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Abstract. In this paper, we propose a local discontinuous Galerkin (LDG) method for the
Novikov equation that contains cubic nonlinear high-order derivatives. Flux correction techniques are
used to ensure the stability of the numerical scheme. The H1-norm stability of the general solution
and the error estimate for smooth solutions without using any priori assumptions are presented.
Numerical examples demonstrate the accuracy and capability of the LDG method for solving the
Novikov equation.
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1. Introduction. In this paper, we consider numerical approximations to the
Novikov equation

Mt + 4U2Ux − 3UUxUxx − U2Uxxx = 0,(1.1a)

M − U + Uxx = 0,(1.1b)

which is an integrable analogue of the Camassa-Holm (CH) equation with cubic
(rather than quadratic) nonlinearities. Similar to the CH equation, the Novikov equa-
tion also admits peakon solutions and possesses infinitely many conserved quantities,
one of which is the following H1-norm:

E(U,Ux) =

∫
Ω

U2 + U2
x dx.

However, unlike the CH equation, the cubic nonlinearity and nonconservation with
respect to M in the Novikov equation bring great difficulties to the numerical calcu-
lation and numerical analysis. It is very challenging to design an accurate and stable
finite element method (FEM) to solve it.

We develop a class of local discontinuous Galerkin (LDG) methods with some flux
correction terms for the Novikov equation. Our proposed scheme is consistent, high-
order accurate, nonlinearly stable (discrete H1-norm can be conserved or dissipated),
and flexible for arbitrary h and p adaptivity. The proof of the H1-norm stability of the
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scheme is given for the general solution. Error estimates for smooth solutions without
using any priori assumptions are presented. To our best knowledge, this is the first
provably high-order accurate and stable LDG method for the Novikov equation.

In 1993, the CH equation [2] was derived as an integrable model of unidirec-
tional wave propagation for shallow water by executing an asymptotic expansion of
the Hamiltonian for Euler’s equations of hydrodynamics. It has attracted a great deal
of attention due to its intriguing properties, such as allowing the existence of peakon
solutions [1, 2] and describing the breakdown of regularity [1, 13, 31]. Later on, in ad-
dition to the CH equation, there subsequently appear many integrable equations with
the presence of peakon solutions. These integrable PDEs are sometimes called CH-
type equations, among which the Degasperis-Procesi (DP) equation was discovered
in 1998 as the second one. While both the CH and DP equations involve quadratic
nonlinearities, the Novikov equation was later discovered by Novikov [19, 33] in 2009
as a new member of CH-type equations with cubic nonlinearities. In recent years,
there has been a growing interest in the Novikov equation. For example, the peakon
solution was investigated in [3, 4, 18, 17] etc. Stability of peakons was considered in
[25, 7] etc. See also e.g. [6, 16, 22, 34, 32, 20, 38, 44] for the Cauchy problem for the
Novikov equation including global solutions and blow-up phenomenon.

The main motivation for studying the LDG method for the Novikov equation
is twofold. On the one hand, as pointed out in the review article [29] in 2022, the
literature surrounding the Novikov equation has not been as extensive as the CH and
DP equations, but there is no shortage of articles on the analysis aspects of PDE
well-posedness and peakon problems for the Novikov equation as mentioned above.
However, the numerical analysis community has not yet jumped on the bandwagon.
There are only a few numerical works in the literature about the Novikov equation. In
[5, 8], Chen et. al. developed a second-order conservative finite difference scheme for
the Novikov equation. Wang and Yan [37] applied the multi-layer physics-informed
neural networks (PINNs) deep learning to study the Novikov equation. On the other
hand, it has been verified that the LDG method is a good tool for solving nonlinear
higher-order equations [42, 43, 23, 39, 41, 46].

Recently, there are many works about LDG methods for the CH and DP equations
as well as their generalizations [39, 41, 46, 24, 27, 28]. However, as an intriguing
analogue of the CH equation, there is little work about LDG schemes for the Novikov
equation in the decades since it was discovered. The main difficulties to develop the
LDG method for the Novikov equation (1.1) are as follows:
(i) Upon rewriting the Novikov equation (1.1a) in the following form

Mt + f(U)x − (U2Ux)xx + (U2
xU)x + Ux(UxU)x = 0,

with f(U) = 4
3U

3, it is evident that the Novikov equation is nonconserved with
respect to M . Therefore, it is difficult to design a stable numerical scheme to
solve the Novikov equation;

(ii) The nonlinear term in the Novikov equation (1.1) is cubic which is higher than
the quadratic nonlinearities in the CH and DP equations.

In order to design a stable numerical scheme, we notice that the numerical flux
is the key point to ensure the stability of DG schemes. Therefore, we introduce some
flux correction terms (B in LDG scheme (2.4)) in the LDG scheme to overcome the
first difficulty. These flux correction terms are introduced artificially and their design
needs to follow two principles. To be precise, we require them to balance the flux
terms that may cause instability, and not to destroy the consistency of the numerical
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scheme. The introduction of flux correction terms is a highlight of the numerical
scheme. The energy boundedness of semi-discrete schemes is obtained thanks to the
flux correction terms. It is noted that the rigorous energy boundedness of a fully
discrete scheme for such nonlinear equations is out of the scope of this paper, and this
aspect will be left for future work. Although we do not discuss the energy boundedness
of fully discretization schemes in this paper, one can adopt the relaxation Runge-Kutta
(RRK) method [21] to achieve the conservation or dissipation numerically for the fully
discrete energy. Here we refer to [39, 41, 46] for the LDG method for the CH and DP
equations using the explicit RK method to ensure the efficiency of computing.

The error estimation of the LDG method for nonlinear wave equations with high-
order derivatives is challenging. In [39], Xu and Shu proved k-th order (k is the
highest degree of polynomial in finite element space) error estimates in L2-norm for
the LDG solution of the CH equation with an a priori assumption,

∥u− uh∥ ≤ h, for small enough h.

This assumption is always used to deal with the error estimates of the DG method
for the nonlinear equations [41, 46]. In our analysis, we first introduce some suitable
projections and present the projection error estimates. Then the errors between the
projection and the numerical solution are the main part we need to estimate. To
this end, we take advantage of the fact that the nonlinear terms have a polynomial
structure in CH-type equations. Therefore, the nonlinear error term can be decom-
posed into two parts: one includes the error term between the projection and the
exact solution, and the other includes the error term between the projection and the
numerical solution. Since the projection and the numerical solution are both in our
finite element space, the nonlinear stability and the error energy equation are used to
estimate them in our analysis. These techniques allow us to obtain an error estimate
without using any priori assumptions even though the Novikov equation has cubic
nonlinear derivative terms.

The DG method we discuss in this work is a class of finite element methods
(FEMs) using completely discontinuous basis functions. It was first designed and
has been successful in solving first-order PDEs such as nonlinear conservation laws
[10, 12]. The DG method has many good properties such as extremely local data
structure, high parallel efficiency, and the allowance of arbitrary triangulation with
hanging nodes. The LDG method is an extension of the DG method for solving
the higher-order PDEs. The main idea of the LDG method is to rewrite the high-
order equations into a first-order system and then use the DG method to solve the
first-order system. The LDG method was first developed by Cockburn and Shu for
convection-diffusion equations [11]. Later, the LDG method has been applied for KdV
equations [43], Burgers-Poisson equations [26], Zakharov system [36], and so on. For
more information about the LDG method, we refer to the review article [40].

The paper is organized as follows. In section 2, we present the LDG scheme for
the Novikov equation. In section 3, we give a proof of the discrete H1-stability. Error
estimates of the LDG scheme are given in section 4. Section 5 contains numerical
experiments to confirm the theoretical analysis and the good performance of the
numerical scheme. Some concluding remarks are given in section 6. Technical proofs
of several lemmas are collected in the appendix.

