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SUMMARY

Across thedomains of spatial navigation and episodic
memory, the hippocampus is thought to play a critical
role in disambiguating (pattern separating) represen-
tations of overlapping events. However, it is not fully
understood how and why hippocampal patterns
become separated. Here, we test the idea that event
overlap triggers a ‘‘repulsion’’ among hippocampal
representations that develops over the course of
learning. Using a naturalistic route-learning para-
digm and spatiotemporal pattern analysis of human
fMRI data, we found that hippocampal representa-
tions of overlapping routes gradually diverged with
learning to the point that they became less similar
than representations of non-overlapping events. In
other words, the hippocampus not only disambigu-
ated overlapping events but formed representations
that ‘‘reversed’’ the objective similarity among routes.
This finding,whichwas selective to the hippocampus,
is not predicted by standard theoretical accounts of
pattern separation. Critically, because the overlap-
ping route stimuli that we used ultimately diverged
(so that each route contained overlapping and non-
overlapping segments), we were able to test whether
the reversal effect was selective to the overlapping
segments. Indeed, once overlapping routes diverged
(eliminating spatial and visual similarity), hippocam-
pal representations paradoxically became relatively
more similar. Finally, using a novel analysis approach,
we show that the degree to which individual hippo-
campal voxels were initially shared across route
representations was predictive of the magnitude of
learning-related separation. Collectively, these find-
ings indicate that event overlap triggers a repulsion
of hippocampal representations—a finding that pro-
vides critical mechanistic insight into how and why
hippocampal representations become separated.

INTRODUCTION

Distinct experiencesoften containoverlappingelements, creating

the potential for memory interference. For example, a single loca-
Current
tion (e.g., a living room) may be the site of many different experi-

ences and corresponding memories. The hippocampus is widely

thought to play a critical role in coding overlapping events such

that interference is minimized. Compelling evidence for this func-

tion comes from intracranial recordings in rodents during spatial

navigation. For example, when rodents alternate between left-

and right-hand turns in a T maze, cells within the hippocampus

differentially fire during the central stem (the overlappingpath) ac-

cording towhether the current route is a ‘‘right-turn’’ or ‘‘left-turn’’

route [1, 2]. Likewise, hippocampal place fields may completely

remap with contextual changes in a rodent’s environment [3, 4].

In human studies of episodic memory, fMRI evidence indicates

that visual stimuli that aresharedacrossmultiple event sequences

are distinctly coded in the hippocampus according to the specific

sequence to which they belong [5]. Although these studies and

othershave led togeneral agreement that thehippocampus forms

distinct codes for overlapping experiences [6–16], the factors that

trigger divergence of hippocampal representations are not fully

understood.

The formation of distinct hippocampal representations is

traditionally thought to be a result of sparse coding within the

hippocampus [17–22]. Although there are not enough neurons

in the hippocampus to entirely avoid representational overlap,

sparse coding ensures that similar experiences are less likely

to share neural units, thereby resulting in orthogonalized repre-

sentations. Although this coding property of the hippocampus

may play a critical role in reducing overlap during initial encoding,

it is unlikely to provide a complete account of how hippocampal

representations become distinct. In particular, overlap among

hippocampal representations also changes with experience,

suggesting learning-related factors that contribute to diver-

gence. For example, hippocampal remapping in rodents may

emerge over the course of learning [3, 23], and even the sensi-

tivity of stable hippocampal place fields can be tuned by

experience [24]. Similarly, experience-dependent divergence of

hippocampal activity patterns has been observed in human

fMRI data [6, 13, 25, 26]. Computational models suggest that

one factor that drives learning-related divergence of hippo-

campal representations is competition [26–29]. When activity

patterns overlap—which may reflect residual overlap following

initial orthogonalization—this creates competition during

learning that the hippocampus ‘‘solves’’ by reducing similarity

among representations. This perspective makes a critical pre-

diction: that overlapping representations should systematically

move apart from one another over the course of learning. Indeed,

the representational distance between overlapping events
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should increase to a greater degree than the distance between

non-overlapping events. This idea, which can be thought of as

repulsion, is quite distinct from the idea of orthogonalization,

because repulsion necessarily requires that an event’s represen-

tation is directly shaped by a similar (competing) event’s repre-

sentation. Limited evidence from human fMRI studies hints

at repulsion among overlapping hippocampal representations

[6, 13, 25], but these observations come from episodic memory

paradigms with static visual stimuli, which contrast sharply with

the spatial learning and navigation paradigms that have been

used to study disambiguation of hippocampal activity patterns

in rodents.

Here we bridge evidence from spatial learning paradigms in

rodents and human episodic memory paradigms by testing, in

a pair of human fMRI studies, whether overlap among spatial

routes triggers an experience-dependent repulsion of hippo-

campal representations. Modeled after canonical rodent T

maze paradigms, we used a real-world route-learning paradigm

that contained pairs of spatially overlapping routes. However, in

contrast to rodent T maze paradigms, we also included pairs of

non-overlapping routes, so that the similarity of overlapping

route representations could be expressed relative to the similar-

ity of non-overlapping route representations—a critical compar-

ison for testing whether divergence preferentially occurs among

overlapping events. fMRI data were collected over the course

of an extended learning session, allowing for representational

similarity to be compared across time. Additionally, because

our route stimuli were temporally dynamic, we used a novel

spatiotemporal pattern analysis method wherein neural repre-

sentations consisted of patterns of activity distributed across

space (fMRI voxels) and time.

Our paradigm allowed us to test several critical predictions.

First, if repulsion occurs, representations of overlapping events

should diverge to a greater degree than non-overlapping

events—that is, overlapping events should systematically

move apart from each other. An unambiguous sign of repulsion

is if overlapping event representations become less similar

than non-overlapping event representations—what we will refer

to as a ‘‘reversal effect’’—as this outcome cannot be explained

by orthogonalization of neural codes. Recently, we have shown

at least one learning context in which a reversal effect is

observed in the hippocampus [6], but it remains to be deter-

mined whether this seemingly paradoxical result is a general

property of the hippocampus and whether it applies to the types

of spatial learning paradigms commonly used in rodent studies.

Second, to establish the critical point that event overlap itself

triggers repulsion of hippocampal representations, it is essential

to establish that repulsion only occurs for the segments of routes

that actually overlap. For example, in a T maze paradigm, repul-

sion should only occur in the central stem of the maze, which is

shared across the left- and right-turn routes. To our knowledge,

rodent studies have not directly compared population-level

neural similarity during overlapping versus non-overlapping seg-

ments of a maze. Third, repulsion should be relatively slow to

develop as it is inherently a learning phenomenon [29], which

contrasts with the idea that coding properties of the hippocam-

pus allow for an immediate orthogonalization of activity patterns.

Finally, as an extension of the prediction that event overlap trig-

gers divergence, we also conducted a novel analysis in which we
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tested whether the degree of learning-related plasticity that

an individual hippocampal voxel experienced was predicted by

initial representational overlap within that voxel. This allowed

us to determine whether learning-related plasticity preferentially

occurs in representational units that are shared across events

[27, 28].

RESULTS

Behavioral Measures of Route Discrimination
In an initial behavioral experiment, each subject studied sets of

real-world routes that included pairs that shared a common

path before diverging to terminate at distinct destinations (‘‘over-

lapping routes’’) and pairs with no paths in common (‘‘non-over-

lapping routes’’) (Figure 1A). Importantly, each route contributed

to both conditions. For example, route 1 and route 2 were over-

lapping routes, but route 1 and route 3 were non-overlapping

routes (Figure 1C). Each route contained an initial segment that

was shared with another route (segment 1), and a later segment,

including the destination, that was route specific (segment 2;

Figure 1A). Although the real-world spatial locations of the over-

lapping segments were identical, the pictures for each route

were taken at different times and therefore differed subtly in

terms of pedestrians, vehicles, etc. (Figure 1C; Movies S1, S2,

S3, and S4). Routes were studied twice per round for 14 rounds.

