3.21 3.0377E-03 2.95 -
320 2.7779E-05 2.96 6.1088E-05 2.83 5.3377E-04 2.51 -
640 3.2693E-06 3.09 7.1444E-06 3.10 5.7270E-05 3.22 -

jj ~uP;10
h � ujj

N L1 error order L2 error order L1 error order PP(%)

80 2.2009E-03 4.1378E-03 2.3389E-02 6.63
160 2.1557E-04 3.35 4.3538E-04 3.25 3.0377E-03 2.94 3.44
320 2.7781E-05 2.96 6.1088E-05 2.83 5.3377E-04 2.51 2.03
640 3.2693E-06 3.09 7.1444E-06 3.10 5.7270E-05 3.22 1.03

jj ~uW;P;10
h � ujj

N L1 error order L2 error order L1 error order WENO(%)

80 2.2007E-03 4.1374E-03 2.3389E-02 2.25
160 2.1557E-04 3.35 4.3537E-04 3.25 3.0373E-03 2.94 0.38
320 2.7781E-05 2.96 6.1088E-05 2.83 5.3377E-04 2.51 0.00
640 3.2693E-06 3.09 7.1444E-06 3.10 5.7270E-05 3.22 0.00
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Table 3.2: One-dimensional fourth-order accuracy test: error and order of the polynomial
projection remapping method on the randomly moving meshes withT = 10.

jju0
h � ujj

N L1 error order L2 error order L1 error order -

80 7.4378E-05 1.5060E-04 6.8521E-04 -
160 4.5190E-06 4.04 9.6719E-06 3.96 5.8090E-05 3.56 -
320 2.8097E-07 4.01 6.0863E-07 3.99 3.8955E-06 3.90 -
640 1.7696E-08 3.99 3.8104E-08 4.00 2.4771E-07 3.98 -

jj ~u10
h � ujj

N L1 error order L2 error order L1 error order -

80 4.1647E-04 8.0582E-04 4.0711E-03 -
160 2.7564E-05 3.92 5.5238E-05 3.87 3.2861E-04 3.63 -
320 1.6354E-06 4.08 3.4513E-06 4.00 2.8659E-05 3.52 -
640 1.0805E-07 3.92 2.2483E-07 3.94 1.8635E-06 3.94 -

jj ~uP;10
h � ujj

N L1 error order L2 error order L1 error order PP(%)

80 5.6114E-04 9.4540E-04 4.0694E-03 5.88
160 2.8468E-05 4.30 5.5564E-05 4.09 3.2861E-04 3.63 3.06
320 1.6389E-06 4.12 3.4516E-06 4.01 2.8659E-05 3.52 1.53
640 1.0806E-07 3.92 2.2483E-07 3.94 1.8635E-06 3.94 5.78

jj ~uW;P;10
h � ujj

N L1 error order L2 error order L1 error order WENO(%)

80 5.6114E-04 9.4540E-04 4.0694E-03 0.25
160 2.8468E-05 4.30 5.5564E-05 4.09 3.2861E-04 3.63 0.00
320 1.6389E-06 4.12 3.4516E-06 4.01 2.8659E-05 3.52 0.00
640 1.0806E-07 3.92 2.2483E-07 3.94 1.8635E-06 3.94 0.00
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Figure 3.1: One-dimensional discontinuity test: third-order polynomial projection remapping
method with 80 cells. The black solid lines are the initial function (3.2), the blue dash lines
are the numerical results ~u10

h (x) without any limiter, the red dash dot lines are the numerical
results with the two limiters ~uW;P;10

h (x). Top right: the zoomed-in sub�gure atx 2 [0:2; 0:25];
bottom right: the zoomed-in sub�gure at x 2 [0:675; 0:825].

3.1.2 Discontinuity test

In this subsection, we consider a discontinuous function (3.2) to verify our polynomial pro-

jection remapping method is positive and essentially non-oscillatory

u(x) =

8
>><

>>:

10� 12 x � 0:25
1 0:25 < x � 0:7

0:5 0:7 < x � 0:8
10� 12 0:8 < x � 1

; 0 � x � 1: (3.2)

Just as before, we remap on the randomly moving mesh forT = 10 times with N = 80 cells.

In Figure 3.1, there are about 2.13% cells which have been modi�ed by the positivity-

preserving limiter and about 1.75% cells which have been modi�ed by thelocal multi-

resolution WENO limiter. It is obvious that our positivity-preserving limiter can preserve

positivity in the top right sub�gure and the multi-resolution WENO limite r can prevent the

numerical oscillation in the bottom right sub�gure.
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3.2 Two-dimensional case

Now, we move to the two-dimensional polynomial projection remapping method on the

triangular mesh. Suppose (xp; yp) is the coordinate of an interior node of the computational

domain 
, and h = min
I i 2 


hi is the minimum of the diameterhi , wherehi is the circumscribed

sphere's diameter of the triangleI i . We design a randomly moving mesh as:

(xt+1
p ; yt+1

p )R = ( x0
p; y0

p) + cRh(r t
xp

; r t
yp

);

wherer t
xp

; r t
yp

2 [� 1; 1] are random numbers andcR = 0:5.

3.2.1 Accuracy test

We use the initial function

u(x; y) = sin 8(2�x ) cos8(2�y ) + 10 � 12; � 1 � x; y � 1;

to verify high-order accuracy of our remapping method. We remapT = 10 times on the

randomly moving mesh and move back to the initial mesh and denoteu0
h(x; y) as the L2

projection of u(x; y).

The initial mesh divides the computational domain uniformly into small squares with

mesh sizeh = 2
N x

, whereNx = Ny are number of cells in each directions, then each square

will be divided into two triangles with the same area. As one can see in Table 3.3, our

polynomial projection remapping method achieves the designed third-order accuracy with

the positivity-preserving limiter. Besides the positivity-preservingmodi�cation, we also use

the local multi-resolution WENO limiter in this accuracy test but there are no cells which

have been picked out by the shock detection technique.