2. The LDG scheme for the Novikov equation. In this section, we intro-
duce the semi-discrete LDG scheme for solving the Novikov equation (1.1). First of
all, we give some notations to define the LDG scheme.
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2.1. Notations. Let Ω = (xl, xr) be our computation domain, Ωh = {Ij =
(xj− 1

2
, xj+ 1

2
)}Nj=1 be the partition of Ω, where x 1

2
= xl and xN+ 1

2
= xr. Denote the

cell length as hj = xj+ 1
2
− xj− 1

2
for j = 1, . . . , N , and h = max

j
hj . In this paper, we

assume Ωh is quasi-uniform, i.e., there exists a positive constant ρ, such that for all j
there holds hj/h ≥ ρ as h tends to zero.

Associated with the partition Ωh, we define the discontinuous finite element space

V k
h =

{
v ∈ L2(Ω) : v|Ij ∈ Pk(Ij), ∀j = 1, . . . , N

}
,(2.1)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 0. We
define the broken Sobolev space, for m ≥ 1,

Hm(Ωh) =
{
w ∈ L2(Ω) : w|Ij ∈ Hm(Ij), ∀j = 1, . . . , N

}
.

It is not hard to see V k
h ⊂ Hm(Ωh). It is allowed to have discontinuities across

element interfaces, so we define v±
j+ 1

2

= lim
ϵ→0+

v(xj+ 1
2
± ϵ) and denote its jump as

[[v]]j+ 1
2
= v+

j+ 1
2

− v−
j+ 1

2

. Furthermore, we denote

(w, v)j =

∫
Ij

w(x)v(x)dx, ∥v∥j = ∥v∥L2(Ij), ∥v∥ = ∥v∥L2(Ω), |[v]|2 =

N∑
j=1

[[v]]2j− 1
2
,

∥v∥2∂Ij = v(x−
j+ 1

2

)2 + v(x+
j− 1

2

)2, ∥v∥2∂Ωh
=

N∑
j=1

∥v∥2∂Ij , ∥v∥∞ = ∥v∥L∞(Ω).

2.2. The LDG scheme. Following the framework of LDG methods, we intro-
duce two auxiliary variables R = Ux, P = (U2R)x and we rewrite (1.1) into the
following equivalent form

Mt + f(U)x − Px + (R2U)x +R(RU)x =0,(2.2a)

P − (U2R)x =0,(2.2b)

R− Ux =0,(2.2c)

M − U +Rx =0,(2.2d)

with the initial condition

U(x, 0) = U0(x),(2.3)

and periodic boundary conditions. The LDG scheme is defined as follows (we omit
the subscript h in the numerical solution to simplify notations): Let u(·, 0) ∈ V k

h be
an approximation of the initial data U0(x), and for any t ∈ (0, T ] we find u(·, t), p(·, t),
r(·, t) andm(·, t) ∈ V k

h , such that for each cell Ij and any test functions v, q, ψ, φ ∈ V k
h

satisfying

(mt, v)j − (f(u), vx)j + f̂j+ 1
2
v−
j+ 1

2

− f̂j− 1
2
v+
j− 1

2

+ (p, vx)j − p̂j+ 1
2
v−
j+ 1

2

+ p̂j− 1
2
v+
j− 1

2

−(r2u, vx)j+(̂r2u)j+ 1
2
v−
j+ 1

2

−(̂r2u)j− 1
2
v+
j− 1

2

+(r(ru)x, v)j+Bj(u, r; v) = 0,(2.4a)

(p, q)j + (u2r, qx)j − (̂u2r)j+ 1
2
q−
j+ 1

2

+ (̂u2r)j− 1
2
q+
j− 1

2

=0,(2.4b)

(r, ψ)j + (u, ψx)j − ûj+ 1
2
ψ−
j+ 1

2

+ ûj− 1
2
ψ+
j− 1

2

=0,(2.4c)

(m,φ)j − (u, φ)j − (r, φx)j + r̂j+ 1
2
φ−
j+ 1

2

− r̂j− 1
2
φ+
j− 1

2

=0,(2.4d)

where
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• f̂ , p̂, (̂r2u), (̂u2r), û and r̂ are numerical fluxes. We choose

p̂ = p−, (̂r2u) = (r+)2u+, (̂u2r) = (u−)2r−, û = u+, r̂ = r−.(2.5a)

For f̂ , we can choose the following different fluxes such that the numerical
scheme is conserved or dissipated:
(i) For a dissipative scheme, we choose the monotone flux. Since f ′(u) =

4u2 ≥ 0, we take the upwind flux

f̂(u+, u−) = f(u−).(2.5b)

(ii) For a conservative scheme, we take the central flux

f̂(u+, u−) =
1

3
(u+ + u−)

(
(u−)2 + (u−)2

)
.(2.5c)

• Bj(u, r; v) is a flux correction term and is defined as follows:

Bj(u, r; v) =
(
r−u−[[r]]

)
j+ 1

2

v−
j+ 1

2

+
(
r+r+[[u]]

)
j− 1

2

v+
j− 1

2

.(2.6)

For the exact solution, we have Bj(U,R; v) = 0, which makes the numeri-
cal scheme consistent. In addition, Bj(u, r; v) is very crucial to ensure the
stability of the scheme and is also the highlight of the whole scheme.

The definition of the algorithm is now complete. Based on the above choice of
numerical fluxes, we introduce

H±
j (w, v) = (w, vx)j − w±

j+ 1
2

v−
j+ 1

2

+ w±
j− 1

2

v+
j− 1

2

,(2.7)

Gj(f(w), v) = (f(w), vx)j − f̂j+ 1
2
v−
j+ 1

2

+ f̂j− 1
2
v+
j− 1

2

.(2.8)

Furthermore, we omit the subscript j to denote the sum over j. After summing the
variational formulations (2.4) over all cells, we get the LDG scheme in the global form:

(mt, v)− G(f(u), v) +H−(p, v)−H+(r2u, v) + (r(ru)x, v) + B(u, r; v) = 0,(2.9a)

(p, q) +H−(u2r, q) = 0,(2.9b)

(r, ψ) +H+(u, ψ) = 0,(2.9c)

(m,φ)− (u, φ)−H−(r, φ) = 0.(2.9d)

Remark 2.1. We should notice that we cannot rewrite (1.1) into a conservation
form for M , which brings essential difficulties to the construction of the numerical
scheme. The flux correction term Bj(u, r; v) is carefully designed to ensure nonlinear
stability, see Section 3.

To conclude this section, we recall some standard inverse inequalities for the
discrete space V k

h and some properties of bilinear forms H±.

Lemma 2.2. (Inverse inequalities) There exists an inverse constant ν = ν(k),
such that for any v ∈ V k

h

∥vx∥j ≤ ν(ρh)−1∥v∥j , ∥v∥L∞(Ij) ≤
√
ν(ρh)−1∥v∥j .(2.10)

We refer to [9] for these standard inverse inequalities. We give the discrete Sobolev
inequality in the following lemma:
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Lemma 2.3. [36, Lemma 4.1] There exists a constant C independent of h, such
that for any v ∈ V k

h

∥v∥2∞ ≤ C∥v∥(∥v∥+ ∥vx∥+ h−
1
2 |[v]|).(2.11)

In the next lemmas, we recall some properties of bilinear forms H±.

Lemma 2.4. For any w, v ∈ H1(Ωh), there holds

H−(w, v) +H+(v, w) = 0,(2.12)

|H±(v, w)| ≤
(
∥v∥+

√
ν−1(ρh)∥v∥∂Ωh

)(
∥wx∥+

√
ν(ρh)−1|[w]|

)
.(2.13)

Proof. The proof is the standard argument in the DG framework, thus we omit
them and refer to [45] for more details.

The next lemma establishes an important relationship between the auxiliary variables
and the prime variables, which plays a key role in error estimates.

Lemma 2.5. For w ∈ V k
h and f ∈ L2(Ω), if H±

j (w, v) = (f, v)j ∀v ∈ V k
h , j =

1, · · · , N , then there exists a positive constant Cν,ρ dependent of ν and ρ, such that

∥wx∥+
√
ν(ρh)−1|[w]| ≤ Cν,ρ∥f∥.(2.14)

Proof. We refer to [35] for the details of the proof.

