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Abstract

In this paper, we develop a high-order positivity-preserving polymoial projection remap-
ping method based on the.? projection for the discontinuous Galerkin (DG) scheme. Com-
bined with the Lagrangian type DG scheme and the rezoning strateg, we present an
indirect arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALEDG) method. By clip-
ping precisely the intersections between the old distorted mesh atite new rezoned mesh,
our remapping method is high-order accurate and has no limitationifthe mesh movements,
so it is suitable for the large deformable problems. A multi-resolution eighted essentially
non-oscillatory (WENO) limiter is adopted to overcome numerical odtations and it can
keep the original high-order accuracy in the smooth region. This WM limiter combines
several di erent degrees of polynomials which are the local projections of the original
polynomial with nonlinear weights calculated by their smoothness, #refore, it is highly
parallel e cient. A positivity-preserving limiter is also added for the physical variables in
computational uid dynamics without losing the original high-order acuracy and conser-
vation. The properties of positivity-preserving, non-oscillation ath high-order accuracy of
the remapping method will be shown by a variety of numerical experiemts on one, two
and three dimensional unstructured meshes. The performancktibe ALE-DG scheme with
rezoning and remapping is also tested for the Euler system in one amg dimensions.
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1 Introduction

There are two major techniques in computational uid dynamics: tk Lagrangian frame-
work with the mesh moving with the uid velocity, and the Eulerian framework with a xed

mesh, which can easily extend to higher-order accuracy. Howevidre moving mesh may be
twisted in the Lagrangian framework, making the schemes unstablelhereas the Eulerian
framework requires a ner mesh for higher resolution near shociad especially near contact
discontinuities. The arbitrary Lagrangian-Eulerian (ALE) framewak incorporates the ad-
vantages of both frameworks above, and the indirect ALE framewk builds in the following

three steps.

1. The Lagrangian step: solving the hydrodynamic equations and wing the mesh ver-

tices with the uid motion;
2. The rezoning step: adjusting the mesh for better mesh quality;
3. The remapping step: transferring numerical information betven the two meshes.

The computational mesh in the arbitrary Lagrangian-Eulerian metbd can move with
the uid as in the Lagrangian method. However, when the distorteanesh causes numerical
instability, the rezoning and remapping steps are used to continu@e calculation in another
mesh with better mesh quality. The ALE framework is widely applied to @mputational
uid dynamics, based on the nite volume (FV) method [3, 6, 5, 2, 15, or the Runge-Kutta
discontinuous Galerkin (RK-DG) method P, 10, 7].

In the ALE framework based on the FV method, the remapping pradure transfers cell
averages from the old mesh to the new mesh, and this procedure@wsld be high-order ac-
curate, essentially non-oscillatory, positive and conservative, ,@®r example, what we have
done in [L3, 14]. Based on the discontinuous function space, the DG method [/] is widely
adopted for solving hyperbolic conservation laws, since it is exible fa&womplex mesh ge-

ometries and unstructured meshes. In the meantime, this methasl highly parallel e cient,



because the elements only communicate with their immediate neighlsorDi erently from

the ALE-FV method, the remapping procedure in the ALE-DG methd is more complicated,
since it needs to transfer high-order polynomials to another set bfgh-order polynomials
de ned on the new rezoned mesh, while maintaining the good perfoamces. Up to now,
most of the remapping methods are applied for the nite volume metd, and there have
been fewer discussions on remapping methods for the DG method this paper, we focus on
the remapping step in the ALE framework coupled with the discontinous Galerkin method.

As we know, one needs to rezone the computational mesh when thesh is distorted in
the ALE framework, and there are many studies about the rezorgnstrategies, such as the
reference Jacobian rezoning {], high-order linear mesh relaxation], or using the Voronoi
tessellation method [&]. In [25], the author developed an adaptive mesh topology optimiza-
tion technique, to improve mesh quality with mesh re nements, edgeollapse operation and
mesh regularization. We will not focus on this aspect in our study, ahhence we may use
di erent rezoning strategies for each of our numerical test praéms.

The remapping algorithm has two popular approaches: the uxeddsed method and the
intersection-based method. By describing the information exchgas between the old and
new mesh cells as a transport equatiorb,[ 19, 12, 17], the ux-based remapping method
is faster and easier to apply in the ALE framework. But this method émands that the
connection and the number of cells should not change, and the masbtions should not be
too drastic. The solution-updating algorithm in the moving mesh methd with the nite
element approach also solves a transport equation to convert mitelement solution between
moving meshes5, 16], which can be regarded as a ux-based method.

The intersection-based remapping approach is more exible and rigms since it picks
out exactly the intersections between the old distorted mesh anéhé¢ new rezoned mesh and
calculates the contributions of the old cells to the new cell§,[2, 20, 13, 14]. This algorithm
does not require the connectivity on the new mesh to be the sameths old mesh, and it has

no restriction on the movements of the mesh vertices, both of whidimit the uxed-based



remapping algorithm. Meanwhile, the clipping error is close to machinee and can be
ignored. Zhang 7] developed a conservative intersection-based remapping methioased
on L2 projection for the one-dimensional moving mesh method. But thepalications for the

two or three dimensional cases remain to be seen. It is fairly stratfprward to detect the

overlaps between two intervals in one dimension, but nding the intesection between two
triangular or tetrahedral cells in two or three dimensions is costly,specially when compared
to the ux-based remapping technique. However, in the Lagrangmtype DG method based
on the unstructured mesh, the rezoning step will change the mesbnnectivity if a large

deformable mesh appears, and only the intersection-based rempigyg method can handle
this.

To extend the area of our algorithm's application for the large defarable problems
on unstructured mesh, we prefer the intersection-based renmpg approach and it can be
described as follows. Assume that we have two sets of meshes, n@dnumerical solution is
a piecewise high order polynomial de ned on the old mesh. This piecegisolynomial must
be transferred to the new mesh, and the new piecewise polynomiaisnalso have the same
high order accuracy.

Besides that, we would like to develop an indirect ALE-DG scheme, bymbining the
moving mesh DG scheme introduced ird] 10, 7], via a Lagrangian type mesh movement,
with the rezoning step and our polynomial projection remapping appach. We will use this
Lagrangian type DG scheme to solve the uid dynamics rst, since tis scheme can capture
contact discontinuities and ow interfaces automatically and sharly with low numerical
dissipation. When the computational mesh undergoes distortion targe deformation, which
leads to numerical instability or extremely small time step, we will try 6 rezone the mesh
and then use our intersection-based remapping algorithm to makbe scheme more stable.

When dealing with high gradient or discontinuous solutions, the highrder piecewise
polynomial in the discontinuous Galerkin method may be oscillatory, wth should be avoided

during the computation. The multi-resolution weighted essentially no-oscillatory (WENO)



technique, which establishes smoothness indicators for a seriegpofynomials of di erent

degrees and assigns di erent nonlinear weights to them, is a popukglution. In the smooth
region, the higher-order polynomials have more weights so that timew modi ed polynomial

can maintain high-order accuracy. On the other hand, in the nom®oth region, the lower
order polynomials play a larger role in the new modi ed polynomial, making essentially

non-oscillatory. Recently, based on a sequence of lo¢al projection polynomials in the
troubled cell, Zhu, Qiu and Shu 78, 29 proposed a new multi-resolution WENO limiter for
the discontinuous Galerkin method. In comparison with the traditioal WENO limiters, this

new WENO limiter is more exible with any positive linear weights as long ashtey sum up
to 1, and can be easily extended to higher order schemes. This limiterespecially suitable
for the moving mesh methods. Besides, since it mainly uses information the troubled

cell itself, with information from immediate neighboring cells used onlyof the smoothness
indicator of the lowest degree polynomial, this limiter is e cient and canbe executed in
parallel mode. Therefore, we will use this new multi-resolution WENO liiter for the new

polynomials, to obtain modi ed polynomials which are essentially non-oslatory and highly

accurate.

Since the ALE-DG framework is usually applied for uid ow problems, te physical
guantities involved should preserve their physical properties, sucas being conservative
and positive (non-negative). Our polynomial projection remappingethod is automatically
conservative which will be explained in the next section. But it is not esy to maintain
high-order accuracy when one needs to preserve also the posiiviichang and Shu proposed
a widely used positivity-preserving framework{6], see also44], which is based on the pos-
itivity of cell averages and includes a simple positivity-preserving siirag limiter, for nite
volume and discontinuous Galerkin schemes. By compressing the hagker polynomial to-
wards its positive cell average, this limiter makes the negative minimuof the polynomial in
the target domain greater than 0, without destroying its original igh order accuracy. This

positivity-preserving technique has been successfully used forthigyder conservative remap-



ping method in two and three dimensionsl[3, 14], and a variety of numerical experiments
have con rmed its high e ciency, so we will introduce it into our remapping procedure.