3.2.2 Positivity-preserving test

Then, we verify our remapping method can preserve positivity for the cell averages. This

time, the computational domain is a circle with radius 1 and center at (0; 0), and the initial
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Table 3.3: Two-dimensional third-order accuracy test: error andorder of the polynomial
projection remapping method on the randomly moving meshes withT = 10.

jju0
h � ujj

N L1 error order L2 error order L1 error order -

3200 3.4041E-04 8.4090E-04 5.1226E-03 -
7200 1.0441E-04 2.91 2.5425E-04 2.95 1.6435E-03 2.80 -
12800 4.4169E-05 2.99 1.0801E-04 2.98 7.0773E-04 2.93 -
20000 2.2683E-05 2.99 5.5478E-05 2.99 3.7241E-04 2.88 -

jj ~u10
h � ujj

N L1 error order L2 error order L1 error order -

3200 5.7979E-04 1.3293E-03 9.1929E-03 -
7200 1.8175E-04 2.86 4.2199E-04 2.83 3.1854E-03 2.61 -
12800 7.9977E-05 2.85 1.8771E-04 2.82 1.4200E-03 2.81 -
20000 4.0482E-05 3.05 9.5285E-05 3.04 7.3757E-04 2.94 -

jj ~uP;10
h � ujj

N L1 error order L2 error order L1 error order PP(%)

3200 5.6341E-04 1.3256E-03 9.1929E-03 0.0391
7200 1.8117E-04 2.80 4.2198E-04 2.82 3.1854E-03 2.61 0.0556
12800 7.9899E-05 2.85 1.8771E-04 2.82 1.4200E-03 2.81 0.0820
20000 4.0474E-05 3.05 9.5285E-05 3.04 7.3757E-04 2.94 0.0900
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Figure 3.2: Two-dimensional positivity-preserving test: third-order polynomial projection
remapping method with 1,016 triangular cells. Left: the initial function; middle: remap-
ping results without any limiter ~u10

h (x; y); right: remapping results with the two limiters
~uW;P;10

h (x; y). White symbols represent the cells where the cell-averages are negative.

function is

u(x; y) =
�

1 + sin
�
2� (r � 1

4)
�

+ 10� 12 r � 0:75
10� 12 r > 0:75

; r =
p

x2 + y2; r � 1: (3.3)

We move the interior nodes randomly forT = 10 times and return to the initial triangular

mesh. There are about 5.49% of the cells which have been modi�ed by the positivity-

preserving limiter and about 7.94% of the cells which have been modi�edby the multi-

resolution WENO limiter. Near the discontinuity, there are many negative cell averages

marked in white in Figure3.2without the positivity-preserving modi�cation, but our remap-

ping method preserves positivity well with the limiter.
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3.2.3 Discontinuity test

We design a discontinuous initial function

u(x; y) =

8
>><

>>:

10� 12 x � 0; y � 0
f 1(x; y) x � 0; y > 0
f 2(x; y) x > 0; y > 0
f 3(x; y) x > 0; y � 0

; � 1 � x; y � 1; (3.4)

where

f 1(x; y) = 10 � 12 + 10 max(0; 1 � 2:5R1); R1 =

r

(x +
1
2

)2 + ( y �
1
2

)2; (3.5)

f 2(x; y) =
�

10 x > 0:1; y > 0:1
10� 12 else

; (3.6)

f 3(x; y) =
�

10 R2 < 0:4
10� 12 R2 � 0:4

R2 =

r

(x �
1
2

)2 + ( y +
1
2

)2: (3.7)

Remapping on the randomly moving mesh withT = 10 times, we show the values at 128

points at the cut line x = y and x = � y in Figure 3.4.

Overall, there are about 1:38% of the cells which have been modi�ed by the positivity-

preserving limiter and about 5:32% of the cells which have been modi�ed by the multi-

resolution WENO limiter. In Figure 3.3, our remapping results with these two limiters

preserve positivity well and the WENO limiter can handle the overshoots near the disconti-

nuity which can be seen in Figure3.4.

3.3 Three-dimensional case

Consider the three-dimensional polynomial projection remapping method on the tetrahedral

meshes. Suppose that (xp; yp; zp) is the coordinate of an interior node of the computational

domain 
, and h = min
I i 2 


hi is the minimum of the diameterhi , wherehi is the circumscribed

sphere's diameter of the tetrahedralI i . Here, the randomly moving mesh is de�ned as before:

(xt+1
p ; yt+1

p ; zt+1
p )R = ( x0

p; y0
p; z0

p) + cRh(r t
xp

; r t
yp

; r t
zp

):
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Figure 3.3: Two-dimensional discontinuity test: third-order polynomial projection remap-
ping method with 14,120 triangular cells. Left: the initial function; middle: remapping
results without any limiter ~u10

h (x; y); right: remapping results with two limiters ~uW;P;10
h (x; y).

White symbols represent the cells where the cell-averages are negative.

(a) Cut line x = y

(b) Cut line x = � y

Figure 3.4: The function values at the cut linesx = y and x = � y. The black solid lines:
the initial function; the blue dash lines: the remapping results without any limiter ~u10

h (x; y);
the red dash dot lines: the remapping results with two limiters ~uW;P;10

h (x; y).
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3.3.1 Accuracy test

First, we use the following function to verify the high-order accuracy of our remapping

method

u(x; y; z) = cos4(�x ) cos4(�y ) cos4(�z ) + 10 � 12; 0 � x; y; z � 2:

The initial mesh divides the computational domain uniformly into small cubes with mesh size

h = 2
N x

, whereNx = Ny = Nz are number of cells in each directions, then each cube will be

divided into six tetrahedrons with the same volume. The remapping results with or without

the positivity-preserving limiter are listed in Table3.4, denoted as ~u10
h and ~uP;10

h , respectively.