3. The stability of the LDG scheme. In this section, we study the stability
of the LDG scheme (2.4) for solving the Novikov equation (1.1).

Theorem 3.1. Let u and r be the solution of the scheme (2.4a)-(2.4d), then the
discrete energy E(u, r) = ∥u∥2 + ∥r∥2 satisfies:

• For the dissipative scheme with the numerical flux (2.5a) and (2.5b):

d

dt
E(u, r) ≤ 0.(3.1)

• For the conservative scheme with the numerical flux (2.5a) and (2.5c):

d

dt
E(u, r) = 0.(3.2)

Proof. The first energy equation. We choose v = u, q = −r and ψ = p in
(2.9a)-(2.9c), respectively, to obtain

(mt, u)− G(f(u), u) +H−(p, u)−H+(r2u, u) + (r(ru)x, u) + B(u, r;u) =0,(3.3a)

−(p, r)−H−(u2r, r) =0,(3.3b)

(r, p) +H+(u, p) =0.(3.3c)

By summing up the above three equations in (3.3), it follows from Lemma 2.4 that

(mt, u)− G(f(u), u)−H+(r2u, u)−H−(u2r, r) + (r(ru)x, u) + B(u, r;u) = 0.

By the definition of H±, G and B, it is not hard to get

−H+(r2u, u)−H−(u2r, r) + (r(ru)x, u) + B(u, r;u) = 0,(3.4)
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G(f(u), u) = −
N∑
j=1

Θj+ 1
2
,(3.5)

where

Θj+ 1
2
=

∫ u+

j+1
2

u−
j+1

2

f(s)− f̂(u−
j+ 1

2

, u+
j+ 1

2

) ds.

Therefore, we have

(mt, u) = −
N∑
j=1

Θj+ 1
2
.(3.6)

In addition, it is easy to check

N∑
j=1

Θj+ 1
2
≥ 0 for the flux (2.5b) and

N∑
j=1

Θj+ 1
2
= 0 for

the flux (2.5c).
The second energy equation. We firstly choose ψ = rt in (2.9c), then we take the
time derivative in (2.9d) and choose φ = −u in (2.9d), to get

(r, rt) +H+(u, rt) = 0,(3.7a)

−(mt, u) + (ut, u) +H−(rt, u) = 0.(3.7b)

By summing up the above two equations in (3.7), we obtain from Lemma 2.4

(r, rt)− (mt, u) + (ut, u) = 0.(3.8)

Therefore, by (3.6) and (3.8), we have

(r, rt) + (u, ut) = −
N∑
j=1

Θj+ 1
2
,(3.9)

which yields (3.1) and (3.2).

4. Error estimates of the LDG method. In this section, we consider the error
estimate of the LDG scheme (2.4) for solving the Novikov equation (1.1). To save
space, we only consider the dissipative scheme in the error estimates, and the results
can be easily transferred to the conservative scheme. For the dissipative scheme, we
have

G(f(w), v) = H−(f(w), v) ∀v ∈ V k
h .

We assume that the exact solution U(x, t) satisfies the following regularity assumption

U,Ut ∈ L∞(0, T ;Hk+3(Ω)).(4.1)

4.1. Projections. We introduce some projections which will be used in our error
estimates.

• The L2 projection Ph. For ∀w ∈ L2(Ω), Phw ∈ V k
h is defined as following: In

each interval Ij , there holds

(Phw − w, v)j = 0 ∀v ∈ Pk(Ij).
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• The Gauss-Radau projections P±
h . For ∀w ∈ Hm(Ωh) (m ≥ 1), P±

h w ∈ V k
h is

defined as following: In each interval Ij , there holds

(P±
h w − w, v)j = 0 ∀v ∈ Pk−1(Ij), (P±

h w)
±
j∓ 1

2

= w±
j∓ 1

2

.

By a standard scaling argument [9], it is easy to obtain the following approxima-
tion property for the projection errors

(4.2) hl∥w − πhw∥Hl(Ij) + h
1
2 ∥w − πhw∥L∞(Ij) ≤ Chmin(k+1,m)∥w∥Hm(Ij),

where 0 ≤ l ≤ m, j = 1, · · · , N , πh = Ph, P
±
h and C > 0 is a bounded constant

independent of h and j. Furthermore, from the definition of the projections, we can
easily get

(4.3) (w − Phw, v) = 0, H±(w − P±
h w, v) = 0 ∀v ∈ V k

h .

4.2. Error equations. We denote

(eu, ep, er, em) = (U − u, P − p,R− r,M −m).

By the aid of the above projections, we split the errors into two parts, namely

(eu, ep, er, em) = (ηu − ξu, ηp − ξp, ηr − ξr, ηm − ξm),

where

ηu = U − P+
h U, ξu = u− P+

h U ;

ηp = P − P−
h P, ξp = p− P−

h P ;

ηr = R− PhR, ξr = r − PhR;

ηm =M − PhM, ξm = m− PhM.

Note that the exact solutions (U,P,R,M) also satisfy the LDG scheme (2.9a)-(2.9d),
hence we have the following error equations: For any test functions v, q, ψ, φ ∈ V k

h ,

((ξm)t, v) = ((ηm)t, v)−H−(f(U)− f(u), v) +H−(ηp − ξp, v)

−H+(R2U−r2u, v)+(R(RU)x−r(ru)x, v)−B(u, r; v),(4.4a)

(ξp, q) = (ηp, q) +H−(U2R− u2r, q),(4.4b)

(ξr, ψ) = (ηr, ψ) +H+(ηu − ξu, ψ),(4.4c)

(ξm, φ)− (ξu, φ) = (ηm, φ)− (ηu, φ)−H−(ηr − ξr, φ).(4.4d)

By Lemma 2.3, Lemma 2.5 and (4.3), we can get the following corollary, which
states the important relationships between ξu and ξr.

Corollary 4.1. Suppose ξu and ξr satisfy (4.4c), then we have

∥(ξu)x∥+
√
ν(ρh)−1|[ξu]| ≤ Cν,ρ∥ξr∥,(4.5)

∥(ξu)∥∞ ≤ C(∥ξu∥+ ∥ξr∥),(4.6)

where C is a constant independent of h.

Before presenting the energy estimates, let us first discuss the setting of the
numerical initial condition.
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4.3. The numerical initial condition. The initial condition plays an impor-
tant role in the proof of the error estimates. Firstly, we take

u(0) = P+
h U0.(4.7)

It is noted that r(0) can be obtained by the scheme (2.4c). By taking u = P+
h U0 in

(2.4c), thanks to the definition of the projection P+
h , we obtain

r(0) = Ph(R(x, 0)),(4.8)

where R(x, 0) = U ′
0(x). Thus, we can easily get the following initial error estimates.

Lemma 4.2. Assume that the initial condition U0(x) ∈ Hk+1(Ω), and the numer-
ical initial conditions u(0), r(0) satisfy (4.7) and (4.8), respectively, then

(4.9) ∥ξu∥(0) = 0, ∥ξr∥(0) = 0.

4.4. Error analysis. We first give the following lemma, which presents the
energy equation for ξu and ξr.

Lemma 4.3. The following equation holds:

1

2

d

dt
E(ξu, ξr)=−(ηp, ξr)+((ηu)t, ξu)+H−((ηr)t, ξu)−H−(f(U)−f(u), ξu)

−H+(R2U−r2u, ξu)−H−(U2R− u2r, ξr)

+(R(RU)x−r(ru)x, ξu)−B(u, r; ξu).

(4.10)

Proof. Taking v = ξu, q = −ξr, and ψ = ξp in (4.4a)-(4.4c), respectively, and
owing to (4.3), we have

((ξm)t, ξu) = −H−(f(U)− f(u), ξu)−H−(ξp, ξu)−H+(R2U−r2u, ξu)(4.11a)

+(R(RU)x−r(ru)x, ξu)−B(u, r; ξu),
−(ξp, ξr) = −(ηp, ξr)−H−(U2R− u2r, ξr),(4.11b)

(ξr, ξp) = −H+(ξu, ξp).(4.11c)

By summing up the above three equations in (4.11), and using Lemma 2.4, we get

((ξm)t, ξu) = −H−(f(U)−f(u), ξu)+(R(RU)x−r(ru)x, ξu)−B(u, r; ξu)
− (ηp, ξr)−H−(U2R− u2r, ξr)−H+(R2U−r2u, ξu).