Subjects were instructed to learn the specific path to each desti-

nation but were not told the destination at the start of the route.

After each study round, subjects were shown individual pictures

drawn from the routes and selected the destination associated

with each picture. Of central interest was accuracy for pictures

drawn from segment 1 of each route, because selecting the

correct destination for these pictures required discriminating

between overlapping routes. Overall, subjects selected the

correct destination (‘‘target’’) at a higher rate than the destina-

tion of the overlapping route (‘‘competitor’’) and selected the

competitor at a higher rate than destinations from non-overlap-

ping routes (‘‘other’’) (p values < 0.000003; Figure 2A). Thus,

there was competition between overlapping routes, but subjects

generally succeeded in discriminating between them. Moreover,

the relative percentage of target versus competitor responses

markedly increased across learning rounds (F1,21 = 38.11, p =

0.000004; Figures 2B and 2C).

Hippocampal Representations of Overlapping Routes
Diverge with Learning
We next tested for hippocampal repulsion of overlapping routes

in two fMRI studies. The first fMRI study used the same stimuli as

the behavioral study (Figure 1A). The second fMRI study used a

new set of stimuli that again included overlapping and non-over-

lapping routes, but some of the non-overlapping routes termi-

nated at a common destination (Figure 1B). Except where noted

otherwise, all analyses below combine data across experiments,

and analyses of non-overlapping routes are restricted to those

that terminated at distinct destinations (so that comparisons

of overlapping and non-overlapping routes were matched in

that every route terminated at a distinct destination). For

segment 1 of each route, we obtained a corresponding neural

activity pattern by extracting voxel-wise patterns of activity as

they unfolded over time. These spatiotemporal activity patterns



Figure 1. Route Stimuli and Experimental

Design

(A) In the behavioral experiment and fMRI

experiment 1, stimuli consisted of eight routes that

traversed the New York University campus. Each

subject learned four routes—either set 1 (routes

1–4) or set 2 (routes 5–8). Each set included pairs

of routes that shared a common path (overlapping

routes; e.g., routes 1 and 2) and pairs of routes

with no common paths (non-overlapping routes;

e.g., routes 1 and 3). Individual routes contained

two segments: segment 1 refers to the portion of

each route that shared a path with another route,

and segment 2 refers to the unique portion of each

route (after the overlapping routes diverged).

(B) In fMRI experiment 2 the stimuli again con-

sisted of eight routes, with each subject learning

four of the eight routes and with the four routes per

set containing overlapping and non-overlapping

pairs. However, some of the non-overlapping

route pairs in experiment 2 terminated at the same

destination (e.g., routes 1 and 3), whereas others

terminated at distinct destinations (e.g., routes 1

and 4).

(C) In each experiment, each trial consisted of a

series of rapidly presented pictures that lasted a

total of 24 s.

See also Movies S1, S2, S3, and S4.
were then correlated for every pair of routes, resulting in a corre-

lation matrix reflecting pairwise route similarity (Figure 3A).

We considered pattern similarity for (1) repetitions of the same

route, (2) overlapping routes, and (3) non-overlapping routes.

Separate correlation matrices were generated for each subject’s

hippocampus and for a control region, the ‘‘parahippocampal

place area’’ (PPA), which is adjacent to the hippocampus and

is involved in scene processing and navigation (Figure 3B)

[30, 31]. Because our behavioral experiment indicated that

discrimination of overlapping routes robustly improved from

the first to second half of learning (Figure 2C), we divided the

fMRI data into halves and independently computed pattern sim-

ilarity measures within each of these halves. As in the behavioral

experiment, subjects in both fMRI experiments were able to suc-

cessfully discriminate between the overlapping routes by the end

of learning (see Figure S1).

Of critical interest, there was a learning-related decrease in

pattern similarity among overlapping compared to non-overlap-
Current Bi
ping routes, as reflected by an interaction

between overlap (overlapping/non-over-

lapping) and learning (first half/second

half) (F1,39 = 13.163, p = 0.0008; Figure 3C).

Whereas pattern similarity among overlap-

ping routes decreased with learning

(F1,39 = 35.21, p = 0.0000006), similarity

among non-overlapping routes did not

change (F1,39 = 0.24, p = 0.63; Figure 3E).

This dissociation is striking when consid-

ering that all routes contributed to both

theoverlappingandnon-overlappingcom-

parisons. Thus, learning did not globally

reduce similarity among routes; rather,
learning specifically reduced similarity between overlapping

routes. Moreover, overlapping-route similarity decreased to the

point that in the second half of learning, overlapping routes were

markedly less similar than non-overlapping routes (F1,39 = 14.20,

p = 0.0005; Figure 3F). This result was significant in each of the

fMRI experiments (p values < 0.05; see Figure S2 for results sepa-

rated by experiment). Thus, despite the fact that overlapping

routes were spatially and visually more similar than non-overlap-

ping routes, the hippocampus represented overlapping routes as

less similar than non-overlapping routes—a result we refer to as

a ‘‘reversal effect’’ because the representational structure is oppo-

site the inherent similarity structure of the routes. This reversal ef-

fect was not present in the first half of learning (F1,39 = 1.41, p =

0.24), confirming that it developed over learning (see Figure S3

forfiner-grainconsiderationof learning-relatedchangesover time).

Wealso testedwhether overlapping-route similarity decreased

relative to repetitions of the same route. Indeed, there was a sig-

nificant learning-related decrease in overlapping-route similarity
ology 27, 2307–2317, August 7, 2017 2309



Figure 2. Memory Performance for Segment 1 Pictures in the Behavioral Experiment

(A) After each learning round, subjects were shown static images sampled from each route and were asked to choose the corresponding destination from a set of

four picture options: the target destination, destination associated with the overlapping route (competitor), and two destinations associated with non-overlapping

routes (other). Subjects were significantly more likely to select the target destination than the competitor destination (F1,21 = 43.31, p = 0.000002) and significantly

more likely to choose the competitor destination than other destinations (F1,21 = 41.39, p = 0.000002), despite the fact that ‘‘other’’ options weremore prevalent (2/

4) than competitor options (1/4).

(B) The relative percentage of target versus competitor responses markedly increased over learning rounds (F1,21 = 38.11, p = 0.000004).

(C) Discrimination between overlapping routes (percentage target responses� competitor responses) was significantly greater in the second half of learning than

in the first half (t21 = 5.78, p = 0.00001).

Error bars reflect ± SEM. ***p < 0.001. See also Figure S1.
relative to same-route similarity (F1,39 = 7.59, p = 0.009). Overlap-

ping-route similaritywas significantly lower than same-route sim-

ilarity in the second half of learning (F1,39 = 5.61, p = 0.023) but not

in the first half of learning (F1,39 = 0.85, p = 0.35).

As a comparisonpoint for the hippocampal data,weconsidered

representational structure within the PPA. However, there was no

learning-related reduction in the similarity of overlapping versus

non-overlapping routes in the PPA (segment 1 data only; F1,39 =

2.42, p = 0.13; Figure 3D). In fact, overlapping-route similarity

was greater than non-overlapping-route similarity in the first half

(F1,39 = 21.01, p = 0.00005) and second half of learning (F1,39 =

4.63, p = 0.038; Figure 3F; note: this effect differed across experi-

ments; see Figure S2). Thus, the reversal effect observed in the

hippocampus by the end of learning was absent in the PPA. The

dissociation between the PPA and hippocampus at the end of

learning was reflected in a highly significant region x overlap inter-

action (F1,39 = 22.18, p = 0.00003). Similar dissociations were also

observed when comparing the hippocampus to other cortical

areas involved inspatial navigation (retrosplenial cortex) andobject

processing (lateral occipital cortex), and the medial temporal lobe

cortex, more generally (see Figure S4). Within the PPA, there was

alsono learning-relatedchange inoverlapping- versus same-route

similarity (F1,39 = 0.003, p = 0.96), with no significant difference be-

tweenoverlapping-andsame-routesimilarity in thefirsthalf (F1,39=

0.89, p = 0.35) or second half of learning (F1,39 = 0.86, p = 0.36).