Besides the positivity-preserving limiter, we also add the multi-resolution WENO limiter in

this accuracy test but there are no cells which have been picked outby the shock detection

technique. As one can see, our three-dimensional polynomial projection remapping method

achieves the designed third-order accuracy, regardless whether the limiter is involved.

3.3.2 Positivity-preserving test

In this subsection, we verify the 3D remapping method can preserve positivity for the cell

averages. We dig a ball of radius 1.4 centered at (0; 0; 0) in the cube computational domain

[� 2; 2] � [� 2; 2] � [� 2; 2] and design a positive initial function

u(x; y; z) =
�

10� 12 r � 1:8
r r > 1:8

; r =
p

x2 + y2 + z2; � 2 � x; y; z � 2: (3.8)

Part of the computational domain in [0; 2] � [0; 2] � [0; 2] is shown in Figure3.5. Here,

we plot the values on the computational nodes (xp; yp; zp) and we mark the cell which has

negative cell average with white color. Near the discontinuity, there are many negative

cell averages marked in white without the positivity-preserving limiter, and our remapping

method preserves positivity well.
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Table 3.4: Three-dimensional third-order accuracy test: error and order of the polynomial
projection remapping method on the randomly moving meshes withT = 10.

jju0
h � ujj

N L1 error order L2 error order L1 error order -

6000 1.2729E-03 2.3126E-03 1.7824E-02 -
20250 4.1717E-04 2.75 7.1604E-04 2.89 5.3933E-03 2.95 -
48000 1.7943E-04 2.93 3.0686E-04 2.95 2.2191E-03 3.09 -
93750 9.1861E-05 3.00 1.5826E-04 2.97 1.2293E-03 2.65 -

jj ~u10
h � ujj

N L1 error order L2 error order L1 error order -

6000 1.7112E-03 2.9751E-03 2.6823E-02 -
20250 5.9499E-04 2.61 9.9972E-04 2.69 9.5736E-03 2.54 -
48000 2.6383E-04 2.83 4.4650E-04 2.80 4.3434E-03 2.75 -
93750 1.3698E-04 2.94 2.3409E-04 2.89 2.2625E-03 2.92 -

jj ~uP;10
h � ujj

N L1 error order L2 error order L1 error order PP(%)

6000 2.4407E-03 4.0926E-03 4.8257E-02 0.15
20250 5.8573E-04 3.52 9.9562E-04 3.49 9.5734E-03 3.99 0.04
48000 2.5952E-04 2.83 4.4593E-04 2.79 4.3434E-03 2.75 0.00
93750 1.3511E-04 2.93 2.3376E-04 2.89 2.2625E-03 2.92 0.00
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Figure 3.5: Three-dimensional positivity-preserving test: third-order polynomial projection
remapping method with 3,938 tetrahedral cells. Left: the initial function; middle: remap-
ping results without any limiter ~u10

h (x; y; z); right: remapping results with the two limiters
~uW;P;10

h (x; y; z). The bottom three sub�gures are the 2D cut planes atx = 0 and white
symbols represent the cells where the cell-averages are negative.
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Figure 3.6: Three-dimensional discontinuity test: third-order polynomial projection remap-
ping method with 37,160 tetrahedral cells. Left: the initial function; middle: remapping
results without any limiter ~u10

h (x; y; z); right: remapping results with the two limiters
~uW;P;10

h (x; y; z). White symbols represent the cells where the cell-averages are negative.

3.3.3 Discontinuity test

In this subsection, we verify our 3D remapping method can handle the numerical oscillation

with the limiters. The discontinuous initial function is

u(x; y; z) =

8
>><

>>:

5 r � 0:4
0:5 0:4 < r � 0:8
2:5 0:8 < r � 1:4

10� 12 r > 1:4

; r =
p

(x � 1)2 + ( y � 1)2 + ( z � 1)2; 0 � x; y; z � 2:

(3.9)

There are about 0:60% of the cells which have been modi�ed by the positivity-preserving

limiter and about 4:63% of the cells which have been modi�ed by the multi-resolution WENO

limiter. In Figure 3.6, we show the whole computational domain without the partx; y; z > 1

and we can observe that the remapping results with these two limiters preserve positivity

well. In Figure 3.7, we show the values of 40 points at the cut linex = y = z, and one can

observe that the WENO limiter prevent the numerical oscillation well.

4 Numerical results with the ALE-DG scheme

Klingenberg, Schnucke and Xia [9, 10] and Fu, Schnucke and Xia [7] proposed a discontinuous

Galerkin method on the moving mesh for conservation laws and Hamilton-Jacobi equations.

The semi-discrete scheme isL2 stable and achieves optimal accuracy with an upwind ux.
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Figure 3.7: The function values at the cut linex = y = z. The black solid line: the initial
function; the blue dash line: the remapping results without any limiter~u10

h (x; y; z); the red
dash dot line: the remapping results with the two limiters ~uW;P;10

h (x; y; z).
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Combined with the total-variation-diminishing Runge-Kutta time discretization (TVD-RK)

methods [22], the fully-discrete scheme satis�es the geometric conservation law, under the

condition that the accuracy of the time discretization is greater than the spatial dimension.

When applied to uid dynamics, if we take the velocities of the mesh movements as

the uid velocities as in the Lagrangian methods, this DG scheme (which we refer as the

Lagrangian type DG scheme) may generate distorted meshes in thepresence of large uid

deformations, just as the standard Lagrangian schemes. We therefore use an indirect ALE-

DG scheme to overcome this di�culty. This ALE-DG scheme combines the Lagrangian type

DG method, suitable rezoning strategy and our high order polynomial projection remapping

method. In this section, we will compare the performances of the following three DG schemes,

the Eulerian DG scheme on the �xed mesh, the Lagrangian type DG scheme on the moving

mesh with the uid velocities and the indirect ALE-DG scheme. The numerical results on

these schemes will be denoted as� E , � L and � A , respectively.

