Finite difference alternative WENO schemes with Riemann
invariant-based local characteristic decompositions for
compressible Euler equations®

Yue Wul and Chi-Wang Shu?

Abstract: The weighted essentially non-oscillatory (WENO) schemes are widely used for
hyperbolic conservation laws due to the ability to resolve discontinuities and maintain high-
order accuracy in smooth regions at the same time. For hyperbolic systems, the WENO
procedure is usually performed on local characteristic variables that are obtained by local
characteristic decompositions to avoid oscillation near shocks. However, such decompositions
are often computationally expensive. In this paper, we study a Riemann invariant-based local
characteristic decomposition for the compressible Euler equations that reduces the cost. We
apply the WENO procedure to the local characteristic fields of the Riemann invariants, where
the eigenmatrix is sparse and thus the computational cost can be reduced. It is difficult
to obtain the cell averages of Riemann invariants from those of the conserved variables due
to the nonlinear relation between them, so we only focus on the finite difference alternative
WENO versions. The efficiency and non-oscillatory property of the proposed schemes are well
demonstrated by our numerical results.
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1 Introduction

It is well known that nonlinear hyperbolic conservation laws, e.g. the compressible Euler
equations for gas dynamics, can generate sharp discontinuities in finite time even with smooth
initial conditions. Numerically resolving these discontinuities while maintaining high-order
accuracy in smooth regions is a challenging task, because spurious oscillations that appear near
the discontinuities may mess/blow up the simulation. Inspired by the essentially non-oscillatory
(ENO) schemes [9] 20, 21], the weighted ENO (WENO) schemes, originally proposed in [14]
and improved to achieve higher order in [12], perform well in this regard. Both finite volume
and finite difference versions of the WENO schemes have been developed and widely used in
practice, and many other variants are proposed. For simplicity, we only focus on the WENO-
JS version [12] in this paper. Besides the classical finite difference WENO formulation that is
applied to point values of split flux functions, there is also one formulation called alternative
WENO (A-WENO) [13] that works on those of conserved variables, which roots back to early
studies of the ENO method [20].
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For scalar hyperbolic conservation laws, the application of WENO methods is straightfor-
ward, and the oscillations are well suppressed. However, the situation is more complicated for
systems. The component-wise ENO/WENO schemes often produce oscillatory solutions after
discontinuities where multiple shocks interact with each other [9], such as Riemann problems.
To avoid this, the local characteristic decomposition (LCD) procedure should be involved. Both
the finite volume [9] and finite difference [21] versions include the multiplication of the left and
right eigenmatrices with corresponding vectors. For a 1D system consisting of m components,
the extra cost at each cell interface of a rth-order ENO (or a (2r — 1)th-order WENO) scheme
is 4r + 2 multiplications of an m x m-matrix and an m-vector, compared to the component-
wise version. This costs (47 4 2)m? floating point multiplications in a vanilla implementation.
Various experiments have shown that LCD does takes a big portion of the computational time
[22]. There have been some attempts to alleviate this extra cost, but none of them works
well for the compressible Euler equations in high-order simulations. For example, Jiang and
Shu [12] proposed to use pressure and entropy to compute the nonlinear WENO weights for
compressible Euler equations, but oscillations can occur near strong shocks. The second-order
component-wise central ACM-MUSCL scheme [16] and the third-order component-wise cen-
tral PPM method [I5] are both non-oscillatory, whereas the LCD is still necessary to suppress
oscillations in higher-order central schemes [I7]. Xu and Shu [2§] circumvented the LCD pro-
cedure by applying the WENO interpolation on the coordinate system of Riemann invariants,
if the equations admit such a system. This reduces the per-node cost (other than the WENO
part) dependency upon the stencil width 2r from linear to constant, while maintaining non-
oscillatory and high-order. Unfortunately, the compressible Euler equations do not belong to
this category. In this paper, we propose to use the Riemann invariants to improve the spar-
sity of the eigenmatrix, so as to reduce the cost of the LCD procedure for the compressible
Euler equations. Although we cannot completely eliminate the linear dependency upon r of
the per-node LCD cost, a big improvement is still available by bringing the matrix as close to
the identity as possible. Because of the nonlinear relation between the conserved variables and
the Riemann invariants, it is difficult to obtain the cell averages of the latter from those of the
former, so we only concentrate on the finite difference A-WENO versions, which are based on
the point values of the conserved variables.

The rest of the paper is organized as follows. In Section 2, we introduce the Riemann
invariants and the compressible Euler equations. In Section 3, we review the A-WENO scheme
and propose the Riemann invariant-based LCD. In Section 4l we present our numerical results.
Finally, we conclude in Section [Bl

2 Preliminaries

2.1 Riemann invariants

Consider a system of conservation laws of m components in one space dimension
u + f(u), =0, (2.1)

where u = (u1,us, ..., un)" € R™ are the conserved variables and f(u) = (fi(u), fa(u), ..., fm(u))T €
R™ are the flux functions. We are only interested in the case where f(u) is a C! function of u.
Assuming all the functions are differentiable, the system (2.I]) can be rewritten into a general
quasilinear form,

u; + A(u)u, =0, (2.2)



where A(u) = g—i is the Jacobian matrix.

Definition 2.1 (hyperbolicity in 1D). The quasilinear system (2.2)) is hyperbolic if the Ja-
cobian matrix A(u) is diagonalizable for all w, i.e. there exists an invertible matrix R(u)
such that A(u) = R(u)A(u)R(u)~!, where A(u) = diag(Ai(u), Aa(u), ..., An(w)) is the di-
agonal matrix of eigenvalues, R(u) = (r1(u), ro(w), ..., mm(u))? is the right eigenmatrix, and
R(u)™!' = L(u) = (Iy(w)T, ly(w)T, - -+ | 1,,(w))T is the left eigenmatrix.

Correspondingly, ([2.1)) is called a system of hyperbolic conservation laws, if the Jacobian

matrix %&:‘) is diagonalizable for all w.

Definition 2.2 (hyperbolicity in multi-D). For a system of conservation laws in d spatial
dimensions,

d
w4+ fi(w)e, =0, (2.3)
i=1
it is hyperbolic if for any unit vector n = (ny,na,...,nq), the following 1D equation
d
w + Y nifi(u), =0 (2.4)
i=1

is hyperbolic.

Remark 2.1. In the following, we will only state the results for 1D systems, but they can be
easily extended to multi-D by applying it to each direction.

Definition 2.3 (Riemann invariant). A scalar-valued function w(w) is called an i-Riemann
invariant for the hyperbolic system (2.2]) if Vw(u) - 7;(u) = 0 for any wu.