Divergence of Hippocampal Patterns Is Triggered by
Route Overlap
If the reversal effect was triggered by route overlap, this would

make a paradoxical prediction that the reversal effect should

diminish once overlapping routes diverge. Indeed, when consid-

ering data from segment 2—i.e., after overlapping routes
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diverged—the reversal effect was absent (F1,39 = 0.31, p =

0.58; Figure 4). The selectivity of the reversal effect to the over-

lapping portion of the overlapping routes was confirmed by a

significant overlap x segment interaction (second-half data

only: F1,39 = 4.28, p = 0.045). Thus, the reversal effect only

occurred for route segments where visual and spatial overlap

was actually present (segment 1), strongly suggesting that route

overlap triggered the reversal effect.

To further strengthen the argument that the reversal effect was

a reaction to route overlap, we next tested whether time point

by time point fluctuations in the reversal effect (Figure 4B) were

related to behavioral measures of route discrimination. Because

memory-based route discrimination was more extensively

tested in the behavioral experiment (Figure 2), we used data

from this experiment to calculate mean discrimination difficulty

for each picture sampled from each route. We then binned these

data tomatch the temporal resolution of the fMRI data (see STAR

Methods) so that time point by time point fluctuations in discrim-

ination accuracy could be correlated with fluctuations in the

reversal effect. Indeed, there was a remarkably strong correla-

tion between these measures (r = 0.87, p = 0.0003; Figure 5);

specifically, the reversal effect was relatively stronger at time

points where the routes were relatively difficult to discriminate.

The correlation remained marginally significant when only

considering time points from segment 1 (r = 0.58, p = 0.061).

These data strongly support the idea that the reversal effect

was triggered by competition between route representations.

Learning-Related Changes Do Not Reflect Destination
Coding
One way in which hippocampal route representations may

diverge is through the learned ability to predict destinations



Figure 3. Learning-Related Changes in Hippocampal Pattern Similarity

(A) Sample similarity matrices depicting analyses for experiments 1 and 2 (routes 5–8 are not shown). For each experiment, Pearson correlations were applied to

spatiotemporal activity patterns to measure the similarity between repetitions of the same route (same route), routes with overlapping paths but distinct des-

tinations (overlapping routes), and routes with non-overlapping paths and distinct destinations (non-overlapping routes). Experiment 2 included an additional

comparison of routes with non-overlapping paths that ended at a common destination (same destination). All correlations were applied to spatiotemporal activity

patterns from independent fMRI runs (odd versus even runs).

(B) Hippocampus and parahippocampal place area (PPA) regions of interest for a representative subject, displayed on their T1 anatomical scan.

(C) Within the hippocampus, the similarity of overlapping routes relative to the same routes decreased across learning (first versus second half; p = 0.009).

Likewise, there was a learning-related decrease in the similarity of overlapping routes relative to non-overlapping routes (p = 0.0008).

(D) Within the PPA, there was no learning-related change in the relative similarity of overlapping versus the same routes (p = 0.96) nor in the relative similarity of

overlapping versus non-overlapping routes (p = 0.13).

(E) Within the hippocampus, overlapping-route similarity decreased across learning (first versus second half; p = 0.0000006), whereas non-overlapping-route

similarity did not change with learning (p = 0.63).

(F) In the second half of learning, overlapping-route similarity was significantly lower than non-overlapping-route similarity within the hippocampus (p = 0.0005;

reversal effect), whereas in the PPA the opposite was true: overlapping-route similarity was significantly greater than non-overlapping-route similarity (p = 0.038).

Error bars reflect ± SEM. *p < 0.05, ***p < 0.001. See also Figures S2–S4.
[32–36]. To test this possibility, we considered data from

experiment 2, which contained pairs of non-overlapping routes

that terminated at distinct destinations as well as pairs of

non-overlapping routes that terminated at the same destina-

tion. If hippocampal activity patterns reflected navigational

goals, pattern similarity from segment 1 should be greater for

‘‘same-destination’’ routes than ‘‘distinct-destination’’ routes.

However, there was no learning-related increase in hippocam-

pal similarity for same-destination relative to distinct-destina-

tion routes (F1,20 = 0.53, p = 0.47), nor was there a difference

between same- and distinct-destination routes when consid-

ering second-half data alone (M = 0.016 and M = 0.012, respec-

tively; t20 = 0.98, p = 0.34). Thus, the observed divergence of

hippocampal activity patterns is not readily explained by desti-

nation coding.
Voxel-Level Changes in Route Similarity
The preceding results indicate that hippocampal representations

of overlapping events diverged with learning, and that this diver-

gence was triggered by route overlap. But what factors deter-

mined the level of plasticity that individual voxels exhibited?

On the one hand, the reversal effect potentially reflects a global

form of plasticity, with all voxels showing a comparable degree of

learning-related divergence. However, a theoretically important

alternative, motivated by our main findings above, is that the

amount of initial representational overlap (within a voxel) deter-

mines the degree to which divergence occurs [27, 28].

To test whether voxel-level divergence varied according to

initial representational overlap, we characterized every voxel in

terms of the similarity with which it responded to overlapping

routes. Because spatial pattern similarity cannot be computed
Current Biology 27, 2307–2317, August 7, 2017 2311



Figure 4. Hippocampal Reversal Effect

across Route Segments

(A) In the second half of learning, the hippocampal

reversal effect (overlapping-route similarity < non-

overlapping-route similarity) was significant for

segment 1 (p = 0.0005) but not segment 2 (p =

0.58), and the interaction between overlap and

segment was significant (p = 0.045).

(B) Time point by time point comparison of spatial

pattern similarity for overlapping versus non-

overlapping routes for each learning half. Spatial

patterns analyzed at each time point (time to vol-

ume repetition; TR) were computed as the average

pattern of a sliding three-TR window. Transition

TRs reflect time points that included the end of

segment 1 and beginning of segment 2.

Error bars reflect ± SEM. *p < 0.05.
at the level of individual voxels (i.e., a single voxel has no spatial

pattern), we instead capitalized on the temporal dimension of our

stimuli, computing the similarity of each voxel’s time course

across pairs of routes. We refer to this measure as ‘‘time course

similarity’’ (Figure 6A). Voxels were rank ordered by first half time

course similarity and binned into groups corresponding to

‘‘weak,’’ ‘‘moderate,’’ or ‘‘strong’’ similarity (i.e., the bottom third,

middle third, and top third of similarity values). Importantly, this

binning was independently repeated for every pair of routes,

each voxel in each region of interest, and each subject. Perform-

ing the analysis in a route-specific manner is important, because

a given voxel may exhibit strong time course similarity across

one pair of routes but weak time course similarity across a

different pair of routes (see Figure S6). Time course similarity

values from the second half of learning were then obtained

from these voxel bins. This allowed for time course similarity

values at the end of learning to be expressed as a function of

time course similarity at the beginning of learning. Note: we did

not measure changes in time course similarity from the first to

the second half because such measures would be distorted by

regression to the mean.