4.1 One-dimensional ALE-DG scheme with the high order poly-
nomial projection remapping method

Here, we will �rst introduce the one-dimensional ALE-DG scheme briey and then display

our numerical results. Consider the following model problem:

@tu + @x f (u) = 0 ; (x; t ) 2 
 � (0; T];
u(x; 0) = u0(x); x 2 
 :

(4.10)

In the DG framework [9], we assume that there are given pointsf xn
j � 1

2
gN +1

j =1 and mesh ve-

locities f ! n
j � 1

2
gN +1

j =1 at the time level tn . In our Lagrangian type DG scheme, we take the

mesh velocity as the uid velocity in the Euler system. Then we can de�ne the new mesh

f xn+1
j � 1

2
gN +1

j =1 at the time level tn+1 by

xn+1
j � 1

2
:= xn

j � 1
2

+ ! n
j � 1

2
(tn+1 � tn );
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which should satisfy 
 =
S N

j =1 I n
j =

S N
j =1 I n+1

j with I n
j = [ xn

j � 1
2
; xn

j + 1
2
]. Connect the point

xn
j � 1

2
and xn+1

j � 1
2

by a straight line

xn
j � 1

2
(t) := xn

j � 1
2

+ ! n
j � 1

2
(t � tn ); 8t 2 [tn ; tn+1 ];

and assume that all of the points in the cellI n
j also move in the same way (along the straight

line). Then we de�ne the mesh velocity inI n
j as

! n (x; t ) := ! n
j + 1

2

x � xn
j � 1

2

� n
j (t)

+ ! n
j � 1

2

xn
j + 1

2
� x

� n
j (t)

; x 2 K n
j (t);

where

K n
j (t) = [ xn

j � 1
2
(t); xn

j + 1
2
(t)]; � n

j (t) = xn
j + 1

2
(t) � xn

j � 1
2
(t):

Supposef ' lgm
l=0 are the basis functions on the reference cell [� 1; 1] and de�ne

'̂ n
l (x; t ) := ' l

0

@
2

�
x � xn

j � 1
2

�

� n
j (t)

� 1

1

A ; x 2 K n
j (t);

on the discrete space

Vh(t) :=
�

vh 2 L2(
) jvh(x; t ) 2 P m
	

:

Then, by the integration-by-parts method we obtain the DG scheme on the moving mesh:

Find a function uh 2 Vh(t) such that

d
dt

(uh; vh)K j (t ) = ( g(!; u h); @xvh)K j (t )

� ĝ
�

! j + 1
2
; u�

h;j + 1
2
; u+

h;j + 1
2

�
v�

h;j + 1
2

+ ĝ
�

! j � 1
2
; u�

h;j � 1
2
; u+

h;j � 1
2

�
v+

h;j � 1
2

(4.11)

for all vh =
P m

l=0 vl '̂ l (x; t ) 2 Vh(t) and cells. Notice that g(!; u h) := f (uh) � !u h and

ĝ
�

! j + 1
2
; u�

h;j + 1
2
; u+

h;j + 1
2

�
is the numerical ux which should satisfy consistency, monotonicity

and Lipschitz continuity.

Based on this Lagrangian type DG method and our high order polynomial projection

remapping method, we give the owchart of our indirect ALE-DG scheme. Suppose we

know the meshf xn
j � 1

2
gN +1

j =1 and piecewise polynomialun
h at t = tn ,

1. Calculate the mesh velocityf ! n
j � 1

2
gN +1

j =1 as the Lagrangian method,
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2. Calculate the time step� which satis�es the CFL condition,

3. Solve the DG scheme (4.11) with the TVD-RK time discretization to get un+1
h on the

new meshf xn+1
j � 1

2
gN +1

j =1 ,

4. When the mesh is distorted, rezone the meshf xn+1
j � 1

2
gN +1

j =1 into f ~xn+1
j � 1

2
gN +1

j =1 ,

5. After the rezoning step, remapun+1
h to the new rezoned mesh and obtain ~un+1

h ,

then ~un+1
h on the new rezoned meshf ~xn+1

j � 1
2
gN +1

j =1 can enroll in the next loop.

4.1.1 Numerical tests for the one-dimensional Euler equati on

We consider the Euler equation of gas dynamics:
0

@
�

�u
E

1

A

t

+

0

@
�u

�u 2 + p
u(E + p)

1

A

x

= 0; (4.12)

while p = (  � 1)(E � 1
2 �u 2) for the calorically ideal gas. Here,� is the density, u is the

uid velocity, E is the total energy, p is the pressure and is a constant that depends on

the particular gas under consideration.

The time step satis�es

� �
1

2m + 1
min

j

hj

j� j � ! j j

wherem is the order of the piecewise polynomial space andj� j j is the maximum wave speed.

In the numerical tests, we adopt two sets of meshes,

� The �xed Eulerian mesh

x j + 1
2
(tn ) = x j + 1

2
(0) (4.13)

� The Lagrangian type moving mesh

Here, we assume that the mesh moves with the uid asx0(t) = u

x j + 1
2
(tn+1 ) = x j + 1

2
(tn ) + � � n

h;j + 1
2

(4.14)
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where � is the Roe average of the velocityu

� n
h;j + 1

2
=

� p
� � u� +

p
� + u+

p
� � +

p
� +

�

h;j + 1
2

;

and � �
h;j + 1

2
and u�

h;j + 1
2

are the left and right values of� h; uh on the cell boundaries

x j + 1
2
, respectively.