Corollary 2.1 (closedness under composition of differentiable functions). If w(w) is an i-
Riemann invariant, then for any C' function g : R — R, g(w(u)) is also an i-Riemann
invariant. Moreover, a differentiable function of several i-Riemann invariants is also an i-
Riemann invariant.

Theorem 2.1 (jump of Riemann invariants [23, Theorem 17.16]). For a system of hyperbolic
conservation laws (211, the change of an i-Riemann invariant w(uw) across an isolated i-
rarefaction or i-contact is 0, whereas the change across an isolated i-shock is O(e3) as € — 0,
where € = | \j(u;) — A\i(u,)| is the shock strength.

Proposition 2.1 (change of variables). Consider a hyperbolic system ([2.2)) and assume all
the functions are differentiable. If there exists a differentiable and invertible transform v(u) :
R™ +— R™ for all w, then it can be rewritten as another hyperbolic system,

v+ A(v)v, = 0, (2.5)

where A = g—ﬂAg—z. Moreover, A have the same etgenvalues as A, and the corresponding
etgenmatrices are R = S—ZR and L = Lg_g,

Corollary 2.2 (sparsity of the eigenmatrix). Assume there ezists a differentiable and invertible
transform v(u) = (vi(u),va(w), ..., v,(w))’ for all u, where v;(u) is a j-Riemann invariant,
then for the transformed system (Z3)), the (i,7)-th entry of R is 0.

Remark 2.2 (coordinate system of Riemann invariants [28]). If v;(w) is a (1,...,7i — 1,7 +
1,...,m)-Riemann invariant for all i’s, the system (2.I)) is endowed with a coordinate system
of Riemann invariants which is exactly v(w). Then for the transformed system (2.35), the
eigenmatrix R is diagonal and so is A. In this case we can even take R = I.



2.2 The compressible Euler equations

The 2D compressible Euler equations are
uy + f(u)s +g(u)y, =0, (2.6a)
where the conserved variables are
u = (p, pu, pv, E)", (2.6b)

and the fluxes are -
f(u) = (pu, pu® + p, puv,u(E +p)) ",

(2.6¢)
g(u) = (pv, pvu, pv* + p,v(E + p))T .

Here, p is the density, @ = (u,v) is the velocity, E = & |z_[|2 + pe is the total energy, e is the
specific internal energy, and p = p(p,e) is the pressure determined by the equation of state
(EOS). Additional derived variables include the total enthalpy H = %, the sonic speed

c= g—z‘ and the specific entropy s. We consider the simplest y-law EOS for ideal polytropic
S

gas,

p=pe(y—1), (2.7)
with v = g—i > 1 being the specific heat capacity ratio which is constant. Under this EOS, we
have ¢ = \/? and s = In(pp~7). We use S = exp(s) = pp~? to denote the entropy.

We list the eigenstructure of the Jacobian matrix in (AJ]), (A2) and (A3). For the 1D
version of the equations, the eigenmatrices can be obtained by first restricting v = 0 and then
removing the third row and column of the 2D eigenmatrices. By simple algebraic manipulations,
it is easy to check that the equations have the following Riemann invariants corresponding to
the eigenmatrix in (A.2).

Proposition 2.2 (Riemann invariants of the 2D compressible Euler equations). The 2D com-
pressible Euler equations (2.6) with the y-law EOS [2.1) has the following Riemann invariants
in the z-direction.

e I-Riemann invariants: S, u + %c, V.
e 2-Riemann invariants: u, p, v.

e 3-Riemann invariants: S, u, p.

e /-Riemann invariants: S, u — %c, V.

3 Numerical methods

3.1 The A-WENO scheme with transform variables

Consider the 1D hyperbolic system (2.I) on a finite interval [a,b]. We use the uniform
grid I; = [mj_%,mH%] for j = 1,2,...,N, where z; = a+ (j — %)Aaz and Az = I’_Ta. The
semi-discrete (2r — 1)th-order finite difference A-WENO scheme is

d 1 . .
U+ _(-fj+l - fj_

o+ ) =0. (3.1)



Here, u; is the approximation to w(t,z;) and fj 41 is a numerical flux at the cell interface
2
T G+ % .
Given a set of transform variables v(u), the procedure to compute fj 418 is as follows.
2

1. Obtain ghost point values using the boundary conditions.

2. Compute all the flux function values f; = f(u;) and all the transform variables v; =

v(u;).
3. For each cell interface = jne
2
(a) Compute the Roe average uRfr’e using u; and w1, then obtain the transformed
2 ~
eigenmatrices R L1 = = R(u ?fr’e) and L L(ui‘r’i) at the cell interface.
2

(b) Compute the local characteristic variables wj_, s = =L, JHiVj—r+s in the whole stencil

s=1,2,...,2r.

(¢) Use WENO interpolation (see Section [Blfor details) to obtain approximations w]_ 1=
WENO(w;—y41,...,Wjyr—1) and wg+1 = WENO(wj4r, ..., Wj—ry2).

(d) Transform back to Ui 1= Rj n %wi 1 and then to the conserved variables uji 1=
u('vjiJr 1)

(e) Compute the lowest-order flux fliw = f (u;r L u; 1 ) using some approximate Rie-

mann solver, e.g. the HLL-family ﬂux
f) Compute the high-order flux correction terms (see Section [C] for details A.Corl usin
g 4l g
2

flux function values fj_,1s for s =1,2,...,2r. Obtain f-+ flowl + feor, .
J J+3 J+3

Time is advanced using the strong stability-preserving Runge-Kutta (SSP-RK) methods
[6]. The time step is determined by the CFL condition,

1
Jo It3
Az

where a1 is the estimate of the maximum wave speed at the cell interface Tji1 by the
selected approximate Riemann solver.

For the 2D case, the semi-discrete A-WENO scheme is performed in a dimension-by-
dimension manner. The time step should be taken as

At=CFLmin ——, (3.3)
i, Yxlj 61’,]‘:!:%
Az Ay

where a1 . is the estimate of the maximum wave speed in the z-direction at the cell interface

+ l
(:L"H%,y]) and ﬁi’jJr% is the estimate in the y-direction at the cell interface (x;, yj+%).



3.2 Reducing the cost of LCD

Besides the WENO interpolation part, the most costly part that grows with the stencil
width 2r or the scheme order k = 2r — 1 should be the LCD procedure, which is documented
to take a big portion of the total computational time [22]. For a system of conservation laws
consisting of m components, the A-WENO LCD procedure at every cell interface Tjid has the

following costs: (1) 4r multiplications between the left eigenmatrix L ;+1 and vectors of trans-
2 ~
form variables v;_,s, (2) 2 multiplications between the right eigenmatrix R, 1 and vectors of
2

characteristic vectors wji ;- A vanilla implementation of the matrix-vector multiplication will
2

cost m? floating point multiplications. With these in mind, one could easily see that the major
part that grows with the stencil width is the left eigenmatrix-vector multiplication. Therefore,
reducing this cost is the key to improve the efficiency of the A-WENO scheme at high-order.