(4.12)

Next, we choose ψ = (ξr)t in (4.4c) and take time derivative in (4.4d) and choose
φ = −ξu. Owing to (4.3) we have

(ξr, (ξr)t) = −H+(ξu, (ξr)t),

−((ξm)t, ξu) + ((ξu)t, ξu) = ((ηu)t, ξu) +H−((ηr)t, ξu)−H−((ξr)t, ξu).
(4.13)

By summing up the above two equations in (4.13), and empolying Lemma 2.4, we get

(ξr, (ξr)t)− ((ξm)t, ξu) + ((ξu)t, ξu) = ((ηu)t, ξu) +H−((ηr)t, ξu).(4.14)

Combine (4.12) and (4.14), we obtain (4.10).
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Next, we need to estimate the terms on the right hand side of (4.10) to obtain the
estimation for ξu and ξr. Thus, we denote

Θ1 := −(ηp, ξr) + ((ηu)t, ξu) +H−((ηr)t, ξu);

Θ2 := −H−(f(U)− f(u), ξu);

Θ3 := −H+(R2U−r2u, ξu)−H−(U2R− u2r, ξr);

Θ4 := (R(RU)x − r(ru)x, ξu);

Θ5 := −B(u, r; ξu).

In the estimate of the Θ1 - Θ5 we assume k ≥ 1 and h < 1. In addition, under
the smoothness assumption (4.1), the constant “C” in Lemma 4.4 - Lemma 4.10 is
dependent on the smoothness of the exact solution and is independent of h.

Lemma 4.4. (The estimate for Θ1 and Θ2) For k ≥ 1, we have the following
estimates for the terms Θ1 and Θ2

Θ1 ≤ C∥ξu∥2 + C∥ξr∥2 + Ch2k+2,(4.15)

Θ2 ≤ C∥ξu∥2 + C∥ξr∥2 + Ch2k+2,(4.16)

where C is a constant independent of h.

Proof. According to the projection properties (4.2), Lemma 2.4 and Corollary 4.1,
we get the estimates for Θ1. To estimate Θ2, we first rewrite the error f(U) − f(u)
in the following form:

f(U)− f(u) =
4

3
eu(3U

2 − 3Ueu + e2u),

from which we get

Θ2 = −H−(4U2eu, ξu) +H−(4Ue2u, ξu)−H−(
4

3
e3u, ξu).(4.17)

For the first term in (4.17), by Lemma 2.4, Corollary 4.1 and inverse inequality for
ξu, we have

−H−(4U2eu, ξu) ≤ C(∥ηu∥+ h1/2∥ηu∥∂Ωh
+ ∥ξu∥)∥ξr∥

≤ C∥ξu∥2 + C∥ξr∥2 + Ch2k+2.

The last inequality is derived by the error estimate of projections (4.2). For the second
term in (4.17), by Lemma 2.3, Lemma 2.5 and (2.9c), we have

∥u∥2∞ ≤ C∥u∥(∥u∥+ ∥ux∥+ h−1/2|[u]|) ≤ C∥u∥(∥u∥+ ∥r∥).

From the energy stability result in Theorem 3.1 and the boundedness of projections
(4.7)-(4.8), we obtain

∥u∥2∞ ≤ C(∥u(0)∥+ ∥r(0)∥)2 ≤ C(∥U0∥∞ + ∥U ′
0∥)2.

Thus we have the estimation for ∥eu∥∞:

∥eu∥∞ ≤ ∥U∥∞ + ∥u∥∞ ≤ ∥U∥∞ + C(∥U0∥∞ + ∥U ′
0∥) ≤ C.(4.18)
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Furthermore, by Lemma 2.4 and Corollary 4.1, we have

H−(4Ue2u, ξu) ≤ C(∥e2u∥+ h1/2∥e2u∥∂Ωh
)∥ξr∥

≤ C(∥eu∥+ h1/2∥eu∥∂Ωh
)∥ξr∥ (by (4.18))

≤ C∥ξu∥2 + C∥ξr∥2 + Ch2k+2.

For the third term in (4.17), we can do a similar analysis as that for the second term.
This completes the proof.

Remark 4.5. We would like to point out that we do not need to use a priori
error assumption as in [39] to estimate Θ2, since the nonlinear term is a polynomial
and thanks to the relationship between u and r. The energy stability gives us the
boundedness for u in L∞-norm to deal with the high-order terms in Θ2. In addition,
we again use the relationship between ξu and ξr to deal with the derivative of ξu and
boundary terms, which makes the estimates easier.

The estimates for the Θ3, Θ4, and Θ5 are very technical since they include nonlinear
differential terms and nonlinear boundary terms. The main idea in our analysis is
to make use of the nonlinear stability as given in (3.4). However, since the stability
results are only valid for functions in V k

h , we need to decompose the error with the
help of projections and use the following property

H+(ξ2rξu, ξu) +H−(ξ2uξr, ξr)− (ξr(ξrξu)x, ξu)− B(ξu, ξr; ξu) = 0.(4.19)

We use the following lemmas to estimate Θ3, Θ4 and Θ5, for which the details of the
proof will be placed in the Appendix for the convenience of the readers.

Lemma 4.6. (The estimate for Θ3) There exists a constant C independent of
h, such that for k ≥ 1

Θ3 ≤ Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) + Chk∥ξu∥+ Chk∥ξr∥

+H+(ξ2rξu, ξu) +H−(ξ2uξr, ξr)−
1

2

N∑
j=1

(U [[ξr]])
2
j+ 1

2
+ Γ1,

(4.20)

where Γ1 is a boundary term and is defined as follows

Γ1 =

N∑
j=1

((
U(ξ+r )

2 + 2Rξ+r ξ
+
u

)
[[ξu]] +

(
R(ξ−u )2 + 2Uξ−r ξ

−
u

)
[[ξr]]

)
j+ 1

2

+

N∑
j=1

(
U(ξ−r )2ξ−u − U(ξ+r )

2ξ+u +R(ξ−u )2ξ−r −R(ξ+u )
2ξ+r

)
j+ 1

2

.

Proof. The proof of this lemma is provided in Appendix A.1.

Lemma 4.7. (The estimate for Θ4) There exists a constant C independent of
h, such that for k ≥ 1

Θ4 ≤ Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) + Chk∥ξu∥
− (ξr(ξrξu)x, ξu) + Γ2,

(4.21)

where Γ2 is a boundary term and is defined as follows

Γ2 =

N∑
j=1

(
−RUξ−r ξ−u +RUξ+r ξ

+
u −Rξ−r (ξ−u )2+Rξ+r (ξ

+
u )

2− 1

2
Uξ−u (ξ−r )2+

1

2
Uξ+u (ξ

+
r )

2
)
j+ 1

2

.
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Proof. The proof of this lemma is provided in Appendix A.2.

Lemma 4.8. (The estimate for Θ5) There exists a constant C independent of
h, such that for k ≥ 1

Θ5 ≤ C(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) + Chk∥ξu∥+ Chk∥ξr∥
− B(ξu, ξr; ξu) + Γ3,

(4.22)

where Γ3 is a boundary term and is defined as follows

Γ3 =

N∑
j=1

(
(−RU −Rξ−u − Uξ−r )ξ−u [[ξr]]− 2Rξ+r ξ

+
u [[ξu]]

)
j+ 1

2

.

Proof. The proof of this lemma is provided in Appendix A.3.

Lemma 4.9. There exists a constant C independent of h, such that for k ≥ 1

(4.23) Γ1 + Γ2 + Γ3 −
1

2

N∑
j=1

(U [[ξr]])
2
j+ 1

2
≤ Ch−1∥ξu∥4 + Ch−1∥ξr∥4 + C∥ξr∥2.