In this paper, we develop a high order polynomial projection remapm method with the
local multi-resolution WENO limiter and the positivity-preserving limiter for the ALE-DG
framework. In Section2, we describe our remapping algorithm step by step. In Section
3, we design a series of numerical experiments in one, two and thramensions to verify
the excellent properties of our remapping algorithm, such as highdar accuracy, essentially
non-oscillatory performance, and positivity-preserving. Afterards, in conjunction with the
Lagrangian type DG scheme, we use this new ALE-DG scheme to sadaeme benchmarks of
the one and two dimensional Euler system and compare with the sarmoeder Eulerian DG
scheme and the Lagrangian type DG scheme in Sectidn Finally, concluding remarks are

given in Sectionb5.

2 The polynomial projection remapping algorithm
2.1 Basic concepts

Let us start with the one-dimensional polynomial projection remgpng algorithm. In the

discontinuous Galerkin method, the numerical solutiom, 2 V™ is a piecewise polynomial
VT = fw(x):wXx)j, 2P™; 1 i Ng;

: _ _ S
wherel; = [X; %;xi,,%]; i=1; ;N are cells of the computational domain := 2, I;. In

each celll;, u, can be written as

UnJi, = u' 1(x);
1=0

whereu! 2 R are coe cients and ' (x) are basis functions, e.g.

"o(X)=1; i) =x a(x)= X% a(x) = X3

In the arbitrary Lagrangian-Eulerian discontinuous Galerkin methd, sometimes we need

to modify the computational mesh after the Lagrangian step to matain good mesh quality.
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Now, assume that we have a new rezoned mesh :‘2 N [T which satis es

jlii>0; j§j>0; I} 1, =0; [ [ =0; 8i6j;
wherej | means the size of the cell. Then we need to convert the numericalusion u;, based
on the old meshfI;gY, to the new rezoned meslHiligY, with the new discrete polynomial
space

M= fwx)w(x)j; 2P™ 1 i Ng

That means we need to nd a new piecewise polynomia}, 2 V™, which is the L2 projection

of u, on ¥v™

(tth;Wh)r = (Un;Wh)r;  8wh 2 V™ (2.1)

R
where U; v)rj = u(x)v(x)dx. It is not easy to compute (Jh;Wh)rj, sinceuy, is a piecewise
polynomial de ned onfl;g; and one needs to calculate the intersection between the new

cell I7 and the old meshf I;gY, ,

(Un;Wh)p = (UniWh), T = VGITCIRIS
i=1 i=1 1=0
In practice, we takewy from the basis functions' ¢(x); s=0;1; ;m, So we can rewrite
(2.1 as
XX
(s sOO); = W00 s00), T s s=0iL (2.2)
i=1 1=0
Notice that, if we take' o(x) =1 in ( 2.2), then we have
Z W Z
i (X)dX = . Un(x)dx
i Fro 0 (2.3)
= up(x)dx

a
which means our remapping algorithm is conservative.

Assumetrj. = L &' 1(x). The new coe cients b satisfy

. XX
UJ|(I 1(X); s(X))rj = ur(* i(x); s(X))hTrj; s=0;1; m

1=0 i=1 1=0



which can be written as

Mid = b (2.4)

whereM! = (M{)T,_, is the mass matrix withM}, = (" 1(X);" s())- ande = (th;  ;eh,)"

are the coe cients which need to be determined. The right-hand s&lof (2.4) is de ned as

bl = (kb)) M= U s0), Ty s=05L m:
i=1 1=0

So, the idea of the polynomial projection remapping algorithm is ndig a new piecewise
polynomial v, 2 ¥, on the new rezoned meshigly, by solving the linear system 2.4). But
the new high-order piecewise polynomial may generate overshoatsl the minimum for the
physically non-negative variables may less than 0, both of them sHduwe avoided. After
solving (2.4), we add a multi-resolution WENO limiter on the new polynomial to prevat
numerical oscillations, especially when we design the high-order reggpang procedure, and we
add a positivity-preserving limiter to maintain positivity for the relevant physical quantities,

such as density and internal energy. The above limiters should noestroy the original

accuracy and the owchart of the remapping algorithm is below:
1. Clipping: nding the intersection of I;  [j; 81;] ;

2. Numerical integration: calculate the integration of the basis fustions over the inter-

sections (i(x);" s(x)),, T, then obtain the new polynomialsug by solving (2.4);

3. Multi-resolution WENO limiter: modify the high-order polynomials by the multi-

resolution WENO limiter, in the so-called troubled cells;

4. Positivity-preserving limiter: modify the high-order polynomials bythe positivity-

preserving limiter.

Next, we will introduce our polynomial projection remapping algoritim in detail.



2.2 Clipping

Although the intersection-based remapping method needs to det@ne the intersections, it
is much more exible for large deformable problems on unstructurecheshes and easier to
achieve high-order accuracy since the clipping error can be ignoréitherefore, we prefer the
intersection-based remapping method for the ALE-DG scheme ohe unstructured mesh.

The clipping procedure for two one-dimensional interval$;; [ is very simple, so we
concentrate on the multi-dimensional clipping procedure for the itangular cells and the
tetrahedral cells.

In this paper, we use the Sutherland-Hodgman polygon clipping algthm [ 13, 23] for the
two-dimensional triangular cells. In this clipping algorithm, one need® use the "window'
cell to clip against the “target' cell. By setting visible and invisible sideof each edge in the
‘'window' cell, one can separate the “target' cell with the "window' cellsdges and pick the
intersection parts in the visible sides. Repeating the above loop faxah edge in the "window'
cell completes the algorithm. Figure2.1 gives an example for the clipping algorithm with
two triangular cells.

The clipping algorithm for the tetrahedral cells is similar to the 2D clippirg algorithm, by
setting visible and invisible faces and clipping the “target' cell using datace of the "'window'
cell in turn. The clipping error is close to machine zero and has no invelment with the mesh

size, that helps our intersection-based remapping algorithm to aelve high-order precision.

@) (b) (©) (d) (e)

Figure 2.1: The clipping procedure. The black triangle is the target Bethe red triangle is
the window cell, the gray shaded polygon is the clipping result.



2.3 Numerical integration

Now, we need to calculate the integration for the product of two tss functions over the
intersections ; ! I7. For the one-dimensional case, the intersection is also an intenahd
it is easy to calculate the integration with suitable high-order quadrare rules by mapping
the intersection interval to the reference unit [ 1; 1].

For the two-dimensional case, the intersection can be any polygotherefore we will
split it into several triangles and use high-order quadrature ruletcalculate the numerical
integration over these triangles. We locate the barycenter of thmnvex polygon and connect
it to the vertices to divide the intersection into multiple smaller triangles. If the polygon is
non-convex, one can also cut it into several triangles by connedirthe vertices. The idea
of the numerical integration step for the three-dimensional case the same. By splitting
complicated polyhedral cells into several small tetrahedral cellsne can do such integration
over these shapes with suitable high-order quadrature rules.

In this paper, we adopt unstructured triangular meshes for thesto-dimensional tests and
unstructured tetrahedral meshes for the three-dimensionaésts. The reference cell in one
dimension is the interval [ 1;1] and the two-dimensional triangular reference cell is made
up with vertices (0;0); (1;0); (0;1). The three-dimensional tetrahedral reference cell is
made up with vertices (Q0;0); (1;0;0); (0;1;0); (0;0;1). In Table 2.1, Table 2.2, Table
2.3and Figure 2.2, we show the quadrature points and the weights on the referencells for
the third-order remapping schemes in one, two and three dimensgmrespectively. These
quadrature rules hold exactly for the product of two quadratic plynomials.

Consider the triangular celll = f(x}; y}); (X5 ¥5); (x%; y3)g and de ne matrix A, as:

Xy XpoXzooXy
A= | il |
Y2 Y1 Y3 Y1

then we can map the reference cdl} to the physical celll as

|
X X
= A| ! + L

y ) v ;o (xy)21; 8( 1 2) 2o
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The integration over| can be written as:

Z
(105y): " s(xy), = . "X y)" s(x;y)dxdy
Z
= | (X1 2y 2) s(X(C 15 2):y( 15 2)2)1jd 1d 2 (2.5)
0
- .X
= jlj P xy ) s(xy)
=1
where ; =A o+ z,'l .1 and (1. ; 2 ) are the weights and the quadrature points in

the reference cell, respectively, which have been listed in Tabl2.2 The integration over
the tetrahedral cell is the same, so we omit it here.

Up to now, we can use the numerical integration method to calculatbe mass matrixM
and the right hand side vectorb! in (2.4). Then, we obtain our new piecewise polynomial

ty, by solving the linear system 2.4).

Table 2.1: Quadrature rule for the one-dimensional remapping sche.

| | ;
0.56888888888888890.0000000000000000
0.47862867049936G5-0.5384693101056831
0.47862867049936650.5384693101056831
0.2369268850561891-0.9061798459386640
0.23692688505618910.9061798459386640

Table 2.2: Quadrature rule for the two-dimensional remapping schne.