One attempt for some hyperbolic systems so far is to use the coordinate system of Riemann
invariants [28] as the transform variables to completely avoid computing such multiplications,
because in this case both the left and right eigenmatrices are diagonal and thus can be re-
placed by the identity matrix. Unfortunately, the compressible Euler equations (2.6]) with the
~-law EOS (2.7) is not endowed with such a coordinate system. (See detailed proof in Proposi-
tion [ATl) We have to seek other ways to reduce the cost, and our main freedom lies in choosing
“good” transform variables v(u) and designing efficient left eigenmatrix-vector multiplication
subroutines.

If we stick with the trivial transform variables v = wu, there are still some possibilities to
improve the efficiency. Two main ideas are to suitably normalize the eigenvectors to increase
the number of unit elements in the eigenvectors so that to avoid multiplications, and to reuse
intermediate results as possible. Take the 2D case as an example. The left eigenvectors are
split as by = & — &3, lo = & — €3, I3 = &4 and 1y = & + & as in (A3]). When computing
w = Lu, we first calculate the intermediate results &; - u and then sum them back to get the
final results. Although there are still 4 vectors, cost can be saved because of their sparsity.
The inner product between a general vector and the &;’s require only 1, 4, 1 and 1 “true”
multiplications, so the total number of multiplications can go down from 16 to 7.

Inspired by Corollary 2.2] it is possible to improve the sparsity of the eigenmatrix so as
to reduce the cost further. We the following Riemann variables as transform variables for the

2D compressible Euler equations in z-direction, v(u) = (u — 7 —=c, S 5 ,v,u + =), whose
related eigenmatrices are given in (A.4) and (IEI) Each of the elgenmatrlx has only two non-
zero off-diagonals. Moreover, these two off-diagonals are opposite to each other and all lie in
the second column. Let us denote the positive off-diagonal element by p. We can implement
the left eigenmatrix-vector multiplication w = Lv using only 1 multiplications: compute the
intermediate results a = pvg, then the final result is just w = (v1 + a, va, v3,v1 — a). It’s same
for both 1D and 2D versions of the equations.

We list the cost of the original and our new method in Table B.Il In terms of the whole
scheme, the cost reduction will not be as significant as the reduction of solely the matrix-
vector multiplications, because possible additional work is required to compute the forward
and backward transforms and the coefficients in the new eigenmatrices. In this particular case,
the cost of forward and backward transforms is only constant per- node but such constant may
become relatively large because of the exponential part in S2v 2 — p% P 3 which is expensive for
CPUs. It might exceed the reduction of cost gained from our new LCD if not treated properly.
Highly optimized SIMD instructions are needed to overcome this issue.



Table 3.1: Number of floating point multiplications of one left eigenmatrix-vector multiplication
for the compressible Euler equations of different dimensions.

original method our new method
1D 9 1
2D 16 1

3.3 Properties of the new scheme

We emphasize here that with any smooth transform variables, the A-WENO scheme is still
conservative, and the convergence rates for smooth solutions will remain the same. Moreover,
with our selected Riemann invariant-based transform variables, the scheme has the following
property.

In 1D simulations, the E-property [7] refers to the ability to maintain constant velocity
u and pressure p in the fully discrete solution if they are initially constant, regardless of the
initial condition of p. Schemes that satisfy the E-property, such as the primitive variable-
based and the classical characteristic-wise A-WENO schemes, do not produce oscillations near
contact discontinuities. In contrast, schemes that do not satisfy the E-property, such as the
component-wise A-WENO scheme, may produce oscillations in these regions. By carefully
analyzing the evolution of every component of the variable in a fully discretized scheme, we
have the following proposition.

Proposition 3.1 (E-property). Assume the WENO procedure is affine-invariant, i.e. the
WENO procedure is commutative with affine transformations. Then for the 1D case, both the
original and the Riemann invariant-based A-WENQO schemes satisfy the E-property.

Proof. See [7] for the proof for the original scheme. The proof for our Riemann invariant-based
version is similar. The key point is to notice that when u; and p; are constants, the WENO

interpolation for each component of vj_+1 actually gives the same result as that for (pj_+ 1 )_%,
2

2
up to affine transformations. O

Remark 3.1. Actually, the WENO-JS procedure is not strictly affine-invariant in computation
because of the artificial € to avoid division by zero. However, such impact is very small because
e can be taken near machine zero. We refer the readers to the strictly affine-invariant WENO
procedure [26], 5] for more details.

Remark 3.2. The exponential term S 2 may seem arbitrary at first glance, because Corollary 211
implies that any smooth and invertible function of S can take the second position in the
transform variables while preserving the sparsity of the eigenmatrix. However, it is actually
the only choice to satisfy the E-property, and it is less oscillatory near contact discontinuities
than other choices.

3.4 Positivity-preserving limiters

During the computation, it is crucial to ensure that certain variables, which are both mathe-
matically and physically required to be positive, do not take negative values so that the compu-
tation might break down. This can be achieved by implementing two positivity-preserving (PP)
limiters in [4, Appendix D]. These limiters only interfere when certain negativity is detected,
so in most of the time they contribute little to the computational cost.



The first one is a PP limiter on the WENO interpolation results. Let us only consider
the 1D case, as generalizations to 2D are straightforward. The admissible set of the transform
1
variables v = (u—%c, S u+ %0), g= {'v €R3: v < vg,v9 > 0}, is convex, so the convex
combination-based limiter [29] can be directly adopted to the interpolated transform variables
Uji . in our framework.

2
The second one is the so-called PP flux limiter, which requires a stricter CFL condition to

maintain accuracy when it is triggered. The readers are referred to [I1] for details.

4 Numerical results

In this section, we perform numerical tests using 5th-, 7th- and 9th-order A-WENO schemes.
The time is discretized by the explicit 3rd-order SSP-RK method. The classical conserved
variable based characteristic decomposition is abbreviated as CH-CON, the component-wise
version is abbreviated as CP-CON and the Riemann invariant-based one is abbreviated as CH-
RI. We use the HLL numerical flux [I0]. For the lowest-order flux, the positivity-preserving
Einfeldt’s wave speed estimate [2, [3] is used. For the PP flux in the flux limiter, we adopt the
more dissipative two-rarefaction wave speed estimate [24, Section 10.5.2] that proves to bound
the physical wave speeds for v € (1, %] [8]. Unless otherwise specified, the CFL number is set
to 0.5, and the specific heat capacity ratio v is set to 1.4 for air.