Proof. The proof of this lemma is provided in Appendix A.4.

Lemma 4.10. For k ≥ 1, the ξu and ξr satisfy

d

dt
E(ξu, ξr) ≤Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) + Ch2k.(4.24)

where C is a bounding constant independent of h.

Proof. By Lemma 4.3 and combining the estimate for Θ1 – Θ5 in Lemma 4.4,
Lemma 4.6 – Lemma 4.9 , we have

d

dt
E(ξu, ξr) ≤Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) + Ch2k

+H+(ξ2rξu, ξu) +H−(ξ2uξr, ξr)− (ξr(ξuξr)x, ξu)− B(ξu, ξr; ξu).

Using the stability results (4.19), the last line on the right-hand side will vanish.
Hence, we obtain (4.24).

Lemma 4.11. If k ≥ 1, A(0) ≤ Ch2k+2 and A(t) satisfies the following inequality

A′(t) ≤ C(h−1A2 +A+ h2k), 0 ≤ t ≤ T,(4.25)

where C is a constant independent of h and t. Then when h is small enough, we have

A(t) ≤ C̃h2k, 0 ≤ t ≤ T,

where C̃ is a constant independent of h and dependent on T .

Proof. The proof of this lemma is provided in Appendix A.5.

Finally, we present our main result in this section by the following Theorem.

Theorem 4.12. Let (U,P,R,M) be the exact solution of the Novikov equation
(1.1) satisfying the smoothness assumption (4.1), and let (u, p, r,m) be the numerical
solution of the LDG scheme (2.4), then under the initial condition in Lemma 4.2 and
for k ≥ 1, we have

(4.26) ∥U − u∥2 + ∥R− r∥2 ≤ Ch2k,

where C is a bounded constant independent of h and dependent on the ∥U∥L∞([0,T ],Hk+3(Ω)).
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Proof. By using Lemma 4.10, Lemma 4.11, and the estimate of the initial condi-
tion in Lemma 4.2, we have

E(ξu, ξr) ≤ Ch2k.

Combining the approximation property for the projection error and using the triangle
inequality we get

∥U − u∥+ ∥R− r∥ ≤ ∥ηu∥+ ∥ηr∥+ ∥ξu∥+ ∥ξr∥ ≤ Chk.

This completes the proof.

5. Numerical experiments. In this section, we present some numerical exam-
ples to confirm our theoretical results. We adopt the classical fourth-order Runge-
Kutta method as our time-stepping method for the numerical examples unless other-
wise specified. The CFL condition is ∆t = O(h), where ∆t and h are temporal step
size and spatial step size, respectively. We measure the error in the energy norm, that
is
√
E(U − u,R− r). The computations are (partly) done on the high performance

computers of State Key Laboratory of Scientific and Engineering Computing, Chinese
Academy of Sciences.

Example 5.1. We test the accuracy of our proposed LDG method. We take a
source term s(x, t) on the right side of the Novikov equation (1.1a) such that its exact
solution is U(x, t) = cos(π(x− t)). The computational domain is Ω = (0, 2) with the
periodic boundary condition.

We test this example on the uniform and non-uniform meshes for k = 0, 1, 2, 3.
The non-uniform mesh is generated by perturbing randomly 10% on the uniform mesh.
The numerical errors and convergence rates are shown in Table 1. We can observe
the (k + 1)-th optimal convergence rates of dissipative and conservative schemes on
both uniform and non-uniform meshes.

Example 5.2. In this example, we consider a smooth soliton solution as shown in
[30]. The exact solution can be written in the following form

U2 =
2κ3(cosh ξ + 1+2α2

1−α2 )2

cosh 2ξ + 8(2+α2)
4−α2 cosh ξ + 3(4−α2+3α4)

(1−α2)(4−α2)

,

where

x− ct− x0 =
ξ

α
+

1

2
ln

(
tanh2 ξ

2 − 2
α tanh ξ

2 + 4−α2

3α2

tanh2 ξ
2 + 2

α tanh ξ
2 + 4−α2

3α2

)
,

with

c =
κ3(4− α2)

1− α2
,

is the velocity of the soliton.

We test this example on uniform meshes for κ = 1, x0 = 0, and three distinct
values of α = 0.7, 0.85, 0.95. The computational domain is set as Ω = (−20, 20) with
compact support boundary conditions and the terminal time T = 0.1. We show the
exact solution for α = 0.7, 0.85, 0.95 in Figure 1. The asymptotic behavior of U as
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uniform mesh non-uniform mesh
Dissipative scheme Conservative scheme Dissipative scheme Conservative scheme

N Error Order Error Order Error Order Error Order

P0

20 3.75E+00 – 4.36E+00 – 5.02E+00 – 4.42E+00 –
40 1.43E+00 1.39 1.60E+00 1.44 3.94E+00 0.35 1.80E+00 1.29
80 9.37E-01 0.61 8.98E-01 0.84 1.39E+00 1.50 9.07E-01 0.99
160 5.59E-01 0.75 5.32E-01 0.75 7.42E-01 0.91 5.38E-01 0.75
320 3.02E-01 0.89 2.88E-01 0.88 4.03E-01 0.88 3.18E-01 0.76
640 1.59E-01 0.93 1.52E-01 0.93 2.14E-01 0.91 1.90E-01 0.74

P1

20 9.67E-02 – 9.85E-02 – 1.02E-01 – 2.62E-01 –
40 2.41E-02 2.00 2.44E-02 2.02 2.47E-02 2.04 2.64E-02 3.31
80 6.11E-03 1.98 6.14E-03 1.99 6.48E-03 1.93 1.03E-02 1.35
160 1.53E-03 1.99 1.54E-03 2.00 1.55E-03 2.06 1.55E-03 2.74
320 3.83E-04 2.00 3.84E-04 2.00 3.87E-04 2.00 3.92E-04 1.98
640 9.58E-05 2.00 9.59E-05 2.00 9.78E-05 1.99 9.69E-05 2.02

P2

20 3.79E-03 – 3.80E-03 – 4.14E-03 – 4.04E-03 –
40 5.64E-04 2.75 5.64E-04 2.75 5.71E-04 2.86 5.72E-04 2.82
80 7.66E-05 2.88 7.66E-05 2.88 7.77E-05 2.88 7.73E-05 2.89
160 1.03E-05 2.89 1.03E-05 2.89 1.04E-05 2.90 1.04E-05 2.89
320 1.41E-06 2.87 1.41E-06 2.87 1.43E-06 2.86 1.43E-06 2.86
640 1.95E-07 2.85 1.95E-07 2.85 1.99E-07 2.85 1.98E-07 2.85

P3

20 1.02E-04 – 1.02E-04 – 1.16E-04 – 1.11E-04 –
40 4.80E-06 4.41 4.80E-06 4.41 5.06E-06 4.52 4.91E-06 4.50
80 2.79E-07 4.11 2.79E-07 4.11 2.85E-07 4.15 2.87E-07 4.10
160 1.45E-08 4.26 1.45E-08 4.26 1.46E-08 4.29 1.47E-08 4.29
320 6.43E-10 4.50 6.43E-10 4.50 6.83E-10 4.42 6.69E-10 4.45

Table 1
Example 5.1: Energy errors and orders of numerical solutions at the terminal time T = 1.0.
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Fig. 1. Example 5.2: The exact solution at time T = 0.1 for α = 0.7, 0.85, 0.95.

α tends to 1 was explored in [30], which shows that it forms a peak. The errors
and orders of numerical solutions of dissipative schemes and conservative schemes are
shown in Table 2 and Table 3 respectively. Again we observe the (k + 1)-th optimal
convergence rates for all numerical solutions.

Example 5.3. We consider the peakon solution [19] U(x, t) =
√
ce−|x−ct| with

c = 0.36 of the Novikov equation (1.1), which is a right-going traveling wave solution,
and bright peakon solution.