Accuracy test. The initial condition is given as

(� 0; u0; p0) =
�

1 + 0:2 sin(x)

2
p

3
;
p

� 0; � 
0

�
; x 2 [0; 2� ]:

Suppose that� (x; t ); u(x; t ); p(x; t ) are the exact solutions, and if we take = 3, then we

can verify that 2
p

3� (x; t ) is the exact solution of the Burgers' equation:

vt +
�

v2

2

�

x

= 0; v(x; 0) = 1 + 0 :2 sin(x)

and

u(x; t ) =
p

� (x; t ); p(x; t ) = � (x; t ) :

We demonstrate the numerical results for density att = 0:3 calculated by the Eulerian

type DG scheme� E , the Lagrangian type DG scheme� L and the ALE-DG scheme� A . In

the meantime, we show the projection error between the initial condition � (x; 0) and its

projection � 0. We rezone the old mesh to the new uniform mesh and apply our remapping

procedure in the ALE-DG scheme every 10 time steps. Table4.5shows the error on di�erent

sizes of the meshN = 32; 64; 128; 256 and we can observe that the error for the Lagrangian

type DG schemejj � (x; T ) � � L jj is a little smaller than the error for the Eulerian DG scheme

jj � (x; T ) � � E jj , and there is almost no di�erence after applying the remapping procedure.

The Lax problem. Now, we consider the Lax problem for the Euler system with the

initial condition

�
(�; u; p ) = (0 :445; 0:698; 3:528); x 2 [� 5; 0]
(�; u; p ) = (0 :5; 10� 10; 0:571); x 2 (0; 5]

 = 1:4: (4.15)
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Table 4.5: Error at time t = 0:3 for the one-dimensional Euler system with three third-order
DG schemes.

initial projection error jj � (x; 0) � � 0jj

N L1 error order L2 error order L1 error order

32 1.3369E-06 1.7768E-06 3.6271E-06
64 1.6684E-07 3.00 2.2220E-07 3.00 4.5481E-07 3.00
128 2.0842E-08 3.00 2.7778E-08 3.00 5.6909E-08 3.00
256 2.6058E-09 3.00 3.4722E-09 3.00 7.1298E-09 3.00

jj � (x; T ) � � E jj

N L1 error order L2 error order L1 error order

32 2.8338E-06 4.4243E-06 1.7132E-05
64 3.5842E-07 2.98 5.5769E-07 2.99 2.2268E-06 2.94
128 4.5526E-08 2.98 7.0768E-08 2.98 2.8311E-07 2.98
256 5.7121E-09 2.99 8.8737E-09 3.00 3.5532E-08 2.99

jj � (x; T ) � � L jj

N L1 error order L2 error order L1 error order

32 2.6026E-06 4.0057E-06 1.5937E-05
64 3.2157E-07 3.02 4.8801E-07 3.04 1.8884E-06 3.08
128 4.0057E-08 3.00 6.0117E-08 3.02 2.1532E-07 3.13
256 5.2076E-09 2.94 7.7262E-09 2.96 2.4073E-08 3.16

jj � (x; T ) � � A jj

N L1 error order L2 error order L1 error order

32 2.6026E-06 4.0057E-06 1.5937E-05
64 3.2157E-07 3.02 4.8801E-07 3.04 1.8884E-06 3.08
128 4.0057E-08 3.00 6.0117E-08 3.02 2.1532E-07 3.13
256 5.2076E-09 2.94 7.7262E-09 2.96 2.4073E-08 3.16
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(a) Eulerian DG, � E (b) Lagrangian type DG, � L (c) ALE-DG, � A

Figure 4.8: Comparison of the exact solution (black solid line) and three third-order DG
solutions (red points) for the Lax problem withN = 100 at time t = 1:3.

We show the numerical results at timet = 1:3 with N = 100 cells in Figure4.8. Notice that,

all of the DG schemes need a positivity-preserving limiter [26]. We can observe from the

middle sub�gure of Figure 4.8 that there are almost no points at the contact discontinuity

produced by the Lagrangian type DG scheme, which is the advantage of the Lagrangian

method, but numerical oscillations appear near the contact discontinuity.

To control these overshoots and keep high resolution on the contact discontinuity, we

utilize the local multi-resolution WENO limiter for the Lagrangian DG step and the remap-

ping step in the ALE-DG scheme. Here, we perform the remapping and the rezoning step

without moving the points at the front of the shock and the contact discontinuity, every

20 time steps whent > 1:0. The numerical solution� A in the right sub�gure of Figure 4.8

shows that the ALE-DG scheme makes a balance between the low numerical oscillations and

the low numerical dissipation.

The blast wave problem. In this part, we consider the blast wave problem for the Euler

system with

� = 1; u = 1; p =

8
<

:

1000; x 2 [0; 0:1)
0:01; x 2 [0:1; 0:9)
100; x 2 [0:9; 1]

 = 1:4; x 2 [0; 1]: (4.16)
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(a) Eulerian DG, � E (b) Lagrangian type DG, � L (c) ALE-DG, � A

Figure 4.9: Comparison of the reference solution (black solid line) andthree third-order DG
solutions (red points) for the blast wave problem withN = 200 at time t = 0:038.

In Figure 4.9, we show the numerical results of the density for the above threeDG schemes

at time t = 0:038 with N = 200 cells. The black solid line is the numerical solution from [2]

with 16,000 cells, which can be regarded as the reference solution.

This Lagrangian type DG scheme captures the contact discontinuity and the shock rigor-

ously, but there are some overshoots near the contact discontinuity, see the middle sub�gure

of Figure 4.9. Besides that, we apply our remapping procedure and the rezoningmethod

without moving the points at the front of the shock and contact discontinuities, every 50

time steps aftert > 0:03 and the results of the ALE-DG scheme are displayed in the right of

Figure 4.9, which can handle the overshoots very well and maintain the good performance

of the Lagrangian type DG scheme that there are less transition points on the contact dis-

continuity.