First of all we list the per-time step CPU time cost of the three versions of the A-WENO
scheme. Following that, different test examples are presented to verify the accuracy and ro-
bustness of our CH-RI version in contrast to the classical CH-CON version.

4.1 Efficiency test

We use N = 2000 nodes for the 1D tests and (Nz, Ny) = (400,400) nodes for the 2D
tests. The tests are conducted on Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz with Intel
Turbo Boost disabled. The compiler is Intel Fortran IFX 2025.0.0 20241008, and the
compiling options are -03 -xHost -r8 -qopenmp-stubs. The Intel SVML library is triggered
by OpenMP SIMD directives to accelerate floating point exponentials. The results are shown
in Table £.Il The LCD time saving refers to the percentage of LCD time reduction of the
CH-RI version compared to the CH-CON version.

Table 4.1: Efficiency test. Per-time step CPU time cost (in seconds) of the A-WENO scheme.

order CH-RI CH-CON CP-CON LCD time saving

3 1.58E-03 1.98E-03 1.33E-03 62%
1D 5 1.83E-03 2.30E-03 1.61E-03 68%
7 2.23E-03 2.72E-03 2.01E-03 69%
9 2.26E-03 2.82E-03 2.10E-03 78%
3 4.98E-01 6.36E-01 4.69E-01 82%
2D b} 5.20E-01 6.66E-01 5.07E-01 92%
7 5.39E-01 6.84E-01 5.20E-01 88%
9 6.21E-01 7.67E-01 5.99E-01 86%




4.2 1D tests
4.2.1 Accuracy test 1

We consider the simple periodic density-transport problem whose exact solution is (p, u,p) =
(1+0.2sin(n(z —t)),1,1). The computation domain is [0, 2] with periodic boundaries. Solve
up to T' = 2. We use Ny = 20 as the coarsest mesh and use hy = N%) to denote the coars-
est mesh size. Using SSP-RK(3,3), the time steps in the following tests are taken to be

k

At = CFL% %—:) ® , which makes the time discretization error kth-order while maintaining

stability. Here, « is the maximum wave speed. The errors are shown by Tables to 4.4l

Table 4.2: Accuracy test 1. Error table of the density. k = 5.

CH-RI CH-CON
N E%L error order /;° error order E%L error order /;° error order
20 8.02E-04 1.10E-03 4.66E-04 5.06E-04

40 3.53E-05 4.507 5.80E-05 4.251 1.44E-05 5.015 1.78E-05 4.830
60 4.95E-06 4.842 9.03E-06 4.587 1.85E-06 5.056 2.44E-06 4.900
80 1.19E-06 4.961 2.29E-06 4.766 4.34E-07 5.050 5.78E-07 5.000
100 3.88E-07 5.018 7.75E-07 4.858 1.41E-07 5.043 1.86E-07 5.088
120 1.54E-07 5.059 3.04E-07 5.131 5.62E-08 5.037 7.32E-08 5.113
140 7.03E-08 5.098 1.39E-07 5.094 2.59E-08 5.034 3.36E-08 5.045
160 3.54E-08 5.137 6.83E-08 5.310 1.32E-08 5.035 1.68E-08 5.180

Table 4.3: Accuracy test 1. Error table of the density. k = 7.

CH-RI CH-CON
N E%L error order /£;° error order 6% error order /(p° error order
20 1.28E-04 2.59E-04 3.52E-05 5.74E-05

40 2.07E-06 5.945 b5.88E-06 5.460 4.99E-07 6.142 1.16E-06 5.636
60 1.68E-07 6.202 5.79E-07 5.714 4.56E-08 5.902 1.28E-07 5.417
80  2.54E-08 6.562 9.97E-08 6.118 7.91E-09 6.088 2.60E-08 5.548
100 5.20E-09 7.107 2.21E-08 6.743 1.86E-09 6.481 6.98E-09 5.902
120 1.30E-09 7.597 5.78E-09 7.369 5.26E-10 6.937 2.18E-09 6.389
140 3.84E-10 7.923 1.72E-09 7.876 1.69E-10 7.361 7.50E-10 6.911
160 1.30E-10 8.093 5.72E-10 8.233 6.04E-11 7.704 2.79E-10 7.406

Table 4.4: Accuracy test 1. Error table of the density. k = 9.

CH-RI CH-CON
N E%L error order /7 error  order E%L error order /7 error order
20 1.95E-05 3.23E-05 1.63E-05 1.60E-05

40 4.70E-08 8.695 8.18E-08 8.624 3.20E-08 8.992 3.13E-08 8.994
60 1.38E-09 8.702 2.79E-09 8.332 8.32E-10 8.998 8.23E-10 8.973
80 1.09E-10 8.839 232E-10 8.651 6.24E-11 9.002 6.22E-11 8.976
100 1.48E-11 8.930 3.17E-11 8916 8.31E-12 9.035 8.87E-12 8.729
120 3.25E-12 8.309 4.98E-12 10.143 2.18E-12 7.337 2.60E-12 6.731




4.2.2 Accuracy test 2

Notice that any isentropic solution are completely determined by the initial entropy value

So = pp~ " and the left- and right- Riemann invariants, J* = u + f_l. When the specific heat

ratio is v = 3 and all functions are smooth, J* satisfy two disjoint Burgers’ equations [25], so
now the exact solution can be constructed from the exact solution of Burgers’ equation. Let
Q = [~1,1] with periodic boundaries. Choose Sy =1 and J* = 2, and let J~ be the solution

with the exact solution of the Burgers’ equation with initial condition J~|;—¢ = sin(7x). The

1—% sin(7x)
V3

solve the problem to T'= 0.2. The time step is taken to be the same as the previous example.

initial condition in primitive variables is then p = ,u=1+ %sin(wx), p=p3 We

The errors are shown in Tables to @7l This is a genuinely nontrivial test since all
variables have nontrivial variations. We can see from the error tables that the CH-RI version
is as accurate as the CH-CON version in terms of the convergence rate.

Table 4.5: Accuracy test 2. Error table of the density. k£ = 5.