The computational domain is Ω = (−10, 10) with compact support boundary
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α = 0.7 α = 0.85 α = 0.95
N Error Order Error Order Error Order

P0

160 9.79E-02 – 5.26E-01 – 3.22E+00 –
320 5.01E-02 0.97 3.14E-01 0.74 2.40E+00 0.42
640 2.54E-02 0.98 1.77E-01 0.83 1.69E+00 0.51
1280 1.28E-02 0.99 9.53E-02 0.89 1.11E+00 0.61
2560 6.39E-03 1.00 4.97E-02 0.94 6.83E-01 0.70

P1

20 1.40E-01 – 7.35E-01 – 3.58E+00 –
40 4.54E-02 1.63 2.75E-01 1.42 1.97E+00 0.86
80 1.13E-02 2.01 8.57E-02 1.68 1.13E+00 0.81
160 2.86E-03 1.98 1.99E-02 2.10 4.68E-01 1.27
320 7.26E-04 1.98 4.76E-03 2.07 1.38E-01 1.76
640 1.83E-04 1.99 1.17E-03 2.02 2.68E-02 2.36

P2

20 3.94E-02 – 2.80E-01 – 2.18E+00 –
40 7.80E-03 2.34 5.47E-02 2.36 8.68E-01 1.33
80 1.28E-03 2.61 1.08E-02 2.34 3.53E-01 1.30
160 1.29E-04 3.31 1.37E-03 2.98 7.43E-02 2.25
320 1.13E-05 3.51 1.47E-04 3.22 7.32E-03 3.34
640 1.38E-06 3.03 1.82E-05 3.02 6.63E-04 3.46

P3

20 1.01E-02 – 1.34E-01 – 1.52E+00 –
40 8.37E-04 3.59 1.89E-02 2.82 4.52E-01 1.75
80 9.46E-05 3.15 1.53E-03 3.63 1.34E-01 1.75
160 7.09E-06 3.74 1.06E-04 3.85 1.33E-02 3.34
320 5.93E-07 3.58 7.71E-06 3.78 5.99E-04 4.47
640 3.07E-08 4.27 4.34E-07 4.15 4.10E-05 3.87

Table 2
Example 5.2: Errors and orders of the dissipative scheme at the terminal time T = 0.1.

conditions and the terminal time is T = 10.0. We plot the profile of numerical
solutions at different times for k = 3 on the uniform mesh with N = 320, see Figure
2. We observe the LDG method can capture the peakon structure well. We also show
the differences |E(t) − E(0)| in Figure 2, it shows that the conservative scheme can
preserve the error of the total energy near the machine error level and the dissipative
scheme has monotone energy stability.

Example 5.4. In the last example, we consider the periodic peakon solution U(x, t) =√
c sechπ cosh(x − ct − 2π⌊(x − ct)/(2π)⌋ − π) in [15, 14]. The periodic domain is

Ω = (−3π, 3π) and the terminal time is T = 10.0.

We solve this example by using the LDG method for k = 3 on uniform mesh
with N = 320. The profile of numerical solutions u at different times are shown in
Figure 3. The energy error |E(t)−E(0)| against time is also plotted in Figure 3. We
again observe the energy conservation and energy stability for the conservative and
dissipative schemes respectively.

6. Conclusion. We have developed a LDG method to solve the Novikov equa-
tion. The energy stability is proven for general solutions, and an a priori error estimate
is obtained for smooth solutions. The nonlinear stability helps us to deal with the
nonlinear spatial discretization terms and obtain the error estimate without using
any priori assumptions. Numerical examples demonstrate our proposed schemes have
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α = 0.7 α = 0.85 α = 0.95
N Error Order Error Order Error Order

P0

160 8.26E-02 – 4.23E-01 – 2.50E+00 –
320 4.14E-02 1.00 2.47E-01 0.78 1.84E+00 0.44
640 2.07E-02 1.00 1.37E-01 0.84 1.30E+00 0.50
1280 1.03E-02 1.00 7.36E-02 0.90 8.69E-01 0.58
2560 5.16E-03 1.00 3.83E-02 0.94 5.45E-01 0.67

P1

20 1.39E-01 – 6.49E-01 – 3.18E+00 –
40 4.58E-02 1.60 2.59E-01 1.33 1.86E+00 0.78
80 1.12E-02 2.03 8.10E-02 1.68 1.09E+00 0.76
160 2.86E-03 1.97 1.93E-02 2.07 4.59E-01 1.25
320 7.26E-04 1.98 4.71E-03 2.04 1.36E-01 1.76
640 1.83E-04 1.99 1.17E-03 2.01 2.66E-02 2.36

P2

20 4.04E-02 – 2.83E-01 – 2.17E+00 –
40 8.19E-03 2.30 5.20E-02 2.44 8.43E-01 1.36
80 1.28E-03 2.68 1.07E-02 2.28 3.47E-01 1.28
160 1.30E-04 3.31 1.37E-03 2.97 7.35E-02 2.24
320 1.12E-05 3.53 1.47E-04 3.22 7.27E-03 3.34
640 1.38E-06 3.03 1.82E-05 3.02 6.62E-04 3.46

P3

20 9.84E-03 – 1.29E-01 – 1.52E+00 –
40 8.06E-04 3.61 1.86E-02 2.79 4.46E-01 1.77
80 9.27E-05 3.12 1.51E-03 3.62 1.33E-01 1.74
160 7.06E-06 3.72 1.06E-04 3.84 1.32E-02 3.33
320 5.94E-07 3.57 7.71E-06 3.78 5.97E-04 4.47
640 3.07E-08 4.27 4.34E-07 4.15 4.10E-05 3.87

Table 3
Example 5.2: Errors and orders of the conservative scheme at the terminal time T = 0.1.

arbitrarily high-order accuracy and the capability of capturing the peakon solutions.
Only the semi-discrete scheme is analyzed in this paper and the numerical analysis of
the fully discrete scheme will be left for our future work.

Appendix A. Proof of a few technical lemmas.

A.1. The proof for Lemma 4.6.

Proof. We recall the definition of Θ3,

Θ3 = −H+(R2U − r2u, ξu)−H−(U2R− u2r, ξr).

The main difficulty in estimating Θ3 is caused by the nonlinear terms, especially
H+(ξ2rξu, ξu) and H−(ξ2uξr, ξr) contained in Θ3. If we estimate these two terms di-
rectly with inverse inequalities, we cannot obtain the error estimate results, not even
for suboptimal results. Therefore, our main idea is to decompose the error to extract
these two terms and treat them with nonlinear stability (4.19), then estimate the
remaining part.
Step 1: Error decomposition.
Firstly, we have

R2 − r2 = er(2R− er) = ηr(2R− ηr) + 2ηrξr − 2Rξr − ξ2r .
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Fig. 2. Example 5.3: The numerical solutions u for k = 3 on uniform mesh with N = 320.

The projection error ηu and ηr are high order terms, since we have the projection error
estimates results (4.2). Therefore, we put together the terms that have projection
errors and denote

A1 = ηr(2R− ηr) + 2ηrξr.

Therefore,

− (R2U − r2u)

=− U(R2 − r2)−R2(U − u) + (U − u)(R2 − r2)



18 Q. TAO, X.K. CHANG, Y. LIU, AND C.-W. SHU

x

-5 0 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LDG(c)

LDG(d)

Ref

t=0

x

-5 0 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LDG(c)

LDG(d)

Ref

t=1

x

-5 0 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LDG(c)

LDG(d)

Ref

t=5

x

-5 0 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LDG(c)

LDG(d)

Ref

t=10

x

-10

-5

0

5

10

t 0

5

10

u

0

0.2

0.4

0.6

LDG(d)

Time

|E
(t

)-
E

(0
)|

0 2 4 6 8 10
10

-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

LDG(c)

LDG(d)

Fig. 3. Example 5.4: The numerical solutions u for k = 3 on uniform mesh with N = 320.