! | L | 2
0.2059505047608870.1249495032332320.437525248383384
0.2059505047608870.4375252483833840.124949503233232
0.2059505047608870.4375252483833840.437525248383384
0.0636914142862230.7971126518600710.165409927389841
0.0636914142862230.7971126518600710.037477420750088
0.0636914142862230.1654099273898410.797112651860071
0.0636914142862230.1654099273898410.037477420750088
0.0636914142862230.0374774207500880.797112651860071
0.0636914142862230.0374774207500880.165409927389841
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Table 2.3: Quadrature rule for the three-dimensional remapping flseme.

! ‘ 1; ‘ 2, ‘ 3
0.01904761904761900.00000000000000000.50000000000000Q00.5000000000000000
0.01904761904761900.50000000000000000.00000000000000000.5000000000000000
0.01904761904761900.50000000000000000.50000000000000000.0000000000000000
0.01904761904761900.50000000000000000.00000000000000000.0000000000000000
0.01904761904761900.00000000000000000.50000000000000000.0000000000000000
0.01904761904761900.00000000000000000.00000000000000Q00.5000000000000000
0.08858982474298(07/0.69841970432438660.10052676522520450.1005267652252045
0.0885898247429807/0.10052676522520450.10052676522520450.1005267652252045
0.088589824742980/0.10052676522520450.10052676522520450.6984197043243866
0.08858982474298070.10052676522520450.69841970432438660.1005267652252045
0.13283874668559070.05688137952042340.31437287349319420.3143728734931922
0.132838746685590/0.31437287349319220.314372873493192420.3143728734931922
0.1328387466855907/0.31437287349319420.31437287349319420.0568813795204234
0.132838746685590/0.31437287349319220.05688137952042340.3143728734931922

1,0)
0,0,1)

(0,1,0)

(10) (o,o 5o

(0,0)

Figure 2.2: The quadrature points.

2.4 Multi-resolution WENO limiter

Near the discontinuity or in the large gradient regions, high-ordergynomials may generate
overshoots or oscillations which could make the scheme unstableertsfore we should pay
more attention on how to prevent the numerical oscillations e ectigly. Di erently from
our previous remapping work 13, 14], where we reconstructed high-order polynomials based
on the cell averages with the multi-resolution WENO procedure whiclsan overcome the
numerical oscillation, the new polynomialsis-generated by this remapping algorithm may

be oscillatory, since they are solved by the linear systerfd.), corresponding to the standard
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L2 projection without any limitation. To overcome this problem, we adopa new type of
multi-resolution WENO limiter [ 28, 29 for the DG scheme, which can retain high-order
accuracy in the smooth region and can achieve essentially non-ostitg performance in the
discontinuous region.

In this part, we will follow the multi-resolution WENO procedure propaed in 30, 28] step
by step to generate an essentially non-oscillatory polynomial. In cgdto save space, we take
the one-dimensional third-order multi-resolution WENO limiter as an rample to discuss
the speci ¢ procedure and we refer to3[), 2¢] for higher-order schemes or multi-dimensional
cases.

Suppose we need to modify a third-order polynomiai £x) = P ot 1(x), for all

j=1, N.

Step 1. De ne low-order polynomialsgp(x); cu(x) on local lower-order polynomial
spaces with theL? projection method
(@) 10y = wr(:(x) 5 1=01 s (2.6)
J
where s(x) 2 P*® for s = 0;1. Notice that, g(x) is de ned on the basisg(x) =
P
voo &' k(X), so the integration in (2.6) can be written as
xS X
EC ) ) = H (K00 1201 5s (27)
k=0 k=0

which is convenient to solve. Besides that, we de ne the third-ordgolynomial as

() = 4y (X).

Step 2. Introduce linear weights and de ne

Po(X) = (X);

mw—-imm—%mm

PX) = —G(X) —Zpox) —Zpi(X);
2.2 2.2 2.2

13



— 10. — 100

- 1. — 10 - 1. HRE
where o1 = 57, 11= 7 and o2 = 7337 12 = 5110 22 = 157- BY combining ps(X)

with the linear weights s.,, we can achieve the optimal third-order accuracy

X2
s2Ps(X) = Q(X) = 4 (X):

s=0
Step 3. De ne smoothness indicators to measure how smooth teefsinctions are in

the cell I7,

2 X2 Z
@ux) dx; o= jiniz * Qra(x)

2
dx;
=1 0 @x

1= rjjrjj @x

and the smoothness indicator of the zero-order polynomipy(x) should be de ned in

another way. De ne

1
— 2. — 2. — 0 1. — .
o= (bt )% 1=(Br, )T 0= g gger 1T o
and
0 jO ﬂ jO ﬂ
= : =1 : = 1+ — : = 1+ — :
0 ot 1 1 0 0 0 o+ "o 1 1 1+
where we take'o = 10 °. Then we have
1 2
0= — O(U'rj b 1) + 1(b"rj+1 U’rj) ; = ot 1
wheret is the cell average on the celfj.
Step 4. De ne the nonlinear weights as
! d ! 1 1=0;1;2
= - @@ @ @ = . + = 1
o !O+!1+!2, = 1;2 "0+ | ’ y Ly

where =j , o+t 2 1) and the nal polynomial is given by

W — ><Z | .
‘*r,- (x) = I'sps(X):
s=0

However, it is not necessary to apply this multi-resolution WENO limiterfor every cell.

Instead, we identify the troubled cells by a shock detection techrug [21, 28, 29, 31], and

only apply the WENO limiter on those cells.
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To summarize, we simply employ the multi-resolution WENO limiter only on afew
troubled cells to improve the e ciency of our method. Actually, in the following numerical
tests, we do not always utilize this limitation because some of theseste do not need it.
This limiter combines the polynomial's localL? projection on lower discrete polynomial
spaces with nonlinear weights given by the polynomials’ smoothnesmd this limiter is
parallel e cient, since there is little information exchange between eighbors (only for the
smoothness indicator of the lowest degree polynomial). The nonlimeaeights are close to
the linear weights in the smooth region, and the modi ed polynomiah‘r’f__L(x) is close to the
original high-order polynomialu;j (x). In the discontinuous region, on the other hand, the

low-order polynomials play a larger role im\lél(x), which can prevent numerical oscillations.
J

2.5 Positivity-preserving limiter

Associated with uid ow problems, the involved physical quantities inthe ALE framework
such as density and internal energy should preserve positivity. Erequires our polynomial
projection remapping procedure to maintain this property as well.

Assume that the input piecewise polynomial satis esin(x) > " everywhere, or at least
at the quadrature points in eachl; T I7, and we obtain the new piecewise polynomial, by
solving the linear system 2.4) with or without the multi-resolution WENO limiter, where "
is a small positive number and we také = 10 *. Then the new cell averagesr. are also
greater than", since

Jrjlu'rj = U'rj;l .

(Un; 1)rj

A
= Upji,dx  O:

i=1 i 0
Besides that, we need to preserve positivity for the new piecewiselynomial d,, other-

wise, the numerical solutions in the next Lagrangian DG step may besgative, which are
contradicted with the laws of physics.

Referring to the work of Zhang and ShuZt], we compress the polynomiallrrin each cell

15



[} towards its non-negative cell average:. as,

uﬁ )= #0)+@Q b
o " (2.8)
= min M ;. mp =min & (x); "=10 *
jer M ] I 1

So the new polynomials are non-negativlerij(-x) > 0 for allx 2 Sj. If we need to remapuf
onfljgy, toanew meshfl gy, inthe next remapping loop,S; is the set of the quadrature
points in eachlj T I;; 8 1. If we need to do the Lagrangian DG step in the ALE-DG scheme
with df, Sj is the set of the quadrature points in the cell and its boundaries. Notice
that S; is a nite set and we only need to nd the minimum ofuﬁ_(x) in §; rather than
the minimum in the entire cell I7, which makes the implementation of this scaling limiter
considerably more e cient.

When we solve the Euler system, we rst utilize the above positivity-geserving limiter
for the density , then we use the momentum, total energy and the modi ed densitjo
preserve positivity for the internal energye, as detailed in P4]. This compressing strategy
is also suitable for the multi-dimensional case.

Meanwhile, this positivity-preserving limiter is also conservative becae it does not a ect
the cell averages and also maintains the original high-order accayaas proved in P4, 26].
Notice that, we apply this limiter after the multi-resolution WENO limiter since it will not
destroy the essentially non-oscillatory property by compressindgné polynomial towards the
cell average.

We have now completed the discussion of the polynomial projectioemapping algo-
rithm. Although we have only introduced the local multi-resolution WENO limiter and the
positivity-preserving limiter for the one-dimensional situation in dedil, extending to the
multi-dimensional case is not di cult, and details may be found in the réerences 9, 26).
Following that, we apply our remapping method to several benchmks in one, two, and
three dimensions to validate its good properties such as consergat high-order accuracy,
positivity and essentially non-oscillatory performance. After thatwe utilize the novel ALE-

DG scheme consisting of this remapping algorithm and the Lagrangidype DG scheme to

16



solve the Euler system in one and two dimensions.