CH-RI CH-CON
N E}% error order (;° error order E%L error order /3 error order
20  2.99E-03 6.84E-03 9.13E-03 2.21E-02

40 2.98E-04 3.324 1.05E-03 2.701 8.91E-04 3.358 2.45E-03 3.172
60 5.18E-05 4.319 2.07E-04 4.006 287E-04 2.791 6.53E-04 3.265
80 1.27E-05 4.875 5.26E-05 4.768 1.00E-04 3.670 2.60E-04 3.201
100 4.00E-06 5.192 1.66E-05 5.168 2.90E-05 5.547 1.03E-04 4.158
120 1.50E-06 5.367 6.20E-06 5.395 1.28E-05 4.493 4.43E-05 4.616
140 6.49E-07 5.451 2.65E-06 5.516 6.33E-06 4.558 2.06E-05 4.971
160 3.12E-07 5.481 1.32E-06 5.212 3.38E-06 4.707 1.07E-05 4.871

Table 4.6: Accuracy test 2. Error table of the density. k = 7.

CH-RI CH-CON
N E%L error order /;° error order E%L error order /3¢ error order
20 2.50E-03 - 5.60E-03 - 5.24E-03 - 1.29E-02 -

40 1.53E-04 4.032 5.13E-04 3.449 6.72E-04 2.963 1.90E-03 2.768
60 1.82E-05 5.242 743E-05 4.766 1.14E-04 4.376 3.94E-04 3.878
80 3.24E-06 6.003 1.42E-05 5.764 1.88E-05 6.265 8.01E-05 5.541
100 7.56E-07 6.523 3.37E-06 6.425 5.27E-06 5.698 2.22E-05 5.746
120 2.15E-07 6.890 9.79E-07 6.789 1.79E-06 5.930 7.87E-06 5.692
140 7.17E-08 7.137 3.42E-07 6.823 6.96E-07 6.118 3.03E-06 6.195
160 2.70E-08 7.303 1.28E-07 7.351 3.02E-07 6.257 1.26E-06 6.544

4.2.3 The Sod shock tube problem

The initial condition is (p,u,p) = (1,0,1) for x < 0 and (p,u,p) = (0.125,0,0.1) for = > 0.
The computation domain is [—5,5]. We solve the problem to 7" = 2. The results are shown in
Figure 1l For this example, both CH-RI and CH-CON have similarly good performance.
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Table 4.7: Accuracy test 2. Error table of the density. k£ = 9.

CH-RI CH-CON
N E%L error order /;° error order E%L error order /p° error order
20 2.00E-03 4.53E-03 - 2.67E-03 - 7.13E-03 -

40 1.11E-04 4.167 3.65E-04 3.636 3.12E-04 3.093 9.76E-04 2.869
60 1.11E-05 5.685 4.49E-05 5.164 2.99E-05 5.789 1.06E-04 5.484
80 1.60E-06 6.721 7.21E-06 6.358 4.28E-06 6.754 1.63E-05 6.506
100 3.07E-07 7.411 143E-06 7.244 7.17E-07 8.004 3.01E-06 7.552
120 7.18E-08 7.969 3.38E-07 7.916 1.38E-07 9.036 6.33E-07 8.563
140 1.97E-08 8.390 9.35E-08 &.343 3.31E-08 9.271 1.61E-07 8.873
160 6.17E-09 8.697 3.17E-08 8.089 1.03E-08 8.724 4.93E-08 8.875
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CH-CON
CH-RI
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CH-RI

02 021 021
Ly, — ol ey, — o ey, —
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x of
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~
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X
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Figure 4.1: The Sod shock tube problem at T' = 2 with N = 200 grids.
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4.2.4 The Lax shock tube problem

The initial condition is (p, u, p) = (0.445,0.698, 3.528) for x < 0 and (p, u, p) = (0.5,0,0.571)
for > 0. The computation domain is [—5,5]. We solve the problem to 7" = 1.3. The results

are shown in Figure The CH-RI and CH-CON agree with each other well.
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Figure 4.2: The Lax shock tube problem at T' = 1.3 with N = 200 grids.

4.2.5 The LeBlanc shock tube problem

The initial condition is (p,u,p) = (2,0,10%) for z < 0 and (p,u,p) = (1073,0,1) for = > 0.
The computation domain is [—5,5]. We solve the problem to 7' =5 x 107°. The results are
shown in Figure The extreme pressure ratio makes the problem very stiff and challenges
the PP property of the scheme. With our PP limiters, both CH-RI and CH-CON perform

quite well.
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Figure 4.3: The LeBlanc shock tube problem at T'= 5 x 107° with N = 2000 grids.
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4.2.6 The critical double rarefaction problem

The initial condition is (p,u,p) = (7,—1,0.2) for x < 0 and (p,u,p) = (7,1,0.2) for z > 0.
The computation domain is [—5,5]. We solve the problem to 7" = 3.3. The results are shown
in Figure 4.4l The point z = 0 is the only vacuum point in the exact solution for ¢t > 0, so it
causes difficulty for the scheme. Because the PP interpolation limiters for the two versions are
different, there seems to be some difference near the vacuum point in the numerical solution.

Exact E Exact Exact
CH-CON r o CH-CON r o CHCON
CH-RI B . CH-RI B . CH-RI
10" 10° | 10"
= 2 =
7] 2} 7]
5 ] 5
a o a
101 10" 101
g [ ~— [ N4
Al [ H & i
% oS
k3 ®
107 - 107 107 |-
T I I Y Il T I S I E 1 0 1 T T I I Y E 1 0 1 Il Il L Il
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4
X X X
(a) AWENO5 (b) AWENO7 (c) AWENO9
T Exact s Exact T Exact
£ CH-CON p [ o CHCON [ o CHCON
08 . CH-RI 08 . CH-RI 08 . GH-RI

, Velocity
. Velocity

(d) AWENO5 (e) AWENO7 (f) AWENO9
M N N \_,/ N ~__~
(g) AWENO5 (h) AWENO?7 (i) AWENO9

Figure 4.4: The critical double rarefaction problem at 7" = 3.3 with N = 200 grids.

4.2.7 The blast wave interaction problem

The initial condition is p = 1 and v = 0 with p = 1000 for z € (0,0.1), p = 0.01 for
x € (0.1,0.9) and p = 100 for = € (0.9,1). The computation domain is [0, 1], and two reflective
walls are set at both ends. We solve the problem to T = 0.038. This model problem describes
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the interaction of two blast waves initialized near the boundaries.

The results are shown in

Figure Because there is no exact solutions for this problem, we use the solution with

N = 40000 grid points as the reference solution. Both versions perform well.
seems less dissipative at the density peak than the CH-CON.
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Figure 4.5: The blast wave interaction problem

4.2.8 The Sedov blast wave problem

(i) AWENO9

at T'= 0.038.