=− U(A1 − 2Rξr − ξ2r )−R2ηu +R2ξu + (ηu − ξu)(A1 − 2Rξr − ξ2r )

:=Π1 +Π2 + ξuξ
2
r ,

where

Π1 = −UA1 −R2ηu + ηu(A1 − 2Rξr − ξ2r )− ξuA1,

Π2 = 2URξr + Uξ2r +R2ξu + 2Rξrξu.
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Similarly, we denote A2 = ηu(2U − ηu) + 2ηuξu, then

−(U2R− u2r) := Π3 +Π4 + ξrξ
2
u,

where

Π3 = −RA2 − U2ηr + ηr(A2 − 2Uξu − ξ2u)− ξrA2,

Π4 = 2URξu +Rξ2u + U2ξr + 2Uξuξr.

Hence, we have

Θ3 = H+(Π1 +Π2, ξu) +H−(Π3 +Π4, ξr) +H+(ξ2rξu, ξu) +H−(ξ2uξr, ξr).

After the error decomposition we extract H+(ξ2rξu, ξu) and H−(ξ2uξr, ξr), and make
each term in Π1 and Π3 containing a projection error. Thus, it is easy to obtain
the estimates for Π1 and Π3 by the projection properties and inverse inequalities.
However, the terms in Π2 and Π4 should be treated carefully.
Step 2: Estimates.
The estimates for H+(Π1, ξu) +H−(Π3, ξr):

By the projection property (4.2) and inverse inequalities (2.10), we have

∥Π1∥ ≤ Chk+
1
2 ∥ξr∥+ Chk+

1
2 ∥ξu∥+ Chk∥ξr∥∥ξu∥+ Chk∥ξr∥2 + Chk+1,

∥Π3∥ ≤ Chk+
1
2 ∥ξr∥+ Chk+

1
2 ∥ξu∥+ Chk∥ξr∥∥ξu∥+ Chk∥ξu∥2 + Chk+1.

Therefore,

H+(Π1, ξu) +H−(Π3, ξr)

≤Ch−1∥Π1∥∥ξu∥+ Ch−1∥Π3∥∥ξr∥
≤C∥ξr∥2 + C∥ξu∥2 + Chk∥ξu∥+ Chk∥ξr∥+ C∥ξr∥4 + C∥ξu∥4.

The estimates for H+(Π2, ξu) +H−(Π4, ξr):

By integration by parts, we have

H+(2URξr, ξu) +H−(2URξu, ξr) = −2((UR)xξu, ξr),

H+(Uξ2r + 2Rξrξu, ξu) +H−(Rξ2u + 2Uξrξu, ξr) = −(Uxξ
2
r , ξu)− (Rxξ

2
u, ξr) + Γ1.

By the Cauchy-Schwarz inequality, we have

H+(2URξr + Uξ2r + 2Rξrξu, ξu) +H−(2URξu +Rξ2u + 2Uξrξu, ξr)

= − 2((UR)xξu, ξr)− (Uxξ
2
r , ξu)− (Rxξ

2
u, ξr) + Γ1

≤ C∥ξu∥∥ξr∥+ ∥ξrξu∥(∥ξu∥+ ∥ξr∥) + Γ1

≤ Ch−1/2(∥ξr∥2∥ξu∥+ ∥ξu∥2∥ξr∥) + C(∥ξr∥2 + ∥ξu∥2) + Γ1

≤ Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) + Γ1.

Here we used the inverse inequality for ∥ξuξr∥ as follows:

∥ξuξr∥ ≤ ∥ξu∥∞∥ξr∥ ≤ Ch−1/2∥ξu∥∥ξr∥.(A.1)

By Lemma 2.4 and Corollary 4.1, we have

H+(R2ξu, ξu) ≤ C∥ξr∥2 + C∥ξu∥2.
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By integration by parts, we have

H−(U2ξr, ξr) = −(UUx, ξ
2
r )−

1

2

N∑
j=1

(U [[ξr]])
2
j+ 1

2
≤ C∥ξr∥2 −

1

2

N∑
j=1

(U [[ξr]])
2
j+ 1

2
.

Therefore,

H+(Π2, ξu) +H−(Π4, ξr)

≤Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2)−
1

2

N∑
j=1

(U [[ξr]])
2
j+ 1

2
+ Γ1.

Thanks to the linearity of the operator H± we obtain (4.20).

A.2. The proof for Lemma 4.7.

Proof. Recall the definition of Θ4,

Θ4 =
(
R(RU)x − r(ru)x, ξu

)
.

Similar to the estimate of Θ3, we also need to extract the terms in R(RU)x − r(ru)x
that cannot directly use the inverse inequalities to estimate. Therefore, we firstly do
error decomposition.
Step 1: Error decomposition.

(RU − ru)x = (Reu + Uer − ereu)x := B1 +B2,

where

B1 = (Rηu + Uηr − ηuηr + ηrξu + ηuξr)x −Rxξu − Uxξr,

B2 = −R(ξu)x − U(ξr)x − (ξuξr)x.

Here we collect the terms containing the derivative of ξu or ξr but not the projection
error in B2. Then, we have

R(RU)x − r(ru)x = R(RU − ru)x + (RU)xer − (RU − ru)x(ηr − ξr)

= RB1 +RB2 + (RU)xer − ηr(B1 +B2) + ξr(B1 +B2)

= Λ1 + Λ2 − ξr(ξuξr)x,

where

Λ1 = RB1 + (RU)xer − ηr(B1 +B2) + ξrB1, Λ2 = RB2 − ξr
(
R(ξu)x + U(ξr)x

)
.

Therefore,
Θ4 = (Λ1, ξu) + (Λ2, ξu)− (ξr(ξuξr)x, ξu).

After the error decomposition, we extract (ξr(ξuξr)x, ξu) and Λ2, which cannot directly
use the inverse inequalities to estimate.
Step 2: Estimates.
The estimates for Λ1:

By the properties of projections in (4.2), inverse inequalities in Lemma 2.2 and
(A.1), we have

∥B1∥ ≤ Chk + C∥ξu∥+ C∥ξr∥,(A.2)
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∥B2∥ ≤ Ch−1(∥ξu∥+ ∥ξr∥) + Ch−
3
2 ∥ξu∥∥ξr∥.(A.3)

Then, by (A.1) – (A.3) and the Cauchy-Schwarz inequality, we have

(Λ1, ξu) ≤ C∥B1∥∥ξu∥+ C∥er∥∥ξu∥+ ∥ηr∥∞(∥B1∥+ ∥B2∥)∥ξu∥+ ∥B1∥∥ξrξu∥
≤ Ch−1(∥ξr∥4 + ∥ξu∥4) + C(∥ξr∥2 + ∥ξu∥2) +Chk∥ξu∥.

The estimates for Λ2:

(Λ2, ξu) = (−R2(ξu)x −RU(ξr)x −R(ξuξr)x −Rξr(ξu)x − Uξr(ξr)x, ξu).

By the relationship between ξu and ξr in (4.5), inverse inequalities in Lemma 2.2
and (A.1), we have

(−R2(ξu)x −Rξr(ξu)x, ξu) ≤ Ch−1∥ξr∥4 + C(∥ξr∥2 + ∥ξu∥2).

Apply integration by parts to obtain

− (RU(ξr)x, ξu)− (R(ξuξr)x, ξu)− (Uξr(ξr)x, ξu)

=((RUξu)x, ξr)+((Rξu)x, ξuξr)+
1

2
((Uξu)x, ξ

2
r ) + Γ2

≤ Ch−1∥ξr∥4 + C(∥ξr∥2 + ∥ξu∥2) + Γ2.

The last inequality is obtained by using the relationship between ξu and ξr in (4.5),
inverse inequalities in Lemma 2.2 and (A.1). We put all boundary terms coming from
integration by parts in Γ2. Therefore,

(Λ2, ξu) ≤ Ch−1∥ξr∥4 + C(∥ξr∥2 + ∥ξu∥2) + Γ2.

Combining the estimates for Λ1 and Λ2, we obtain (4.21).

A.3. The proof for Lemma 4.8.

Proof. Since the exact solutions are continuous at the cell boundary, we get

Θ5 = −B(u, r; ξu) =
N∑
j=1

(
r−u−[[er]]ξ

−
u + r+r+[[eu]]ξ

+
u

)
j+ 1

2

.