3 Numerical results

3.1 One-dimensional case

Suppose = fIoglL,; 17 =[x? ,;x?, ,]is the initial mesh and we design a randomly moving
2 2

mesh strategy = fIigl,; I} =[x} ;x,.],

1y 1
7 *3z

= X°

i+ crhrf o5 h=minh; h=x%, x
2 2 ]

t 0
Xi i+3 i

;=2 N (3.1)

1

2

Whererit 1 2 [ 1;1] are random numbers and we takezs = 0:5 in our numerical tests. After
2

remapping T times on the randomly moving mesh, we require the nal mesh to moveack

to the initial mesh in the accuracy tests.
3.1.1 Accuracy test

Now, we verify the high-order accuracy of our polynomial projeicn remapping method.

Suppose the initial function is
u(x) = cos®@x)+10 % x 2 [0;1]

First, we calculate the initial L? projection u®(x) of u(x) on the initial mesh and calculate
the error ku®  uk. After that, we will remap T = 10 times on the randomly moving mesh
(3.1) and move back to the initial meshf12g,. We denote the remapping results ast%

P;10

without any limiters, 4}"'° with the positivity-preserving limiter and &'

with the local
multi-resolution WENO limiter and the positivity-preserving limiter.

Based on the di erent degrees of the DG space, we show the thiodder and the fourth-
order remapping results in Table3.1 and Table 3.2 as examples, respectively. The last
column "PP' and "WENO' in these tables represent the ratio of the cellseing modi ed by
the positivity-preserving limiter and the local multi-resolution WENO limiter. As one can

see, our high-order polynomial projection remapping method ackes the designed high-

order accuracy, regardless of the limiters being involved.
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Table 3.1: One-dimensional third-order accuracy test: error andrder of the polynomial
projection remapping method on the randomly moving meshes wifth = 10.

jiup

ujj

N | L!error

order | L2 error

order| L! error

order |

80 | 6.3222E-04
160 | 7.4433E-05
320 | 9.1500E-06
640| 1.1378E-06

1.3081E-03
3.09| 1.6780E-04
3.02| 2.1112E-05
3.01| 2.6433E-06

6.4792E-03
2.96| 9.7294E-04
2.99| 1.2489E-04
3.00| 1.5622E-05

2.74
2.96
3.00

jje°

ujj

|
N | L!error

order | L2 error

order| L! error

order |

80 | 2.0806E-03
160 | 2.1561E-04
320| 2.7779E-05
640 | 3.2693E-06

4.0362E-03
3.27| 4.3533E-04
2.96| 6.1088E-05
3.09| 7.1444E-06

2.3422E-02
3.21| 3.0377E-03
2.83| 5.3377E-04
3.10| 5.7270E-05

2.95
2.51
3.22

Jih

P;10 -
h ujj

|
N | L!error

order | L2 error

order| L! error

order |

PP(%)

80 | 2.2009E-03
160 | 2.1557E-04
320| 2.7781E-05
640 | 3.2693E-06

4.1378E-03
3.35| 4.3538E-04
2.96| 6.1088E-05
3.09| 7.1444E-06

2.3389E-02
3.25| 3.0377E-03
2.83| 5.3377E-04
3.10( 5.7270E-05

2.94
2.51
3.22

6.63
3.44
2.03
1.03

= W;P;10
J1ey,

ujj

|
N | L*error

order \ L2 error

order \ LY error

order | WENO(%)

80 | 2.2007E-03
160 | 2.1557E-04
320| 2.7781E-05
640 | 3.2693E-06

4.1374E-03
3.35| 4.3537E-04
2.96| 6.1088E-05
3.09| 7.1444E-06

2.3389E-02
3.25| 3.0373E-03
2.83| 5.3377E-04
3.10| 5.7270E-05

2.94
251
3.22

2.25
0.38
0.00
0.00
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Table 3.2: One-dimensional fourth-order accuracy test: erromd order of the polynomial
projection remapping method on the randomly moving meshes wifth = 10.

jiup

ujj

N | L!error

order | L2 error

order| L! error

order |

80 | 7.4378E-05
160 | 4.5190E-06
320| 2.8097E-07
640 | 1.7696E-08

1.5060E-04
4.04| 9.6719E-06
4.01| 6.0863E-07
3.99| 3.8104E-08

6.8521E-04
3.96| 5.8090E-05
3.99| 3.8955E-06
4.00| 2.4771E-07

3.56
3.90
3.98

jje°

ujj

|
N | L!error

order | L2 error

order| L! error

order |

80 | 4.1647E-04
160 | 2.7564E-05
320 | 1.6354E-06
640 | 1.0805E-07

8.0582E-04
3.92| 5.5238E-05
4.08| 3.4513E-06
3.92| 2.2483E-07

4.0711E-03
3.87| 3.2861E-04
4.00] 2.8659E-05
3.94| 1.8635E-06

3.63
3.52
3.94

Jih

P;10 -
h ujj

|
N | L!error

order | L2 error

order| L! error

order |

PP(%)

80 | 5.6114E-04
160 | 2.8468E-05
320 | 1.6389E-06
640 | 1.0806E-07

9.4540E-04
4.30] 5.5564E-05
4.12| 3.4516E-06
3.92| 2.2483E-07

4.0694E-03
4.09| 3.2861E-04
4.01] 2.8659E-05
3.94| 1.8635E-06

3.63
3.52
3.94

5.88
3.06
1.53
5.78

= W;P;10
J1ey,

ujj

|
N | L*error

order \ L2 error

order \ LY error

order |

WENO(%)

80 | 5.6114E-04
160 | 2.8468E-05
320 | 1.6389E-06
640 | 1.0806E-07

9.4540E-04
4.30] 5.5564E-05
4.12| 3.4516E-06
3.92| 2.2483E-07

4.0694E-03
4.09| 3.2861E-04
4.01] 2.8659E-05
3.94| 1.8635E-06

3.63
3.52
3.94

0.25
0.00
0.00
0.00
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Figure 3.1: One-dimensional discontinuity test: third-order polynmial projection remapping
method with 80 cells. The black solid lines are the initial function3.2), the blue dash lines
are the numerical resultsu}(x) without any limiter, the red dash dot lines are the numerical
results with the two limiters & '°(x). Top right: the zoomed-in sub gure atx 2 [0:2; 0:25];

bottom right: the zoomed-in sub gure atx 2 [0:675 0:825].

3.1.2 Discontinuity test

In this subsection, we consider a discontinuous functior8.Q) to verify our polynomial pro-

jection remapping method is positive and essentially non-oscillatory

8
10 12 X 025
3
1 025<x 0.7,
2 05 07<x 08°
102 08<x 1

u(x) = 0O x L (3.2)
Just as before, we remap on the randomly moving mesh for= 10 times with N = 80 cells.
In Figure 3.1, there are about 2.13% cells which have been modi ed by the positivity
preserving limiter and about 1.75% cells which have been modied by thecal multi-
resolution WENO limiter. It is obvious that our positivity-preserving limiter can preserve
positivity in the top right sub gure and the multi-resolution WENO limite r can prevent the

numerical oscillation in the bottom right sub gure.
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3.2 Two-dimensional case

Now, we move to the two-dimensional polynomial projection remappy method on the
triangular mesh. SupposeX;; Yp) is the coordinate of an interior node of the computational
domain , and h = min h; is the minimum of the diameterh;, whereh; is the circumscribed

sphere's diameter of the triangld;. We design a randomly moving mesh as:

(Y5 R = (X5 ¥p) + GrO(r, iry):

wherer} ;ri 2 [ 1;1] are random numbers andr = 0:5.

3.2.1 Accuracy test

We use the initial function
u(x;y)=sin®@2x)cof(2y)+10 *?; 1 xy 1

to verify high-order accuracy of our remapping method. We remap = 10 times on the
randomly moving mesh and move back to the initial mesh and denotg(x;y) as the L2
projection of u(x;y).

The initial mesh divides the computational domain uniformly into small quares with
mesh sizeh = Ni whereN, = Ny are number of cells in each directions, then each square
will be divided into two triangles with the same area. As one can see in ke 3.3 our
polynomial projection remapping method achieves the designed ttiorder accuracy with
the positivity-preserving limiter. Besides the positivity-preservingnodi cation, we also use
the local multi-resolution WENO limiter in this accuracy test but there are no cells which

have been picked out by the shock detection technique.