Within the hippocampus, an ANOVA with factors of overlap

(overlapping/non-overlapping) and bin (weak/moderate/strong)

revealed a significant overlap x bin interaction (F2,78 = 3.19, p =

0.046). This interaction reflected a relatively greater difference

between overlapping and non-overlapping routes (reversal ef-

fect) for voxels that exhibited ‘‘moderate’’ time course similarity

during the first half of learning. Namely, the reversal effect was

highly significant in the moderate bin (F1,39 = 19.17, p =

0.00009), marginally significant in the weak bin (F1,39 = 3.62,

p = 0.064), and not significant in the strong bin (F1,39 = 1.53,

p = 0.22). Thus, the reversal effect was most pronounced among

voxels that exhibited moderate similarity across overlapping

routes at the beginning of learning. Considering overlapping

routes alone—as opposed to the difference between overlap-

ping and non-overlapping routes—second-half time course sim-

ilarity also significantly varied according to first-half similarity

(F2,78 = 4.74, p = 0.012), with the function qualitatively character-

ized by a dip for voxels in the moderate bin (Figure 6B). Indeed,

adding a quadratic term to a mixed-effects regression model

that included a linear term significantly improved the model fit

(c2 = 6.06, p = 0.014), indicating a non-monotonic relationship

between time course similarity at the beginning versus end of
2312 Current Biology 27, 2307–2317, August 7, 2017
learning. For non-overlapping routes, second-half time course

similarity did not vary according to first-half similarity (F2,78 =

0.28, p = 0.76). See Figure S5 for the results of a complementary

Bayesian curve-fitting analysis that relates first-half time course

similarity to second-half time course similarity.

The relationship between first- and second-half time course

similarity for overlapping routes was markedly different in the

PPA, as reflected by a significant region (hippocampus/PPA) x

bin interaction (F2,78 = 18.12, p = 0.0000003). A region x bin x

overlap interaction was marginally significant (F2,78 = 2.95, p =

0.058). Qualitatively, PPA voxels that were moderately shared

across overlapping routes in the first half of learning remained

moderately shared in the second half of learning (Figure 6C).

Collectively, these findings suggest a ‘‘Goldilocks effect,’’

wherein intermediate levels of overlap produce the strongest

amount of learning-related divergence in the hippocampus. At

a more general level, these findings provide unique evidence

that initial overlap among hippocampal representations is an

important determinant of learning-related plasticity.

DISCUSSION

Here we found that hippocampal representations of overlapping

spatial routes dramatically diverged with learning—to the point

that overlapping routes were coded as less similar than non-

overlapping routes. This reversal effect clearly emerged with

learning and paralleled behavioral improvement in memory-

based route discrimination. The result was also selective to

the hippocampus, with no evidence of a reversal effect in the

PPA or other cortical regions (Figure S4). Finally, using a novel

analysis approach, we show that plasticity within hippocampal

activity patterns was most pronounced for voxels that were

moderately shared across overlapping routes at the beginning

of learning.

Measuring Hippocampal Representations of
Overlapping Events
Several details of our paradigm and analyses are critical for

interpreting our findings. First, we specifically compared repre-

sentations of overlapping events to representations of non-over-

lapping events [6]. This allowed for learning-related changes to

be expressed relative to a meaningful baseline—a baseline

that, to our knowledge, is absent in rodent T maze paradigms.



Figure 5. Hippocampal Reversal Effect as a Function of Memory-Based Discrimination

(A) Gray lines: time point by time point measures of mean memory-based route discrimination in the behavioral experiment. Colored lines: second-half hippo-

campal pattern similarity for overlapping/non-overlapping routes in fMRI experiment 1. Note: fMRI data were only used from fMRI experiment 1 because fMRI

experiment 2 used different stimuli from the behavioral experiment. Error bars reflect ± SEM.

(B) Scatterplot showing the relationship between behavioral discrimination accuracy and hippocampal pattern similarity for overlapping/non-overlapping routes

(each dot corresponds to data from one TR/time bin). There was a strong positive correlation (r = 0.87, p = 0.00003) between these measures, reflecting a weaker

reversal effect for time points where behavioral discrimination was relatively easy (top-right corner of scatterplot) and a stronger reversal effect for time points

where behavioral discrimination was relatively difficult (bottom-left corner of scatterplot). This correlation remains marginally significant if restricted to the time

points within segment 1 (r = 0.58, p = 0.061).
Indeed, the fact that hippocampal representations of visually and

spatially overlapping routes became less similar than routes that

contained no spatial overlap or visual similarity is not only striking

but provides essential insight into the underlying mechanism

(a point we detail below). Second, our design did not involve

separate sets of routes for the overlapping and non-overlapping

comparisons [5, 11, 12]; rather, each route was included in each

comparison. For example, whereas routes 1 and 2 represent

overlapping routes, routes 1 and 3 represent non-overlapping

routes. As such, any observed differences between overlapping

and non-overlapping routes cannot be attributed to differences

between the actual stimuli or to differences in attention, familiar-

ity, vigilance, etc. It is also of note that our findings generalized

across entirely different sets of stimuli (experiments 1 and 2).

Last, for our critical comparison of overlapping versus non-over-

lapping routes, we focused on spatiotemporal activity patterns

during the overlapping segments of the routes (segment 1

data)—that is, before the overlapping routes diverged. Indeed,

once the overlapping routes diverged (segment 2 data), the

hippocampal reversal effect ‘‘disappeared’’ (Figure 4). Thus, hip-

pocampal representations of overlapping routes were most

dissimilar when routes actually overlapped, clearly suggesting

that the reversal effect was triggered by event overlap.

Mechanism Underlying the Hippocampal Reversal
Effect
Although there is general agreement that the hippocampus

disambiguates overlapping event representations—a phenome-

non that has been termed ‘‘pattern separation’’—there remains

debate about how pattern separation is achieved, with an

emerging perspective that multiple, computationally distinct

mechanisms are involved [18, 22]. However, the most prominent

account is that pattern separation is achieved by sparse coding

in the hippocampus—particularly within the dentate gyrus
[17–22]. With sparse codes, the probability of individual neurons

being shared across representations is reduced and resulting

representations are orthogonalized. Although our data do not

argue against this idea, this account fails to explain our cen-

tral findings. In particular, sparse coding does not explain why

overlapping route representations would be less similar than

non-overlapping representations. If every route were repre-

sented by a unique hippocampal code (due to sparse coding),

then the similarity among overlapping routes would be equal

to—but not lower than—the similarity among non-overlapping

routes.

An additional important consideration in understanding

the observed reversal effect is that it emerged with learning.

Although there are several existing accounts of how learning

contributes to divergence of hippocampal activity patterns, the

critical test of these accounts is whether they can explain why

the hippocampus would represent overlapping routes as less

similar than non-overlapping routes. For example, the hippo-

campus is thought to play a critical role in establishing unique

contexts for overlapping events [5, 10, 33]. By learning to asso-

ciate overlapping events with distinct contexts, hippocampal

activity patterns should diverge over time [10, 37]. However,

associating each route with a unique context should only reduce

global similarity among events and does not explain why over-

lapping routes would be less similar than non-overlapping

routes. In fact, this account would, if anything, predict greater

hippocampal pattern similarity for overlapping routes than non-

overlapping routes because overlapping routes inherently share

more contextual information (e.g., spatial locations and land-

marks) [10, 37]. Similarly, hippocampal activity patterns may

diverge with learning if subjects learn to predict route destina-

tions [32–36], but this account, like a context account, fails to

explain why overlapping event representations would be less

similar than non-overlapping event representations. Moreover,
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Figure 6. Voxel-Level Plasticity

(A) Time course similarity was defined as the correlation of a single voxel’s temporal pattern of activity across two different routes. For each voxel, time course

similarity was separately computed for the first half and second half of learning. BOLD, blood-oxygen-level-dependent.

(B and C) Second-half time course similarity plotted as a function of first-half time course similarity, separately for the hippocampus (B) and PPA (C) and for

overlapping (blue) and non-overlapping (orange) routes. Within the hippocampus, second-half time course similarity was markedly lower for overlapping

than non-overlapping routes (reversal effect) for voxels that were moderately shared at the beginning of learning (p = 0.00009). Error bars reflect ± SEM. �p < 0.1,

***p < 0.001.

See also Figures S5 and S6.
we did not observe any evidence of destination coding in the

present study. Finally, it is possible that, with learning, subjects

selectively oriented attention to route-unique features. Again,

however, attending to route-unique features should reduce

global similarity but does not explain the reversal effect.