4.2 Two-dimensional ALE-DG scheme with the high order poly-
nomial projection remapping method

Let us apply our remapping method for the two-dimensional Lagrangian type DG scheme [7]

to solve the uid ow problems. We still begin with the brief description of the DG scheme

for the following model problem:

@tu + @x f (u) + @yg(u) = 0 ; (x; y; t) 2 
 � (0; T];
u(x; y; 0) = u0(x; y); (x; y) 2 
 :

(4.17)
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Assume the computational domain is divided into several triangles 
 =
S N

i =1 I n
i at the time

level tn and we know the mesh velocities! n
l = ( ! n

1;l ; ! n
2;l )

T at the vertex Pn
l = ( xn

l ; yn
l ) where

l denotes the index of the mesh vertices. Then the mesh at the time level tn+1 is de�ned as

Pn+1
l := Pn

l + ! n
l (tn+1 � tn );

and the new mesh satis�es 
 =
S N

i =1 I n+1
i , where the new triangular cellsI n+1

i are made up

with the new verticesPn+1
l . De�ne time-dependent straight lines for allt 2 [tn ; tn+1 ],

Pl (t) := Pn
l + ! n

l (t � tn );

and these verticesPl (t) make up with the time-dependent triangular cellI (t).

By an integration-by-parts method, we obtain the DG scheme on the moving mesh: Find

a function uh 2 Vh(t) such that for all vh 2 Vh(t) and all cells I (t),

d
dt

(uh; vh)I (t ) =( ~f (! 1; uh); @xvh)I (t ) + (~g(! 2; uh); @yvh)I (t )

�
D

~̂f (! 1; uin
h ; uex

h ; nx;I (t )); vin
h

E

@I(t)

�
D

~̂g(! 2; uin
h ; uex

h ; ny;I (t )); vin
h

E

@I(t)

(4.18)

where ~f (! 1; uh) := f (uh) � ! 1uh, ~g(! 2; uh) := g(uh) � ! 2uh, and

Vh(t) :=
�

vh 2 L2(
) jvh(x; y; t) 2 P m
	

:

Notice that ~nI (t ) = ( nx;I (t ) ; ny;I (t ))T is the outer normal vector for the cell boundary. The

values ofuh on the cell boundaryL 2 @I(t) with outer normal vector ~nL are de�ned as

uin
h (x )jL := lim

" ! 0+
uh(x � "~nL ); uex

h (x )jL := lim
" ! 0+

uh(x + "~nL ):

In our numerical test, we use the Lax-Friedrichs ux

~̂f (! 1; uin
h ; uex

h ; nx;I (t )) =
nx;I (t )

2

�
~f (! 1; uin

h ) + ~f (! 1; uex
h )

�
�

� 1;I (t )

2

�
uex

h � uin
h

�

� 1;I (t ) = max
n�

�
�nx;I (t )@u

~f (! 1; u)
�
�
� : t 2 [tn ; tn+1 ]

o

~̂g(! 2; uin
h ; uex

h ; ny;I (t )) =
ny;I (t )

2

�
~g(! 2; uin

h ) + ~g(! 2; uex
h )

�
�

� 2;I (t )

2

�
uex

h � uin
h

�

� 2;I (t ) = max
� �

�ny;I (t )@u ~g(! 2; u)
�
� : t 2 [tn ; tn+1 ]

	

(4.19)

38



which satis�es consistency, monotonicity and Lipschitz continuity. We refer to [7] for the

details of this Lagrangian type DG scheme.

If we de�ne the matrix A I (t ) as

A I (t ) := ( Pl2 (t) � Pl1 (t); Pl3 (t) � Pl1 (t)) ;

then we can map the 2D triangular reference cellI 0 to the physical cell I (t) as

P(t) := A I (t ) � + Pl1 (t); P(t) 2 I (t); 8� 2 I 0

where the physical cellI (t) is made up with Pl1 (t); Pl2 (t); Pl3 (t).

The above DG scheme (4.18) can also be constructed on the reference cellI 0,
�

d
dt

(JI (t )u�
h); v�

h

�

I 0

=
�

JK (I )

�

f (! 1; u�
h); @xv�

h

�

I 0

+
�
JK (I )

�g(! 2; u�
h); @yv�

h

�
I 0

�
D

~̂f (! 1; uin;�
h ; uex;�

h ; JI (t ) ~nx ); vin;�
h

E

@I0

�
D

~̂g(! 2; uin;�
h ; uex;�

h ; JI (t ) ~ny); vin;�
h

E

@I0

(4.20)

whereJI (t ) = det( A I (t )) = 2 jI (t)j is the determinant of the Jacobian matrix,~n (t) = A � T
I (t )n I 0 ,

u�
h; v�

h are de�ned on the reference cellI 0 and
� �

f (! 1; u�
h)

�g(! 2; u�
h)

�
= A � 1

I (t )

� ~f (! 1; u�
h)

~g(! 2; u�
h)

�
= A � 1

I (t )

�
f (u�

h) � ! 1u�
h

g(u�
h) � ! 2u�

h

�
:

Just like before, we develop a two-dimensional indirect ALE-DG scheme with the La-

grangian type DG method, the rezoning step and our high-order polynomial projection

remapping method. The owchart is as the same as that in Section4.1, so we omit it here.

4.2.1 Numerical tests for the two-dimensional Euler equati on of gas dynamics

Consider the two-dimensional Euler system

@
@t

0

B
B
@

�
�u
�v
E

1

C
C
A +

@
@x

0

B
B
@

�u
�u 2 + p

�uv
u(E + p)

1

C
C
A +

@
@y

0

B
B
@

�v
�uv

�v 2 + p
v(E + p)

1

C
C
A = 0 (4.21)

where � is the density, u; v are velocities on thex; y directions, E is the total energy, p =

( � 1)
�
E � 1

2 � (u2 + v2)
�

is the pressure for calorically ideal gas and is a constant that
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depends on the particular gas under consideration. In the following, we will set the mesh

velocity in the Lagrangian type moving mesh as! = ( u; v)T , whereu; v are the velocities of

the uid ows. Notice that, in the following �ve tests, we do not apply the multi-resolution

WENO limiter, since it is not necessary for these tests.