3.2.2 Positivity-preserving test

Then, we verify our remapping method can preserve positivity forhe cell averages. This

time, the computational domain is a circle with radius 1 and center at® 0), and the initial

21



Table 3.3: Two-dimensional third-order accuracy test: error andrder of the polynomial
projection remapping method on the randomly moving meshes wifth = 10.
| jiup  ujj
N | L'error order| L%error order| L® error order| -
3200 | 3.4041E-04 8.4090E-04 5.1226E-03 -
7200 | 1.0441E-04 2.91| 2.5425E-04 2.95| 1.6435E-03 2.80 -

12800| 4.4169E-05 2.99| 1.0801E-04 2.98 7.0773E-04 2.93 -
20000| 2.2683E-05 2.99| 5.5478E-05 2.99| 3.7241E-04 2.88 -

N_ |
3200 | 5.7979E-04 1.3293E-03 9.1929E-03 -
7200 | 1.8175E-04 2.86| 4.2199E-04 2.83| 3.1854E-03 2.61 -

12800| 7.9977E-05 2.85| 1.8771E-04 2.82 1.4200E-03 2.81 -
20000| 4.0482E-05 3.05| 9.5285E-05 3.04| 7.3757E-04 2.94 -

jien”  ujj

L error order\ L2 error order\ LY error order\ -

| jie, ™ uij
| L'error order| LZ?error order| L' error order| PP(%)

N

3200 | 5.6341E-04 1.3256E-03 9.1929E-03 0.0391
7200 | 1.8117E-04 2.80| 4.2198E-04 2.82| 3.1854E-03 2.61] 0.0556
12800| 7.9899E-05 2.85| 1.8771E-04 2.82| 1.4200E-03 2.81 0.0820
20000| 4.0474E-05 3.05| 9.5285E-05 3.04| 7.3757E-04 2.94| 0.0900
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Figure 3.2: Two-dimensional positivity-preserving test: third-ordr polynomial projection
remapping method with 1,016 triangular cells. Left: the initial functio; middle: remap-
ping results without any limiter &°(x;y); right: remapping results with the two limiters
et""1%(x; y). White symbols represent the cells where the cell-averages argaiive.

function is

1+sin 2 (r 1) +10 ¥ r 075,

p___
ulxiy) = 10 12 (> o075 = XFyHroL (3.3)

We move the interior nodes randomly fofT = 10 times and return to the initial triangular
mesh. There are about 5.49% of the cells which have been modied Hyetpositivity-
preserving limiter and about 7.94% of the cells which have been modida/ the multi-
resolution WENO limiter. Near the discontinuity, there are many negtve cell averages
marked in white in Figure 3.2 without the positivity-preserving modi cation, but our remap-

ping method preserves positivity well with the limiter.
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3.2.3 Discontinuity test

We design a discontinuous initial function

8
3 102 x 0Oy O
o fixy) x 0 y>0, : .
u(x;y) = 2fo(x;y) x>0,y>0" Loxy & (34)
Cfa(xy) x>0y O
where
r 1 1
fi(x;y)=10 2 +10max(0;1 2:5R;); R;= (x+ E)2+(y 5)2; (3.5)
10 x> 01, y>01
f2060)= 10 12 A (36)
r
.10 R,< 04 ~ 1, 1,
f3(X, y) - 10 12 R2 0:4 RZ - (X E) +(y+ E) . (37)

Remapping on the randomly moving mesh withl = 10 times, we show the values at 128
points at the cut linex = y andx = vy in Figure 3.4

Overall, there are about 138% of the cells which have been modi ed by the positivity-
preserving limiter and about 532% of the cells which have been modied by the multi-
resolution WENO limiter. In Figure 3.3 our remapping results with these two limiters
preserve positivity well and the WENO limiter can handle the overshds near the disconti-

nuity which can be seen in Figure3.4.

3.3 Three-dimensional case

Consider the three-dimensional polynomial projection remappingethod on the tetrahedral
meshes. Suppose thaixf; yp; Zp) is the coordinate of an interior node of the computational
domain , and h= min h; is the minimum of the diameterh;, whereh; is the circumscribed

sphere's diameter of the tetrahedral;. Here, the randomly moving mesh is de ned as before:

t+1 .\, t+1 . St+1 — (v0.,,0. 50 .t Lty
(Xp+ 1yp+ 1Zp+ )R _(Xpiypizp)-'- CRh(rXp’ryp’er)'
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Figure 3.3: Two-dimensional discontinuity test: third-order polynmial projection remap-
ping method with 14,120 triangular cells. Left: the initial function; midile: remapping
results without any limiter #1°(x; y); right: remapping results with two limiters &~ *°(x; y).
White symbols represent the cells where the cell-averages are risga
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Figure 3.4: The function values at the cut linex = y and x = y. The black solid lines:
the initial function; the blue dash lines: the remapping results withauany limiter 4:°(x; y);
the red dash dot lines: the remapping results with two limitersi>""'%(x; y).
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3.3.1 Accuracy test

First, we use the following function to verify the high-order accury of our remapping
method

u(x;y;z) = cos*(x)cod(y)cod(z)+10 2, 0 xyy;z 2

The initial mesh divides the computational domain uniformly into small abes with mesh size
h= Ni whereN, = Ny = N, are number of cells in each directions, then each cube will be
divided into six tetrahedrons with the same volume. The remapping selts with or without
the positivity-preserving limiter are listed in Table3.4, denoted asu® and uf "', respectively.
Besides the positivity-preserving limiter, we also add the multi-resalion WENO limiter in
this accuracy test but there are no cells which have been picked du the shock detection
technique. As one can see, our three-dimensional polynomial grctjon remapping method

achieves the designed third-order accuracy, regardless whettiee limiter is involved.

3.3.2 Positivity-preserving test

In this subsection, we verify the 3D remapping method can preserpositivity for the cell
averages. We dig a ball of radius 1.4 centered at; (@ 0) in the cube computational domain

[ 222] [ 22] [ 2;2] and design a positive initial function

12 . p
u(x;y;z) = 10r rr> igg; r= x2+y2+2z22 2 xyvy,z 2 (3.8)

Part of the computational domain in [Q2] [0;2] [0;2] is shown in Figure3.5 Here,
we plot the values on the computational nodesxf; y,; z,) and we mark the cell which has
negative cell average with white color. Near the discontinuity, ther are many negative
cell averages marked in white without the positivity-preserving limite and our remapping

method preserves positivity well.
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Table 3.4: Three-dimensional third-order accuracy test: errorma order of the polynomial

projection remapping method on the randomly moving meshes wifth = 10.
| jiup  ujj

N | L'error order| L%error order| L error order |

6000 | 1.2729E-03 2.3126E-03 1.7824E-02 -

20250| 4.1717E-04 2.75| 7.1604E-04 2.89| 5.3933E-03 2.95 -

48000| 1.7943E-04 2.93| 3.0686E-04 2.95| 2.2191E-03 3.09 -
93750| 9.1861E-05 3.00] 1.5826E-04 2.97| 1.2293E-03 2.65 -

N |
6000 | 1.7112E-03 2.9751E-03 2.6823E-02 -
20250| 5.9499E-04 2.61 9.9972E-04 2.69 9.5736E-03 2.54 -

48000| 2.6383E-04 2.83| 4.4650E-04 2.80| 4.3434E-03 2.75 -
93750| 1.3698E-04 2.94| 2.3409E-04 2.89| 2.2625E-03 2.92 -

jien”  ujj

L error order\ L2 error order\ LY error order\ -

| jie, ™ uij
| L'error order| LZ?error order| L' error order| PP(%)

N

6000 | 2.4407E-03 4.0926E-03 4.8257E-02 0.15
20250| 5.8573E-04 3.52| 9.9562E-04 3.49 9.5734E-03 3.99] 0.04
48000| 2.5952E-04 2.83| 4.4593E-04 2.79| 4.3434E-03 2.75] 0.00
93750| 1.3511E-04 2.93| 2.3376E-04 2.89 2.2625E-03 2.92] 0.00
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Figure 3.5: Three-dimensional positivity-preserving test: third+aer polynomial projection
remapping method with 3,938 tetrahedral cells. Left: the initial funtion; middle: remap-
ping results without any limiter #£°(x;y; z); right: remapping results with the two limiters
e 1(x;y;z). The bottom three sub gures are the 2D cut planes ax = 0 and white
symbols represent the cells where the cell-averages are negative.
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Figure 3.6: Three-dimensional discontinuity test: third-order polgomial projection remap-
ping method with 37,160 tetrahedral cells. Left: the initial function middle: remapping
results without any limiter &°(x;y;z); right: remapping results with the two limiters
et 1%(x;y; z). White symbols represent the cells where the cell-averages argaive.

3.3.3 Discontinuity test

In this subsection, we verify our 3D remapping method can handle émumerical oscillation
with the limiters. The discontinuous initial function is

8
3 5 r 04
u(x:y:2) = 05 04<r 08
Y 2 25 08<r 14°
" 10 *? r> 1.4

r=p(x 12+(y 12+(z 1% 0 xy;z 2

(3.9)
There are about 060% of the cells which have been modi ed by the positivity-preserving
limiter and about 4:63% of the cells which have been modi ed by the multi-resolution WENO
limiter. In Figure 3.6, we show the whole computational domain without the park;y;z > 1
and we can observe that the remapping results with these two limiterpreserve positivity
well. In Figure 3.7, we show the values of 40 points at the cut ling = y = z, and one can

observe that the WENO limiter prevent the numerical oscillation well.