Moreover, if hippocampal activity patterns were influenced by

attention, we would expect to see attention-related effects in

high-level visual cortical areas as well [38], but the reversal effect

was fully absent in scene- and object-related cortical areas (Fig-

ures 3F and S4).

Conceptually, an appealing way to account for the hippo-

campal reversal effect is that route overlap triggered a repulsion

of event representations [27–29]. From this perspective, co-acti-

vation of similar memories triggered adaptive changes in hip-

pocampal representations such that overlapping memories

specifically ‘‘moved apart’’ from one another. By analogy, this

repulsion is similar to a teacher moving feuding children to oppo-

site corners of a classroom in that the goal is to specifically in-

crease the distance between the feuding children (as opposed

to the distance between all children). Thus, in contrast to orthog-

onalization, where overlapping memories are represented as

‘‘unique,’’ a repulsion account holds that overlapping memories

are represented as ‘‘different from one another.’’ A repulsion

account is not only consistent with the observed reversal effect

but also readily explains the striking and seemingly paradoxical

finding that the hippocampal reversal effect ‘‘disappeared’’

precisely once routes diverged (segment 2; Figure 4). In fact,

when considering more fine-grained temporal fluctuations, the

reversal effect was strongly correlated with the difficulty of

memory-based discrimination (Figure 5). These findings clearly

indicate that the reversal effect was most pronounced when

competition between overlapping routes was highest. The idea

of competition-induced repulsion among hippocampal repre-

sentations has been elegantly described in biologically plausible
2314 Current Biology 27, 2307–2317, August 7, 2017
computational models of the hippocampus, and the mechanism

underlying this repulsion has been termed ‘‘differentiation’’

[26, 29]. Although a limited number of human fMRI studies

have provided strong hints of differentiation in the hippocampus

[6, 13, 25, 26, 29], the present findings provide the strongest and

most unambiguous evidence to date that hippocampal repre-

sentations of overlapping events diverge to the point that they

are less similar than non-overlapping events.

Because wemeasured hippocampal similarity over the course

of an extended learning paradigm, we were also able to show

that the reversal effect was remarkably slow to emerge—only

emerging after routes had been presented�20 times (Figure S3).

However, this slow emergence strongly paralleled behavioral im-

provements in memory-based discrimination of the overlapping

routes, as identified in a separate behavioral study (Figure 2). The

parallel between the emergence of the reversal effect and behav-

ioral improvement is consistent with the idea that differentiation

is a learning-related [26, 29] and behaviorally relevant mecha-

nism [6].

Although we primarily focus on the hippocampal reversal

effect as measured during the second half of learning, two other

comparisons are worth noting. First, in the first half of learning,

hippocampal pattern similarity for overlapping routes was

numerically, but not significantly, greater than for non-overlap-

ping routes (Figure 3A). Although this null result may be partly

due to immediate orthogonalization of route representations in

the hippocampus [17–22], it is important to note that when

considering spatial pattern similarity on a time point by time point

basis (as opposed to spatiotemporal pattern similarity), repre-

sentations of overlapping routes tended to be more similar

than representations of non-overlapping routes (Figure 4B); in

fact, when aggregating across time points, the difference be-

tween overlapping and non-overlapping routes was significant

(F1,39 = 6.06, p = 0.018). Thus, there was mixed evidence for



greater similarity among overlapping compared to non-overlap-

ping routes at the beginning of learning, which may indicate that

initial orthogonalization reduced, but did not fully eliminate, sim-

ilarity between overlapping and non-overlapping routes [39], and

the reversal effect operated upon this residual overlap. Second,

it is potentially surprising that hippocampal pattern similarity was

not significantly greater (in the first or second halves of learning)

for same-route comparisons relative to non-overlapping routes

(by comparison, this difference was highly robust in the PPA [first

half: F1,39 = 19.88, p = 0.00007; second half: F1,39 = 9.85, p =

0.003]). However, this curious result is not necessarily at odds

with our other findings. Namely, if representations of overlapping

routes diverge with learning, this necessarily entails that each

route representation changes relative to itself [40]. Critically,

whereas a given route representation may systematically move

away from its initial state, it need not systematically move

away from non-overlapping route representations. Thus, gradual

within-route representational changes (which are necessary to

achieve differentiation of overlapping routes) may have contrib-

uted to the relatively low same-route similarity values that we

observed.

Voxel-Level Plasticity
Motivated by our primary findings that route overlap triggered

repulsion of hippocampal representations, we considered a

separate and novel question: whether the degree of plasticity

(reversal effect) that an individual voxel experienced was pre-

dicted by representational overlap within that voxel. In most

fMRI studies, this question would be difficult to address because

representational overlap, as indexed by spatial pattern similarity,

cannot be computed at the level of a single voxel. Here, however,

because of the temporally dynamic nature of our stimuli, we used

time course similarity to measure the similarity with which a sin-

gle voxel responded to each pair of routes. Indeed, we observed

that the reversal effect was not evenly distributed across voxels;

rather, there was a ‘‘sweet spot,’’ with the reversal effect dispro-

portionately occurring in voxels that exhibited ‘‘moderate’’ de-

grees of time course similarity at the beginning of learning.

Whymight the reversal effect disproportionately occur for vox-

els with moderate levels of initial time course similarity? When a

voxel responds similarly to a pair of overlapping routes (i.e., high

time course similarity), this suggests that the voxel—or ensem-

bles of neurons within that voxel—are ‘‘shared’’ across those

routes’ representations. Critically, it is proposed that this form

of representational ‘‘sharing’’ is precisely what triggers hippo-

campal differentiation. Namely, if two overlapping events—A

and A0—share common representational units (voxels, neurons,

or connections between neurons), then activation of one event

(A) is likely to activate the overlapping event (A0), and vice versa.

For example, when viewing route 1, route 2 (the overlapping

route) is likely to be partially activated [41–43]. When this occurs,

the co-activated representation is subject to plasticity. Inter-

estingly, and central to interpreting the present findings, it is

argued that the plasticity that these co-activated units experi-

ence is non-monotonically related to their level of activation,

with moderately activated units subject to weakening whereas

strongly activated units are strengthened and weakly activated

units do not experience plasticity [27–29, 40, 44–46]. Putatively,

this non-monotonic plasticity rule reflects a competition between
excitation and inhibition, with moderate activation correspond-

ing to inhibition ‘‘overcoming’’ excitation. From this perspective,

the present finding of a non-monotonic relationship between

initial time course similarity and the reversal effect potentially re-

flects the same putative non-monotonic relationship between

activation and plasticity. That said, our analysis does not consti-

tute a direct test of this model—mainly because time course

similarity is not a direct measurement of co-activation. However,

this perspective offers a theoretically grounded and biologi-

cally plausible interpretation of our findings. Regardless of the

specific mechanistic account, the present findings provide novel

evidence that the degree of representational divergence experi-

enced by individual hippocampal voxels is determined, at least in

part, by the degree of representational overlap during initial

stages of learning. This finding further strengthens our central

argument that overlap itself triggers a repulsion of hippocampal

representations.

Comparison to Rodent Studies
Although the experimental design of the present study was

inspired by canonical rodent T maze paradigms [1, 2], our para-

digm and analyses afford unique insight relative to these studies.

A classic finding from T maze studies is that the hippocampus

differentially represents the central stem of the maze according

to whether the upcoming turn is a left or right turn. Put another

way, two left-turn trials will elicit more similar hippocampal re-

sponses than will left- and right-turn trials. However, this L-L

versus L-R comparison is most closely aligned with the compar-

ison of same versus overlapping routes in the present study.