Similarly, we do the error decomposition first to extract the term B(ξu, ξr; ξu).
Step 1: Error decomposition.

ru = RU − (RU − ru) = RU −Rηu − Uηr +Rξu + Uξr + ηrηu − ξrηu − ηrξu + ξrξu,

r2 = R2 − (R2 − r2) = R2 − 2Rηr + 2Rξr + η2r − 2ξrηr + ξ2r .

Then, we rewrite ru[[er]] and r
2[[eu]] in the following form:

ru[[er]] = ru[[ηr − ξr]] = Υ1 +Υ2 − ξrξu[[ξr]],

r2[[eu]] = r2[[ηu − ξu]] = Υ3 +Υ4 − ξ2r [[ξu]],

where

Υ1 = (RU − (RU − ru))[[ηr]] + (Rηu + Uηr − ηrηu + ξrηu + ηrξu)[[ξr]],

Υ2 = −(RU +Rξu + Uξr)[[ξr]],
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Υ3 = (R2 − (R2 − r2))[[ηu]] + (−R2 + 2Rηr − η2r + 2ξrηr)[[ξu]],

Υ4 = −2Rξr[[ξu]].

The above error decomposition ensures that each term in Υ1 has a projection error
which is a high-order term. Similar idea is used to decompose r2[[eu]] and obtain Υ3.
We also put −R2[[ξu]] in Υ3, since we have the estimate for [[ξu]] in Corollary 4.1.
Step 2: Estimates.

By the boundedness of the exact solutions, the properties of projections in (4.2),
inverse inequalities (2.10) and Corollary 4.1, we have

N∑
j=1

(
Υ1(x

−
j+ 1

2

)ξ−u |j+ 1
2
+Υ3(x

+
j+ 1

2

)ξ+u |j+ 1
2

)
≤ Chk∥ξu∥+ Chk∥ξr∥+ C∥ξu∥2 + C∥ξr∥2 + C∥ξu∥4 + C∥ξr∥4.

By the definition of B(·, ·; ·), we have

N∑
j=1

(
− ξ−r ξ

−
u [[ξr]]ξ

−
u − ξ+r ξ

+
r [[ξu]]ξ

+
u

)
j+ 1

2

= −B(ξu, ξr; ξu).

Since we cannot directly use inverse inverse inequalities to estimate Υ2 and Υ4,
we leave them and estimate them together with boundary terms in Θ3 and Θ4. Upon
denoting

N∑
j=1

(
Υ2(x

−
j+ 1

2

)ξ−u +Υ4(x
+
j+ 1

2

)ξ+u

)
j+ 1

2

= Γ3,

we obtain (4.22).

A.4. The proof for Lemma 4.9.

Proof. By the definition of the Γ1, Γ2 and Γ3, we have

Γ1 + Γ2 + Γ3 −
1

2

N∑
j=1

(U [[ξr]])
2
j+ 1

2

=

N∑
j=1

{((
U(ξ+r )

2 + 2Rξ+r ξ
+
u

)
[[ξu]]+

(
R(ξ−u )2 + 2Uξ−r ξ

−
u

)
[[ξr]] + U(ξ−r )2ξ−u − U(ξ+r )

2ξ+u

+R(ξ−u )2ξ−r −R(ξ+u )
2ξ+r

)
+
(
−RUξ−r ξ−u +RUξ+r ξ

+
u −Rξ−r (ξ−u )2 +Rξ+r (ξ

+
u )

2

− 1

2
Uξ−u (ξ−r )2 +

1

2
Uξ+u (ξ

+
r )

2
)
+
(
−(RU +Rξ−u + Uξ−r )ξ−u [[ξr]]−2Rξ+r ξ

+
u [[ξu]]

)
− 1

2
(U [[ξr]])

2
}
j+ 1

2

=

N∑
j=1

(
U(ξ+r )

2[[ξu]] + Uξ−r ξ
−
u [[ξr]] +

1

2
U(ξ−r )2ξ−u − 1

2
U(ξ+r )

2ξ+u −RUξ−r ξ−u +RUξ+r ξ
+
u

−RUξ−u [[ξr]]−
1

2
(U [[ξr]])

2
)
j+ 1

2

.



THE LDG METHOD FOR THE NOVIKOV EQUATION 23

Using the following identities

a−b− − a+b+ = −a−[[b]]− b+[[a]],

a−(b−)2 − a+(b+)2 = −a−b+[[b]]− a−b−[[b]]− (b+)2[[a]].

We obtain

N∑
j=1

(1
2
U(ξ−r )2ξ−u − 1

2
U(ξ+r )

2ξ+u −RUξ−r ξ−u +RUξ+r ξ
+
u

)
j+ 1

2

=

N∑
j=1

(
− 1

2
Uξ−u ξ

+
r [[ξr]]−

1

2
Uξ−u ξ

−
r [[ξr]]−

1

2
U(ξ+r )

2[[ξu]] +RUξ−u [[ξr]] +RUξ+r [[ξu]]
)
j+ 1

2

.

Therefore,

Γ1 + Γ2 + Γ3 −
N∑
j=1

(1
2
(U [[ξr]])

2
)
j+ 1

2

=

N∑
j=1

1

2

(
Uξ−r ξ

−
u [[ξr]]− Uξ−u ξ

+
r [[ξr]] + Uξ+r ξ

+
r [[ξu]] + 2RUξ+r [[ξu]]− (U [[ξr]])

2
)
j+ 1

2

≤
N∑
j=1

1

2

(
(ξ−r ξ

−
u )2 + (ξ−u ξ

+
r )

2 +
1

2
(U [[ξr]])

2 + Uξ+r ξ
+
r [[ξu]] + 2RUξ+r [[ξu]]− (U [[ξr]])

2
)
j+ 1

2

≤
N∑
j=1

1

2

(
(ξ−r ξ

−
u )2 + (ξ−u ξ

+
r )

2 + Uξ+r ξ
+
r [[ξu]] + 2RUξ+r [[ξu]]

)
j+ 1

2

≤Ch−1∥ξu∥2∞∥ξr∥2 + C∥ξr∥∞∥ξr∥h−
1
2 |[ξu]|+ C∥ξr∥h−

1
2 |[ξu]|

≤Ch−1∥ξu∥4 + Ch−1∥ξr∥4 + C∥ξr∥2,

where (4.5) and (4.6) are used in the last inequality. Therefore, we obtain (4.23).

A.5. The proof for Lemma 4.11.

Proof. We denote

L(t) = h2k +

∫ t

0

h−1A2(τ) +A(τ)dτ.

Since A′(t) ≤ C(h−1A2 + A + h2k), A(0) ≤ Ch2k+2, we have A(t) ≤ (2C + CT )L(t)
and

L′(t) = h−1A2(t) +A(t) ≤ C⋆
(
h−1L2(t) + L(t)

)
,

where C⋆ = max{(2C + CT )2, 2C + CT}. Therefore,∫ t

0

L′(τ)

h−1L2(τ) + L(τ)
dτ ≤ C⋆T,

and

F
(L(t)
L(0)

)
:=

∫ L(t)
L(0)

1

1

y + h2k−1y2
dy
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=

∫ L(t)
L(0)

1

1

y + h−1y2L(0)
dy =

∫ t

0

L′(τ)

h−1L2(τ) + L(τ)
dτ.

It is easy to check F(ω) = ln
(

ω
1+h2k−1ω

)
+ ln(1 + h2k−1) and

F
( 2eC

⋆T+1

1− h2k−1eC⋆T+1

)
≥ C⋆T.

Upon denoting C1 = 4eC
⋆T+1 and C1 ≥ 2eC

⋆T+1

1−h2k−1eC⋆T+1 as h small enough. Since F(ω)

is increasing with ω and F(C1) ≥ F
(

2eC
⋆T+1

1−h2k−1eC⋆T+1

)
≥ C⋆T ≥ F

(
L(t)
L(0)

)
, then we

have L(t)
L(0) ≤ C1 and A(t) ≤ C⋆L(t) ≤ C⋆C1L(0) ≤ C⋆C1h

2k.
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