4 Numerical results with the ALE-DG scheme

Klingenberg, Schnucke and Xia9, 10] and Fu, Schnucke and Xia{] proposed a discontinuous
Galerkin method on the moving mesh for conservation laws and Hamiftelacobi equations.

The semi-discrete scheme is? stable and achieves optimal accuracy with an upwind ux.
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Figure 3.7: The function values at the cut linex = y = z. The black solid line: the initial
function; the blue dash line: the remapping results without any limite°(x;y; z); the red

dash dot line: the remapping results with the two limitersu™'%(x; y; z).
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Combined with the total-variation-diminishing Runge-Kutta time discretization (TVD-RK)
methods P7], the fully-discrete scheme satis es the geometric conservationMaunder the
condition that the accuracy of the time discretization is greater thn the spatial dimension.
When applied to uid dynamics, if we take the velocities of the mesh mewments as
the uid velocities as in the Lagrangian methods, this DG scheme (whicwe refer as the
Lagrangian type DG scheme) may generate distorted meshes in theesence of large uid
deformations, just as the standard Lagrangian schemes. We thtore use an indirect ALE-
DG scheme to overcome this di culty. This ALE-DG scheme combineshie Lagrangian type
DG method, suitable rezoning strategy and our high order polynoniiarojection remapping
method. In this section, we will compare the performances of thellowing three DG schemes,
the Eulerian DG scheme on the xed mesh, the Lagrangian type DG seme on the moving
mesh with the uid velocities and the indirect ALE-DG scheme. The nurarical results on

these schemes will be denoted ag, | and A, respectively.

4.1 One-dimensional ALE-DG scheme with the high order poly-
nomial projection remapping method

Here, we will rst introduce the one-dimensional ALE-DG scheme I y and then display

our numerical results. Consider the following model problem:

@+ @f(u) = 0; (xt)2 (0;TI;
u(x; 0) Uo(X); X2 (4.10)

In the DG framework [7], we assume that there are given pointéx” 1giLt and mesh ve-
2

locities f! J.” lgj’\'zjl at the time level t". In our Lagrangian type DG scheme, we take the
2
mesh velocity as the uid velocity in the Euler system. Then we can d@e the new mesh

n+l AN +1

fx"igy atthe time level t"*1 by
2

XM= xM o+ (™),
2
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; ; — SN n — SN N+l ya N — [yN «yN ;
which should satisfy =, I" = ;I with I = [xj l,xj+l]. Connect the point
2

2

x' 1 and xj’”ll by a straight line
2 2

xj” %(t) = xj” + !j” %(t th); 8t 2 [th;ther];

N

and assume that all of the points in the cell" also move in the same way (along the straight
line). Then we de ne the mesh velocity inl" as

X XJn 1 Xjr1+1 X
J

where
KO =06 @i, a0 0= %L1 x5 (0):

Supposef' g, are the basis functions on the reference cell I; 1] and de ne

0 1
2 X xjn 1
(1) = '@—”(t) 2 1A X2 K1)
]

on the discrete space

Va(t) = vh 2 L2() jva(x;t) 2P ™

Then, by the integration-by-parts method we obtain the DG schemon the moving mesh:

Find a function uy, 2 Vy(t) such that

d
a(Uh;Vh)Kj @ = (9(t;un); @Vh)Kj t) (4.11)

+ + +
+ . . .
O M sl iUnger Vigea PO By sty 1 Yy

i
2 2

P
for all vi = 2o viN(X;t) 2 Vp(t) and cells. Notice thatg(';u ) := f(us) 'up and

g ! U1 u;_j .1 Is the numerical ux which should satisfy consistency, monotonicity
itz o

2

and Lipschitz continuity.
Based on this Lagrangian type DG method and our high order polynaat projection

remapping method, we give the owchart of our indirect ALE-DG sckhme. Suppose we

N +1

know the meshf xj” g-; and piecewise polynomial at t = t",

1
2

1. Calculate the mesh velocity ! 1 gLt as the Lagrangian method,

1
2
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2. Calculate the time step which satis es the CFL condition,

3. Solve the DG scheme4(11) with the TVD-RK time discretization to get uﬂ*l on the

new meshf xj””% gj’\‘:ll ,

4. When the mesh is distorted, rezone the mesh'"i gt into fx"" gty
2 2

5. After the rezoning step, remapjﬂ+1 to the new rezoned mesh and obtaiuﬂ-*-l,

then eff ™ on the new rezoned meshx""; gLi* can enroll in the next loop.
2
4.1.1 Numerical tests for the one-dimensional Euler equati on

We consider the Euler equation of gas dynamics:

0 1 O 1
u
@uA + @ u2+pA =0; (4.12)
E u(g + p)

t
while p = ( 1)(E 3 u?) for the calorically ideal gas. Here, is the density, u is the
uid velocity, E is the total energy, p is the pressure and is a constant that depends on
the particular gas under consideration.

The time step satis es

min h
2m+1 jj 'JJ

wherem is the order of the piecewise polynomial space andj is the maximum wave speed.

In the numerical tests, we adopt two sets of meshes,

The xed Eulerian mesh

X+ 3(tn) = %;,3(0) (4.13)

The Lagrangian type moving mesh

Here, we assume that the mesh moves with the uid as{t) = u

Xj+%(tn+l) = Xj+%(tn)+ E;j+% (4.14)
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where is the Roe average of the velocity

2 2

and h + 2 and uh_j , 1 are the left and right values of ,; u, on the cell boundaries

Xj+ 1, respectively.

Accuracy test.  The initial condition is given as

1+0:2sin(x) p—
—p—

( 0 Uo; Po) = 3 ; oo 5 X2[021]

Suppose that (x;t); u(x;t); p(x;t) are the exact solutions, and if we take = 3, then we

can verify that 2p 3 (x;t) is the exact solution of the Burgers' equation:
Vit — =0; v(x;0)=1+0:2sin(x)

and
u(x;t) = P- (x;t); px;t)= (xt) :

We demonstrate the numerical results for density at = 0:3 calculated by the Eulerian
type DG scheme g, the Lagrangian type DG scheme | and the ALE-DG scheme . In
the meantime, we show the projection error between the initial cdition (x;0) and its
projection °. We rezone the old mesh to the new uniform mesh and apply our renpapg
procedure in the ALE-DG scheme every 10 time steps. Tabde5 shows the error on di erent
sizes of the mesiN = 32;64; 128 256 and we can observe that the error for the Lagrangian
type DG schemgj (x;T) jj is a little smaller than the error for the Eulerian DG scheme

j (x;T) gjj, and there is almost no di erence after applying the remapping predure.

The Lax problem. Now, we consider the Lax problem for the Euler system with the
initial condition

(;u;p)=(0:4450:698 3.528) x 2 [ 5;0]

(;u;p)=(0:510 0,0571y x 2 (0;5] =14 (4.15)
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Table 4.5: Error at timet = 0:3 for the one-dimensional Euler system with three third-order
DG schemes.

| initial projection error jj (x; 0)

%li

N \ L error

order \ L2 error

order \ LY error

order

32 | 1.3369E-06
64 | 1.6684E-07
128 | 2.0842E-08
256 | 2.6058E-09

1.7768E-06
3.00| 2.2220E-07
3.00( 2.7778E-08
3.00( 3.4722E-09

3.6271E-06
3.00| 4.5481E-07
3.00( 5.6909E-08
3.00( 7.1298E-09

3.00
3.00
3.00

i (xT)

Ell

|
N \ L error

order \ L2 error

order \ LY error

order

32 | 2.8338E-06
64 | 3.5842E-07
128 | 4.5526E-08
256 | 5.7121E-09

4.4243E-06
2.98| 5.5769E-07
2.98| 7.0768E-08
2.99| 8.8737E-09

1.7132E-05
2.99| 2.2268E-06
2.98| 2.8311E-07
3.00| 3.5532E-08

2.94
2.98
2.99

i (xT)

LJJ

|
N | L*error

order \ L2 error

order \ LY error

order

32 | 2.6026E-06
64 | 3.2157E-07
128 | 4.0057E-08
256 | 5.2076E-09

4.0057E-06
3.02| 4.8801E-07
3.00 6.0117E-08
2.94| 7.7262E-09

1.5937E-05
3.04| 1.8884E-06
3.02| 2.1532E-07
2.96| 2.4073E-08

3.08
3.13
3.16

i (T)

Al

|
N | L*error

order \ L2 error

order \ LY error

order

32 | 2.6026E-06
64 | 3.2157E-07
128 | 4.0057E-08
256 | 5.2076E-09

4.0057E-06
3.02| 4.8801E-07
3.00 6.0117E-08
2.94| 7.7262E-09

1.5937E-05
3.04| 1.8884E-06
3.02| 2.1532E-07
2.96| 2.4073E-08

3.08
3.13
3.16
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(a) Eulerian DG, ¢ (b) Lagrangian type DG, | (c) ALE-DG, a

Figure 4.8: Comparison of the exact solution (black solid line) and theethird-order DG
solutions (red points) for the Lax problem withN = 100 at time t = 1:3.