For the initial condition, the background state is (p,u,p) = (1,0,107'2), and a singular
delta total energy source of strength Ej is added at the origin. The computation domain is
[—2,2]. We solve the problem to 7' = 0.001. This problem is a simple model of point explosion.
It is an extreme test for scheme stability and has been used to test PP limiters of DG schemes
[29]. We choose Ey = 3.2 x 10°. For initialization, we use odd number of cells and set the
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additional total energy at the central node to be % The results are shown in Figure The
N = 4001 solution is used for reference. The CH-RI seems less dissipative near the central point
in the sense that it produces a smaller minimum density. Besides this region, both methods
agree well.
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Figure 4.6: The Sedov blast wave problem at T" = 0.001.

4.2.9 The shock-density wave interaction problem

27 4

Z 235,31 forz < —4 and (p,u,p) = (1+esin(52),0,1)
for x > —4. The computation domain is [—5,5]. We solve the problem to 7' = 1.8. It describes
the interaction between a right-moving Mach 3 shock and a stationary density wave [21I]. We
choose the parameter ¢ = 0.2. The results are shown in Figure [£.71 We use N = 40000 as
references. The CH-RI and CH-CON versions agree well with each other and capture the high

The initial condition is (p, u, p) = (%, 5
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frequency part after the shock well.
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Figure 4.7: The shock-density wave interaction problem at T = 1.8.

4.3 2D tests
4.3.1 Accuracy test

We consider the rotated simple density-transport problem, whose exact solution is (p, u, v, p) =
(14 0.2sin(m(x +y)),1,1,1). The computational domain is [0, 2] x [0,2] with periodic bound-
aries. We solve up to T' = 2. We use (Ny0,Ny0) = (20,20) as the coarsest mesh and use
hy = N% to denote the coarsest mesh size. Using SSP-RK(3,3), the time steps in the following

L |
tests with uniform mesh are taken to be At = CFL-SFL_ (%) °, which makes the time

B
Az TAy
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discretization error kth-order while maintaining stability. Here, a and § are the maximum
wave speeds in the z- and y-direction respectively. The results are shown in Tables [AL.8] to L.10l

Table 4.8: Accuracy test. Error table of the density. k = 5.

CH-RI CH-CON
N E%L error order (;° error order E%L error order /3 error order
20 2.08E-03 1.86E-03 1.20E-03 8.48E-04

40  9.55E-05 4.446 1.00E-04 4.216 3.88E-05 4.956 3.27E-05 4.696
60 1.37E-05 4.795 1.66E-05 4.442 5.03E-06 5.038 4.46E-06 4.917
80 3.31E-06 4.931 4.22E-06 4.750 1.18E-06 5.039 1.07E-06 4.955
100 1.08E-06 4.999 1.46E-06 4.754 3.84E-07 5.034 3.48E-07 5.038
120 4.32E-07 5.045 5.87E-07 5.005 1.53E-07 5.030 1.39E-07 5.043
140 1.97E-07 5.087 2.71E-07 5.013 7.07E-08 5.028 6.41E-08 5.008
160 9.95E-08 5.128 1.35E-07 5.235 3.61E-08 5.030 3.24E-08 5.123

Table 4.9: Accuracy test. Error table of the density. k = 7.

CH-RI CH-CON
N E%L error order /;° error order E%L error order /3¢ error order
20 3.01E-04 4.26E-04 - 7.07E-05 - 7.82E-05

40  5.29E-06 5.833 1.04E-05 5.361 1.21E-06 5.874 1.89E-06 5.368
60 4.36E-07 6.153 1.04E-06 5.667 1.15E-07 5.797 2.21E-07 5.292
80 6.72E-08 6.500 1.82E-07 6.068 2.03E-08 6.017 4.59E-08 5.472
100 1.40E-08 7.020 4.10E-08 6.671 4.87E-09 6.405 1.25E-08 5.838
120 3.57E-09 7.506 1.09E-08 7.279 1.40E-09 6.852 3.94E-09 6.319
140 1.06E-09 7.852 3.28E-09 7.782 4.55E-10 7.280 1.37E-09 6.846
160 3.63E-10 8.050 1.10E-09 8.161 1.64E-10 7.634 5.16E-10 7.322

Table 4.10: Accuracy test. Error table of the density. k = 9.

CH-RI CH-CON
N E%L error order /;° error order E%L error order /3¢ error order
20 2.72E-05 3.39E-05 6.30E-06 4.11E-06

40  9.20E-08 8.205 1.00E-07 8.402 1.26E-08 8.968 8.93E-09 8.847
60 3.00E-09 8.440 3.92E-09 7.996 3.29E-10 8.990 2.39E-10 8.929
80 2.45E-10 8.715 3.41E-10 8.484 2.48E-11 8977 1.83E-11 8.937
100 3.40E-11 8.851 4.75E-11 8.836 4.20E-12 7.961 3.61E-12 7.271

4.3.2 Double Mach reflection

We consider the double Mach reflection (DMR) problem [27]. The computational domain
is [0,4] x [0,1]. Let zyp = ¢ denote the start of the reflective wall and = Z denote the
angle between the incoming flow and the reflective wall. The reflective wall lies at the bottom
boundary starting from z(. Initially, a Mach 10 shock is positioned at (z,y) = (z¢,0), and
it is perpendicular to the incoming flow direction. The post-shock (to the left of the shock)

18



primitive variables are (p, u,v,p) = (8,8.5cos(—#),8.5sin(—6),116.5) and the pre-shock (to the
right of the shock) primitive variables are (p,u,v,p) = (1.4,0,0,1). The velocity of the shock
front is (ug,vs) = (10cos(—#),10sin(—0)). Except for the reflective wall, all other boundaries
are posed with the exact motion of the shock. We compute to 7' = 0.2 and plot the density
profile using 30 equally spaced contours from 1.5 to 22.7. The results are shown in Figures 4.8
and [£91 We can see that both methods agree well.
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Figure 4.8: On the coarse mesh (Nz, Ny) = (960, 240).

4.3.3 Rayleigh—Taylor instability

We consider the Rayleigh—Taylor instability (RTI) problem [I9]. The computational domain
is [0, 4] x [0,1]. Initially, the interface is located at y = 4. The heavy fluid with density
p = 2 is below the interface, and the light fluid with density p = 1 is above the interface,
with acceleration in the positive y-direction, i.e. (g, gy) = (0,1). The pressure p is continuous
across the interface. A small perturbation is given to the y-direction fluid speed: for 0 < y < %,
(p,u,v,p) = (2,0,—0.025¢ - cos(8mx),2y + 1), and for % <y <1, (pu,v,p) = (1,0,—0.025¢ -

cos(8mx),y + %), where ¢ = /“’—5’ is the sonic speed. The specific heat capacity ratio is set to

v = % Reflective wall boundary conditions are imposed for both left and right boundaries.