Although we did find greater hippocampal similarity for same

routes than overlapping routes (Figure 3C), this comparison is

open to many mechanistic interpretations. Instead, our critical

focus was on the comparison between overlapping and non-

overlapping routes. In a T maze paradigm, this comparison

would bemost analogous to comparing the similarity of L-R trials

in the central stem of one maze to the central-stem responses

across two different mazes. Based on our findings, the predicted

result would be that L-R hippocampal similarity within the cen-

tral stem of a maze would be lower than central-stem simi-

larity across two different mazes. To our knowledge, however,

this comparison/result has not been reported in rodent T maze

studies.

Pattern separation in the rodent hippocampus has also been

studied in the context of remapping [4]. The present findings

raise the question of whether remapping might also be triggered

by overlap. Although we are not aware of prior evidence sug-

gesting this, it is difficult to compare the present findings with

evidence for remapping in rodents. First, remapping depends

on identifying the spatial preference of individual place cells,

which is beyond the current resolution of fMRI. Second, remap-

ping takesmultiple forms (global remapping and rate remapping)

[47], and these distinct forms of remapping are thought to

be differentially related to coding for spatial versus non-spatial

information [47, 48]. In the present study, because we did not

record from individual place cells, it is difficult to infer whether

changes in hippocampal activity patterns more likely reflected

something akin to global remapping or rate remapping. For

example, it is possible that changes in hippocampal activity pat-

terns reflected changes in spatial reference frames [3, 47, 49]
Current Biology 27, 2307–2317, August 7, 2017 2315



and/or changes in the features represented at specific locations.

Although beyond the scope of the present study, an important

objective for future research will be to reconcile human fMRI

evidence of learning-related changes in hippocampal activity

patterns with the phenomena of global and rate remapping in

rodents.
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Raw Behavioral and fMRI Data OpenFMRI https://openfmri.org/dataset/ds000217

Regions of Interest [50] http://web.mit.edu/bcs/nklab/GSS.shtml

Software and Algorithms

MATLAB 2014A MathWorks https://www.mathworks.com

SPM 8 Wellcome Department of Cognitive Neurology,

London, United Kingdom

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

FSL 5.0.9 FMRIB’s Software Library, Oxford,United Kingdom https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

R version 3.3.0 [51] https://www.r-project.org

Lme4 [52] http://cran.r-project.org/web/packages/lme4/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Brice Kuhl

(bkuhl@uoregon.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
New York University (NYU) students and alumni who were familiar with the NYU campus participated in the study. Subjects were

restricted to NYU alumni and students in order to facilitate route learning and to reduce potential between-subject variance. Subjects

were between the ages of 18-35, right-handed, native English speakers, had normal or corrected-to-normal vision and had no history

of neurological disorders. Twenty-two subjects participated in the behavioral experiment (15 female; mean age = 20.77). Two

additional subjects’ data were not collected due to technical errors. Twenty subjects (13 female; mean age = 22.15) participated

in fMRI experiment 1. Four additional subjects were excluded from data analysis - one for falling asleep in the scanner, two for tech-

nical errors during scanning, and one due to unreliable localizer data (see Regions of Interest). Twenty-one subjects (9 female; mean

age = 23.17) participated in fMRI experiment 2. One additional subject’s data was excluded from data analysis due to excessive head

motion and another additional subject was excluded for technical errors during scanning. Sample sizes for the fMRI studies were

based on a similar experiment from our lab [6]. Informed consent was obtained according to procedures approved by the New

York University Committee on Activities Involving Human Subjects.

METHOD DETAILS

Stimuli and Design
In the behavioral experiment and fMRI experiment 1 the stimuli consisted of eight routes that traversed the NYU campus (Figure 1A).

Each route was comprised of a series of 98 unique pictures. All pictures were taken at regular intervals (every 10 paces) from an

egocentric perspective by a researcher walking along the route. All routes started in the same location and made exactly three turns

before ending at distinct destinations. Critically, the 8 routes consisted of 4 overlapping pairs. Overlapping pairs followed the same

path for the majority of the route before diverging on the third turn to their respective destinations. The pictures for each route were

taken at different times and therefore the pictures during the overlapping portion of routes were subtly different and could be distin-

guished from one another based on subtle differences in the pedestrians, vehicles, lighting, etc. For analysis purposes, routes were

divided into pairs that shared an overlapping path (‘overlapping routes’; e.g., routes 1 and 2) or took distinct paths (‘non-overlapping

routes’; e.g., routes 1 and 3). Furthermore, each route was divided into two segments: ‘segment 1’ refers to the segment of each route

that overlapped with another route and ‘segment 2’ refers to the route-unique segment of each route. The third turn–which marked

the boundary between segments 1 and 2–occurred at the exact same picture numbers within pairs of overlapping routes (e.g., for

routes 1 and 2) and varied minimally (between picture numbers 74-77) across sets of overlapping pairs (e.g., for routes 1/2 versus

routes 3/4). Likewise, all turns within a pair of overlapping routes occurred at identical time points in order to maximize the similarity

of overlapping routes. There was exactly one overlapping pair that left the starting point in each cardinal direction (north, south, east,

west). The 8 routes were divided into 2 sets (north/south routes and east/west routes). Each subject was assigned one set of routes (4
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routes total) to learn, with the assignment of route sets alternating subject-by-subject. We included 2 sets of routes in order to ensure

our results could not be explained by the idiosyncrasies of any one route.

A new set of 8 routes was used in fMRI experiment 2 (Figure 1B). The routes were constructed using the same parameters as the

routes used in the behavioral and first fMRI experiments, with one key difference. Instead of all routes terminating at distinct locations,

fMRI experiment 2 contained pairs of routes that took distinct paths but ended at the same destination. As before, the 8 routes were

divided into two sets of 4 and each set of 4 contained two pairs of overlapping routes. The routes in each set could be divided into

pairs that (a) shared an overlapping path but terminated at distinct destinations (‘overlapping routes’; e.g., routes 1 and 2), (b) had

non-overlapping paths and terminated at distinct destinations (‘non-overlapping routes’; e.g., routes 1 and 4) or (c) had non-overlap-

ping paths but terminated at the same destinations (‘same destination’; e.g., routes 1 and 3). Due to geographical constraints, the

third turn (i.e., when overlapping routes diverged) in this set of routes occurred slightly later (between picture numbers 84-86)

than in the set used in the behavioral and first fMRI experiments.

Movies of the overlapping route pairs used in the experiments are available in Movies S1, S2, S3, and S4.

Procedure
Behavioral Experiment

Route Learning. Subjects completed 14 rounds of route learning, with each route presented twice per round in random order. During

a route learning trial, pictures from a route were presented in rapid succession (220 ms per picture, 10 ms blank screen in between

pictures). Importantly, subjects were not told the destination of the route prior to the trial. Rather, the destination was only revealed at

the end of the route, with the final picture (the destination) presented for 1690 ms. The destination’s name was also displayed above

the final picture. Each route learning trial lasted a total of 24 s and was followed by a 1 s inter-trial interval (ITI) during which a fixation

cross was presented. Each round also contained two ‘catch’ trials to ensure subjects’ vigilance but were excluded from all analyses.

For each catch trial, a route began as with a normal trial but the presentation stopped at a pre-selected picture number. A cue then

appeared above the picture either instructing participants to identify (1) the routes’ final destination (destination test) or (2) the direc-

tion of the next turn (direction test). During the 3 s response period the picture and test cue remained on screen with the four desti-

nation labels (destination test) or left/right labels (direction test) printed below the picture and participants selected their response

using a keyboard. Catch trials stopped on pictures presented between 3-15 s after the trial onset and at intervals of 1.5 s (to coincide

with the TR length in the fMRI experiments; see fMRI Acquisition). The combined duration of the two test trials within each roundwere

constrained to equal the duration of a full route learning trial (24 s). Although each subject completed an equal number of destination

and direction catch trials throughout the experiment, and each route was tested an equal number of times, the assignment of catch

trial type to both route number and round was randomized so as not to be predictable. That is, within a given round there could be 2

destination catch trials, 2 direction catch trials, or 1 of each, and a given route could be tested twice via a destination catch trial, twice

as a direction catch trial, or once as each test.