We show the numerical results at time = 1:3 with N = 100 cells in Figure4.8. Notice that,
all of the DG schemes need a positivity-preserving limite2f]. We can observe from the
middle sub gure of Figure 4.8 that there are almost no points at the contact discontinuity
produced by the Lagrangian type DG scheme, which is the advangagf the Lagrangian
method, but numerical oscillations appear near the contact disctnuity.

To control these overshoots and keep high resolution on the cant discontinuity, we
utilize the local multi-resolution WENO limiter for the Lagrangian DG step and the remap-
ping step in the ALE-DG scheme. Here, we perform the remapping @rhe rezoning step
without moving the points at the front of the shock and the contatdiscontinuity, every
20 time steps whernt > 1:0. The numerical solution A in the right sub gure of Figure 4.8
shows that the ALE-DG scheme makes a balance between the low renmnal oscillations and

the low numerical dissipation.

The blast wave problem. In this part, we consider the blast wave problem for the Euler
system with

8

<100Q x2[0;0:1)

=1; u=1; p=_ 00L x2]J[01009) =1:4, x2][0;1] (4.16)
100 x 2 [0:9;1]
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(a) Eulerian DG, ¢ (b) Lagrangian type DG, | (c) ALE-DG, a

Figure 4.9: Comparison of the reference solution (black solid line) atiiree third-order DG

solutions (red points) for the blast wave problem withN =200 at time t = 0:038.

In Figure 4.9, we show the numerical results of the density for the above thr&G schemes
at time t = 0:038 with N = 200 cells. The black solid line is the numerical solution fron]

with 16,000 cells, which can be regarded as the reference solution.

This Lagrangian type DG scheme captures the contact discontinyiand the shock rigor-
ously, but there are some overshoots near the contact discontity, see the middle sub gure
of Figure 4.9. Besides that, we apply our remapping procedure and the rezonimgethod
without moving the points at the front of the shock and contact disontinuities, every 50
time steps aftert > 0:03 and the results of the ALE-DG scheme are displayed in the right of
Figure 4.9, which can handle the overshoots very well and maintain the good npf@mance
of the Lagrangian type DG scheme that there are less transition pts on the contact dis-

continuity.

4.2 Two-dimensional ALE-DG scheme with the high order poly-

nomial projection remapping method
Let us apply our remapping method for the two-dimensional Lagrayian type DG scheme ]
to solve the uid ow problems. We still begin with the brief description of the DG scheme

for the following model problem:

@ + @f (u) + @g(u)
u(x;y; 0)

0; (xy;t)2 O, T];

Uo(Xy); (Xy)2 (4.17)
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Assume the computational domain is divided into several triangles = v, I at the time
level t" and we know the mesh velocities ' = (! 1,;1 5,)T at the vertex P = (x['; y/') where

| denotes the index of the mesh vertices. Then the mesh at the time/éét"*! is de ned as
PP = B+ (Mt

, S :
and the new mesh satises = ., I, where the new triangular celld "** are made up

with the new vertices PI””. De ne time-dependent straight lines for allt 2 [t";t"*!],
P|(t) = Pln + | |n(t tn),

and these verticed?,(t) make up with the time-dependent triangular celll (t).
By an integration-by-parts method, we obtain the DG scheme on thmoving mesh: Find

a function uy, 2 Vy(t) such that for all vy, 2 Vi (t) and all cells| (t),

D/\ . .
! 13 U3 URS Nt ) Vi (4.18)
(! 2 U s URS Ny 1)) iy,

%(Uh;Vh)ut) =(f! 1;un); @Vh) iy + (g(! Z;Eh); @Vn)i ()

@l

wherefT! ;up) = f(uy) ! aun, (1 2;un) == g(uy) ! oup, and
Va(t) := Va2 L2() jvn(xy;t) 2P

Notice that fy ) = (Nxir); Ny (vy)' IS the outer normal vector for the cell boundary. The

values ofuy, on the cell boundaryL 2 @(t) with outer normal vector f. are de ned as
Up (jL o= lim un(x AL Ui = Jimun(x + AL

In our numerical test, we use the Lax-Friedrichs ux

r]x;l (1)

N . . . .
U 2 U U v ) = PUauD+ a2 up
2 n 20
L =Max  Ne @ 4 u) ct2 [t "]
i (4.19)
i (t i . 21 (t i
8 iUl Ui ) = 250 el auD e Uy 5 ug ol

21 =Max Ny @e(! 2 u) 2 [t "]
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which satis es consistency, monotonicity and Lipschitz continuity. We refer to [/] for the
details of this Lagrangian type DG scheme.

If we de ne the matrix A, ) as
Ay = (P(t)  Pi(t);P(t)  PiL(t);
then we can map the 2D triangular reference cdlp to the physical celll (t) as
P(t):= Ay +PL(t); P{)21(t); 8 219

where the physical cell (t) is made up with Py, (t); Py, (t); Py, (t).

The above DG scheme4.18 can also be constructed on the reference céf),

d
a(‘]l(t)uh);vh = Jemf (M 1up); @y, o k9t 23 Un); @y |,
lo D/\ - . - E
U Ul g™ s 3 M) v (4.20)
E@b

JAY in; ex; in;
Fosup ;U™ 3 hy)s Vi
g(! 2; uy h I(t) y) h @
whereJ, ) = det(A, ) = 2]l (t)] is the determinant of the Jacobian matrix,r(t) = A, (t)n los

u,;V,, are de ned on the reference cell, and

f('un) — Al 1 up) — Al f(uy) !y
a(! 2;up) 'O (! 2; Up) ' g(u,) !ouy,

Just like before, we develop a two-dimensional indirect ALE-DG scime with the La-
grangian type DG method, the rezoning step and our high-order pymomial projection

remapping method. The owchart is as the same as that in Sectiohl, so we omit it here.
4.2.1 Numerical tests for the two-dimensional Euler equati on of gas dynamics
Consider the two- dimensional Euler system

1
@E@; @E@“J’p y%v+p (4.21)

u(g + p) V(E + p)
where is the density, u; v are velocities on thex;y directions, E is the total energy,p =

( 1) E % (u?+ v?) is the pressure for calorically ideal gas and is a constant that
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depends on the particular gas under consideration. In the followingve will set the mesh
velocity in the Lagrangian type moving mesh as = (u;Vv)T, whereu;v are the velocities of
the uid ows. Notice that, in the following ve tests, we do not apply the multi-resolution

WENO limiter, since it is not necessary for these tests.

The accuracy test.  We design an accuracy test for the 2D Euler systemon ] [0;4 ].

The initial condition is:

r
1+0:2sin(*Y
o(x;y) = ’ psén( 2= (X y) = Vo(xy) = > o(XY); Po(Xy) = o(X;y) :

Suppose that (x;y;t), u(x;y;t), v(x;y;t), p(x;y;t) are the exact solutions, and if we take

= 3, then we can verify that P 6 (x;y;t) is the exact solution of the 2D Burgers' equation:

. L Xty
u+ =+ = =07 with u(xy)=1+0:2sin(—~)
X y

and -

uGcyit) = vixiyi) = o Gyt piayi) = (i)

The initial mesh divides the computational domain uniformly into small guares with mesh
sizeh = ﬁ—x, where N, = Ny are number of cells in each directions, then each square will
be divided into two triangles with the same area.N = 2NN, is the total number of the
triangular cells.

We show the numerical results of density obtained by the above #e DG schemes at
t =0:3, and denote them asg, | and A in Table 4.6, respectively. In this test, we rezone
the old mesh to the new uniform mesh and apply our remapping proage in the ALE-DG
scheme every 10 time steps. One can observe that all of these Dfiesnes have achieved

the designed third-order accuracy.