The accuracy test. We design an accuracy test for the 2D Euler system on [0; 4� ]� [0; 4� ].

The initial condition is:

� 0(x; y) =
1 + 0:2 sin(x+ y

2 )
p

6
; u0(x; y) = v0(x; y) =

r

2

� 0(x; y); p0(x; y) = � 0(x; y) :

Suppose that� (x; y; t), u(x; y; t), v(x; y; t), p(x; y; t) are the exact solutions, and if we take

 = 3, then we can verify that
p

6� (x; y; t) is the exact solution of the 2D Burgers' equation:

ut +
�

u2

2

�

x

+
�

u2

2

�

y

= 0; with u0(x; y) = 1 + 0 :2 sin(
x + y

2
)

and

u(x; y; t) = v(x; y; t) =

r

2

� (x; y; t); p(x; y; t) = � (x; y; t) :

The initial mesh divides the computational domain uniformly into small squares with mesh

sizeh = 4�
N x

, where Nx = Ny are number of cells in each directions, then each square will

be divided into two triangles with the same area.N = 2NxNy is the total number of the

triangular cells.

We show the numerical results of density obtained by the above three DG schemes at

t = 0:3, and denote them as� E , � L and � A in Table 4.6, respectively. In this test, we rezone

the old mesh to the new uniform mesh and apply our remapping procedure in the ALE-DG

scheme every 10 time steps. One can observe that all of these DG schemes have achieved

the designed third-order accuracy.

The Sedov problem. Consider the Sedov problem with the initial condition as:
8
<

:

� = 1;
u = 0;
v = 0;

(x; y) 2 [0; 1:1] � [0; 1:1]; (4.22)
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Table 4.6: Error at time t = 0:3 for the two-dimensional Euler system with three third-order
DG schemes.

initial projection error jj � (x; 0) � � 0jj

N L1 error order L2 error order L1 error order

200 2.6257E-05 3.0854E-05 5.7684E-05
800 3.3675E-06 2.96 3.8656E-06 3.00 7.4948E-06 2.94
3200 4.2002E-07 3.00 4.8347E-07 3.00 9.4584E-07 2.99
7200 1.2440E-07 3.00 1.4327E-07 3.00 2.8075E-07 3.00

jj � (x; T ) � � E jj

N L1 error order L2 error order L1 error order

200 3.4846E-05 4.5010E-05 1.2433E-04
800 5.7684E-06 2.59 7.0419E-06 2.68 1.8629E-05 2.74
3200 5.9869E-07 3.27 7.7396E-07 3.19 2.8207E-06 2.72
7200 1.7409E-07 3.05 2.2913E-07 3.00 7.9754E-07 3.12

jj � (x; T ) � � L jj

N L1 error order L2 error order L1 error order

200 3.4814E-05 4.4429E-05 1.2076E-04
800 5.3049E-06 2.71 6.5904E-06 2.75 1.7712E-05 2.77
3200 5.6200E-07 3.24 7.2203E-07 3.19 2.7120E-06 2.71
7200 1.6017E-07 3.10 2.1291E-07 3.01 8.1529E-07 2.96

jj � (x; T ) � � A jj

N L1 error order L2 error order L1 error order

200 3.5181E-05 4.5255E-05 1.2388E-04
800 5.8654E-06 2.58 7.1579E-06 2.66 1.9292E-05 2.68
3200 6.1853E-07 3.25 8.0111E-07 3.16 2.9961E-06 2.69
7200 1.7986E-07 3.05 2.3630E-07 3.01 8.4165E-07 3.13

41



(a) Density (b) Pressure

Figure 4.10: The Sedov problem of the Eulerian DG scheme.

and the initial internal energy e = 10� 13 almost everywhere except for the only one cellI

near the origin where we sete = 0:244816
jI j . This problem is performed on the initially uniform

mesh with 2,048 triangular cells. In Figure4.10and 4.11, we show the numerical results of

density and pressure at timet = 1, calculated by the Eulerian DG scheme on the �xed mesh

and the ALE-DG scheme.

For the Sedov problem, we utilize the rezoning procedure and the remapping procedure

after t > 0:5 every 20 time steps, and we perform a simple smoothing operator on the inner

points in the rezoning step.

For this case, the ALE-DG scheme captures the shock precisely and the mesh quality is

well after adjusting the inner mesh. In Figure4.12, we demonstrate the cut line atx = y on

these two DG schemes, and one can observe that the numerical di�usion for the ALE-DG

scheme is much less than that for the Eulerian DG scheme.

The Noh problem. Consider the Noh problem with the initial condition as:
8
<

:

� = 1;
ur = � 1;
e = 10� 13;

(x; y) 2 [0; 1] � [0; 1]; (4.23)
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(a) Density (b) Pressure

Figure 4.11: The Sedov problem of the ALE-DG scheme.

(a) Density (b) Pressure

Figure 4.12: The Sedov problem at the cut linex = y.
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whereur is the radial velocity and take = 5
3. Reective boundary conditions are considered

for the left and below boundaries, besides that, free boundary conditions are considered for

the right and top boundaries. In practice, the free boundary condition is set as the initial

values. Since the initial internal energy is very close to 0 and the numerical results may be

negative that makes the scheme unstable, the positivity-preserving limiter is essential in this

test.

In Figure 4.13, we show the numerical results of density and pressure for the Eulerian

DG scheme at timet = 0:6 with 2,048 triangular cells. In Figure4.14, we show the results

for the Lagrangian type DG scheme att = 0:058 and we can observe that the mesh quality

is very bad near the origin so we need to introduce the polynomial projection remapping

procedure and the rezoning strategy.