For the top boundary, the flow values are set to be (p,u,v,p) = (1,0,0,2.5). For the bottom
boundary, the flow values are set to be (p,u,v,p) = (2,0,0,1). The source terms pg, and pvg,
are added to the right hand side of the third and fourth equations. The final time is T' = 1.95.
The results are shown in Figure 10| using 15 equally spaced contours from 0.9 to 2.2.
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Figure 4.9: On the fine mesh (Nz, Ny) = (1920, 480).

4.3.4 Kelvin—Helmholtz instability

We consider the Kelvin—Helmholtz instability (KHI) problem [I8]. The computational
domain is [—0.5,0.5] x [=0.5,0.5] with periodic boundary conditions in all directions. For
ly| < 0.25, the initial condition is (p,u,v,p) = (2,—0.5,0.01sin(27x),2.5), and for |y| > 0.25,
the initial condition is (p,u,v,p) = (1,0.5,0.01sin(27z),2.5). The final simulation time is
T = 1.0. The results are shown in Figures [4.11] and using 20 equally spaced contours from
0.7 to 2.2. The CH-RI is more diffusive than the CH-CON in this example.

5 Conclusion

In this study, we have developed a finite difference A-WENO scheme with a Riemann
invariant-based LCD procedure. We use the Riemann invariants as the transform variables,
perform the LCD procedure on these variables and conduct WENO interpolation on the asso-
ciated characteristic field. This change in the variable improves the sparsity of the eigenmatrix
and thus greatly reduces the part of per-node computational cost that scales linearly with the
stencil width or the order of accuracy increases. In the meanwhile, the scheme still maintains
the convergence order of smooth solutions, satisfies the E-property and is free of spurious oscil-
lations near discontinuities. Moreover, a combination of interpolation and flux PP limiters can
make it as robust as those classical WENO schemes in the vicinity of low density or pressure.
The scheme is tested on a variety of 1D and 2D problems to demonstrate its accuracy, efficiency
and robustness. Our experiment shows that it can reduce 23% of the total time or 88% of the
LCD time in comparison to the original characteristic-wise version at 9th-order. With our cost
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Figure 4.10: On the mesh (Nz, Ny) = (240, 960).
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analysis, greater acceleration can be expected for higher-order and 3D cases. This work merely
focuses on the compressible Euler equations with the v-law EOS. Generalizations to other EOS
will probably change the Riemann invariants, but the sparsity pattern of the eigenmatrices will
remain the same as long as the physical entropy exists, so such acceleration is still possible,
and similar efficiency can be expected. Besides the compressible Euler equations, using Rie-
mann invariants to reduce the LCD cost is also possible for other hyperbolic systems, such as
the multi-component Euler equations, the magnetohydrodynamics (MHD) equations and the
nonlinear elasticity equations.

Appendix A Supplemental material for the compressible Euler
equations

Following the notation in Definition 1] the 2D compressible Euler equations (2.6]) with the
~v-law EOS (2.7) is a hyperbolic system with the following eigenstructure in the z-direction.

A = diag (u — c,u,u,u + ¢), (A1)
= 2 (0,1,0,u0)" = = (1,u,0, H)" (A.22)
1= 2 s 4y Yy %2 y Uy Uy ) .
1 |ﬁ2T

To = —E (1,U,'U, 7) s (A2b)

rs = (0,0,1,0)7, (A.2¢)
1 1

mzimﬁﬁmf+§4meHF. (A.2d)
c

—1 [ 1al?
ll = (—U, 17070) - i <M7 —u,—v, 1) ) (A3a)

c 2
-1 =12
ly = i - <%7 —u, —0, 1) —(¢,0,0,0), (A.3b)
l3 =(—v,0,1,0), (A.3c)
v—1 (|
ly = (—u, 1, 0,0) + T 7, —u,—v,1]. (A3d)

1
Using the transform variables v(u) = (u — %C,S 27 v,u + %c), the transformed 2D
compressible Euler equations (Z6]) with the y-law EOS (Z7) have the following normalized
eigenvectors in the z-direction:

71 =(1,0,0,0)", (A4a)
o T )
2y 2y
ry = _Wip’l’o’ﬁip , (A.4b)
v—1 v—1
73 = (0,0,1,0)7 (A.4c)
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7y = (0,0,0,1)7 . (A.4d)

and

y—1
~ 2 2y
l, = 17M7070

A.
po— ; (A.ba)
I, =(0,1,0,0), (A.5b)
I3 =(0,0,1,0), (A.5¢)
y—1
- 9 oy
L= o —%,0, 1] . (A.5d)

Proposition A.1. The compressible Euler equations ([2.6]) with the vy-law EOS [2.7) is not
endowed with any coordinate system of Riemann invariants.

Proof. Using the primitive variable v = (p, u,v,p) as the transform variable, the normalized
left eigenvectors are
- 1
ll = <07 1707 __> 3
pc

l~2 = <_170707 l2> )
p 7 pe

I3 =(0,0,1,0),

. 1
Ii= <0,1,0, —) .
pc

Suppose there exists a coordinate system of Riemann invariants, then there has to be 2, 3,4-

Riemann invariant w(v) that satisfies g—i‘j -7; = 0 for i = 2,3,4. This yields that there is a

non-zero function p(v) such that g—f}’ = ¢(v)l;. By the expression we deduce that w(v) is
independent of the density p and so is o(v) and g—’j}’ = ¢(v)l;. This is a contradiction since the
last component of ¢(v)l; will depend on p in this case. O

Appendix B  WENO-JS interpolation

The k = (2r — 1)th-order WENO-JS interpolation procedure for u_ , is

its
r—1
u =S we W (B.1)
j+% s=0 ) j+%7
where o
Wy = ———, B.2
>roar (2
and p
€ s

Here, the small constant e is usually taken to be 1076, Other parameters are given below.
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For k=3 (r=2):