Inter-Round Picture Test. At the end of each of the 14 route learning rounds, subjects were shown 20 static pictures, one at a time,

drawn from the routes (5 per route in random order) and for each picture subjects were asked to select the corresponding destination

from a set of four label options. The inter-round picture test was self-paced and subjects responded via keyboard. To ensure that the

five pictures tested from each route in each test round were evenly sampled across positions in the route, each route’s 95 pictures

(excluding the last 3 pictures that contained visuals of the destination) were divided into 5 time-bins of 19 pictures. For each inter-

round picture test, one picture from each time-bin, from each route, was randomly selected to be tested with the constraint that a

given picture was only tested once throughout the experiment. Responses on the test were divided into three groups: (1) ‘target’

if subjects selected the correct destination, (2) ‘competitor’ if subjects selected the overlapping route’s destination, and (3) ‘other’

if subjects selected the destination from a non-overlapping route.

Map Test. In order to assess each subject’s spatial knowledge of the routes, subjects also completed a map test after finishing all

rounds of route learning. For each trial on the map test, subjects were cued with a picture of a route’s destination for 4 s. Amap of the

NYU campus then appeared on screen and subjects had 8 s to click on the spatial location of the cued destination using a computer

mouse. They were then prompted to draw with a pen the route taken to that destination on a paper print out of the campus map.

Finally, participants completed both the Santa Barbara Sense of Direction Scale (SBSOD) and the Questionnaire on Spatial Repre-

sentation (QSR) to assess their spatial acuity and reasoning. Results from the map test and questionnaires are not reported in the

current study.

fMRI Experiments 1 and 2
Route Learning. The procedures from the behavioral experiment were slightly modified to be suitable for fMRI scanning. In both fMRI

experiments, subjects first completed 2 practice route learning rounds (2 repetitions of each route per round) to familiarize them with

the routes and task structure. Subjects then entered the scanner and completed an additional 14 rounds of route learning. Each of the

14 rounds of route learning was scanned as a separate run. The practice rounds were identical to the scanner rounds except that the

first practice round did not contain any catch trials. During the scanned route learning rounds, the ITI was 6 s (fixation cross) to allow

for better separation of the hemodynamic response.

Inter-Round Picture Test. The inter-round picture test used in the fMRI experiments was shorter than in the behavioral experiment.

In the fMRI version, there were a total of only 4 trials which contained pictures randomly sampled from the 4 routes. The sampled

pictures were not constrained to be from different routes. The only constraint was that the pictures used in the inter-round picture
Current Biology 27, 2307–2317.e1–e5, August 7, 2017 e2



test were not used in the post-scan memory test (described below). Additionally, in the fMRI version of the inter-round picture test

subjects were shown each picture for a fixed amount of time (2.5 s) and could only respond during that time, using anMRI-compatible

button box. Because the inter-round picture tests in the fMRI experiments only sparsely assessed route learning, these data are not

reported. These test trials were only included to motivate subjects to learn the routes.

Functional Localizer. Following the 14 rounds of route learning subjects completed one localizer scan that was used to functionally

define regions of interest for the fMRI analyses. The localizer scan contained 36 alternating blocks of three image types (12 blocks per

category): faces, scenes (hallways or houses), and objects (cars or guitars). Each block lasted a total of 6 s and contained 12 grey-

scale images presented for 500ms each. Subjects pressed a button whenever they detected a scrambled image, which occurred on

half of all blocks (counterbalanced across category). An additional 12 baseline ‘blocks’ showing a blank gray screen (also 6 s each)

were randomly interspersed with the other blocks.

Post Tests. After exiting the scanner subjects first completed a map test (identical to the behavioral experiment). Next, subjects

completed an extended picture test which included ten pictures drawn from each route (every 10th picture from picture 4 to 94),

tested in random order. On each trial, the route picture was presented above the set of destination names (4 destination names in

Experiment 1 and 2 destination names in Experiment 2). Subjects used a computer mouse to click on the destination name associ-

ated with each picture. This test was self-paced. Finally, subjects completed the Santa Barbara Sense of Direction Scale (SBSOD)

and the Questionnaire on Spatial Representation (QSR).

fMRI Data Analysis
MRI Acquisition. Scanning was performed on a 3T Siemens Allegra head-only scanner at the Center for Brain Imaging at New York

University using a Siemens head coil. Structural images were collected using a T1-weighted protocol (256 3 256 matrix, 176 1-mm

sagittal slices). Functional images were acquired using a T2* weighted EPI single shot sequence containing 26 contiguous axial slices

oriented parallel to the long-axis of the hippocampus (repetition time = 1.5 s, echo time = 23 ms, flip angle = 77 degrees, voxel size =

23 2 x 2 mm). The functional images did not cover the entire brain; rather, a limited field of view centered on the hippocampus was

chosen in order to improve spatial resolution of data from the hippocampus. For the route learning scans, the first 6 volumes (during

which time a ‘‘Get Ready’’ screen was presented, followed by a fixation cross) were discarded to account for T1 stabilization. For the

localizer scan, the first 8 volumes and last 8 volumes (during which time a fixation cross was presented) were discarded. Field map

and calibration scans were collected to improve functional-to-anatomical coregistration.

fMRI Preprocessing. Images were preprocessed using SPM8 (Wellcome Department of Cognitive Neurology, London, United

Kingdom), FSL (FMRIB’s Software Library, Oxford,United Kingdom) and custom MATLAB (The MathWorks, Natick, MA) routines.

The preprocessing procedures included correction for head motion, coregistration of functional to anatomical images (using a regis-

tration procedure that aligned both functional and anatomical images to a calibration scan), and an unwarping procedure. Images

from the functional localizer scan were spatially smoothed using a 4-mm full-width/half-maximum Gaussian kernel. Images from

the route learning phase, which were used for pattern analyses, were smoothed using a moderate 2-mm full-width/half-maximum

Gaussian kernel in order to improve signal-to-noise ratio. Prior research suggests that smoothing does not reduce sensitivity of

pattern-based fMRI analyses [53]. All analyses were performed in subjects’ native space.

fMRI Univariate Analysis. To analyze the localizer data, SPM was used to construct a general linear model with three regressors of

interest corresponding to the three visual categories (scenes, faces, objects). These regressors were constructed as boxcar func-

tions that onset at the first image of a category block and lasted for the duration of the block. Motion, block, and linear drift were

modeled as regressors of no interest. All regressors were convolved with a canonical double-gamma hemodynamic response func-

tion. A linear contrast of scenes versus faces and objects was used to obtain voxelwise estimates of scene sensitivity and a linear

contrast of faces, scenes, and objects versus baseline was used to obtain voxel-wise estimates of visual sensitivity.

Regions of Interest. Analyses were performed using a region of interest (ROI) approach targeting the hippocampus, parahippo-

campal place area (PPA), retrosplenial cortex (RSC), medial temporal lobe cortex (MTL cortex), and lateral occipital cortex (LO).