For the Noh problem, we perform the rezoning procedure and the remapping procedure

after t > 0 every 10 time steps, and the rezoning strategy is as same as thatin the Sedov

problem. As one can see, the numerical results of the ALE-DG scheme are much better

than the results on the �xed mesh, and the shock surface is sharper, in Figure 4.15. We

demonstrate the cut line atx = y in Figure 4.16, and one can observe that the ALE-DG

scheme captures the shock well.

The Saltzman problem Consider the Saltzman problem with the initial condition as:
8
>><

>>:

� = 1;
u = 0;
v = 0;

e = 10� 10;

(x; y) 2 [0; 1] � [0; 0:1]; (4.24)

and take  = 5
3. Reective boundary conditions are adopted for the right, up andbelow

boundaries, besides that, the left boundary is a piston with velocityu = 1. Figure 4.17

shows the initial mesh on the computational domain [0; 1]� [0; 0:1] with 640 triangular cells.

For the cells I near the left boundary and its virtual neighbor cellJ which has common
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(a) Density (b) Pressure

Figure 4.13: The Noh problem of the Eulerian DG scheme att = 0:6.

Figure 4.14: The Noh problem of the Lagrangian type DG scheme att = 0:058. Right: the
zoomed mesh near the origin.
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(a) Density (b) Pressure

Figure 4.15: The Noh problem of the ALE-DG scheme att = 0:6.

(a) Density (b) Pressure

Figure 4.16: The Noh problem at the cut linex = y.
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Figure 4.17: The initial Saltzman mesh.

edge with I on the left boundary, we take the values on the cellJ as

� J = � I ; uJ = 2 � uI ; vJ = vI ; pJ = pI :

For this Saltzman problem and the next Dukowicz problem, as the leftboundary is

moving, it is di�cult for the Eulerian DG scheme to solve this kind of problem, thus we

just use the Lagrangian type DG scheme and the indirect ALE-DG scheme to solve these

problems.

We �rst try to use the Lagrangian type DG scheme to solve the Saltzman problem,

but the triangular cells is squeezed and distorted soon (see Figure4.18) and that stops the

simulation. For the Saltzman problem, our rezoning method preserves the y-coordinates

unchanged and modi�es the inner pointPl (x l ; yl ) in the x direction as

~x l :=
1
4

(x l;1 + x l;2 + x l;3 + x l;4) ;

wherex l;1; x l;2; x l;3; x l;4 are thex-coordinates of the four neighbors ofPl . Therefore, we apply

the rezoning method and our remapping procedure every 20 time steps to maintain the mesh

quality, then we show the numerical results att = 0:6 in Figure 4.19. The shock front in the

ALE-DG scheme is clear and it is much more robust.

The Dukowicz problem. Last, consider the Dukowicz problem in [6]. The computational

domain in the Dukowicz problem consists of two parts, the left one is atrapezoid with the
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Figure 4.18: The Saltzman problem of the Lagrangian type DG schemeat t = 0:034. Right:
the zoomed mesh near the left moving boundary.

Figure 4.19: The Saltzman problem of the ALE-DG scheme att = 0:6.
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Figure 4.20: The initial Dukowicz mesh with 8,000 triangular cells.

vertical left boundary and the right boundary slanted at 60� . The right region is a slanted

parallelogram and Figure4.20 shows the initial computational mesh with 8; 000 triangular

cells. The left region is made up with the trapezoid (0; 0), (1; 0), (0; 3
2), (1 + 3

2

p
3; 3

2), and

the right region is made up with the parallelogram (1; 0), (3; 0), (1 + 3
2

p
3; 3

2), (3 + 3
2

p
3; 3

2).

The initial condition is given as
8
>><

>>:

� L = 1;
uL = 0;
vL = 0;
pL = 1;

and;

8
>><

>>:

� R = 1:5;
uR = 0;
vR = 0;
pR = 1;

(4.25)

where we take = 1:4 in the whole region.

Reective boundary conditions are considered for the top, bottom and right boundaries,

and the left boundary is a piston with velocityu = 1:48. The computational mesh is squeezed

and distorted and that terminates the program in the Lagrangian type DG method, which

can be seen in Figure4.21. This time, our rezoning method preserves they-coordinates

unchanged and divide the mesh uniformly in thex direction. After adjusting the compu-

tational mesh and applying the remapping procedure every 20 time steps, we calculate to

t = 1:3 with the indirect ALE-DG scheme and show the density contour in Figure 4.22. One

can observe high resolution incident shock and transmitted shock interfaces in our ALE-DG

scheme.
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Figure 4.21: The Dukowicz problem of the Lagrangian type DG schemeat t = 0:038. Right:
the zoomed mesh near the left moving boundary.

Figure 4.22: The Dukowicz problem of the ALE-DG scheme att = 1:3.
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5 Concluding remarks

In this paper, we develop a high-order accurate, essentially non-oscillatory, conservative and

positivity-preserving polynomial projection remapping method in one, two and three dimen-

sions to couple with the discontinuous Galerkin method for the Lagrangian type moving

mesh, and establish an indirect ALE-DG framework. Since our remapping method is based

on determining the intersections between the old and new meshes, ithas a wider range of

application. By adding the local multi-resolution WENO limiter, our remapping method

can prevent the numerical oscillations generated by the high-order polynomials near the

discontinuities. We also apply a positivity-preserving scaling limiter to ensure positivity

without a�ecting the high order accuracy. We have designed a series of numerical tests in

one, two and three dimensions to show that our remapping algorithmis high-order accurate,

non-negative and essentially non-oscillatory. When used to solve the uid dynamics, our

remapping method is conservative for mass, momentum and total energy, and it can pre-

serve positivity for density and internal energy. All of the above good properties have been

veri�ed by benchmark test problems for the Euler system. In future work, we will develop a

three-dimensional indirect ALE-DG scheme as an application of this remapping method in

three dimensions.
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