The Sedov problem.  Consider the Sedov problem with the initial condition as:

8
<

(x;y) 2 [0;1:1] [0, 1:1]; (4.22)

< C
i n
S Oor
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Table 4.6: Error at timet = 0:3 for the two-dimensional Euler system with three third-order
DG schemes.

| initial projection error jj (x;0)

%l

N \ L1 error

order \ L2 error

order \ LY error

order

200 | 2.6257E-05
800 | 3.3675E-06
3200| 4.2002E-07
7200| 1.2440E-07

3.0854E-05
2.96| 3.8656E-06
3.00| 4.8347E-07
3.00( 1.4327E-07

5.7684E-05
3.00| 7.4948E-06
3.00| 9.4584E-07
3.00 2.8075E-07

2.94
2.99
3.00

i (T)

Ell

|
N \ L1 error

order \ L2 error

order \ LY error

order

200 | 3.4846E-05
800 | 5.7684E-06
3200 5.9869E-07
7200| 1.7409E-07

4.5010E-05
2.59| 7.0419E-06
3.27| 7.7396E-07
3.05| 2.2913E-07

1.2433E-04
2.68| 1.8629E-05
3.19| 2.8207E-06
3.00| 7.9754E-07

2.74
2.72
3.12

i (xT)

LJJ

|
N | L*error

order \ L2 error

order \ LY error

order

200 | 3.4814E-05
800 | 5.3049E-06
3200| 5.6200E-07
7200| 1.6017E-07

4.4429E-05
2.71| 6.5904E-06
3.24| 7.2203E-07
3.10| 2.1291E-07

1.2076E-04
2.75 1.7712E-05
3.19| 2.7120E-06
3.01| 8.1529E-07

2.77
2.71
2.96

i (xT)

Al

|
N | L*error

order \ L2 error

order \ LY error

order

200 | 3.5181E-05
800 | 5.8654E-06
3200| 6.1853E-07
7200| 1.7986E-07

4.5255E-05
2.58| 7.1579E-06
3.25| 8.0111E-07
3.05| 2.3630E-07

1.2388E-04
2.66| 1.9292E-05
3.16| 2.9961E-06
3.01| 8.4165E-07

2.68
2.69
3.13
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(a) Density (b) Pressure

Figure 4.10: The Sedov problem of the Eulerian DG scheme.

and the initial internal energy e = 10 3 almost everywhere except for the only one clll
near the origin where we se¢ = %". This problem is performed on the initially uniform
mesh with 2,048 triangular cells. In Figuret.10and 4.11, we show the numerical results of
density and pressure at time = 1, calculated by the Eulerian DG scheme on the xed mesh
and the ALE-DG scheme.

For the Sedov problem, we utilize the rezoning procedure and themmapping procedure
after t > 0:5 every 20 time steps, and we perform a simple smoothing operator the inner
points in the rezoning step.

For this case, the ALE-DG scheme captures the shock preciselydathe mesh quality is
well after adjusting the inner mesh. In Figure4.12 we demonstrate the cut line atx = y on

these two DG schemes, and one can observe that the numericalwdiion for the ALE-DG

scheme is much less than that for the Eulerian DG scheme.

The Noh problem. Consider the Noh problem with the initial condition as:
8
< =1;
U= L (xy)2[61] [0 (4.23)
" e=10 3

42



(a) Density (b) Pressure

Figure 4.11: The Sedov problem of the ALE-DG scheme.

(a) Density (b) Pressure

Figure 4.12: The Sedov problem at the cut ling = vy.
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whereu;, is the radial velocity and take = g Re ective boundary conditions are considered
for the left and below boundaries, besides that, free boundaryraditions are considered for
the right and top boundaries. In practice, the free boundary cdlition is set as the initial
values. Since the initial internal energy is very close to 0 and the namcal results may be
negative that makes the scheme unstable, the positivity-preseng limiter is essential in this
test.

In Figure 4.13 we show the numerical results of density and pressure for the I[Etan
DG scheme at timet = 0:6 with 2,048 triangular cells. In Figure4.14 we show the results
for the Lagrangian type DG scheme at = 0:058 and we can observe that the mesh quality
is very bad near the origin so we need to introduce the polynomial gextion remapping
procedure and the rezoning strategy.

For the Noh problem, we perform the rezoning procedure and themapping procedure
after t > 0 every 10 time steps, and the rezoning strategy is as same as thrathe Sedov
problem. As one can see, the numerical results of the ALE-DG sahe are much better
than the results on the xed mesh, and the shock surface is shanmp in Figure 4.15 We
demonstrate the cut line atx = y in Figure 4.16 and one can observe that the ALE-DG

scheme captures the shock well.

The Saltzman problem Consider the Saltzman problem with the initial condition as:

8
z b
u=0; : : NP
s v=0; (x;y) 2 [0;1] [O;0:1]; (4.24)
" e=10 1
and take = % Re ective boundary conditions are adopted for the right, up andelow

boundaries, besides that, the left boundary is a piston with velocity = 1. Figure 4.17

shows the initial mesh on the computational domain [@] [O; 0:1] with 640 triangular cells.

For the cellsl near the left boundary and its virtual neighbor celd which has common
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(a) Density (b) Pressure

Figure 4.13: The Noh problem of the Eulerian DG scheme &at= 0:6.

Figure 4.14: The Noh problem of the Lagrangian type DG scheme &t 0:058. Right: the
zoomed mesh near the origin.
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(a) Density (b) Pressure

Figure 4.15: The Noh problem of the ALE-DG scheme dt= 0:6.

(a) Density (b) Pressure

Figure 4.16: The Noh problem at the cut linex = vy.
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Figure 4.17: The initial Saltzman mesh.

edge with| on the left boundary, we take the values on the cell as
3= W=2 W vi=vio o pr =R

For this Saltzman problem and the next Dukowicz problem, as the lefboundary is
moving, it is di cult for the Eulerian DG scheme to solve this kind of problem, thus we
just use the Lagrangian type DG scheme and the indirect ALE-DG Beme to solve these
problems.

We rst try to use the Lagrangian type DG scheme to solve the Saltman problem,
but the triangular cells is squeezed and distorted soon (see Figutd 8 and that stops the
simulation. For the Saltzman problem, our rezoning method presess the y-coordinates

unchanged and modi es the inner point,(x;;y;) in the x direction as
1
X = Z(x|;1+ X2 + Xi:3+ Xi.4)

wherex;.1; Xi.2; X|.3; X.4 are thex-coordinates of the four neighbors d?,. Therefore, we apply
the rezoning method and our remapping procedure every 20 timeps to maintain the mesh
quality, then we show the numerical results at = 0:6 in Figure 4.19 The shock front in the

ALE-DG scheme is clear and it is much more robust.

The Dukowicz problem. Last, consider the Dukowicz problem ind]. The computational

domain in the Dukowicz problem consists of two parts, the left one istaapezoid with the
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Figure 4.18: The Saltzman problem of the Lagrangian type DG scheraet = 0:034. Right:
the zoomed mesh near the left moving boundary.

Figure 4.19: The Saltzman problem of the ALE-DG scheme &t= 0:6.
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Figure 4.20: The initial Dukowicz mesh with 8,000 triangular cells.

vertical left boundary and the right boundary slanted at 60. The right region is a slanted

parallelogram and Figure4.20 shows the initial computational mesh with 8000 triangular

cells. The left region is made up with the trapezoid (@), (1;0), (0;3), (1 + %p 3;2), and
the right region is made up with the parallelogram (10), (3;0), (1 + %p 3;2), 3+ %p 3.3).

The initial condition is given as

5
3V

I ||
or
W
[
|
o

: (4.25)

1 II
= o

L )
where we take = 1:4 in the whole region.

Re ective boundary conditions are considered for the top, botto and right boundaries,
and the left boundary is a piston with velocityu = 1:48. The computational mesh is squeezed
and distorted and that terminates the program in the Lagrangianyipe DG method, which
can be seen in Figurel.21 This time, our rezoning method preserves thg-coordinates
unchanged and divide the mesh uniformly in the direction. After adjusting the compu-
tational mesh and applying the remapping procedure every 20 timéeps, we calculate to
t = 1:3 with the indirect ALE-DG scheme and show the density contour in Figre 4.22 One

can observe high resolution incident shock and transmitted shockiénfaces in our ALE-DG

scheme.
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Figure 4.21: The Dukowicz problem of the Lagrangian type DG schemaét = 0:038. Right:
the zoomed mesh near the left moving boundary.

Figure 4.22: The Dukowicz problem of the ALE-DG scheme at=1:3.
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5 Concluding remarks

In this paper, we develop a high-order accurate, essentially nosedlatory, conservative and
positivity-preserving polynomial projection remapping method in o, two and three dimen-
sions to couple with the discontinuous Galerkin method for the Lagngian type moving

mesh, and establish an indirect ALE-DG framework. Since our rempimg method is based
on determining the intersections between the old and new mesheshdas a wider range of
application. By adding the local multi-resolution WENO limiter, our remgyping method

can prevent the numerical oscillations generated by the high-ond@olynomials near the
discontinuities. We also apply a positivity-preserving scaling limiter to msure positivity

without a ecting the high order accuracy. We have designed a sesie®f numerical tests in
one, two and three dimensions to show that our remapping algorithma high-order accurate,
non-negative and essentially non-oscillatory. When used to solveethuid dynamics, our

remapping method is conservative for mass, momentum and totahergy, and it can pre-
serve positivity for density and internal energy. All of the above @od properties have been
veri ed by benchmark test problems for the Euler system. In futte work, we will develop a
three-dimensional indirect ALE-DG scheme as an application of thimapping method in

three dimensions.
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