Anatomical hippocompal and MTL cortex ROIs were defined using freesurfer’s automated cortical and sub-cortical segmentation

procedure. MTL cortex ROIs were defined as the conjunction of freesurfer’s entorhinal and parahippocampal regions. The resul-

tant ROIs were then visually inspected and manually edited for any inaccuracies before registering them to each subject’s func-

tional space. Voxels in the MTL cortex mask that were overlapping with the final PPA mask (see below) were removed from the

MTL cortex mask to ensure independent ROIs. In order to identify voxels with high signal-to-noise ratios and to create ROI masks

the same size as the PPA, RSC, and LO masks (see below), the hippocampal and MTL cortex ROIs consisted of the top 300 visu-

ally-responsive voxels within bilateral hippocampus and MTL cortex, as determined from the category localizer (contrast of faces,

scenes, and objects versus baseline). Although this voxel selection procedure was implemented to increase our sensitivity to

detect small differences in hippocampal patterns, it is important to note that our main findings were not dependent on such se-

lection methods. Indeed when no voxel selection was applied within the hippocampus the interaction between overlap (overlap/

non-overlap) and learning (1st half/2nd half) remained significant (F1,39 = 4.75, p = 0.0354), as did the reversal effect in the 2nd half of

learning (F1,39 = 7.30, p = 0.0102).

PPA, RSC, and LO were identified using a combination of the category localizer and group-based probabilistic category-selective

ROIs identified from previous studies [50]; http://web.mit.edu/bcs/nklab/GSS.shtml). First, the group-based probabilistic PPA, RSC,

and LO masks were registered to each subject’s native space and voxels overlapping with the anatomically defined hippocampal

masks were removed from the PPA/RSC/LOmasks to ensure independent ROIs. Then, the top 300 scene-selective voxels (contrast
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of scenes versus faces and objects from the category localizer) within PPA and, separately, within RSC were selected. Likewise, the

top 300 object-selective voxels (contrast of object versus scene and faces from the category localizer) within LO were selected. This

method ensured that these category selective cortical ROIs were subject-specific but equal in size (number of voxels) and general

location across all subjects [54]. Note: we chose 300 voxels as an a priori threshold for all our ROIs. This number corresponded to

roughly the top 20% of the hippocampal and MTL cortex voxels, 30% of the voxels within the group-based PPA mask, 15% of the

voxels in the group-based RSC mask, and 6% of the group-based LO mask. One subject from experiment 1 was excluded because

the average t value within their PPA ROI was more than two standard deviations below the mean PPA response in experiment 1 (this

was the only subject with a mean PPA or RSC response that was more than 2 standard deviations below the experiment mean); sub-

jective assessment of the data from this subject confirmed that there was no well-defined cluster within the group-based PPA mask

that selectively responded to scenes.

Spatiotemporal Pattern Similarity. Pattern similarity analyses were performed on ‘raw’ (unmodeled) fMRI data. Several additional

preprocessing steps were performed prior to performing pattern analyses. Functional images were detrended, high-pass filtered

(0.01 Hz), and then z-scored within run. For route learning trials, volumes 3-19 (corresponding to 3-27 s after stimulus onset) were

divided into volumes corresponding to segment 1 (i.e., the portion of each route that shared a path with another route) and segment

2 (i.e., the unique portion of each route after overlapping paths diverged). The volume in each route corresponding to the transition

between segments 1 and 2 (i.e., the third turn in the routes) was discarded from analyses in order to keep segments 1 and 2 distinct.

In experiment 1, segment 1 occurredwithin the first 11 volumes and segment 2 occurredwithin the last 4 volumes. In experiment 2 the

overlapping routes diverged slightly later; thus, segment 1 corresponded to the first 12 volumes segment 2 corresponded to the last 3

volumes. To perform pattern analyses, spatial activity patterns were concatenated across volumes of interest so that each route

segment was represented by a spatiotemporal pattern of activity whose vector length was equal to the number of voxels within

an ROI x the number of TRs included in the segment.

For each subject and each ROI, we computed pattern similarity scores (Pearson correlations) reflecting the representational sim-

ilarity across each pair of routes. Correlations were always performed using data from distinct fMRI runs (odd and even runs) in order

to ensure independence. Thus, for analysis of data from the first half of learning, each route’s average spatiotemporal activity pattern

was obtained from runs 1, 3, and 5 (odd runs) and, separately, from runs 2, 4, and 6 (even runs); average ‘odd run patterns’ were then

correlated with average ‘even run patterns.’ Likewise, for analysis of data from the second half of learning, each route’s average

spatiotemporal activity pattern was obtained from runs 9, 11, and 13 (odd runs) and, separately, from runs 10, 12, and 14 (even

runs), and odd and even patterns were correlated. Data from runs 7 and 8 were excluded in order to ensure an equal number of

odd and even runs within each half. Because each subject studied 4 routes, a 43 4 correlationmatrix was generated for each subject

(Figure 3A). Unless noted, all analyses below combine data across experiments and all comparisons of non-overlapping routes are

restricted to those that terminated at distinct destinations. Before any correlation values were averaged within conditions (e.g., over-

lapping routes), correlation coefficients were z-transformed (Fisher’s z).

Time Point by Time Point Analysis of Memory-Based Discrimination Accuracy. To compare TR-by-TR fluctuations in hippocampal

pattern similarity with behavioral measures of route discrimination, we used behavioral accuracy data from the Inter-Round Picture

Test in the behavioral experiment (see above). This test required that subjectsmatch a randomly sampled picture with its correspond-

ing destination. It therefore required memory-based discrimination between overlapping routes. We first computed mean accuracy

(across routes, learning rounds, and subjects) as a function of pictures’ serial position. This produced a set of mean accuracy values

for every serial position from 1 (the first picture in each route stimulus) to 95 (the last picture in each route tested). To align these

behavioral data with the fMRI data—which was sampled at a coarser rate (16 total time points)—the behavioral accuracy values

were grouped into bins according to the TR during which they were presented in the fMRI sessions (after adjusting for the hemody-

namic response lag; see above). Pictures presented between 0–1.5 s relative to trial onset were grouped into the TR 1 bin, pictures

presented between 1.5–3 s relative to trial onset were grouped into the TR 2 bin, etc. Mean behavioral accuracy was then computed

within each of these bins, yielding a vector that could be correlated with the TR-by-TR fMRI data. Note that since TR 16 included just

an extended visual of the destination and this final picture was not tested in the behavioral experiment, there is no behavioral accu-

racy for this TR.

Timecourse Similarity. Time course similarity indexed the degree to which individual voxels were ‘shared’ across a given pair of

routes. To compute time course similarity, we first obtained route-specific vectors of activation (using segment 1 data only) for

each voxel. The length of each time course vector was equal to the number of segment 1 TRs (11 in experiment 1; 12 in experiment

2). Time course vectors were separately averaged across odd and even runs within each half (as with the spatiotemporal pattern an-

alyses). Average time course vectors were then correlated (Pearson correlation) for every pair of routes, separately for each learning

half (Figures 6B and 6C). Resulting correlation coefficients were z-transformed (Fisher’s z).

QUANTIFICATION AND STATISTICAL ANALYSIS

For all behavioral and fMRI analyses we used standard random-effects statistics (paired sample t tests and repeated-measures

ANOVA). Two-tailed tests were used throughout at an alpha threshold of 0.05. These statistical tests were implemented in R

(https://www.r-project.org). Unless otherwise noted, analyses combined data across experiments 1 and 2. For all ANOVAs run on

these combined data, experiment number was included as a between-subjects factor. For all of the hippocampal ANOVA effects

described in the main text, interactions with experiment number were not significant (Ps > 0.2). See Figure S2 for hippocampal
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and PPA data separated by experiment. Mixed-effects regressionmodels were used to assess the shape of the function relating time

course similarity measures across experimental halves and were implemented in the lme4 package for R (http://lme4.r-forge.

r-project.org). All models were constructed with random intercepts for each subject.

DATA AND SOFTWARE AVAILABILITY

Raw data from the experiment is available on OpenFMRI (https://openfmri.org/dataset/ds000217) and code to run the analyses are

available upon request from the first author (avi.chanales@nyu.edu).
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