_o 1 1
dy =3, j+(%) = 5 + Ui, (B.4a)
_ 1 3
dy =1, .’(1) = ——=uj_1+ =u;. B.4b
1 1 ]+% 2 7—1 2 7 ( )
Bo = (uj —uj1)?, (B.5a)
By = (uj_1 — uj)?. (B.5b)
For k=5 (r =3):
@0 3 3 1
do = 75, uj+(%) = QW T W T g (B.6a)
w1 3 3
dl = %, u]+(%) = —g'LLj_l + Zu] + guj-i-la (B6b)
B Uy Sy gt g (.6
13 1
Po = 75 (uj = 2uj41 + uji2)? + 7 By —dujn + ujv2)?, (B.7a)
13 1
b= 35 (uj-1 = 2u; + i)’ + 7 (w1 - uj2)”, (B.7b)
13 1
P2 = 15 (uj2 = 2uj-1 + uj)? + 7 (Wi-2 = 4y + 3u;)”. (B.Tc)
For k=7 (r =4):
_©o 5 15 5 1
do = 614 uj+(%) =16 + 16+~ 1 +2 + 161+ (B.8a)
s~ 1 9 9 1
I S [ TR T A R T (B.88)
_ 21 -2 _ 1 2 15 5
T T R AT R A (B.5)
o5, o2t 35 36
(—15u; + 25uj 1 — 13uj40 + 3ujp3)® 13 2
Bo = : TR S+ 5 (2 = Buy +dugpn — ) (B.98)
781 2 -
+ % (—uj + 3uj+1 — 3Uj+2 + uj+3) ,
(—3uj_1 — 3uj + 7’LLj+1 — Uj+2)2 13 2
— 2 (s — Qs )
fi 64 g (W = 2 ) (B.9b)
781 2
+ 720 (—wj—1 + 3uj — 3ujr1 + ujq2)”,
(uj_g - 7Uj_1 + 3’LLj + 3Uj+1)2 13 2
— 2 (s — Qs )
P2 64 T qg (-1 = 205+ uj) (B.9¢)
781
+ 720 (—wj—2 + 3uj_1 — 3u; + Uj+1)2 ’
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(—3uj_3 + 13uj_o — 25u;_1 + 15uj)2 13
4 -5 2
781 64 g (s 2 = By u])(B 9d)

2
+ 20 (—uj_g +3uj_2 — 3uj_1 + Uj) .

B3 =

For k=9 (r =5):

9 o 3 3 S T 2
s T 128 T 3t T gt T g ties T gt
a1 5 15 45 5 3
j+(%) = gt T W T gt T gptie  pgtutss (B10b)
s @3 5 4515 5

Tog =2 T 3gtim1 T gt T gatiHl T Tog i+
d?’:& u_v():_

7 35 35 35
28 T3t T g T T gt
. —@ 35 45 189 105 315
T me Uil T gt T gt T g2 T gy Uit gt

(B.10a)

(B.10c)
(B.10d)

(B.10e)

(—35u;j + T0ujy1 — 56u;j o + 26u; 13 — 5ujig)?
256
. (4613u; — 13772u;41 + 15198u;45 — T532u;45 + 149304 4)*
N 2246400 (B.11a)

+ m ( 5Uj + 18uj+1 — 24u]'+2 + 14Uj+3 — 3uj+4)2
1421461
1310400

(—511,]'_1 — 10Uj + QOZL]'_H - 6u]'+2 + Uj+3)2

256

L (1493u; 1 — 2852u; + 1158u;4.1 + 268u;40 — 67u;43)>

. 2246400 (B.11b)

+ 2330 (—3Uj_1 + 10u; — 12uj11 + 6ujyo — uj+3)2
1421461
1310400

(Uj_g — 10’[Lj_1 + 1OUj+1 — Uj+2)2

256
—6Tu;j_g + 1828u,_1 — 3522u; + 1828u41 — 67u;12)”
4 J J J J J
2246400 (B.11¢)
1
81 (—uj g+ 2uj 1 — 2ujs1 +ujro)’
2880 J J J J

n 1421461

1310400

Bo =

(Uj — 4Uj+1 + 6Uj+2 — 4Uj+3 + Uj+4)2 s

pr =

(uj—1 — 4uj + 6ujp1 — 4dujpo + Uj+3)2 )

B =

(uj_g —4uj_1 + 6uj — 4ujpq + Uj+2)2 )
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(—Uj_g + 6’[Lj_2 — 20’[Lj_1 + 1OUj + 5Uj+1)2

Ps = 256
n (—67Uj_3 + 268’[Lj_2 + 115SUj_1 — 2852Uj + 1493Uj+1)2
2246400 (B.lld)
781
+ m (’u,j_g - 6u]'_2 + 12u]'_1 - 10Uj + 3uj+1)2
1421461
m (Uj_g — 4'LL]’_2 + 6Uj_1 — 4U] + Uj+1)2 s
By — (5uj_4 — 26u;_3 + 56u;_o — T0uj_1 + 35u;)*
‘T 256
n (1493Uj_4 — 7532Uj_3 + 15198’[Lj_2 — 13772Uj_1 + 4613Uj)2
2246400 (B.lle)
781
+ m (3Uj_4 — 1411,]'_3 + 2411,]'_2 — 18Uj_1 + 5u]')2
1421461
m (u]'_4 — 4u]'_3 + 6u]'_2 — 4Uj_1 + Uj)2 .

We remark here that to derive the classical smoothness indicator up to r = 5, we employ the
following sum-of-squares (SOS) decomposition that is similar to the one given in [4, Appendix
B]. For any p(z) € P*([—%, §)),

h oo
2 201 (. (1) 2
/_%;h (p (a:)) dzx
1 2 (520m2p@(0) + 21h4p™(0))? 781 2 1421461 2
{0y + L3, 78l (13 3) 1421461 /4 ()
<hp 0)+ 557 (0)> * 249600 70 (h P (0)) 1310400 (h P (0)) ‘
(B.12)

Then, to compute the smoothness indicator ’s in any cell [z -1 Tl ], it only remains to

provide the interpolation-based derivative values at the cell center x;.

Appendix C High-order flux correction terms

We give the 2r = (k+1)th-order central difference implementation here. All the coefficients
are computed by Mathematica, and are verified to be consistent with those in [4] and [I]
Appendix A], to ensure that

]' cor,r cor,r d T
3 (B a7 ) = (14 877)) = o+ o). (©1)

For k=1 (r=1):

cor,1 __

fj+% =0. (C.2)

For k=3 (r=2):

cor,2 1 1

fj+% = _E(fj—l"i‘fj—ﬂ)+4_8(.fj+fj+l)' (C.3)

For k=5 (r =3):

cor,3 19 137 59

fj+% = 3310 (fi—2+ fi+s) — 3340 (fj—1+ fit2) + 1990 (fi + Fi+1) - (C.4)
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For k=7 (r =4):

cor,d ) 2279 ' 9859 ' 7823 ' '
Tt = 71680 (Fi=s+ Fiva)gsga0 2+ Fr+s) = gpgaap (i1 ¥ Fiv2) ¥ gpgggg (i + Fi)-
(C.5)
For k=9 (r =5):
cors 5359 o 60sdl | 81491 |
T = a06azsa0 i1+ Fi+3) ~ gogzman s Fi) + Figaaep (Fi-2 + Fiva) (C.6)
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